U.S. Army Corps of Engineers Alaska District

2016 SITE 8 AND SUQITUGHNEQ RIVER SURFACE WATER AND SEDIMENT SAMPLING REPORT

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03

Final September 2017

> F10AK096903_07.11_0510_a 1200C-PERM

U.S. Army Corps of Engineers Alaska District

2016 SITE 8 AND SUQITUGHNEQ RIVER SURFACE WATER AND SEDIMENT SAMPLING REPORT

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03

Final September 2017

> F10AK096903_07.11_0510_a 1200C-PERM

ACRONYMS AND ABBREVIATIONS	
ACRON I MS AND ADDRE VIATIONS	V
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	1-1
1.1 PROJECT GOALS AND OBJECTIVES	1-1
1.2 REPORT ORGANIZATION	1-1
2.0 SITE DESCRIPTION AND HISTORY	2-1
2.1 SITE DESCRIPTION	2-1
2.1.1 Climate	2-1
2.1.2 Geology	2-2
2.1.3 Hydrogeology	2-2
2.1.4 Vegetation	2-3
2.1.5 Land and Resource Use	2-4
2.2 SITE HISTORY	2-4
2.2.1 Site 8 (Pipeline Break Site)	2-5
2.2.2 Suqi River	2-9
3.0 KEY PERSONNEL AND RESPONSIBILITIES	3-1
4.0 WORK PLAN DEVIATIONS	4-1
5.0 FIELD INVESTIGATION ACTIVITIES	5-1
5.1 MOBILIZATION AND DEMOBILIZATION	5-1
5.2 SAMPLING ACTIVITIES	5-3
5.2.1 Site 8	5-4
5.2.2 Suqi River	5-6
5.3 LAND SURVEYING	5-10
5.4 WASTE MANAGEMENT	5-10
6.0 INVESTIGATION RESULTS AND DISCUSSION	6-1
6.1 DATA QUALITY ASSESSMENT	6-1
6.2 SITE 8	6-2
6.2.1 Distribution of Sediment and Soil at Site 8	6-2
6.2.2 Nature and Lateral Extent of POL Contamination at Site 8	6-5

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

<u>SEC</u>	TIO	N		PAGE
		6.2.3	Recommendations for Future MNA Sampling at Site 8	6-7
	6.3	SUQI F	RIVER	6-7
		6.3.1	Nature and Lateral Extent of Contamination at Suqi River	6-7
		6.3.2	Suqi River Channel Discharge	6-9
7.0	CON	NCLUSI	ONS	
8.0	REF	ERENC	ES	

TABLES

Table 2-1	Historical Exceedances in Sediment and Soil at Site 8	2-9
Table 3-1	Key Field Personnel	
Table 5-1	Site 8 and Suqi River Project-Specific Waste Quantities	5-11
Table 6-1	2016 SSCL Exceedances in Sediment and Soil at Site 8	6-6
Table 6-2	Suqitughneq River Cross-Sections	6-11

LIST OF PHOTOGRAPHS (IN-TEXT)

Photograph 5-1	Field gear unloaded from the Bering Air charter aircraft on 08 August 2016. View facing north.	5-1
Photograph 5-2	Emergency weather port shelter, weather station, and ATV on 08 August 2016. View facing northeast.	5-2
Photograph 5-3	Emergency and field gear stored inside weather port shelter on 08 August 2016. View inside	5-2
Photograph 5-4	Decontaminating sample collection equipment during sediment and soil sampling at Site 8 on 17 August 2016. View facing west	5-4
Photograph 5-5	Typical depth of samples (1 to 2 feet bgs) collected from Site 8 on 17 August 2016; this sample was collected southwest of the UDU and northwest of the MDU from SS-045. View facing down	5-5
Photograph 5-6	Collecting sample SS-020 at Site 8, a saturated surface soil of coarse gravel and sand below cobbles on 18 August 2016; this sample was collected from the LDU near the MDU boundary. View facing down	5-5
Photograph 5-7	Collecting sediment from cross-section S29-SD-010 with a hand auger on 15 August 2016. View facing south, flow to the northeast	5-7

TABLE OF CONTENTS (Continued)

SECTION	<u>PA</u>	GE
Photograph 5-8	Organic layer encountered and removed prior to sampling sediment at S29-SD-009 on 15 August 2016. View facing down.	5-7
Photograph 5-9	Classifying sediment using the USCS chart at Cross-Section S29-010 on 15 August 2016. View facing down.	5-8
Photograph 5-10	Collecting depth measurements along the tag line at Cross-Section S29-004 on 16 August 2016; while the source of the downstream foam was not investigated, it is likely the result of natural decomposition. View facing northeast, flow to the northeast.	5-9
Photograph 5-11	Collecting flow measurements at the midpoint of the Suqi River at Cross-Section S29-002 on 16 August 2016. View facing down, flow to the west (right)	5-10
Photograph 6-1	Extent of the road toe along the MDU and LDU on 18 August 2016. View facing south.	6-2
Photograph 6-2	Sampling a tussock at SS-024 near the southwestern edge of the MDU at Site 8 on 18 August 2016. View facing northwest	6-3
Photograph 6-3	Discontinuous ephemeral surface water at the UDU at Site 8 on 17 August 2016. View facing east	6-4
Photograph 6-4	Water present below the vegetative mat at Site 8 sample SS-020 in the LDU on 18 August 2016. View facing down.	6-4
Photograph 6-5	Sheen observed prior to collecting sediment sample S29-SD-003 on 15 August 2016. View facing down.	6-9
Photograph 6-6	Terminus of Suqi River estuary berm, and Bering Sea on 15 August 2016. View facing east	5-12
Photograph 6-7	Terminus of Suqi River estuary, berm, and Bering Sea on 23 August 2016 after storm event. View facing east	5-13

TABLE OF CONTENTS (Continued)

SECTION

PAGE

APPENDICES

Appendix A	Figures
Appendix B	Data Quality Assessment
Appendix C	Suqitughneq River Cross-Sections
Appendix D	Field Documentation
Appendix E	Photograph Log
Appendix F	Survey Data
Appendix G	Silica Gel Cleanup Comparison at Site 8
Appendix H	Responses to Comments

ACRONYMS AND ABBREVIATIONS

°F	degrees Fahrenheit
AAC	Alaska Administrative Code
AC&WS	Aircraft Control and Warning Station
ADEC	Alaska Department of Environmental Conservation
ATV	all-terrain vehicle
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylene
DD	decision document
DoD	U.S. Department of Defense
DQA	data quality assessment
DRO	diesel-range organics
ECC	Environmental Compliance Consultants
EPA	U.S. Environmental Protection Agency
ft/sec	feet per second
ft ³ /sec	cubic feet per second
FUDS	Formerly Used Defense Site
GAC	granular activated carbon
GPS	Global Positioning System
GRO	gasoline-range organics
HTRW	hazardous, toxic, and radiological waste
IDW	investigation-derived waste
Jacobs	Jacobs Engineering Group Inc.
LDU	lower decision unit
LOD	limit of detection
MDU	middle decision unit
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MNA	monitored natural attenuation
MOC	Main Operations Complex
MS/MSD	matrix spike/matrix spike duplicate
NEC	Northeast Cape
NOAA	National Oceanic and Atmospheric Association
NOM	naturally occurring organic material
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl

ACRONYMS AND ABBREVIATIONS (Continued)

PM	Project Manager		
POL	petroleum, oil, and lubricants		
RI	remedial investigation		
RRO	residual-range organics		
SOP	standard operating procedure		
SSCL	site-specific cleanup level		
Suqi River	Suqitughneq River		
TAH	total aromatic hydrocarbons		
ТАqН	total aqueous hydrocarbon		
TOC	total organic carbon		
UDU	Upper Decision Unit		
USACE	U.S. Army Corps of Engineers		
USGS	U.S. Geological Survey		
WACS	White Alice Communications System		

EXECUTIVE SUMMARY

This report summarizes the 2016 field activities and sample results for the former fuel spill site location (Site 8) and the Suqitughneq River (Suqi River), also known as Site 29, at Northeast Cape (NEC) Formerly Used Defense Site (FUDS) on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation [ADEC] File No. 475.38.013). Environmental Compliance Consultants and Jacobs Engineering Group Inc. performed the fieldwork and prepared this report for the U.S. Army Corps of Engineers (USACE) under Hazardous, Toxic, and Radiological Waste Contract No. W911KB-16-D-0002. This work was performed under the authority of the Defense Environmental Restoration Program and the Comprehensive Environmental Response, Compensation, and Liability Act. The 2016 activities were completed according to the 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan (USACE 2016b). Activities included collection of sediment and soil at Site 8; sampling and analyses of surface water and sediment from the Suqi River and its estuary; and collecting flow and discharge measurements from the Suqi River.

All analytical results were compared to site-specific cleanup levels (SSCLs) established in the decision document (USACE 2009) and Title 18 of the Alaska Administrative Code, Section 75, Tables B1 and B2 (Alaska Department of Environmental Conservation 2016).

The primary findings of the 2016 field observations and sample results at Site 8 include the following:

- At Site 8, sediment was collocated with discontinuous ephemeral surface water and was interspersed with areas of soil found at slightly higher surface elevations.
- Sample locations with concentrations above SSCLs were generally found adjacent to Cargo Beach Road's western toe at Site 8. Diesel-range organics (DRO) concentrations in sediment and soil ranged from 190 to 11,000 milligrams per kilogram (mg/kg) and 11 mg/kg (qualified J,B) to 19,000 mg/kg, respectively. Residual-range organics (RRO) concentrations in sediment and soil ranged from 1,800 to 11,000 mg/kg and 130 mg/kg (qualified QL) to 8,500 mg/kg, respectively. Sample locations with DRO and RRO exceeding SSCLs were identified outside the historical decision unit boundaries. The eastern edge of elevated DRO soil levels has not been defined and may extend under the shoulder of the road. Concentrations of 2-methylnaphthalene in sediment ranged from not detected to 6.8 mg/kg.

Naturally occurring organic material in sediment and soil identified in other areas throughout NEC were found at Site 8. Chromatographic interference to DRO and RRO sample concentrations was likely due to the presence of biogenic organics (refer to Section 1.2.1 in Appendix B).

The primary findings of the 2016 field observations and sample results at the Suqi River include the following:

- Surface water and sediment samples collected from the Suqi River and estuary in 2016 did not contain analytes above the SSCLs; this assumes RRO levels are attributed to biogenic organics (refer to Section 1.2.1 in Appendix B). In surface water samples, total aromatic hydrocarbons concentrations were 0.0007 mg/L and total aqueous hydrocarbon concentrations ranged from 0.000807 to 0.0008233 mg/L. In sediment samples, DRO concentrations ranged from 110 mg/kg (qualified QJ, QN) to 670 mg/kg, RRO concentrations ranged from 930 to 5,700 mg/kg, 2-methylnaphthalene ranged from not detected to 0.71 mg/kg (qualified J,QL,QN), arsenic ranged from 1.27 to 5.82 mg/kg, chromium ranged from 3.42 to 22.7 mg/kg, lead ranged from 3.95 to 22.7 mg/kg, zinc ranged from 14.4 to 42.2 mg/kg. The remaining analytes with SSCLs were not detected.
 - Channel width, depth, bed characteristics, mean velocity, and discharge vary considerably along the Suqi River channel due to its limited depth and convoluted flow path.

.

•

1.0 INTRODUCTION

This report presents investigation results and conclusions from the sample collection effort conducted in August 2016 at the Northeast Cape (NEC) Formerly Used Defense Site (FUDS) on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation [ADEC] File No. 475.38.013). Environmental Compliance Consultants (ECC) and Jacobs Engineering Group Inc. (Jacobs) performed the fieldwork and prepared this report for the U.S. Army Corps of Engineers (USACE) under Hazardous, Toxic, and Radiological Waste (HTRW) Contract No. W911KB-16-D-0002.

Field activities were performed in accordance with the 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan (USACE 2016b), with the exception of deviations noted in Section 4.0.

1.1 PROJECT GOALS AND OBJECTIVES

The 2016 field effort, sample results, and observations satisfied the project goals. Project goals specific to Site 8 and the Suqi River were defined in the work plan (USACE 2016b). Goals for Site 8 were to collect sediment and soil samples. Goals for the Suqitughneq (Suqi) River were to collect surface water and sediment samples from the Suqi River and estuary, and measure river flow. All planned samples were collected. The sample results and observations were used to determine if the historical Site 8 decision units encompassed the lateral extent of petroleum, oil, and lubricant (POL) affected sediment and soil at Site 8, to assess Suqi River and estuary sediment and surface water quality following remedial actions at the Site 28 Drainage Basin performed from 2010 through 2013, and to compare 2016 Suqi River surface water discharge measurements with measurements collected during previous remedial investigations (RIs).

1.2 REPORT ORGANIZATION

This report contains the following components:

• Section 1.0 introduces the project, describes the project goals, and outlines the report organization.

- Section 2.0 provides a physical description of the site and summarizes the site history.
- Section 3.0 lists key personnel and their responsibilities.
- Section 4.0 details deviations to the 2016 work plan (USACE 2016b).
- Section 5.0 defines project mobilization, sampling activities, land survey, waste management, and demobilization activities.
- Section 6.0 presents investigation results and discussion.
- Section 7.0 presents conclusions derived from the field investigation and analytical data review.
- Section 8.0 lists the references cited in this document.

In addition to the main report, the following appendices contain further information:

- Appendix A provides figures of the site and sampling locations.
- Appendix B provides a data quality assessment (DQA), including the sample summary, analytical results, qualified data tables, and the laboratory deliverables (provided as electronic files on the accompanying CD).
- Appendix C presents cross-sections of the Suqi River channel.
- Appendix D provides copies of the field logbooks.
- Appendix E provides a photograph log for the 2016 activities described in this report.
- Appendix F summarizes the site survey.
- Appendix G presents an evaluation of the Silica gel cleanup technique.
- Appendix H presents comments on the draft version of the document and responses to the comments.

2.0 SITE DESCRIPTION AND HISTORY

The following sections describe the location of NEC, information about the physical and ecological setting, site history, and previous investigations at Site 8 and the Suqi River.

2.1 SITE DESCRIPTION

St. Lawrence Island, Alaska is in the western portion of the Bering Sea, approximately 135 air miles southwest of Nome. The NEC FUDS is 9 miles west of the northeastern cape of the island at 63°19' N, 168°58' W. The NEC FUDS property originally encompassed approximately 4,800 acres (7.5 square miles) bordered by Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south (USACE 2015a).

NEC FUDS consists mainly of rolling tundra rising from the Bering Sea toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level roughly 3 miles from the coastline. The NEC FUDS is not connected to other permanent communities on the island by road and is only accessible by air, water, or all-terrain vehicle (ATV) trails. The closest community is the Native Village of Savoonga, located approximately 60 miles to the northwest (Figure A-1).

2.1.1 Climate

St. Lawrence Island has a cool, moist, subarctic maritime climate, with some continental influences during winter when much of the Bering Sea is covered with pack ice. Winds and fog are common, and precipitation occurs approximately 300 days per year as light rain, mist, or snow. Annual snowfall is approximately 80 inches per year. Total annual precipitation is about 16 inches per year, and more than half falls as light rain between June and September. Summer temperatures average between 34 and 48 degrees Fahrenheit (°F), with a record high of 65°F. Winter temperatures range from -2 to 10° F, with an extreme low of -30 °F. Freeze-up on the island normally occurs in October or November, and breakup normally occurs in June (USACE 2015b).

2.1.2 Geology

St. Lawrence Island consists of isolated bedrock highlands of igneous, metamorphic, and older sedimentary rocks surrounded by unconsolidated surficial deposits overlying a relatively shallow erosional bedrock surface (USACE 2009). The Main Operations Complex (MOC) is located at approximately 100 feet above sea level. In the MOC area, shallow unconsolidated surficial materials overlie quartz monzonitic rocks of the Kinipaghulghat Pluton (Patton and Csejtey 1980). The pluton forms the mountainous area south of the NEC FUDS, which includes Kangukhsam Mountain. The Suqi River drainage has created an erosional valley in the Kinipaghulghat Pluton and deposited an alluvial fan of unconsolidated sediments. NEC is located on this alluvial fan, which protrudes north from the mountain front toward the Bering Sea. Granitic bedrock is exposed at the coast north of the site at Kitnagak Bay, which suggests that the quartz monzonitic bedrock underlies the unconsolidated materials at a relatively shallow depth on a wave-cut erosional platform.

In general, the native soil stratigraphy at NEC is characterized by silt near the surface, overlying more sand-dominated soils below the surface. The dark brown silt (in outcrops) to dark green, aqua, blue, and mottled silt contains varying quantities of clay/sand/gravel, and varies from 0 to 10 feet in thickness. The sand below the surface layer contains varying degrees of silt/gravel/cobbles and ranges from 2 feet to greater than 20 feet in thickness. These deeper, coarse-grained materials are generally unsorted and are likely to be of glaciofluvial origin. The depth to bedrock at the NEC FUDS is unknown (USACE 2009).

2.1.3 Hydrogeology

The aquifer at the NEC FUDS is associated with the unconsolidated alluvial material that underlies the area. Select regions, consisting of areas where bedrock blocks are breaking off to form talus fields flanking the Kinipaghulghat Mountains, are likely capable of transmitting large volumes of groundwater. The mountainous area to the south of the former installation provides an ideal recharge area for these unconsolidated materials, providing runoff from rain and snowmelt during the summer that permeates the broken bedrock, alluvial, and glacial deposits. Based on the topography and geology of the site, the regional groundwater flow direction is expected to flow north from the mountainous recharge area south of the site toward the Bering Sea (USACE 2015b).

The shallow subsurface groundwater found in many areas of Site 8 is likely seasonally thawed water that can be spatially and temporally intermittent depending on variations to yearly levels of precipitation.

Key factors influencing seasonal groundwater flow at Site 8 are permafrost and frozen soils, which render the unconsolidated materials effectively impermeable in some areas. The U.S. Geological Survey (USGS) has classified St. Lawrence Island as an area of moderately thick to thin permafrost. Although the St. Lawrence Island permafrost depth is unknown, the permafrost base on the mainland at Nome (135 air miles to the northeast) is estimated to be 120 feet deep on average. The deeper, unconsolidated deposits at the site are likely permafrost, and the shallow soils represent the active layer where soils are frozen and thawed seasonally. Frozen soils have a profound effect in retarding groundwater flow during most of the year (USACE 2015b).

In addition to the Bering Sea bordering the NEC FUDS to the north, area surface water consists of small streams, small- to moderate-sized lakes, and marshy areas. Surface water generally flows northward from highland areas to the south. Small surface waterbodies are common throughout the area. The primary stream drainage in the area, the Suqi River, is fed by runoff from the prominent drainage of the Kinipaghulghat Mountain Valley in the lower mountain area south of the former installation. Several smaller tributaries, originating from two small unnamed lakes, feed the Suqi River as it flows north into Kitnagak Bay. Area surface water flow is highly dynamic, changing significantly over time.

2.1.4 Vegetation

The area around NEC features several major habitat types, including moist tundra dominated by heaths, grasses, sedges, mosses, and lichens, with shrubs that include bearberry, dwarf birch, narrow-leaf Labrador tea, and willow. These plants typically grow in 1 to 3 feet of undecayed organic mat over saturated and frozen soil. Alpine tundra plants (dwarf, prostrate plants that include heaths and tundra species adapted to dry, thin soil conditions) grow on the slopes and exposed ridges of the nearby mountains. The NEC area has many low-lying areas with lakes, bogs, and poorly-drained soils (USACE 2015b).

2.1.5 Land and Resource Use

St. Lawrence Island residents from the villages of Gambell and Savoonga engage in year-round subsistence fishing, hunting, and gathering in the NEC area. Local subsistence hunting camp structures are located adjacent to Site 3 and are seasonally occupied (USACE 2009). Currently, there are no permanent NEC residents; however, representatives of Savoonga have indicated a desire to re-establish a permanent residential community at the site in the future (USACE 2015a).

St. Lawrence Island supports habitats for the following endangered or threatened species: polar bear (threatened), spectacled eider (endangered), Steller's eider (threatened), and the western distinct population segment of Steller sea lion (endangered). Walrus are protected under the Marine Mammal Protection Act. Harvesting berries and subsistence hunting for reindeer occurs around NEC. The Suqi River is used for subsistence fishing. The ocean surrounding NEC is used extensively for subsistence activities including hunting of whales, walrus, seals, and sea birds, and fishing (USACE 2015a).

2.2 SITE HISTORY

NEC FUDS was constructed as an Aircraft Control and Warning Station (AC&WS) during 1950 and 1951 to provide radar coverage and surveillance for the Alaskan Air Command and later for the North American Air Defense Command, as part of the Alaska Early Warning System. The site was activated in 1952 and a White Alice Communications System (WACS) station was added to the site in 1954. The AC&WS and WACS operations were supported by 212 personnel and were terminated in 1969 and 1972, respectively. The majority of military personnel were removed from the site by the end of 1969 (USACE 2015a).

The NEC FUDS included areas for housing site personnel, power plant facilities, fuel storage tanks, distribution lines, maintenance shops, wastewater treatment facilities, and landfills. The buildings and majority of furnishings and equipment related to the AC&WS were initially abandoned in place due to the high cost of off-island transport (USACE 2015a).

In 1971, the villages of Gambell and Savoonga opted out of the Alaska Native Claims Settlement Act, which allowed them to claim title to 1.136 million acres of land in the former St. Lawrence Island Reindeer Reserve, established in 1903. The Gambell Native Corporation and Savoonga Native Corporation (now known as Sivuqaq, Inc. and Kukulget, Inc., respectively) received titles to all of St. Lawrence Island (except U.S. Surveys 4235, 4237, 4340, 4369, and 3728) by Interim Conveyance No. 203, dated 21 June 1979 and finalized 2 December 1980. In 1982, the Navy obtained approximately 26 acres of land containing the former WACS. The land transfer was later deemed invalid and property ownership reverted to Sivuqaq, Inc. and Kukulget, Inc.

Demolitions of the buildings and the majority of other structures were completed under multiple USACE contracts. The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact. Four RIs were conducted at 34 individual sites grouped by environmental concerns between 1994 and 2004 (USACE 2015a). Following completion of the 2007 Feasibility Study (USACE 2007), and the 2009 Decision Document (DD) (USACE 2009), remedial actions occurred through 2014 (USACE 2015b).

2.2.1 Site 8 (Pipeline Break Site)

Site 8, also known as the pipeline break site, is located southwest of the intersection of the access roads to Cargo Beach and the airstrip (Figure A-2). The POL spill resulted from a surface pipeline break that occurred in wetland underlain by sand and cobbles covered with a thick surface vegetative mat that sloped southward toward the Suqi River. The exact location of the break is unknown and the general area was identified by information obtained from community members. The pipeline transferred fuel from the Site 3 pump house to the Site 11 bulk storage tanks in the MOC. The surface pipeline and tanks were drained and removed in 2000

(USACE 2015a). In 2004, two sediment samples and one surface water sample were collected at Site 8 to assess the potential fuel impacts to the area. Sediment samples were collected 50 to 100 feet downgradient of the suspected location pipeline break. Diesel-range organics (DRO) was identified above cleanup levels in sediment at concentrations of 6,700 milligrams per kilogram (mg/kg) (04NE08SD103) and 19,500 mg/kg (04NE08SD102); no exceedances were identified in surface water (USACE 2015a).

Surface Water

Surface water sampling occurred at Site 8 from 2010 through 2012 and in 2014. Samples collected from 2010 through 2012 were analyzed for DRO, residual-range organics (RRO), and polycyclic aromatic hydrocarbons (PAHs) and results were below ADEC surface water standard criteria. In 2010, 2011, and 2013, only DRO and RRO were detected in the surface water samples collected from the Lower Decision Unit (LDU). DRO was found at concentrations of 0.064 mg/L (qualified J) in 2010 (USACE 2011a), 0.061 mg/L (qualified J) in 2011 (USACE 2012), and 0.031 mg/L (qualified J) in 2012 (USACE 2013). RRO concentrations were 0.055 mg/L (qualified J) in 2010 (USACE 2011a), 0.058 mg/L (qualified J) in 2011 (USACE 2012), and 0.039 mg/L (qualified J) in 2012 (USACE 2013). While the 2010 primary and field duplicate surface water samples from the Middle Decision Unit (MDU) had detectable concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, DRO, and RRO, PAH results were estimated below ADEC surface water standard criteria and DRO and RRO concentrations were below ADEC surface water standard criteria ranging from 0.38 to 0.44 mg./L and 0.56 and 0.7 mg/L, respectively (USACE 2011a). In 2011, although benzene, toluene, ethylbenzene, and xylene (BTEX) and PAHs were not detected, the primary and field duplicate samples collected from the MDU had DRO and RRO in concentrations ranging from 0.19 mg/L (qualified QN) to 0.28 mg/L (qualified QN) and 0.28 mg/L (qualified QN) to 0.44 mg/L (qualified QN), respectively (USACE 2012). In 2012, 1-methylnaphthalene, m&p xylenes, o-xylene, toluene, 2-methylnaphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorine, naphthalene, phenanthrene, pyrene, gasoline-range organics (GRO), DRO, and RRO were detected in the primary and field

duplicate surface water samples collected from the MDU (refer to Table H15 in Appendix H of the remedial actions report [USACE 2013]). DRO concentrations ranged from 0.97 mg/L (qualified QN) to 1.6 mg/L (qualified QN) and RRO concentrations ranged from 0.24 mg/L (qualified QN) to 0.45 mg/L (qualified QN) (USACE 2013). In 2014, surface water samples were analyzed for GRO, DRO, RRO, BTEX, and PAHs. Two surface water samples (one primary and one duplicate) were collected from the MDU and one surface water sample was collected from the LDU at the same locations as the 2012 surface water samples. The primary and field duplicate surface water samples from the MDU contained total aqueous hydrocarbon (TAqH) levels of 0.0193 and 0.0329 milligrams per liter (mg/L), respectively. The TAqH levels exceeded the site-specific cleanup levels (SSCLs) of 0.015 mg/L. The TAqH level in the sample from the LDU closest to the Suqi River at 0.00242 mg/L did not exceed the SSCL. The total aromatic hydrocarbon (TAH) levels from both the MDU and LDU were below the SSCL of 0.01 mg/L at 0.0088 and 0.002 mg/L, respectively. No surface water sheen was observed at either location at the time of sample collection (USACE 2015b).

Sediment

The DD-selected remedy of monitored natural attenuation (MNA) of petroleum-contaminated sediment was initiated in 2010. Three decision units were established in the area of the suspected the pipeline break (Figures A-3 and A-4) so that representative samples could be collected to monitor the progress of natural attenuation: the Upper Decision Unit (UDU), upgradient of the source area; the MDU, encompassing the likely pipeline release point; and the LDU, downgradient of the suspected release point. Each decision unit was subdivided into a sample grid four columns wide by ten rows long, creating 40 grid squares measuring approximately 10 feet by 10 feet (USACE 2011a). Figure A-4 presents the locations of composited samples for each decision unit by year (USACE 2015a).

From 2010 through 2012, discrete samples were collected from eight random grid nodes in each decision unit and composited to provide one representative sample from each decision unit; these samples were analyzed for both DRO and RRO before and after silica gel cleanup, PAHs,

and total organic carbon (TOC). Samples were inconsistently referred to as sediment and/or soil during this time so the application of the appropriate DD-specified SSCLs is not possible.

Samples collected from the MDU and LDU exceeded the SSCLs for sediment identified in the DD (USACE 2009) for DRO (3,500 mg/kg), RRO (3,500 mg/kg), and 2-methylnaphthalene (0.6 mg/kg) in 2010 and 2012 as follows:

- In 2010, the MDU primary sample exceeded the sediment SSCL for 2-methylnaphthalene at 7.5 mg/kg (USACE 2011a). The MDU primary sample contained DRO at 7,100 mg/kg and RRO at 3,300 mg/kg (below the sediment SSCL).
- In 2010, the MDU field duplicate exceeded the sediment SSCL for DRO at 9,300 mg/kg, RRO at 5,300 mg/kg, and 2-methylnaphthalene at 7.6 mg/kg.
- In 2010, the LDU sample contained 2-methylnaphthalene at 1.2 mg/kg (USACE 2011a).
- In 2012, the LDU primary and field duplicate samples contained for 2-methylnaphthalene at 1.7 and 1.9 mg/kg, respectively (USACE 2013).

For sediment and soil samples collected from Site 8, all analytes in 2011 and the remaining analytes in 2010 and 2012 were below sediment SSCLs. Most analytes were either not detected or present in concentrations of less than 10 percent of the SSCL or not detected; however, 2-methylnaphthalene, anthracene, naphthalene, and fluorine were detected at greater than 10 percent of the sediment SSCLs (refer to Table F3 in Appendix F of the remedial actions report [USACE 2013]).

In 2014, the first five-year review conducted at Site 8 indicated that the composite sampling conducted in 2010, 2011, and 2012 may have under-represented the decision units due to the limited number of subsamples collected per decision unit. The first five-year review recommended establishing the average decision unit concentration using a multi-incremental sampling approach (USACE 2015a).

Historical exceedances for samples without silica gel cleanup are presented in Table 2-1. Some samples were analyzed following silica gel cleanup. Samples collected from the MDU and LDU in 2010 and analyzed for DRO and RRO following silica gel cleanup were lower than reported

concentrations without silica gel cleanup (USACE 2011a). Sediment samples collected from all three decision units in 2011 were below SSCLs before and after silica gel cleanup (USACE 2012). In 2012, concentrations decreased following silica gel cleanup (USACE 2013).

Sample ID/ Decision Unit	Sample Type	Year	DRO (mg/kg)	RRO (mg/kg)	2-Methylnaphthalene (mg/kg)
	Sedime	nt SSCL	3,500	3,500	0.6
	So	oil SSCL	9,200	9,200	
04NE08SD102	Discrete	2004	19,500	3,880	NA
04NE08SD103	Discrete	2004	6,700	4,360	NA
	Composite	2010	660 ¹	6,300 ¹	0.0068
UDU		2011	58 ¹	380 ¹	0.0035
		2012	290 ¹	2,700 ¹	ND (0.0039)
	Composite	2010	7,100 ¹	3,300 ¹	7.5
			9,300* ¹	5,300* ¹	7.6*
MDU		2011	1,800	1,100	0.15
		2012	960 ¹	2,100 ¹	0.3
	Composite	2010	2,800	1,600 ¹	1.2
		2011	550	820	0.210
LDU			1,500	690	0.092
		0040	2,900 ¹	2,400 ¹	1.7
		2012	2,500* ¹	2,200*1	1.9*

 Table 2-1

 Historical Exceedances in Sediment and Soil at Site 8

Notes:

-- = not specified

* = field duplicate sample

NA = not analyzed

ND = not detected

¹ Concentration decreased after application of silica gel cleanup. For definitions, refer to the Acronyms and Abbreviations section.

2.2.2 Suqi River

The Suqi River (Figure A-2) flows north from the Kinipaghulghat Mountains, originating south of the MOC. The Suqi River flows through tundra to a lagoon and estuary where it drains into Kitnagak Bay (Bering Sea) east of the NEC airstrip. The lagoon and estuary can be intermittently separated from the Bering Sea by a sand berm that forms at the beach by wave action and storm surges. The berm is occasionally breached. Several smaller tributaries, including the drainage basin (Site 28), contribute flow to the Suqi River.

RIs conducted at the Suqi River, also known as Site 29, between 1994 and 2004 identified DRO as the only contaminant of potential concern. These investigations are summarized in the DD as follows (USACE 2009):

- In 1994, surface water samples were analyzed for GRO, DRO, and BTEX. Surface water samples did not exceed drinking water cleanup levels.
- In 1996, sediment and surface water samples were analyzed for DRO and polychlorinated biphenyls (PCBs). Sediment samples contained DRO at 25,000 mg/kg approximately 850 feet downgradient of the Drainage Basin (Site 28). Subsequent sampling efforts in 1998 and 2001 in this area did not duplicate this contamination level in sediment. Surface water samples did not exceed drinking water cleanup levels.
- In 1998, sediment samples were analyzed for DRO, RRO, BTEX, and PAHs, and contained DRO ranging from 11 to 2,200 mg/kg. Surface water samples did not exceed drinking water cleanup levels.
- In 2001, sediment samples were analyzed for DRO, RRO, PAHs, PCBs, TOC, total solids, chromium, lead, and zinc while surface water samples were analyzed for DRO, RRO, and PCBs. Sediment contained DRO ranging from 15 to 1,400 mg/kg. Surface water samples did not exceed drinking water cleanup levels.
- In 2004, sediment samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, PCBs, pesticides, TOC, and mercury while surface water samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, and PCBs. Sediment samples contained DRO ranging from 157 to 988 mg/kg. Surface water samples did not exceed drinking water cleanup levels.

Evaluation by the Agency for Toxic Substances and Disease Registry concluded consumption of fish from NEC waters is not likely to result in adverse health effects (U.S. Department of Health and Human Services 2006).

3.0 KEY PERSONNEL AND RESPONSIBILITIES

The following table lists key project personnel that participated in the field effort.

Title	Organizational Affiliation	Name	Responsibilities
Site Manager	Prime Contractor (ECC)	Kris Reidt	Implemented, oversaw, and coordinated project activities and ensured objectives were met. Supported PM as needed.
Site Safety and Health Officer	Prime Contractor (ECC)	Stanley Seegars	Developed, implemented, and oversaw all safety and health-related project aspects.
Technical Lead/Lead Field Sampler	Subcontractor (Jacobs)	Hollee McLean	Collected field screening and analytical samples and managed and shipped analytical samples.
Project Chemist	Subcontractor (Jacobs)	Candace Ede Angela DiBerardino	Coordinated with the laboratory, reviewed data, and ensured data quality objectives were met.
Analytical Laboratory PM	Laboratory Subcontractor (ALS Environmental)	Greg Salata	Analyzed the samples in accordance with contract and QC requirements.
Emergency Medical Professional	Medical Subcontractor (Total Safety)	Christopher Carson	Provided medical services in accordance with contract.

Table 3-1 Key Field Personnel

Note:

For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

4.0 WORK PLAN DEVIATIONS

Deviations from the 2016 work plan (USACE 2016b) occurred during the execution of fieldwork. None of the deviations significantly affected the data usability. The work plan deviations were as follows:

- Project Wide:
 - In the absence of DD-based SSCLs for soil, USACE requested analytical results from soil samples collected in 2016 to be screened against Title 18 of the Alaska Administrative Code (AAC), Section 75 (18 AAC 75) Tables B1 and B2, promulgated in November 2016 (ADEC 2016). The November guidance was published after the 2016 work plan (USACE 2016a) was accepted. The 2016 WP referenced 18 AAC 75 Tables B1 and B2, which was promulgated in January 2016. For all soil analytes measured as part of the 2016 field effort, the November 2016 values presented in Tables B1 and B2 (ADEC 2016) were more stringent than those referenced in the 2016 WP (USACE 2016a).
 - Some final sampling locations at Site 8 and the Suqi River estuary were not surveyed using a real-time kinematic global positioning system (GPS) or mapping grade GPS. ECO-Land LLC performed an initial survey stakeout of all planned sampling locations on 13 August 2016. During sampling, it was determined that some sample locations would need to be moved. ECO-Land LLC returned to NEC on 18 August 2016. Because the survey gear was left in Nome and with ADEC's approval, sample collection point locations were re-established using the swing-tie method at Site 8 and a compass and tape measure at the Suqi River (Photograph No. 14 in Appendix E). High water levels from heavy rainfall made a follow-up survey impossible. For additional information, see below.

Site 8:

.

- Soil and sediment PAH samples were analyzed by ALS Environmental using U.S. Environmental Protection Agency (EPA) Method SW8270D instead of EPA Method SW8270-SIM due to laboratory error. While the limits of detection (LODs) for soil samples were greater than ADEC evaluation criteria, all LODs were less than SSCLs (USACE 2009). For additional information, refer to the DQA in Appendix B.
- A Site 8 equipment blank was not collected and submitted for laboratory analysis. The 2016 WP required one equipment blank sample be collected following the decontamination of hand tools used to collect soil samples at Site 8. For additional information, refer to the DQA in Appendix B.
- Some sample locations were relocated to target potentially contaminated material. Although sample locations were originally selected across and adjacent to the three decision units with the intent of sampling potentially contaminated soil, six proposed locations were several feet into the roadbed and could not be accessed with hand tools (Photographs No. 29 and 30 in Appendix E). After discussions with the USACE, Site 8 sample locations 004, 013, 021, 039, 073, and 075 were relocated so that no more than

approximately 1 foot of roadbed would need to be moved to access the soil most likely to be affected by potential contamination. Due to large cobbles encountered at 2 feet below ground surface (bgs), similar to those lining the toe of the road, sample location 054 was also relocated.

Suqi River:

.

- The original stakeout did not match the locations proposed in the 2016 work plan (USACE 2016a). In order to collect sediment samples adjacent to historical sample locations, sample locations 005, 006, and 007 were not collected in the surveyed location. Using a compass and tape measure, an attempt was made to collect samples in the proposed locations; these sample locations are estimated (Photograph No. 14 in Appendix E).
- Due to heavy rainfall during the field effort, survey lath installed on 13 and 15 August 2016, marking sediment sample locations in the Suqi River estuary were left in place. At the time of attempted retrieval on 23 August 2016, survey lath for samples 004 through 010 were underwater and could not be safely retrieved due to water depth.
- Flow measurements were collected from the Suqi River at two points at cross-section S29-002 (Figure A-6.2). Although flow measurements were collected from the midpoint of the Suqi River channel, the midpoint at this location had an eddy (Photograph No. 21 in Appendix E). An additional velocity measurement was collected 1 foot closer to the right edge of water (when facing downstream) from the midpoint and used to calculate discharge at this location.

5.0 FIELD INVESTIGATION ACTIVITIES

Field activities at the NEC FUDS took place from 4 through 23 August 2016.

5.1 MOBILIZATION AND DEMOBILIZATION

Mobilization and demobilization occurred during August 2016. Jacobs personnel traveled from Anchorage to Nome via commercial airline on 4 August 2016; ECC and Total Safety traveled from Anchorage to Nome via commercial airline on 5 August 2016. Most of the field gear was transported to NEC on 8 August 2016 and from NEC on 23 August 2016 via Bering Air charter in a CASA 212-200 Aviocar aircraft (Photograph 5-1).

Personnel commuted from Nome to NEC via Bering Air charter in a Piper RA31-350 Navajo aircraft daily when weather permitted. At all times, the charter Navajo aircraft remained on standby at NEC while personnel were performing field activities. Travel while onsite at NEC was performed using ATVs.

Photograph 5-1: Field gear unloaded from the Bering Air charter aircraft on 08 August 2016. View facing north.

A 12-foot by 20-foot weatherport shelter was erected on 8 August 2016 to serve as an emergency shelter and to stage emergency supplies and field equipment (Photographs 5-2 and 5-3) in accordance with EM 385-1-1 (USACE 2014b). Emergency supplies included food and water, bedding, utilities, and fuel. Fire safety and first aid supplies and two satellite phones were present at NEC at all times. The shelter was also used for onsite sample management activities. A Davis Weather Wizard III weather station was erected to monitor NEC weather conditions. The shelter was dismantled on 23 August 2016 after fieldwork was complete.

Photograph 5-2: Emergency weather port shelter, weather station, and ATV on 08 August 2016. View facing northeast.

Photograph 5-3: Emergency and field gear stored inside weather port shelter on 08 August 2016. View inside.

Due to inclement weather that reduced visibility, there was no travel from Nome to NEC on 6, 7, 9, 19, and 21 August 2016. On 12 August 2016, personnel flew towards NEC via Bering Air charter Beechcraft King Air 200 but were unable to land due to low ground fog at NEC FUDS and returned to Nome.

5.2 SAMPLING ACTIVITIES

NEC sampling activities occurred from 10 through 22 August 2016. Groundwater sampling activities at the MOC occurred from 10 through 16 August and are presented under separate cover (USACE 2017). Soil, sediment, and surface water sampling activities occurred from 13 through 22 August 2016. ECO-Land LLC staked the proposed sample locations on 13 August 2013. Copies of the field logbooks are provided in Appendix D.

All samples were collected, labeled, stored, and shipped in accordance with Jacobs standard operating procedures (SOPs) JE-SOP-2000, JE-SOP-3000, JE-SOP-4000, JE-SOP-5010, JE-SOP-5030, and JE-SOP-7000 provided in the 2016 work plan (USACE 2016b). All samples were shipped via Alaska Airlines Goldstreak priority cargo from Nome to ALS Environmental of Kelso, Washington. Chain-of-custody documents are provided electronically in Appendix B, Attachment B-4. Site 8 sediment and soil samples were shipped the day after sample collection. Suqi River and estuary surface water and sediment samples were shipped within three days following sample collection. Samples were thermally preserved in the field using gel ice immediately after collection until receipt by the offsite laboratory.

Reusable sampling tools were decontaminated before use with Alconox and deionized water rinses (Photograph 5-4) and one-time-use equipment was disposed of after use. Decontamination water was collected and treated onsite using a granulated activated carbon (GAC) filter drum prior to discharge onsite (Section 5.4).

Photograph 5-4: Decontaminating sample collection equipment during sediment and soil sampling at Site 8 on 17 August 2016. View facing west.

5.2.1 Site 8

A total of 83 samples (44 soil and 39 sediment) were collected from 75 sample locations at Site 8 on 17, 18, and 22 August 2016. Shovels, a hand auger, sampling spoons, and gloved hands were used to collect soil and sediment samples (Photograph 5-6). Sample locations were the center point of either 20-foot or 10-foot sample grids that spanned across the three historical decision units and adjacent areas. Samples were collected at surveyed locations (Section 4.0). Samples were typically collected from 1 to 2 feet bgs from depths immediately below the vegetative mat (Photograph 5-5); however, the vertical extent of the vegetative mat exhibited local variation. In order to collect soil or sediment and not vegetative material, sample depths ranged from 0.5 feet to 2.5 feet bgs. No specific evidence of anthropogenic disturbance was noted below the vegetative mat.

Photograph 5-5: Typical depth of samples (1 to 2 feet bgs) collected from Site 8 on 17 August 2016; this sample was collected southwest of the UDU and northwest of the MDU from SS-045. View facing down.

Photograph 5-6: Collecting sample SS-020 at Site 8, a saturated surface soil of coarse gravel and sand below cobbles on 18 August 2016; this sample was collected from the LDU near the MDU boundary. View facing down.

Each sample collected from Site 8 was classified as either sediment or soil based on visual observations. Although sediment and soil appeared to be evenly distributed throughout the sampling area at Site 8, the topography and discontinuous ephemeral surface water correlates with the distribution of sediment and soil throughout Site 8. While sediment was typically in areas of low elevation, soil was in areas of both low elevation without surface water and higher elevation. A total of 35 primary samples were classified as sediment as all loose submerged material (mineral and organic) except for that which is actively growing vegetation or part of the vegetative mat to classify samples per the 2016 work plan (USACE 2016b). Sample classification, sample ID, sample depth, USGS soil classifications, and other observations were recorded in field logbooks (Appendix D).

Sediment and soil samples collected from Site 8 were analyzed for DRO by Alaska Method 102 (AK102), RRO by AK103, and PAH by EPA Method SW8270D.

5.2.2 Suqi River

A total of 11 sediment and five surface water samples at the Suqi River and estuary and field measurements at four stream cross-sections at the Suqi River were collected on 15 and 16 August 2016. Collocated sediment and surface water samples were collected from four locations along the Suqi River (Figure A-5) starting with the furthest downstream location (S29-004) and working upstream; these sampling locations were also collocated with the four cross-section measurement locations. Six sediment samples were collected from the Suqi River estuary (Figure A-5) near historical samples 29SD104 through 29SD109 collected under the Phase IV RI (USACE 2005). All samples were collected at surveyed locations whenever possible (Section 4.0). Surface water samples were collected by carefully wading into the river channel. After visual evidence of substrate disturbance subsided, samples were collected upstream from the sampler and transferred directly into jars provided by the laboratory. Following surface water collection, sediment samples were collected using shovels, a hand auger, a clam shell, and sampling spoons (Photographs 5-7 and 5-8).

Photograph 5-7: Collecting sediment from cross-section S29-SD-010 with a hand auger on 15 August 2016. View facing south, flow to the northeast.

Photograph 5-8: Organic layer encountered and removed prior to sampling sediment at S29-SD-009 on 15 August 2016. View facing down.

A total of 14 primary samples were collected from the Suqi River and estuary. Four primary surface water samples (plus one field duplicate and one matrix spike/matrix spike duplicate [MS/MSD] sample) were collected from four collocated sediment locations along the Suqi River. A total of 10 primary sediment samples were collected from the Suqi River and estuary.

Four primary sediment samples (plus one field duplicate and one MS/MSD sample) were collected from four collocated surface water locations and six sediment samples were collected from the Suqi River estuary. Sample details and observations were recorded in field logbooks, as shown in Photograph 5-9. Logbooks are included in Appendix D.

Photograph 5-9: Classifying sediment using the USCS chart at Cross-Section S29-010 on 15 August 2016. View facing down.

The analytical suite for samples collected from the Suqi River varied based on matrix. Surface water samples were analyzed for PAHs by EPA Method SW8270-SIM, and BTEX by EPA Method SW8260 based on the DD SSCLs for surface water. Sediment samples were analyzed for DRO by AK102, RRO by AK103, PAHs by EPA Method SW8270D, PCBs by EPA Method SW8082, and metals including arsenic, chromium, lead, and zinc by EPA Method SW6020A. The sediment analytes included constituents with DD-specified SSCLs for sediment and/or that exceeded soil evaluation criteria for soil following sediment removal activities at Site 28.

After collecting collocated surface water and sediment samples, surface water discharge measurements were collected on 16 August 2016 from four locations along the Suqi River channel (Figure A-6.1). Measurements were compared to previous surface water discharge

measurements collected during RI activities in 2001, 2002 (USACE 2003), and 2005 (USACE 2005). Starting with the furthest downstream location (S29-004) and working upstream, surface water discharge measurements were acquired using a Marsh McBirney model Hach FH950 handheld flow meter with a top-setting wading rod. Using a 50-foot metallic measuring tape, a tag line was set perpendicular to stream flow. Facing downstream, the tag line was set from the right edge of water to the left edge of water at each location (Photograph 5-10). Depths were measured from the right to the left edges of the water in 1-foot increments and recorded in the field logbooks, along with other observations (Appendix D). Velocity measurements were collected at 20, 40, 60, and 80 percent of the midpoint stream depth. At sampling locations S29-001 and S29-002, the depth of the Suqi River exceeded 3 feet. Additionally, surface water sheen was observed at S29-002 and S29-003.

Photograph 5-10: Collecting depth measurements along the tag line at Cross-Section S29-004 on 16 August 2016; while the source of the downstream foam was not investigated, it is likely the result of natural decomposition. View facing northeast, flow to the northeast.

Photograph 5-11: Collecting flow measurements at the midpoint of the Suqi River at Cross-Section S29-002 on 16 August 2016. View facing down, flow to the west (right).

5.3 LAND SURVEYING

A survey was performed in order to identify proposed sampling locations. Surveying was conducted by ECO-Land, LLC, a professional land surveyor subcontracted by ECC. Horizontal data are presented in decimal degrees using the World Geodetic System 1984 coordinate system. Survey data tables relevant to sampling locations and compliant with the *Manual for Electronic Deliverables* (USACE 2011b) are included in Appendix F. Refer to Section 4.0 for a summary of survey deviations from the 2016 work plan (USACE 2016b).

5.4 WASTE MANAGEMENT

Investigation-derived waste (IDW) was transported and disposed of in accordance with all applicable local, state, and federal regulations. IDW included used personal protective equipment, sampling spoons, decontamination water, and general refuse. Solid wastes were stored in contractor bags and four bags of approximately 5 cubic feet each were disposed of by ECC in accordance with the Resource Conservation and Recovery Act and state waste regulations. Wastewater generated during decontamination was collected in a 5-gallon bucket.

The liquid waste was transferred to a GAC filter drum and gravity-fed through the filter prior to discharge on-site (Table 5-1). Discharge was performed downgradient of adjacent sampling. After use, the GAC filter drum was transported to Anchorage via Northern Air Cargo and returned to ECC for re-use. Sanitary waste collected from the portable toilet system was collected and disposed of by ECC (USACE 2016b).

 Table 5-1

 Site 8 and Suqi River Project-Specific Waste Quantities¹

Waste Type	Date	Approximate Disposal Quantity
Non-hazardous decontamination	18 August 2016	8 gallons
wastewater	22 August 2016	7 gallons
	17 August 2016	5 cubic feet
IDW	18 August 2016	5 cubic feet
	22 August 2016	5 cubic feet
General refuse	17 August 2016	5 cubic feet

Note:

¹ Although general refuse was collected together from concurrent projects (soil, sediment, and surface water sampling at Site 8 and the Suqi River and groundwater sampling at the MOC), waste quantities presented in Table 5-1 are project specific. For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

6.0 INVESTIGATION RESULTS AND DISCUSSION

This section summarizes and interprets analytical results and field measurements for the 2016 sampling activities conducted at NEC by Jacobs and ECC. The sample summary table, complete analytical results, and DQA are included in Appendix B.

6.1 DATA QUALITY ASSESSMENT

Data quality was assessed using the laboratory case narrative, laboratory data deliverables, and ADEC checklists. Reviews of the analytical results and associated quality control samples were performed by the Jacobs Project Chemist, as per the 2016 work plan (USACE 2016b).

Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) Quality Systems Manual, version 5.0 (DoD 2013); ADEC and EPA analytical methods (ADEC 2009; EPA 2014); and laboratory limits. Qualifiers were applied to sample results that did not meet the data quality objectives. Qualified results are considered estimated and, whenever possible, indicated as biased high or low. For data qualifier definitions, refer to Section 1.1 of the DQA (Appendix B).

Biogenic interference from naturally occurring organic material (NOM) likely contributed to DRO and RRO concentrations in sediment and soil and biased the analytical results (refer to Section 1.2.1 in Appendix B). NOM in soil and sediment has been reported in previous sampling efforts at NEC. The NOM adds to high levels of DRO and RRO and is likely to bias the results. All DRO and RRO chromatograms were reviewed. After comprehensive review of all chromatograms, DRO exceedances of the SSCL presented in the text are attributable to POL contamination. Biogenic interference likely contributed to all RRO results because no distinguishable residual-range distillate product fingerprint was observed when sample chromatograms were compared to calibration chromatograms. Therefore, RRO exceedances are not discussed in this section. Refer to the DQA (Appendix B) for a detailed discussion.

Two PAH extraction batches associated with Site 8 had PAH surrogates outside of quality control goals due to non-target analytes. The laboratory confirmed the recovery issues outside

of the sample hold times. The DQA found the overall quality of the project data to be acceptable and no results were rejected. The complete dataset and details of the data validation are provided in the DQA (Appendix B).

6.2 SITE 8

The purpose of the 2016 field investigation at Site 8 was to: (1) classify the distribution of sediment and soil at Site 8, and (2) to determine the nature and lateral extent of POL contamination in sediment and soil at Site 8.

6.2.1 Distribution of Sediment and Soil at Site 8

In 2016, samples were collected within and adjacent to the Site 8 Decision Units (Figure A-3). The eastern edge of the sampling area was bounded by Cargo Beach Road and several samples in the southeastern portion of the sample area were collected below roadbed material (Photograph 6-1). Tussocks were encountered more frequently throughout the lower two-thirds of the sampling area (Photograph 6-2).

Photograph 6-1: Extent of the road toe along the MDU and LDU on 18 August 2016. View facing south.

Photograph 6-2: Sampling a tussock at SS-024 near the southwestern edge of the MDU at Site 8 on 18 August 2016. View facing northwest.

Samples were classified as sediment or soil using the definition of sediment stated in the 2016 work plan (USACE 2016b) as all loose submerged material (mineral and organic) except for that which is actively growing vegetation is part of the vegetative mat. Sediment was often collocated with discontinuous ephemeral surface water scattered throughout Site 8 (Photograph 6-3); sediment collected from Site 8 does not appear to be recently deposited sediment. In low areas without surface water, water and sediment were consistently encountered below the vegetative mat (Photograph 6-4). Although the final day of sediment and soil sampling at Site 8 occurred after a known heavy rainfall event (Photograph No. 37 in Appendix E), no specific change in the general Site 8 conditions were noted at that time by the field team. Figure A-3 in Appendix A shows the distribution of samples classified as soil or sediment.

Photograph 6-3: Discontinuous ephemeral surface water at the UDU at Site 8 on 17 August 2016. View facing east.

Photograph 6-4: Water present below the vegetative mat at Site 8 sample SS-020 in the LDU on 18 August 2016. View facing down.

6.2.2 Nature and Lateral Extent of POL Contamination at Site 8

Target analytes exceeding DD-based SSCLs at Site 8 were present downgradient of the suspected pipeline break and along the western toe of the road shoulder in 2016 soil and sediment samples. Target analytes did not exceed DD-specified SSCLs within or adjacent to the UDU. Figure A-4 in Appendix A shows historical and 2016 sample locations exceeding the SSCLs. Sample locations that exceeded ADEC Table B cleanup levels are not shown on Figure A-4; however, they are identified in Tables B-1-2 and B-1-3 (Appendix B).

In 2016, sediment samples exceeded the SSCLs of 3,500 mg/kg for DRO, 3,500 mg/kg for RRO, and 0.6 mg/kg for 2-methylnaphthalene. For analytes with sediment SSCLs, sample concentrations of DRO ranged from 190 to 11,000 mg/kg, RRO ranged from 1,800 to 11,000 mg/kg, 2-methylnaphthalene ranged from not detected to 6.8 mg/kg, fluorene ranged from not detected to 0.41 mg/kg J, naphthalene ranged from not detected to 0.69 mg/kg (qualified J), and phenanthrene ranged from not detected to 0.25 mg/kg (qualified J); acenaphthene, benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene were not detected (refer to Table B-1-3 in Appendix B). Although RRO exceeded the sediment SSCL from 22 of the sample locations, there is no record of anthropogenic RRO sources at Site 8 and all RRO detections are likely to be biogenic in nature. Comparison of 2016 sample chromatograms to chromatograms of instrument calibration standards indicated that the chromatographic patterns in most samples were not consistent with patterns of typical middle distillate or residual-range fuel products (refer to Section 1.2.1 in Appendix B).

In 2016, soil samples exceeded the SSCL of 9,200 mg/kg for DRO (Table 6-1). For analytes with soil SSCLs, sample concentrations of DRO ranged from 11 mg/kg (qualified J,B) to 19,000 mg/kg, RRO ranged from 130 mg/kg (qualified QL) to 8,500 mg/kg, and naphthalene ranged from not detected to 3.2 mg/kg (qualified J,QH) (See Table B-1-2 in Appendix B).

 Table 6-1

 2016 SSCL Exceedances in Sediment and Soil at Site 8

Sample Location	Matrix	DRO (mg/kg)	2-Methylnaphthalene (mg/kg)
Sediment S	SCL	3,500	0.6
S08-SD-026	Codimont	11,000	ND [0.2]
S08-SD-068	Sediment	7,600	6.8
Soil SSC	:L	9,200	
S08-SS-013		19,000	7.5 QH,QN
S08-SS-0139*	Soil	17,000	3.8 QH,QN
S08-SS-030		14,000	14

Notes:

-- = not specified

* = field duplicate sample

Bold = exceeded SSCL ND = not detected

No RRO exceedances are presented in Table 6-1.

For definitions, refer to the Acronyms and Abbreviations section.

For data qualifiers, refer to the DQA (Appendix B).

In 2016, DRO exceeded the sediment SSCL in S08-SD-026 and S08-SD-068 at 11,000 and 7,600 mg/kg, respectively. Both samples were silty, fine sand, in close proximity to the historical sediment samples collected in 2004, and within the boundaries of the decision units.

In 2016, DRO exceeded the soil SSCL in S08-SS-013 and S08-SS-030 at 19,000 and 14,000 mg/kg, respectively. While a notable fuel odor was present during the collection of both samples, a visible sheen was observed on water that accumulated within the sample boring during the collection of S08-SS-013. Location S08-SS-013 was slightly east of the LDU and approximately 20 feet downgradient of the 2004 DRO exceedance of 19,500 mg/kg. Composite samples were collected in 2010 and 2012 nearby S08-SS-013. Location S08-SS-030 was east of the LDU along the toe of Cargo Beach Road and upgradient of a 2004 DRO exceedance of 6,700 mg/kg.

The ADEC soil migration to groundwater cleanup levels for DRO is lower than the SSCLs defined in the DD (USACE 2009). However, the ADEC migration to groundwater cleanup level is not human health based. ADEC's human health based DRO cleanup level is higher than the DD-based DRO SSCL.

6.2.3 Recommendations for Future MNA Sampling at Site 8

The 2016 Site 8 sampling effort did not identify the eastern extent of DRO SSCL exceedances adjacent to the MDU and LDU. Additional sample collection from beneath the road would be necessary to determine the eastern extent. Future sampling events in this area may require equipment other than hand tools in order to collect samples from beneath the road.

Silica gel or other cleanup techniques can be evaluated in more relevant detail for the purpose of determining actual biogenic contribution to DRO and RRO results. Results from NEC FUDS samples with the silica gel cleanup typically indicated a significant reduction in both DRO and RRO across NEC, and at Site 8 by 6 and 42 percent, respectively (Appendix G) (USACE 2011a, 2012, 2013).

6.3 SUQI RIVER

The purpose of the 2016 field investigation at the Suqi River was to: (1) gather analytical surface water and sediment data to perform a comparative analysis in areas with historical exceedances, (2) collect flow measurement for a comparison with historical flow measurements collected in 2001 and 2002 prior to the 2010 through 2013 remedial actions at the Site 28 Drainage Basin, and (3) provide channel discharge information in the event contaminants were found during the 2016 sampling effort.

6.3.1 Nature and Lateral Extent of Contamination at Suqi River

A total of five surface water and 11 sediment samples collected from the Suqi River and estuary in 2016 did not exceed SSCLs (Figure A-5). For analytes with surface water SSCLs, surface water concentrations of TAH were 0.0007 mg/L and TAqHs ranged from 0.000807 to 0.000823 mg/L (refer to Table B-1-5 in Appendix B). For analytes with sediment SSCLs, sample concentrations of DRO ranged from 110 mg/kg (qualified QL,QN) to 670 mg/kg (qualified QL,QN), RRO ranged from 930 to 5,700 mg/kg, 2-methylnaphthalene ranged from not detected to 0.71 mg/kg (qualified J,QL,QN), arsenic ranged from 1.27 to 5.82 mg/kg, chromium ranged from 3.42 to 22.7 mg/kg, lead ranged from 3.95 to 15.3 mg/kg, and zinc ranged from

14.4 to 42.2 mg/kg; PCBs, benzo(g,h,i)perylene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, and phenanthrene were not detected (refer to Table B-1-4 in Appendix B). Although RRO exceeded the sediment SSCL of 3,500 mg/kg, at three sample locations collected from the Suqi River estuary in 2016, RRO is likely attributed to biogenic interference (refer to Section 1.2.1 in Appendix B). Comparison of 2016 sample chromatograms to chromatograms of instrument calibration standards indicated that the chromatographic patterns in most samples were not consistent with patterns of typical middle distillate or residual-range fuel products.

Sediment sampling results from 2016 did not confirm remaining contamination. Historical sampling of the Suqi River was performed before SSCLs were documented in the 2009 DD (USACE 2009). However, when comparing historical sediment and surface water results to SSCLs, one sediment sample collected in 1996 exceeded the DRO SSCL of 3,500 mg/kg at 25,000 mg/kg. Subsequent sampling efforts in 1998 and 2001 near the DRO exceedance were unable to replicate the high DRO concentration (USACE 2009).

While isolated pools of surface water sheen were observed at S29-002 and S29-003 (Photograph 6-5) prior to disturbance or sample collection, the source and whether or not the sheen was biogenic or petrogenic were unknown; results from the 2016 sampling effort for TAH and TAqH in surface water do not support an anthropogenic source for sheen. Surface water TAH and TAqH results were below SSCLs. Sheens have been observed during past sampling efforts as a result of sediment or streambank material disturbance.

Remedial action efforts have been conducted from 2010 through 2013 at the Site 28 Drainage Basin and it has been determined that remaining sources of contamination are not contributing to contaminant migration via the surface water pathway at the time of sampling. However, remaining MOC and Site 28 contamination are potential ongoing sources of contaminant migration to downgradient areas, including the Suqi River or its estuary.

Photograph 6-5: Sheen observed prior to collecting sediment sample S29-SD-003 on 15 August 2016. View facing down.

6.3.2 Suqi River Channel Discharge

Flow measurements were collected from the Suqi River to compare to measurements collected in 2001 and 2002 prior to the 2010 through 2013 remedial actions at the Site 28 Drainage Basin and provide channel discharge information in the event contaminants were found during the 2016 sampling effort (Figure A-6.1). Measurements were collected immediately upstream and downstream of the Drainage Basin confluence from 21 through 22 August 2001 and on 14 August 2002. Additional measurements were collected upstream from the Suqi River culvert near the airstrip in 2002; no measurements were collected downstream of the Suqi River culvert near the airstrip in 2002 because no active flow was recorded. The Phase II RI noted the difference in the Suqi River water level between 2001, a year of high Suqi River water level, and 2002, a year of low Suqi River water level (USACE 2003). In 2016, flow measurements were recorded on 16 August 2016 from approximately 100 feet upstream and downstream from the Drainage Basin confluence (cross-sections S29-001 and S29-002 as shown on Figure A-6.2), and upstream and downstream from the Suqi River culvert near the airstrip (cross-sections S29-003 and S29-004 as shown on Figure A-6.3), respectively. Photographs

taken at the time of the 2016 flow measurement collection (Photographs No. 20 through 23 in Appendix E) indicate that the Suqi River water level was below the ordinary high water level.

Mean flow velocity and discharge were calculated for each cross-section. Mean flow velocity was calculated using the "0.2, 0.4, 0.8 Method" published in the *Open Channel Profiling Handbook* (Marsh-McBirney 2001). The velocities recorded at 20 and 80 percent of the total depth at the channel midpoint were averaged together; the resulting average velocity was calculated with the velocity recorded at 40 percent of the total depth to result in the mean velocity at the midpoint of the Suqi River. Total discharge was calculated using mean velocity and total area of each cross-section.

Observations and data recorded from each cross-section in 2016 indicated that channel width, depth, bed characteristics, mean velocity, and discharge varied considerably along the course of the Suqi River (Table 6-2). The channel was deep and narrow near the confluence of the drainage basin, and wide and shallow near the estuary.

Cross-section S29-001, located 100 feet upstream of the drainage basin, had a rocky streambed, organic lined silty sides, and the lowest discharge at 7.0 cubic feet per second (ft^3 /sec). Field personnel noted vegetation just below the water surface approximately 2 feet upstream from the midpoint of the Suqi River; the vegetation may have affected stream flow velocity near the surface as the recorded velocity was less than the velocity near the center depth (Appendix C).

Cross-section S29-002 was a smooth gravel and silt streambed, located in the Suqi River approximately 100 feet downstream of the confluence of the Site 28 Drainage Basin with the Suqi River. This cross-section was the narrowest and deepest channel measured, at 8 feet across and a maximum depth of 3.4 feet (Appendix C). Noting an eddy in the midpoint of the channel, field personnel measured velocity and discharge 1 foot from the midpoint closer to the right edge of the water (Section 4.0). This point had the greatest mean velocity at 1.31 feet per second (ft/sec) and discharge at 21.88 ft³/sec. Although the instantaneous velocities were measured 1 foot from the midpoint closer to the right edge of the water, the eddy may have affected the velocity measurements.

Cross-section S29-003, located downstream of the drainage basin and approximately 100 feet upstream from the Suqi River culvert near the airstrip, was a shallow, boulder-lined streambed (Appendix C). The maximum depth was 1.6 feet, the mean velocity was 0.99 ft/sec, and the discharge was 12.70 ft^3 /sec.

Cross-section S29-004, located approximately 100 feet downstream from the Suqi River culvert near the airstrip, was a shallow, boulder-lined streambed measuring 22 feet across (Appendix C). The mean velocity was 0.37 ft/sec, and the discharge was 10.17 ft³/sec. While the Suqi River was observed to be flowing past the cross-section S29-004, the sand berm at the terminus of the Suqi River estuary may have affected the velocity measurements.

Cross Section	Location	Width (feet)	Midpoint (feet)	Depth at Midpoint (feet)	Mean Velocity (ft/sec)	Discharge (ft ³ /s)	Bed Characteristics
S29- 001	100-feet upstream of the Site 28 Drainage Basin confluence	8.5	4.25	3.2	0.43	7.00	Rocky bed; sides silty with organics
S29- 002	100-feet downstream of the Site 28 Drainage Basin confluence	8	4	3.2	1.31 ¹	21.88	Smooth gravel and silt bed
S29- 003	100-feet upstream of the culvert on the Suqi River near the airstrip	10.5	5.25	1.2	0.99	12.70	Boulder bed
S29- 004	100-feet downstream of the culvert on the Suqi River near the airstrip	22	11	1.2	0.37	10.17	Boulder bed

Table 6-2 Sugitughneg River Cross-Sections

Notes:

¹Mean velocity measured at 3 feet from the right edge of the water due to eddy at channel midpoint.

All measurements were made on 16 August 2016 within a three-hour period.

For definitions, refer to the Acronyms and Abbreviations section.

Channel width, depth, mean flow velocity, and discharge from the Suqi River have changed since 2001 and 2002. While both velocity and discharge increased in the Suqi River downstream of the Site 28 Drainage Basin confluence as a result of in-flow from the drainage basin, discharge upstream of the confluence remains lower than downstream cross-sections.

The channel deepened approximately 100 feet downstream of the drainage basin, the velocity more than doubled, and discharge was over eight times greater than it was in 2002. In 2001 and 2002, the drainage basin contributed 41 and 43 percent of the total Suqi River flow, respectively (USACE 2003). In 2016, the drainage basin contributed 66 percent to the Suqi River flow. Although channel depth approximately 100 feet upstream of the Suqi River culvert near the airstrip remains shallow, depth increased slightly and discharge increased by a factor of 5 since 2002 (USACE 2003). Downstream of the culvert near the airstrip, the Suqi River is wide; the channel is almost three times wider than cross-section S29-002 near the drainage basin confluence.

A sand berm at the mouth of the Suqi River several feet high prevented direct tidal influence in the estuary. As stated in the Scope of Work and Phase IV RI (USACE 2005), the Bering Sea breaches the sand berm every few years, typically in the fall. Field personnel observed the sand berm on 15 August 2016 and after a storm event on 23 August 2016. As shown in Photographs 6-6 and 6-7, the height and shape of the berm changed after the storm.

Photograph 6-6: Terminus of Suqi River estuary berm, and Bering Sea on 15 August 2016. View facing east.

Estimated low tide (0.1 feet mean lower low water) at 4:09 pm on 15 August 2016 and high tide (1.8 feet mean lower low water at 1:15 am on 16 August 2016 (National Oceanic and Atmospheric Association [NOAA] 2015).

Photograph 6-7: Terminus of Suqi River estuary, berm, and Bering Sea on 23 August 2016 after storm event. View facing east.

Estimated low tide (0.2 feet mean lower low water) at 9:36 am on 23 August 2016 and high tide (2.2 feet mean lower low water) at 3:39 pm on 23 August 2016 (NOAA 2015). (intentionally blank)

7.0 CONCLUSIONS

The findings and conclusions from the 2016 Site 8 field effort are based on sediment and soil sampling results from Site 8 as follows:

- Although future evaluation of sediment and soil at Site 8 is ongoing, the definition of sediment as Site 8 should remain all loose submerged material (mineral and organic) except for that which is actively growing vegetation is part of the vegetative mat.
- The topography and discontinuous ephemeral surface water correlates with the distribution of sediment and soil throughout Site 8. Sediment is typically in areas of low elevation while soil is typically in areas of higher elevation.
- At Site 8, POL contamination exceeding SSCLs is present downgradient of the suspected pipeline break and along the eastern edge of both the MDU and LDU and the western toe of the road. 2016 sediment samples exceeded the SSCLs for DRO, RRO, and 2-methylnaphthalene. 2016 soil samples exceeded the SSCL for DRO only. Although sediment exceeded the RRO SSCL, there is no record of anthropogenic sources of RRO at Site 8. Based on chromatogram interpretation, RRO is likely the result of biogenic interference of NOM.
- Elevated DRO and RRO concentrations in sediment and soil at Site 8 indicate that natural attenuation of POL-contaminants at Site 8 will be slow. Removing impacted sediment and soil at Site 8 may be a more effective remedy. Although some elevated DRO and RRO concentrations in sediment and soil can be attributed to POL contamination, review of the chromatograms indicate that the relatively high NOM in sediment and soil found throughout NEC may interfere with laboratory analysis resulting in biased high concentrations of DRO and RRO. In order to remove the suspected contributions from biogenic interference, the silica gel cleanup method is recommended as part of the analytical protocol when analyzing DRO and RRO in sediment and soil samples collected in the future.

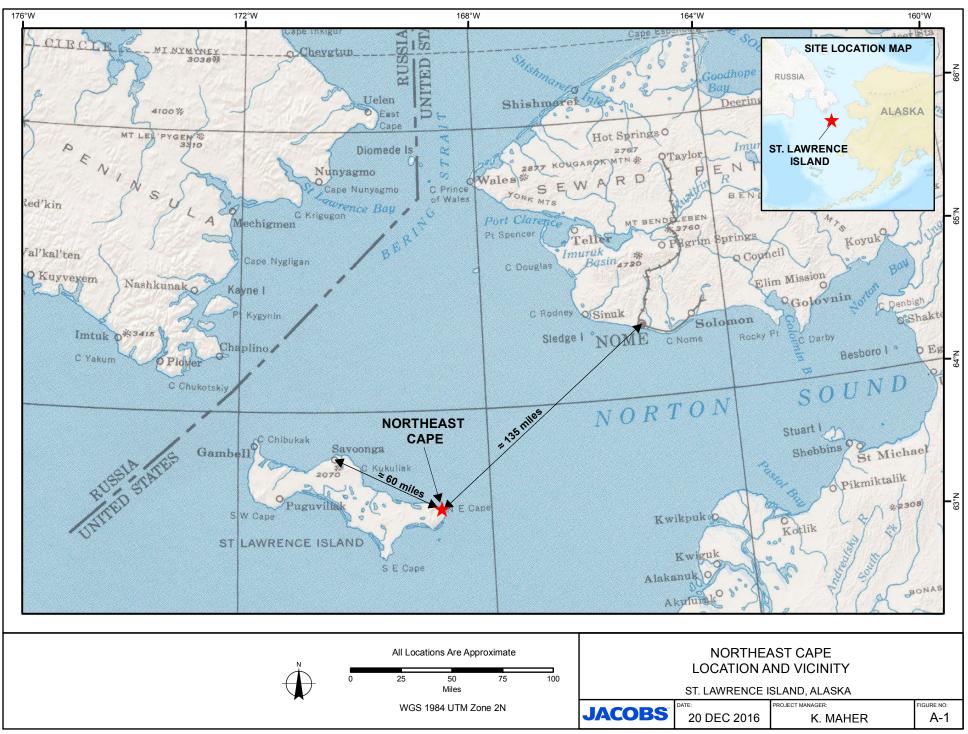
The findings and conclusions from the 2016 Suqi River field effort are based on sediment and surface water sampling results from the Suqi River and estuary, and flow measurements from the Suqi River as follows:

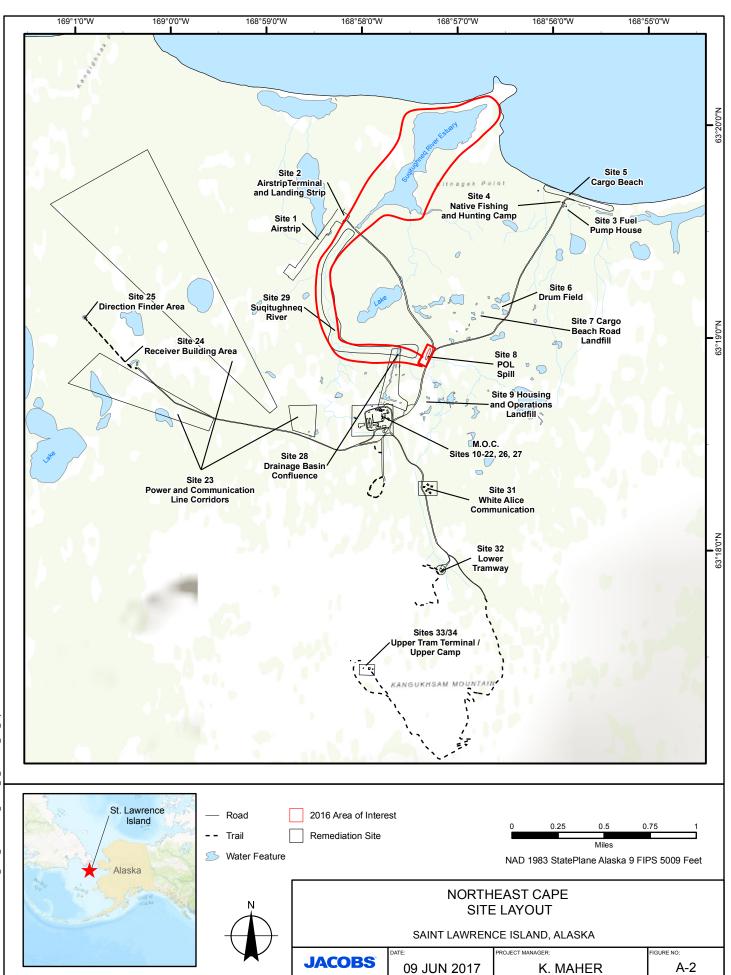
- Surface water and sediment in the Suqi River and estuary did not exceed SSCLs in 2016. Although RRO exceeded the sediment SSCL of 3,500 mg/kg at three sample locations collected from the Suqi River estuary, elevated RRO concentrations were likely the result of biogenic interference.
- Channel width, depth, bed characteristics, mean velocity, and discharge vary along the course of the Suqi River. While both velocity and discharge increases downstream of the Site 28 Drainage Basin confluence as a result of in-flow from the Site 28 Drainage Basin, discharge upstream of the confluence remains lower than downstream cross-sections. In 2016, the contribution to Suqi River flow from the drainage basin was 66 percent. A sand

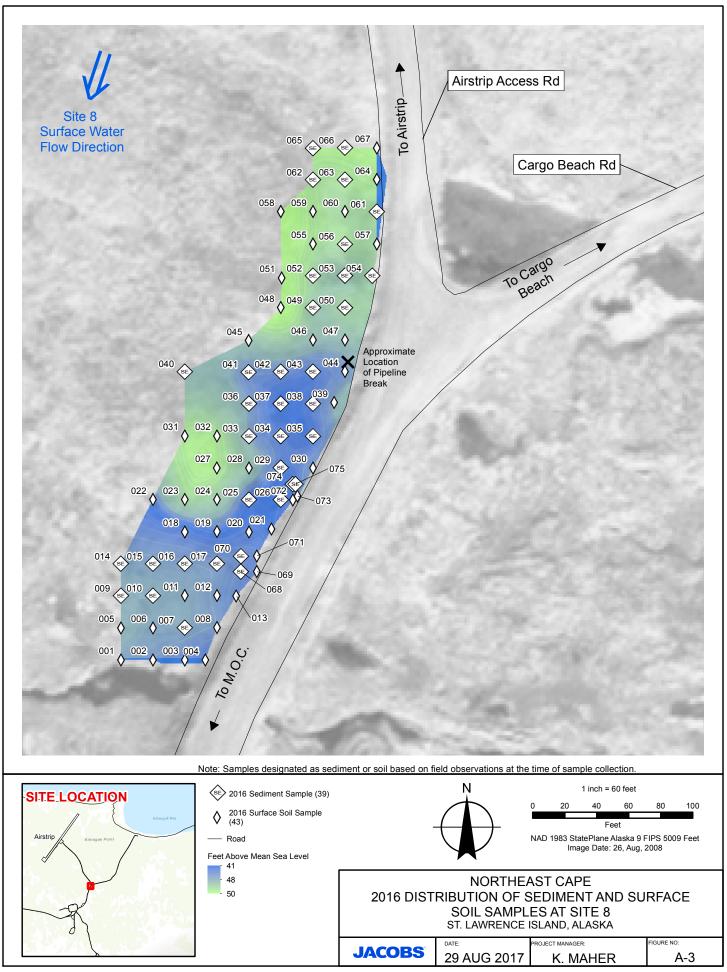
berm was present at the mouth of the Suqi River estuary, preventing direct tidal influence in the estuary.

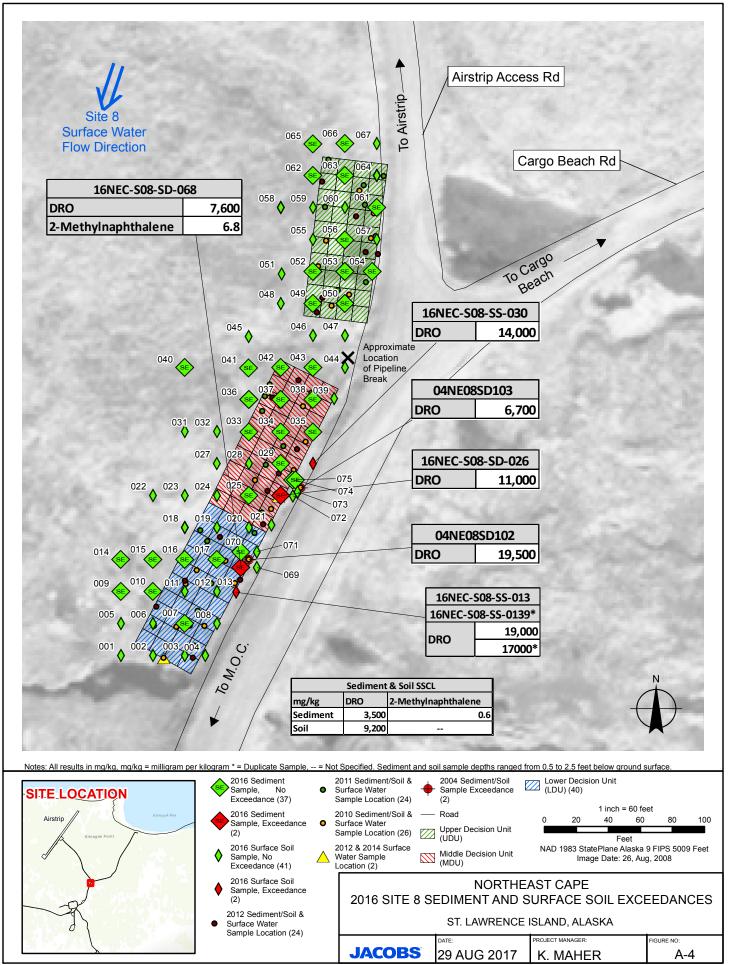
8.0 REFERENCES

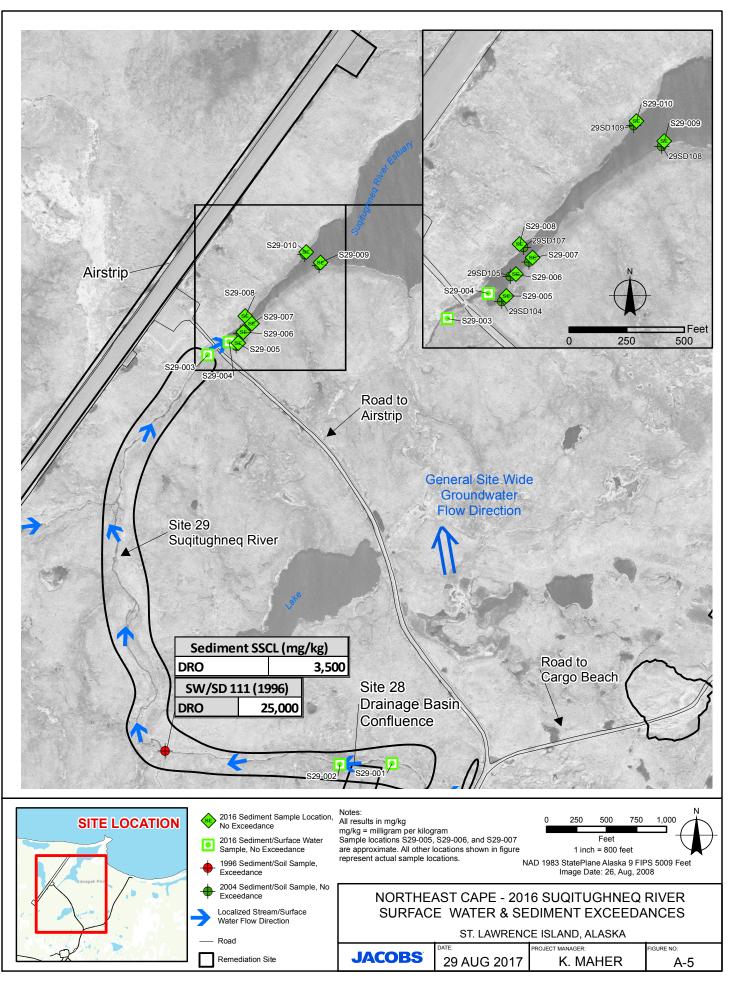
- ADEC (Alaska Department of Environmental Conservation). 2006 (May). *Biogenic Interference and Silica Gel Cleanup; Technical Memorandum*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2009 (March). Environmental Laboratory Data and Quality Assurance Requirements; Technical Memorandum. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2016 (November). Oil and Other Hazardous Pollution Control Regulations. Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances. 18 AAC 75.
- Buchman, M.F. 2008. *NOAA Screening Quick Reference Tables*, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.
- DoD (Department of Defense). 2013 (July). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.0.
- EPA (U.S. Environmental Protection Agency). 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.

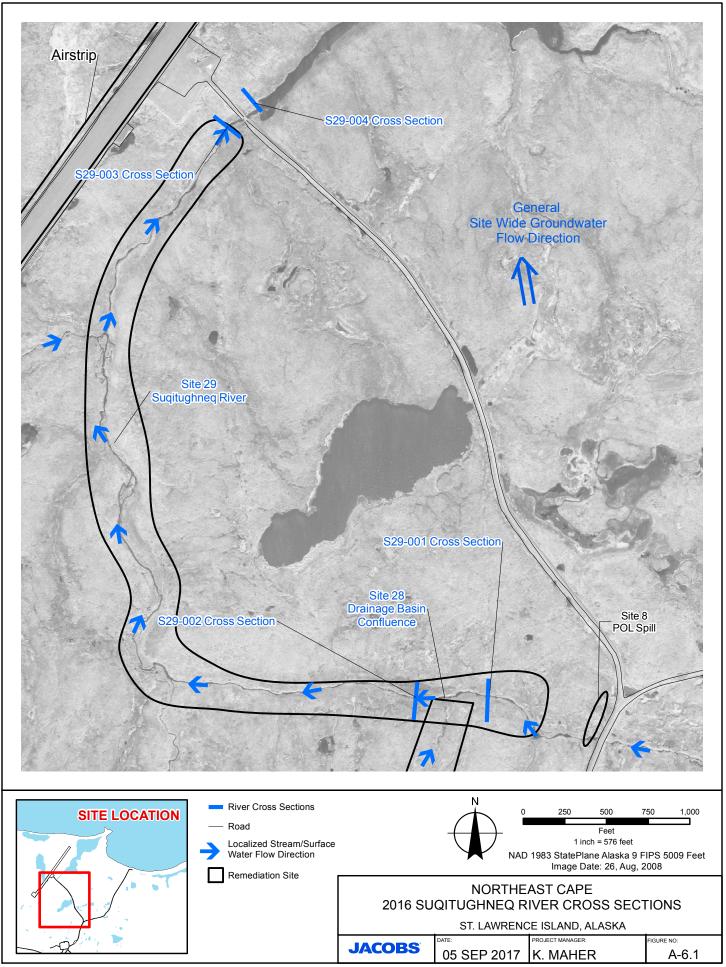

Marsh-McBirney. 2001 (November). Open Channel Profiling Handbook.

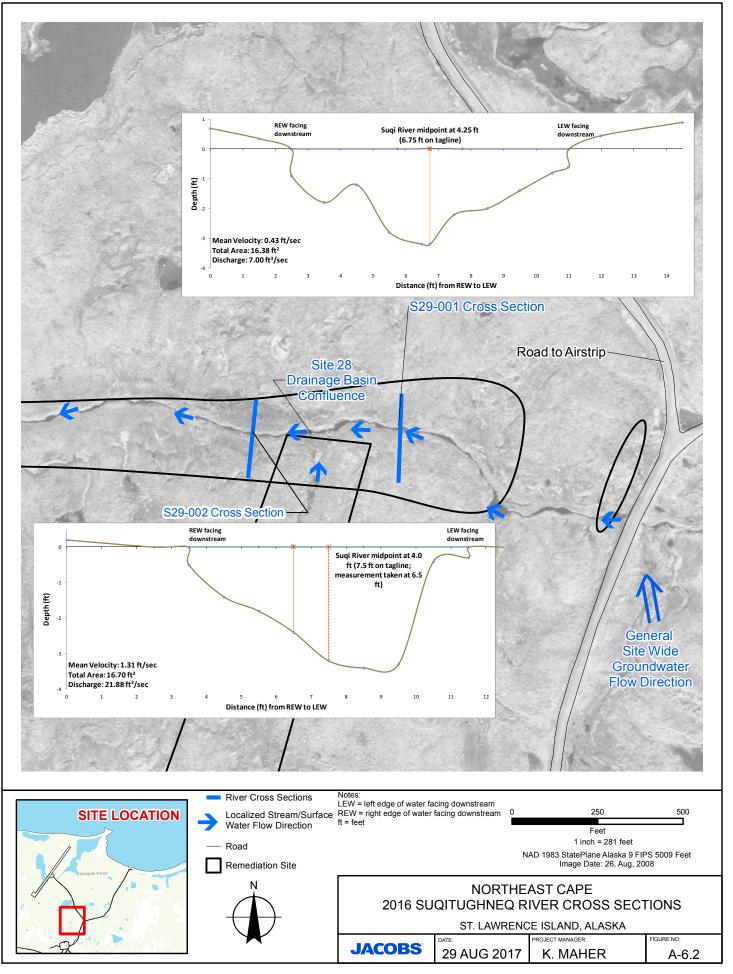

- NOAA (National Oceanic and Atmospheric Association). 2015. *Tide Tables 2016, High and Low Water Predictions: (West Coast of North and South America Including the Hawaiian Islands).*
- Patton, W. and B. Csejtey. 1980. Geologic map of St. Lawrence Island, Alaska: U.S. Geological Survey Miscellaneous Investigation Series. Map I-1203. 1 sheet, scale 1:250,000. <u>http://dggs.alaska.gov/pubs/id/12943</u>. Accessed 12 January 2017.
- U.S. Department of Health and Human Services 2006 (August). *Health Consultation: Polyaromatic Hydrocarbons and Polychlorinated Biphenyls in Fish from the Suqitughneq River, St. Lawrence Island, Alaska.* F10AK096903_03.11_0009_a.
- USACE (U.S. Army Corps of Engineers). 2003 (March). *Phase III Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska*. Final. Prepared by Montgomery Watson Harza. F10AK096903_03.10_0007_a.
- USACE. 2004 (March). Human Health and Ecological Risk Assessment. Northeast Cape Installation. St. Lawrence Island, Alaska. Final. Prepared by Montgomery Watson Harza. F10AK096903_03.11_0005_a.

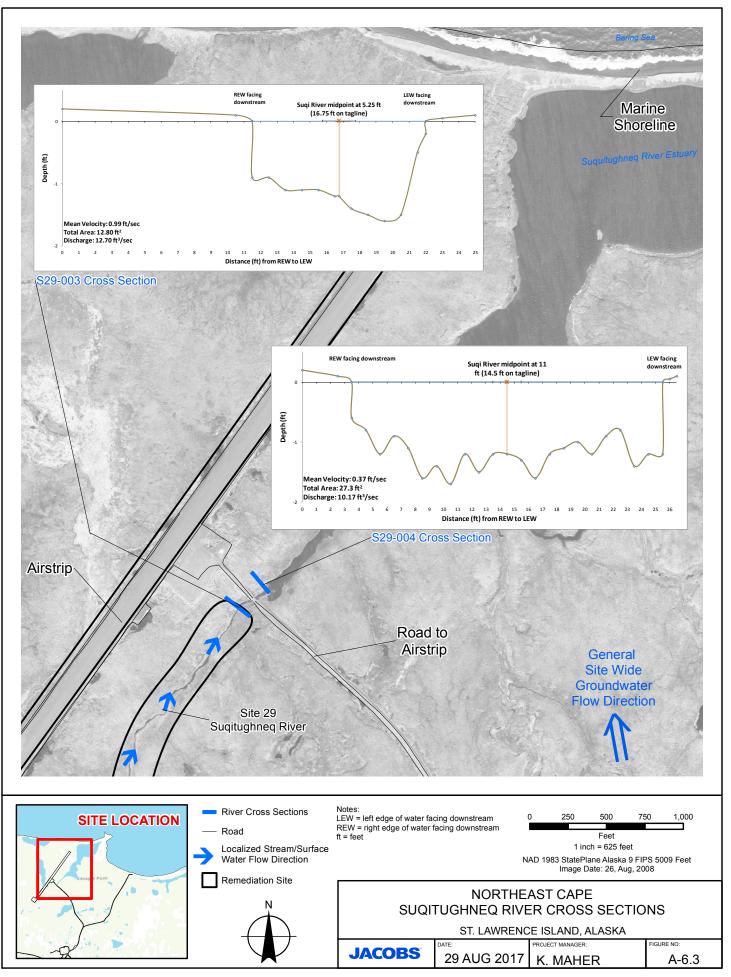

- USACE. 2005 (June). *Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.* Prepared by Shannon & Wilson, Inc. F10AK096903_03.10_0020_a_200-1e.
- USACE. 2007 (March). *Feasibility Study, Northeast Cape FUDS, St. Lawrence Island, Alaska.* Prepared by Jacobs Engineering Group Inc. F10AK096904_04.09_0500_a and F10AK096905_0500_a.
- USACE. 2009 (September). Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009. F10AK09603_05.09_0500_a.
- USACE. 2011a (July). *Northeast Cape HTRW Remedial Actions*, Northeast Cape, St. Lawrence Island, Alaska. F10AK09603_07.08_0502_a_200-1e.
- USACE. 2011b (October). Manual for Electronic Deliverables, Requirements for Submittals of Documents, Laboratory, Data, and Other Items. F10AKxxxxxx_yy.yy_zzzz_a.
- USACE. 2012 (June). Northeast Cape HTRW Remedial Actions, Final Removal Action Report, Northeast Cape, St. Lawrence Island, Alaska. F10AK09603_07.08_0503_a_200-1e.
- USACE. 2013 (May). Northeast Cape HTRW Remedial Actions Report, Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Revision 1. F10AK09603_07.08_0505_a.
- USACE. 2014a (January). Northeast Cape HTRW Remedial Actions, Northeast Cape, St. Lawrence Island, Alaska, Remedial Action Report, FUDS No. F10AK096903. Prepared by Bristol Environmental Remediation Services, LLC.
- USACE. 2014b (November). Safety and Health Requirements Manual. EM 385-1-1. <<u>http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/</u> <u>EM_385-1-1.pdf</u>.> Accessed 19 March 2015.
- USACE. 2015a (February). *First Five-Year Review Report, Northeast Cape FUDS. St. Lawrence Island, Alaska.* Final. Prepared by Jacobs Engineering Group Inc. F10AK096903_07.11_0507_p.
- USACE. 2015b (April). 2014 Northeast Cape HTRW Remedial Actions, Revision 1. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC.
- USACE. 2016a (February). Northeast Cape HTRW 2016, Remedial Action Operations, Formerly Used Defense Site F10AK0969-03, Northeast Cape, Alaska.
- USACE. 2016b (August). 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan. Prepared by Jacobs Engineering Group Inc. F10AK096903_07.04_0513_a.


USACE. 2017 (April). 2016 Monitored Natural Attenuation Groundwater Annual Sampling Report at the Main Operations Complex at Northeast Cape. Draft. Prepared by Jacobs Engineering Group Inc. F10AK096903_07.11_0509_a. (intentionally blank)


APPENDIX A Figures







APPENDIX B Data Quality Assessment

U.S. Army Corps of Engineers Alaska District

2016 SITE 8 AND SUQI RIVER SURFACE WATER AND SEDIMENT SAMPLING REPORT

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03

APPENDIX B DATA QUALITY ASSESSMENT

FINAL SEPTEMBER 2017

<u>SEC</u>	TIO	N		PAGE
ACR	RONY	MS ANE	OABBREVIATIONS	B-iii
1.0 INTRODUCTION				B-1-1
	1.1	QUALI	ГҮ CONTROL CRITERIA	B-1-2
	1.2	DATA (QUALITY SUMMARY	B-1-3
		1.2.1	Biogenic Interference	B-1-4
		1.2.2	Reporting Limit Assessment	B-1-6
		1.2.3	Sample Handling/Preservation	B-1-7
		1.2.4	Holding Time	B-1-7
		1.2.5	Method Blank and Trip Blank Contamination	B-1-8
		1.2.6	Laboratory Control Sample Accuracy and Precision	B-1-8
		1.2.7	Matrix Spike Accuracy and Precision	B-1-9
		1.2.8	Surrogate Spike Accuracy	B-1-10
		1.2.9	Field Duplicate Precision	B-1-10
		1.2.10	Representativeness	B-1-12
		1.2.11	Comparability	B-1-12
		1.2.12	Equipment Blank	B-1-12
2.0	CON	NCLUSIC	DNS	B-2-1
3.0	REF	ERENCE	S	B-3-1

TABLE OF CONTENTS

TABLE

Table B-1	Field Quality Control Sample Quantities	.B-1-1
Table B-2	DRO Results affected by Significant Biogenic Contribution	.B-1-5

ATTACHMENTS

- Attachment B-1 Sample Summary Table and Analytical Data Tables
- Attachment B-2 Qualified Sample Results Tables
- Attachment B-3 ADEC Laboratory Data Review Checklists
- Attachment B-4 Laboratory Deliverables

(intentionally blank)

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
ADEC	Alaska Department of Environmental Conservation
ALS	ALS Environmental
CCV	continuing calibration verification
DF	dilution factor
DL	detection limit
DoD	U.S. Department of Defense
DQA	Data Quality Assessment
DQO	data quality objectives
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
FD	field duplicate
ID	identification number
Jacobs	Jacobs Engineering Group Inc.
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MB	method blank
mg/L	milligrams per liter
MS	matrix spike
MSD	matrix spike duplicate
ND	nondetect
NEC	Northeast Cape
PAH	polycyclic aromatic hydrocarbon
PARCCS	precision, accuracy, representativeness, completeness and comparability
QAPP	quality assurance project plan
QC	quality control
QSM	Quality Systems Manual
RPD	relative percent difference
RRO	residual-range organics
SDG	sample data group
SIM	selective ion monitoring
SVOC	semi-volatile organic compound

ACRONYMS AND ABBREVIATIONS (Continued)

TBtest blankUCLupper control limitUSACEU.S. Army Corps of Engineers

1.0 INTRODUCTION

The following data quality assessment (DQA) and Alaska Department of Environmental Conservation (ADEC) laboratory data review checklists assess the overall quality and usability of data from the 2016 Remedial Action Operations at Sites 08 and Suqi River at the Northeast Cape (NEC) Formerly Used Defense Site on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation [ADEC] file number 475.38.013).

The 2016 fieldwork at NEC was conducted in August 2016. ALS Environmental (ALS) of Kelso, Washington provided analytical services for the test methods, sample types, and matrices summarized in Table B-1. The laboratory delivered the results in electronic formats.

The attachments to this DQA contain the sample summary table and analytical data tables (Attachment B-1), tables of sample results that did not meet the project data quality objectives (DQOs) (Attachment B-2), ADEC laboratory data review checklists (Attachment B-3), and laboratory deliverables (Attachment B-4). Table B-1 presents the number and types of samples collected during the NEC 2016 fieldwork.

	-		-		
Method	Analyte	Matrix	Primary	Duplicate	MS/MSD
		Site 8			
SW8270D	PAH	Soil	40	4	2
AK102/103	DRO/RRO	501	40	4	2
SW8270D	PAH	Codimont	35	4	2
AK102/103	DRO/RRO	Sediment	35	4	2
	-	Site 29		-	-
SW8260B	VOC	Surface	4	1	1
SW8270SIM	PAH	Water	4	1	1
SW6020A	Metals		10	1	1
SW8082A	PCB	Codimont	10	1	1
SW8270D	PAH	Sediment	10	1	1
AK102/103	DRO/RRO		10	1	1

 Table B-1

 Field Quality Control Sample Quantities

Notes:

For definitions, refer to the Acronyms and Abbreviations section.

A total of 8 duplicates were collected for soil and sediment at Site 8.

1.1 QUALITY CONTROL CRITERIA

Jacobs Engineering Group Inc. (Jacobs) performed this DQA and completed ADEC laboratory data review checklists for records associated with the analytical data, as per the *2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan* (U.S. Army Corps of Engineers [USACE] 2016). Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) quality systems manual (QSM), version 5.0 (DoD 2013); ADEC and U.S. Environmental Protection Agency (EPA) analytical methods (ADEC 2009, 2014; EPA 2014); and laboratory limits.

Soil sample results were evaluated against the corresponding ADEC 18 AAC 75 Tables B1 and B2 Method Two-Soil Cleanup Levels, under 40-inch zone human health or migration to groundwater (ADEC 2016), and site-specific criteria defined in the NEC Decision Document (USACE 2009). Sediment and surface water samples were evaluated against the site-specific Decision Document (USACE 2009) criteria.

The Jacobs Project Chemist performed a completeness check of the electronic data to verify that data packages and electronic files included all of the requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation (LOQs), limits of detection (LODs), detection limits (DLs), surrogate recoveries, laboratory control sample (LCS) and LCS duplicate (LCSD) recoveries, matrix spike (MS) and MS duplicate (MSD) recoveries, and precision. Other quality control (QC) parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative. These QC parameters met acceptance criteria; any sample results outside QC parameters are listed below (Section 1.2) or in the associated ADEC laboratory data review checklist (Attachment B-3). Analytical DQOs were considered met when the quality of the sample data met precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) requirements. The overall quality of the data was acceptable as qualified. Qualified data are considered usable but estimated.

The following data qualifiers are applicable to the 2016 NEC analytical data:

- J Analyte result was considered an estimated value because the level was below the laboratory LOQ but above the DL.
- B Analyte result was considered a high estimated value due to contamination present in the method or trip blank.
- QH Analyte result was considered an estimated value (biased high) due to a QC failure.
- QL Analyte result was considered an estimated value (biased low) due to a QC failure.
- QN Analyte result was considered an estimated value (unknown bias) due to a QC failure.

Qualification was not required in the following circumstances:

- Surrogate or MS/MSD recoveries were outside QC limits, and the sample was diluted by a factor of 5 or greater.
- MS/MSD recoveries were outside QC limits, and the spiked concentration was less than that of the parent sample.
- An analyte was detected in the method blank, but there was no detection in the sample.
- MS or LCS recoveries exceeded UCLs, and there was no detection in the associated sample(s).

1.2 DATA QUALITY SUMMARY

In general, the overall quality of project data was acceptable. Data quality was evaluated using PARCCS requirements and are discussed in the applicable sections.

All analytical results were 100 percent complete (no results were rejected), and the completeness goal of 95 percent was met for all parameters. Complete details of the evaluation and associated samples are provided in the ADEC laboratory review checklists (Attachment B-3). The tables in Attachment B-2 include analytical results that did not meet project DQOs and required qualification.

The following anomalies were identified during the data review process as follows:

- Biogenic interference
- Reporting limit assessment

- Sample handling/preservation
- Holding time
- Method blank contamination
- LCS accuracy and precision
- MS accuracy and precision
- Surrogate spike accuracy
- Field duplicate (FD) precision
- Representativeness
- Comparability

Sections 1.2.1 through 1.2.11 describe anomalies and their effects on data quality and usability.

1.2.1 Biogenic Interference

Naturally occurring organic compounds in soil and sediment have been reported in previous sampling efforts at NEC. The naturally occurring organics add to high levels of DRO and RRO and are likely to bias the results. This biogenic interference was likely observed in Site 8 soil and sediment samples and Suqi River sediment samples. For 2016 Site 8 and Suqi River samples, the chromatograms for the AK102/103 analysis were visually evaluated and compared to calibration chromatograms to determine if biogenic interference was significantly contributing to reported concentrations. All RRO results appear to be significantly affected by biogenic interference and no distinguishable residual-range distillate product (i.e., motor oil) fingerprint was observed. For the DRO range, a discernable middle distillate product (i.e., diesel fuel) was observed in some Site 8 and Suqi River samples. If the chromatogram contained a flat baseline with occasional peaks inconsistent with the DRO pattern observed in higher concentration samples, the primary contribution of the DRO results was identified as biogenic interference. Table B-2 lists samples where the DRO result was attributed to the biogenic interference.

SDG	Lab Sample ID	Sample ID	Location ID	Analyte	Results (mg/kg)
K1609649	K160964901	16NEC-S08-SS-0649	S08-064	DRO	690
K1609649	K160964902	16NEC-S08-SD-065	S08-065	DRO	300
K1609649	K160964903	16NEC-S08-SD-066	S08-066	DRO	570
K1609649	K160964904	16NEC-S08-SS-067	S08-067	DRO	950
K1609649	K160964905	16NEC-S29-SD-001	S29-001	DRO	110
K1609649	K160964909	16NEC-S29-SD-004	S29-004	DRO	230
K1609649	K160964910	16NEC-S29-SD-005	S29-005	DRO	310
K1609649	K160964911	16NEC-S29-SD-006	S29-006	DRO	210
K1609649	K160964912	16NEC-S29-SD-007	S29-007	DRO	630
K1609649	K160964913	16NEC-S29-SD-008	S29-008	DRO	410
K1609649	K160964914	16NEC-S29-SD-009	S29-009	DRO	230
K1609649	K160964915	16NEC-S29-SD-010	S29-010	DRO	410
K1609653	K160965302	16NEC-S08-SS-002	S08-002	DRO	120
K1609653	K160965303	16NEC-S08-SS-003	S08-003	DRO	110
K1609653	K160965307	16NEC-S08-SS-045	S08-045	DRO	360
K1609653	K160965308	16NEC-S08-SS-046	S08-046	DRO	380
K1609653	K160965309	16NEC-S08-SS-047	S08-047	DRO	330
K1609653	K160965310	16NEC-S08-SS-048	S08-048	DRO	190
K1609653	K160965311	16NEC-S08-SD-049	S08-049	DRO	270
K1609653	K160965312	16NEC-S08-SD-050	S08-050	DRO	350
K1609653	K160965313	16NEC-S08-SD-0509	S08-050	DRO	420
K1609653	K160965314	16NEC-S08-SS-051	S08-051	DRO	87
K1609653	K160965315	16NEC-S08-SD-052	S08-052	DRO	320
K1609653	K160965316	16NEC-S08-SD-053	S08-053	DRO	260
K1609653	K160965317	16NEC-S08-SD-0539	S08-053	DRO	300
K1609653	K160965318	16NEC-S08-SD-054	S08-054	DRO	450
K1609653	K160965319	16NEC-S08-SS-055	S08-055	DRO	310
K1609653	K160965320	16NEC-S08-SD-056	S08-056	DRO	270
K1609653	K160965321	16NEC-S08-SS-057	S08-057	DRO	280
K1609653	K160965322	16NEC-S08-SS-058	S08-058	DRO	280
K1609653	K160965323	16NEC-S08-SS-0589	S08-058	DRO	270
K1609653	K160965324	16NEC-S08-SS-059	S08-059	DRO	130
K1609653	K160965325	16NEC-S08-SS-060	S08-060	DRO	180
K1609653	K160965326	16NEC-S08-SD-061	S08-061	DRO	440
K1609653	K160965327	16NEC-S08-SD-062	S08-062	DRO	190
K1609653	K160965328	16NEC-S08-SD-063	S08-063	DRO	200

 Table B-2

 DRO Results affected by Significant Biogenic Contribution

SDG	Lab Sample ID	Sample ID	Location ID	Analyte	Results (mg/kg)
K1609653	K160965329	16NEC-S08-SS-064	S08-064	DRO	540
K1609742	K160974201	16NEC-S08-SS-006	S08-006	DRO	430
K1609742	K160974208	16NEC-S08-SD-016	S08-016	DRO	680
K1609742	K160974209	16NEC-S08-SD-017	S08-017	DRO	650
K1609742	K160974210	16NEC-S08-SS-018	S08-018	DRO	530
K1609742	K160974211	16NEC-S08-SS-0189	S08-018	DRO	600
K1609742	K160974212	16NEC-S08-SS-019	S08-019	DRO	520
K1609742	K160974214	16NEC-S08-SS-022	S08-022	DRO	180
K1609742	K160974215	16NEC-S08-SS-023	S08-023	DRO	610
K1609742	K160974216	16NEC-S08-SS-024	S08-024	DRO	300
K1609742	K160974218	16NEC-S08-SS-027	S08-027	DRO	180
K1609742	K160974219	16NEC-S08-SS-028	S08-028	DRO	270
K1609742	K160974220	16NEC-S08-SS-031	S08-031	DRO	460
K1609742	K160974221	16NEC-S08-SD-036	S08-036	DRO	480
K1609742	K160974222	16NEC-S08-SD-0369	S08-036	DRO	450
K1609742	K160974223	16NEC-S08-SD-040	S08-040	DRO	230
K1609742	K160974224	16NEC-S08-SD-041	S08-041	DRO	580
K1609847	K160984705	16NEC-S08-SD-025	S08-025	DRO	630
K1609847	K160984706	16NEC-S08-SD-029	S08-029	DRO	780
K1609847	K160984708	16NEC-S08-SS-032	S08-032	DRO	590
K1609847	K160984709	16NEC-S08-SD-033	S08-033	DRO	600
K1609847	K160984710	16NEC-S08-SD-034	S08-034	DRO	300
K1609847	K160984715	16NEC-S08-SS-039	S08-039	DRO	380
K1609847	K160984716	16NEC-S08-SD-042	S08-042	DRO	750
K1609852	K160985205	16NEC-S08-SD-074	S08-074	DRO	710

 Table B-2

 DRO Results affected by Significant Biogenic Contribution (Continued)

Note:

For definitions, refer to the Acronyms and Abbreviations section.

1.2.2 Reporting Limit Assessment

Laboratory LODs for nondetect sample results were evaluated against the corresponding ADEC 18 AAC 75 Tables B1 and B2 Method Two Soil Cleanup Levels, under 40-inch zone human health or migration to groundwater (ADEC 2016) for soil samples, and site-specific Decision Document (USACE 2009) criteria for sediment and surface water samples. The confidence level at the LOD was 99 percent (1 percent false negative rate) as per the DoD

QSM definition. This level of uncertainty was deemed acceptable for the purpose of the report.

Soil laboratory LODs for method SW8270D were greater than the ADEC cleanup levels due to sample dilutions and the laboratory did not analyze the requested method of SW8270SIM, which contributed to these elevated reporting limits. However, all LODs were less than the site-specific decision document criteria (USACE 2009).

Nondetect sample results that had LODs exceeding the ADEC cleanup level are shown in italics and highlighted in Attachment B-1 (all tables) and presented in Table B-2-8 (Attachment B-2).

1.2.3 Sample Handling/Preservation

Seven coolers were shipped to ALS over the course of the 2016 NEC sampling events. Sample temperatures of 4 ± 2 degrees Celsius (°C) were considered acceptable for the chilled coolers. Several coolers were received at the laboratory with a sample temperature below 2°C. The laboratory did not identify any frozen samples in any of the coolers received below the acceptable temperature range and no results were qualified.

Multiple samplers were utilized at Site 8. The sampling team consisted of soil diggers, container labeler, compositor, and classifier. The team worked cohesively and in a timely manner. There was no impact to the data.

1.2.4 Holding Time

Soil and sediment samples were extracted out of the method SW8270D specified hold time by one day. Sample results were qualified QL, indicating a low bias. The samples and results are presented in Table B-2-1 (Attachment B-2). Data quality is minimally affected since a majority of the results were nondetect with LODs significantly less than the site specific criteria.

1.2.5 Method Blank and Trip Blank Contamination

All method blanks and trip blanks were evaluated to the DL. Sample results that were within 10 times the concentration detected in the method blank and/or trip blank were qualified B. Results that were qualified B may be false positives or biased high.

One sample (16NEC-S08-SS-069) required qualification for diesel-range organics (DRO) in SDG K1609847. The method blank had a detection of 2.2 mg/kg and the sample result was 11 mg/kg. Data usability was minimally affected. The result qualified B was less than the ADEC cleanup level and the site-specific criteria.

1.2.6 Laboratory Control Sample Accuracy and Precision

LCS/LCSD (laboratory QC) were used to evaluate accuracy and precision for each analytical method. The SW8270D LCSD recovery for the fluoranthene and phenanthrene in Sample Data Group (SDG) KWG1607693 was less than the lower control limit (LCL) of 50 percent. The AK102 LCSD for DRO in SDG KWG1607415 was also less than the LCL of 75 percent with a percent recovery of 55 percent. Associated fluoranthene, phenanthrene, and DRO sample results are considered estimated and biased low and were qualified QL. The effect was minimal for the SW8270 samples since the qualified results were nondetect and the LODs for the qualified sample results were an order of magnitude less than the ADEC cleanup levels. The effect was minimal for the site-specific criteria and the soil concentrations were greater than ADEC cleanup levels and less than site specific criteria.

The LCS/LCSD relative percent difference (RPD) in SDG KWG1607693 for the SW8270SIM analytes were outside of the QC criteria (greater than 20 percent RPD). The LCS/LCSD RPD in SDG KWG1607415 and KWG1607743 for the AK102 and AK103 analytes were also outside of the QC criteria. Associated sample results were qualified QN indicating an unknown bias. The effect was minimal since the qualified results or the LODs for nondetect results were either significantly less or greater than the associated site-specific criteria. Two of these SDGs were associated with the low LCSD described above.

Table B-2-2 (Attachment B-2) provides a summary of the LCSD recovery outliers and the affected sample results and Table B-2-3 (Attachment B-2) provides a summary of the LCS/LCSD RPD outliers and the affected sample results.

1.2.7 Matrix Spike Accuracy and Precision

MS/MSDs were collected to evaluate the accuracy and precision of matrix and/or laboratory procedures. Table B-1 provides a summary of the MS/MSD quantities, summarized by analytical method and matrix. The MS/MSD recoveries and RPDs for several analytes and analyses were outside the QC criteria. Sample results with MS/MSD recoveries that were outside QC criteria were qualified as estimated except in the following cases: nondetect samples with high recoveries, samples with concentrations greater than the spike amount, or samples with a dilution factor of 5 or greater.

MS/MSD recovery for DRO in parent sample 16NEC-S08-SD-065 was greater than the UCL and 16NEC-S08-SS-002 was less than the LCL. MS/MSD recoveries for the majority of SW8270 analytes in parent samples 16NEC-S08-SS-002 and 16NEC-S08-SS-064 were less than the DoD QSM LCL. MS/MSD recoveries for chromium and zinc in sample 16NEC-S29-SD-001 were slightly less than the DoD QSM LCL. Affected parent samples were qualified QL or QH, indicating biased low or biased high. The impact was minimal since the biased low qualified sample results were less than the site-specific criteria or were nondetect with LODs less than the site-specific criteria. The DRO soil sample qualified with a biased high DRO was significantly greater than the ADEC criteria and less than the site-specific criteria.

MS/MSD RPDs for Methods AK102, AK103, and SW8270D were outside QC criteria (greater than 20 percent RPD) for the following samples: 16NEC-S29-SD-0039, 16NEC-S08-SS-006, 16NEC-S08-SD-070, 16NEC-S08-SS-064, and 16NEC-S08-SS-002. Associated sample results were qualified QN to indicate an estimated result due to MS/MSD precision outliers. The impact was minimal since the qualified SW8270D sample results were nondetect and associated with the MS/MSD accuracy outliers listed above. The impact was minimal to

the DRO and RRO results that were not associated with the accuracy outliers; the recoveries for these samples were within required QC limits.

Table B-2-4 (Attachment B-2) provides a summary of the MS and/or MSD recovery outliers and the affected sample results, Table B-2-5 (Attachment B-2) provides a summary of the MS/MSD RPD outliers and the affected sample results.

1.2.8 Surrogate Spike Accuracy

Sample results with surrogates outside of QC criteria were qualified as estimated except in the following cases: nondetect samples with high surrogate recoveries or samples with a dilution factor of 5 or greater. Sample results with low surrogate recoveries were qualified QL, and may be biased low. Sample results with high surrogate recoveries were qualified QH, and may be biased high.

For sample results qualified QL, the effect was minimal since the qualified results were nondetect or significantly less than the associated site-specific criteria. Sample 16NEC-S08-SD-014 was noted in the case narrative to have a spiking error (zero percent recoveries); therefore, the sample results were not rejected. There were three sample results qualified QH: 16NEC-S29-SD-010 (AK103), 16NEC-S08-SS-013 (SW8270D), and 16NEC-S08-SS-0139 (SW8270D). Results were either greater or less than the site-specific criteria. It was mentioned in the case narrative that the affected samples had matrix interferences which most likely caused the surrogate outliers.

Table B-2-6 (Attachment B-2) provides a summary of the surrogate recovery outliers and the affected sample results.

1.2.9 Field Duplicate Precision

FDs were collected to evaluate the precision of matrix and/or laboratory procedures. Table B-1 provides a summary of the FD quantities, summarized by analytical method and matrix. The frequency criterion of at least one FD per 10 primary samples was met. FD precision was evaluated against the recommended RPD limit of 50 percent for soil, and 30 percent for water, as stated in the ADEC laboratory data review checklists (ADEC 2009). RPD values for sample pair results, where one was nondetect and the other was detected, were calculated using the LOD value for the nondetect result. Results were qualified as estimated (QN) in two sets of samples due to high FD RPD values. The high RPD values can likely be attributed to the sample matrix or non-homogeneity. The higher value between the sample and the FD will be used for reporting. The effect was minimal since all the QN-qualified results were either both less than or greater than the associated ADEC cleanup level or site-specific criteria.

Table B-2-7 (Attachment B-2) provides a summary of sample results that were qualified QN due to high FD RPD values.

1.2.10 Representativeness

The following was reviewed to evaluate representativeness for this project:

- Sample quantities and locations
- Sampling procedures and equipment
- · Sample chains-of-custody and field logbooks
- Holding times and preservation (discussed in Sections 1.2.3 and 1.2.4)

All proposed sample locations and quantities were collected in accordance with the proper sampling techniques and equipment, per the work plan (Appendix A - Sampling and Analysis Plan [USACE 2016]).

Sample chains-of-custody were reviewed as received by the laboratory. Soil and sediment samples were originally requested to be analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA method SW8270SIM; however, the laboratory analyzed all soil and sediment samples by EPA method SW8270 instead (previously discussed in Section 1.2.2).

1.2.11 Comparability

ALS Environmental provided all analytical services for this project and laboratory SOPs were followed throughout the project.

1.2.12 Equipment Blank

A Site 8 equipment blank was not collected and submitted for laboratory analysis. The 2016 WP required one equipment blank sample be collected following the decontamination of hand tools used to collect soil samples at Site 8. Decontamination procedures were followed using laboratory-grade detergent, potable water, and deionized water rinses; however, these procedures were not verified with an equipment blank sample. The data quality is affected since the decontamination procedures for Site 8 were not verified.

2.0 CONCLUSIONS

In general, the overall quality of project data was acceptable. The completeness goal of 95 percent for all parameters was met; no sample results were rejected. All reported data were considered usable for the remedial action operations at Site 8 and Suqi River; limitations are discussed in this DQA and ADEC laboratory data review checklists (Attachment B-3). The qualifications applied during data validation did not adversely affect data usability. Several samples were qualified low due to extraction holding times, LCS accuracy, and surrogate recoveries. In most cases the detected results and reporting limits were well below the associated criteria.

(intentionally blank)

3.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2009 (March). *Environmental Laboratory Data and Quality Assurance Requirements; Technical Memorandum*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2014 (August). Underground Storage Tanks Procedures Manual. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2016 (November). Oil and Other Hazardous Substances Pollution Control. 18 AAC 75.
- DoD (U.S. Department of Defense). 2013 (July). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.0.
- EPA (U.S. Environmental Protection Agency) 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.
- USACE (U.S. Army Corps of Engineers). 2009 (3 September). Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009. F10AK09603_05.09_0500_a.
- USACE. 2016 (August). 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan, Northeast Cape, St. Lawrence Island, Alaska. Final. Prepared by Jacobs Engineering Group Inc.

(intentionally blank)

ATTACHMENT B-1 Sample Summary Table and Analytical Data Tables

Northeast Cape FUDS 2016 Sampling at Site 08 and Suqi River Table B-1-1 - Sample Summary Table

Conversion State All Converi	COC Sample ID	Location ID	Collection Date	Collection Time	e Sampler	Qty	Container Type	Container Vol	Preservative	Matrix	Analytical Method Requested	QC Type	ТАТ	Notes	Site	COC Number	Cooler Name	Cooler Date	Lab	SDG Number	Sample Start Depth	Sample End Depth
Biology Deck Joing Joing <t< th=""><th>16NEC-S29-WS-001</th><th>S29-001</th><th>16-Aug-16</th><th>1340</th><th>SS,HM</th><th>3</th><th>VOA vial</th><th>40 mL</th><th>4°C, HCl</th><th>WS</th><th>SW8260</th><th>Primary</th><th>30</th><th>BTEX</th><th>S29-001</th><th>2016NEC10</th><th>Whatchamacallit</th><th>17-Aug-16</th><th>ALS</th><th>K1609581</th><th></th><th></th></t<>	16NEC-S29-WS-001	S29-001	16-Aug-16	1340	SS,HM	3	VOA vial	40 mL	4°C, HCl	WS	SW8260	Primary	30	BTEX	S29-001	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581		
Disc. Mat. Disc. Mat. <thdisc. mat.<="" th=""> Disc. Mat. Disc. Ma</thdisc.>	16NEC-S29-WS-0019	S29-001	16-Aug-16	1340	SS,HM	3	VOA vial	40 mL	4°C, HCl	WS	SW8260	Dup	30	BTEX	S29-001	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581		
			U U		/	3		-	,									¥				
INSC 000 INSC 0000 INSC 0000 INSC 0000			U U			9			,			MS/MSD						¥				I
OBD PHE PHEM P		1			í í	3														1 1		
LINE SPEND P. DOB N. SPEND P. Data Description P. Description P. <td>16NEC-TB04</td> <td>TB04</td> <td>15-Aug-16</td> <td>0900</td> <td>SS,KR,CC,HM</td> <td>8</td> <td>VOA vial</td> <td>40 mL</td> <td>4°C, HCl</td> <td>WG</td> <td>SW8260B, AK101, RSK 175</td> <td>TB</td> <td>30</td> <td>BTEX, GRO, Methane</td> <td>14MW05</td> <td>2016NEC10</td> <td>Whatchamacallit</td> <td>17-Aug-16</td> <td>ALS</td> <td>K1609581</td> <td></td> <td>ı II.</td>	16NEC-TB04	TB04	15-Aug-16	0900	SS,KR,CC,HM	8	VOA vial	40 mL	4°C, HCl	WG	SW8260B, AK101, RSK 175	TB	30	BTEX, GRO, Methane	14MW05	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581		ı II.
LINE SPEND P. DOB N. SPEND P. Data Description P. Description P. <td>16NEC TR05</td> <td>TB05</td> <td>16 Aug 16</td> <td>0905</td> <td>SS KR CC HM</td> <td>8</td> <td>VOA vial</td> <td>40 mI</td> <td>A°C HCI</td> <td>WG</td> <td>SW8260B AK101 BSK 175</td> <td>TB</td> <td>30</td> <td>RTEX GRO Methane</td> <td>MW88 3</td> <td>2016NEC10</td> <td>Whatchamacallit</td> <td>17 Aug 16</td> <td>ALS</td> <td>K1600581</td> <td></td> <td></td>	16NEC TR05	TB05	16 Aug 16	0905	SS KR CC HM	8	VOA vial	40 mI	A°C HCI	WG	SW8260B AK101 BSK 175	TB	30	RTEX GRO Methane	MW88 3	2016NEC10	Whatchamacallit	17 Aug 16	ALS	K1600581		
Discription Discription <thdiscription< th=""> <thdiscription< th=""></thdiscription<></thdiscription<>			Ũ			0												Ű				
InterConversion Source Interconversion Source Interconversion Source Name Source Name Source Name Source Name Source Name			U U		/	2	U					2					-	Ŭ				·
Intersection State			<u> </u>		/	2	U					Dup					,	¥				I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			U U		/	6	Ŭ.					MS/MSD					2	Ŭ				
Importance Importa			<u> </u>		/	-			-									¥				I
$ \begin{array}{ $			17-Aug-16		, , ,	1	clear glass				AK102/103, SW8270						~	¥				
UNC-RESAUD DEAD CAULY TIM I during and the second s			<u> </u>		, , ,	2	ě – – – – – – – – – – – – – – – – – – –		-			MS/MSD					~	ě				
INTOCREGE SALE Frage Hors			<u> </u>		, , ,	1	U		-		í.						~	ž –				
NUMPORTAGE Holds			<u> </u>		, , ,	1	Ŭ											ž –				
INCC 698000 SNUCC Introduction SNUCC Introductio					, , ,	1	U										2	Ŭ				
Intersessment State (Law) Likewice	16NEC-S08-SD-007	S08-007	<u> </u>	1813	, , ,	1	U		4°C				30		S08-007			ě				
INDER GRADE SERVICE II. Grade Grade SERVICE II. Grade Grade SERVICE	16NEC-S08-SS-008	S08-008	17-Aug-16	1806	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	clear glass	8 oz	-		AK102/103, SW8270		30	DRO/RRO, PAH	S08-008	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653		
upperStarsmond strand Interpart Interpart <			<u> </u>	-	, , , , ,	1			-									~ ~				
Inter-Standing Solut Indegris Final Number Final Final Solut Indegris Solut Solut<	16NEC-S08-SD-010	S08-010	18-Aug-16	1422	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	í.		30		S08-010	2016NEC16	5th Avenue	19-Aug-16	ALS	K1609742	1.50	2.00
ONCCUSSION SSOON Longe Is Day String Day String <td>16NEC-S29-SD-001</td> <td>S29-001</td> <td>16-Aug-16</td> <td>1350</td> <td>SS,HM</td> <td>6</td> <td>clear glass</td> <td>8 oz</td> <td>4°C</td> <td>SD</td> <td></td> <td>MS/MSD</td> <td>30</td> <td></td> <td>S29-001</td> <td>2016NEC14</td> <td>Hersheys</td> <td>18-Aug-16</td> <td>ALS</td> <td>K1609649</td> <td>1.00</td> <td>1.50</td>	16NEC-S29-SD-001	S29-001	16-Aug-16	1350	SS,HM	6	clear glass	8 oz	4°C	SD		MS/MSD	30		S29-001	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.00	1.50
Cale Solver Solver In Aug Is Constrain First											í literatura de la companya de la co											
Nove:Schenda System Li-Age/ Bission System Data Data Distance Dista	16NEC-S29-SD-002	S29-002	16-Aug-16	1235	SS,HM	2	clear glass	8 oz	4°C	SD			30		S29-002	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.50	2.00
INSC-828-00.00 SP-00 I-S-ag-16 192 Statility 1	100EC \$20 SD 002	520.002	15 Aug 16	1025	SS IIM	2	alaan alaas	8	100	SD.	· · · · · · · · · · · · · · · · · · ·	Drimoorry	20		\$20,002	2016/01/01	Harahava	19 Aug 16	ALC	V1600640	1.00	1.50
$ \begin{bmatrix} 1 \text{ord} 1, \text{Solval} \\ 1 \text{ord} 1, \text{Solval} \\ 1 S$	10INEC-529-5D-003	829-003	15-Aug-16	1925	55,HM	2	clear glass	8 0Z	4°C	SD	SW8082, SW6020	Primary	30	Metals (As, Cr, Pb, Zn)	529-003	2016NEC14	Hersneys	18-Aug-16	ALS	K1009049	1.00	1.50
INSC 55-50-001 S2-001 I-Aug-16 IS S2-001 IS-Aug-16 IS-Aug-	16NEC-S29-SD-0039	S29-003	15-Aug-16	1925	SS HM	2	clear glass	8 oz	4°C	SD		Dup	30		S29-003	2016NEC14	Hershevs	18-Aug-16	ALS	K1609649	1.00	1.50
Number Schulde Schulde Linker Schulde			B		~~,	_	8					- ~P										
LONC CSS 51/240 SYAM Long-fs LUD SYAM Lo Los gins Social Convert Station SyAM Los gins Los gins <thlos gins<="" th=""></thlos>	16NEC-S29-SD-004	S29-004	15-Aug-16	1810	SS,HM	2	clear glass	8 oz	4°C	SD			30		S29-004	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.50	2.00
Index Schule Low Schule Schule Low Schule Schule Direct / P																						
INSEC-SPS-DUP 52-006 14-Aug-16 1445 SS.IM 2 char plan 8 or 4°C SD SNMES, SW0007 59-000 10-MbC1 A France Normality Normali	16NEC-S29-SD-005	S29-005	15-Aug-16	1420	SS,HM	2	clear glass	8 oz	4°C	SD			30		S29-005	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	0.50	1.00
Instr. See Short Is Auge	16NEC \$20 SD 006	\$20,006	15 Aug 16	1445	SS IIM	n	alaar alaas	8 07	1°C	SD.	AK102/103, SW8270,		20		\$20,006	2016NEC14	Harshova	19 Aug 16	ALS	V 1600640	1.00	2.00
Link C-SysDudy SysDudy L-Aug-is Link Display L Column State Procession SysDugy Link Display Link Dis	10INEC-329-3D-000	329-000	13-Aug-10	1445	55,11W	2	cical glass	8 UZ	40	3D			50		329-000	2010INEC 14	Tiersneys	18-Aug-10	ALS	K1009049	1.00	2.00
INVEC-SIN-DAD S29-408 15-Aug-16 13-30 SS INV 2 char flag 8 ar 4"C SD AKL0210, SW3270, SW3202, SW3200, AKL0210, SW3270, AKL0210, SW3270,	16NEC-S29-SD-007	S29-007	15-Aug-16	1520	SS,HM	2	clear glass	8 oz	4°C	SD			30		S29-007	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	0.50	1.00
Instruct system System <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td></t<>																						·
UNEX_SS_9D:00 SS-M0 15.Aug.10 15.St SS,IM 2 dest glass 8 er 4*C SD AK102/01, SW8270 50 MARCE/RALE SS,WAD 20 DBORRO, PAHL PCB, SW8022, SW8200 20 DBORRO, PAHL PCB, SW8022, SW8020 20 DBORRO, PAHL PCB, SW8022, SW8020, SW8020, SW8020, SW8020, SW8020, SW8020, SW802, SW8020, SW802	16NEC-S29-SD-008	S29-008	15-Aug-16	1350	SS,HM	2	clear glass	8 oz	4°C	SD			30		S29-008	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.00	1.50
IbNE 22950.000 IS-300 IS-300 SN/M I Constrained and the strength of the strengt of the strength of the strengt of the strength of								2										10.1.16				
IbNEL-30x-SD-100 IS-Augele	16NEC-S29-SD-009	S29-009	15-Aug-16	1555	SS,HM	2	clear glass	8 oz	4°C	SD	SW8082, SW6020		30		\$29-009	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.50	2.00
Instruction Image of the state	16NEC-S29-SD-010	\$29-010	15-Aug-16	1310	SS HM	2	clear glass	8 oz	4°C	SD			30		\$29-010	2016NEC14	Hershevs	18-Aug-16	ALS	K1609649	1.00	1.50
			ő			-	Ŭ		-								,	Ű				
Inhorestenses Sec. Proc. Statu Formation Statu Formation Statu Formation Statu Formation Statu Formation Statu			U U	-	, , ,	1	Ŭ		-		/			,				ž –				
Intercesses State Constrain State Constrain State Constrain State Constrain State Constrain State Constrain State			<u> </u>		, , ,	1	Ŭ				/	Primary		,				ž –				
IbNE:2308.SD-014 ISSR-014 ISSR-015 ISSR-015 ISSR-015 ISSR-015 ISSR-015 ISSR-015 ISSR-015 ISSR-015 ISSR-016 ISSR-016 ISSR-016 ISSR-016 ISSR-016 ISSR-016 ISSR-017			ě.		1 1 1	1	ě – – – – – – – – – – – – – – – – – – –					2		/				Ŭ				
Information	16NEC-S08-SD-014	S08-014	ě.	1449	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD			30	DRO/RRO, PAH	S08-014	2016NEC16	5th Avenue	¥	ALS	K1609742	1.50	2.00
Instruct Soles Do-017 Sile Aug. 16 In Each Sile Aug. 16 Sile Aug. 16 In Each Sile Aug. 16 Sile Aug. 16<			<u> </u>			1	Ŭ											ě				
InterCS0ReSS-018 SNR-018 Is-Aug-16 1459 SS.K.R.CC.HM 1 clear glass 8 or 4°C SS AK.102/103_SW8270 Pmmay 30 DENOR NO PAH SNR-018 2010NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.50 2.00 16NEC-S0ReSS-019 SSR.RCC.HM 1 clear glass 8 or 4°C SS AK.102/103_SW8270 30 DRORRO PAH SSR.402 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 2.00 2.50 16NEC-S0ReSS-021 S08-020 18-Aug-16 1404 SS.K.RCC.HM 1 clear glass 8 oz 4°C SS AK102/103_SW8270 30 DRORRO, PAH S08-021 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.50 16NEC-S08-SS-021 S08-022 18-Aug-16 1510 SS.K.RCC.HM 1 clear glass 8 oz 4°C SS AK102/103_SW8270 30 DRORRO, PAH S08-023 2016NEC16 5th Avenue 19-Aug-16						1	ě – – – – – – – – – – – – – – – – – – –											ě				
165NEC:S08-S8-019 S08-018 18- λ uge-16 1459 SS KR CC1M 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-018 2016NEC16 5th Avenue 19- λ uge-16 ALS K1609742 1.50 2.00 16NEC.S08-S8-02 S08-020 18-Aug-16 1613 SS, KR, CC, IM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-020 216MEC16 5th Avenue 19-Aug-16 ALS K1609742 1.20 2.00 2.200 1.50 16NEC.S08-S8-02 S08-020 18-Aug-16 1404 SS, KR, CC, IM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-021 206MEC17 M Goodmat 23-Aug-16 ALS K1609742 1.00 1.50 16NEC.S08-S8-023 S08-021 18-Aug-16 1749 SS, KR, CC, IM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH </td <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>í.</td> <td>Drimory</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td></td> <td></td>			<u> </u>			1					í.	Drimory						Ŭ				
Inter:Sensessenge Ster:C:IM I classessenge Ster:C:IM Ster:C:IM I classessenge Ster:C:IM Ster:C:IM I classessenge Ster:C:IM Ster:C			<u> </u>		, , ,	1	Ŭ					2						Ŭ				
InterC-Site-SS-020 Site-C20 IS-Aug-16 I1715 S.R.R.CC.HM I1 clear glass 8 oz 4*C SS AK102/103, SW8270 30 DRO/RO, PAH S08-020 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.25 1.50 16NEC-S08-SS-021 S08-022 18-Aug-16 1404 SS, KR.CC, HM 1 clear glass 8 oz 4*C SS AK102/103, SW8270 30 DRO/RO, PAH S08-022 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.50 16NEC-S08-SS-023 S08-023 18-Aug-16 1749 SS, KR, CC, HM 1 clear glass 8 oz 4*C SS AK102/103, SW8270 30 DRO/RO, PAH S08-023 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 2.0 2.50 16NEC-S08-SND-025 S08-023 12-Aug-16 1130 SS, KR, CC, HM 1 clear glass 8 oz 4*C SD AK102/103, SW8270 30 DRO/RO, PAH S08-025 2016NE			<u> </u>			1	Ŭ					Dup						ě				
InSRE-S08-S8-022988-02218-Aug-161510SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0222016NEC165th Avenue19-Aug-16ALSK16097421.001.5016NEC-S08-S8-023S08-02318-Aug-161737SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0232016NEC165th Avenue19-Aug-16ALSK16097422.002.5016NEC-S08-S8-025S08-02522-Aug-161330SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0252016NEC165th Avenue19-Aug-16ALSK16097421.001.5016NEC-S08-S8-025S08-02522-Aug-161330SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0252016NEC165th Avenue19-Aug-16ALSK16097421.001.2516NEC-S08-S8-027S08-02618-Aug-161517SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0252016NEC165th Avenue19-Aug-16ALSK16097421.001.5016NEC-S08-S8-028S08-02818-Aug-161801SS,KR,CC,HM1clear glass8 oz4*CSSAK102/103,SW827030DRO/RRO, PAHS08-0282016NEC165th Avenue19-Aug-16 </td <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td>5</td> <td></td> <td>ě</td> <td></td> <td></td> <td></td> <td></td>			<u> </u>			1	5											ě				
Intel:			<u> </u>	-		1												~ ~				
I6NEC-S08-SS-024 S08-024 I8-Aug-16 1737 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-024 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.50 2.50 16NEC-S08-SD-025 S08-025 12-Aug-16 1720 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-025 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.25 16NEC-S08-SD-025 S08-027 18-Aug-16 1517 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-027 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.25 16NEC-S08-SD-028 S08-028 18-Aug-16 1517 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-028 2016NEC16			<u> </u>		<i>(((</i>	1												~ ~				
I6NEC-S08-SD-025 S08-025 22-Aug-16 1330 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-025 2016NEC16 Sth Avenue 19-Aug-16 ALS K1609847 0.50 1.00 16NEC-S08-SD-026 S08-026 18-Aug-16 1720 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-025 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.25 16NEC-S08-SS-028 S08-027 18-Aug-16 1801 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-028 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 2.00 16NEC-S08-SD-029 S08-029 22-Aug-16 1645 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103,SW8270 30 DRO/RRO, PAH S08-030 2016NEC17					, , , , ,	1																
16NEC-S08-SD-026S08-02618-Aug-161720SS,KR,CC,HM1clear glass8 oz4°CSDAK102/103, SW827030DRO/RRO, PAHS08-0262016NEC165th Avenue19-Aug-16ALSK16097421.001.2516NEC-S08-SS-027S08-02718-Aug-161517SS,KR,CC,HM1clear glass8 oz4°CSSAK102/103, SW827030DRO/RRO, PAHS08-0272016NEC165th Avenue19-Aug-16ALSK16097421.502.0016NEC-S08-SS-028S08-02818-Aug-161801SS,KR,CC,HM1clear glass8 oz4°CSSAK102/103, SW827030DRO/RRO, PAHS08-0292016NEC165th Avenue19-Aug-16ALSK16097422.002.0016NEC-S08-SD-029S08-02922-Aug-161645SS,KR,CC,HM1clear glass8 oz4°CSSAK102/103, SW827030DRO/RRO, PAHS08-0292016NEC17Mr Goodbar23-Aug-16ALSK16098471.502.0016NEC-S08-SS-030S08-03118-Aug-161526SS,KR,CC,HM1clear glass8 oz4°CSSAK102/103, SW827030DRO/RRO, PAHS08-0322016NEC17Mr Goodbar23-Aug-16ALSK16098471.001.5016NEC-S08-SS-031S08-03118-Aug-161526SS,KR,CC,HM1clear glass8 oz4°CSSAK102/103, SW827030DRO/RRO, PAHS08-0322016NEC17Mr Goodbar23-Au			<u> </u>		<i>(((</i>								••					~ ~				
16NEC-S08-SS-027S08-02718-Aug-161517SS,KR,CC,HM1clear glass8 oz 4° CSSAK102/103, SW827030DRO/RRO, PAHS08-0272016NEC165th Avenue19-Aug-16ALSK16097421.502.0016NEC-S08-SS-028S08-02922-Aug-161645SS,KR,CC,HM1clear glass8 oz 4° CSSAK102/103, SW827030DRO/RRO, PAHS08-0282016NEC165th Avenue19-Aug-16ALSK16097422.002.5016NEC-S08-SS-029S08-02922-Aug-161645SS,KR,CC,HM1clear glass8 oz 4° CSDAK102/103, SW827030DRO/RRO, PAHS08-0292016NEC165th Avenue19-Aug-16ALSK16097422.002.5016NEC-S08-SS-030S08-03022-Aug-161655SS,KR,CC,HM1clear glass8 oz 4° CSSAK102/103, SW827030DRO/RRO, PAHS08-0302016NEC17Mr Goodbar23-Aug-16ALSK16098471.001.5016NEC-S08-SS-031S08-03118-Aug-161526SS,KR,CC,HM1clear glass8 oz 4° CSSAK102/103, SW827030DRO/RRO, PAHS08-0322016NEC16Mr Goodbar23-Aug-16ALSK16098471.001.5016NEC-S08-SS-032S08-03222-Aug-161616SS,KR,CC,HM1clear glass8 oz 4° CSSAK102/103, SW827030DRO/RRO, PAHS08-0322016NEC17 <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td></td> <td>~ ~</td> <td></td> <td></td> <td></td> <td></td>			<u> </u>			1												~ ~				
$16NEC-S08-SD-029$ $508-029$ $22-Aug-16$ 1645 SS,KR,CC,HM 1 $clear glass$ 8 oz $4^{\circ}C$ SD $AK102/103,SW8270$ 30 $DRO/RRO,PAH$ $S08-029$ $2016NEC17$ $Mr \ Goodbar$ $23-Aug-16$ ALS $K1609847$ 1.50 2.00 $16NEC-S08-SS-030$ $508-030$ $22-Aug-16$ 1655 SS,KR,CC,HM 1 $clear glass$ 8 oz $4^{\circ}C$ SS $AK102/103,SW8270$ 30 $DRO/RRO,PAH$ $508-030$ $2016NEC17$ $Mr \ Goodbar$ $23-Aug-16$ ALS $K1609847$ 1.00 1.50 $16NEC-S08-SS-031$ $S08-031$ $18-Aug-16$ 1526 SS,KR,CC,HM 1 $clear glass$ 8 oz $4^{\circ}C$ SS $AK102/103,SW8270$ 30 $DRO/RRO,PAH$ $S08-031$ $2016NEC16$ $5th Avenue$ $19-Aug-16$ ALS $K1609847$ 1.00 1.50 $16NEC-S08-SD-032$ $208-032$ $22-Aug-16$ 1616 SS,KR,CC,HM 1 $clear glass$ 8 oz $4^{\circ}C$ SS $AK102/103,SW8270$ 30 $DRO/RRO,PAH$ $S08-032$ $2016NEC17$ $Mr \ Goodbar$ $23-Aug-16$ ALS $K1609847$ 1.00 1.50 $16NEC-S08-SD-033$ $S08-033$ $22-Aug-16$ 1616 SS,KR,CC,HM 1 $clear glass$ 8 oz $4^{\circ}C$ SD $AK102/103,SW8270$ 30 $DRO/RRO,PAH$ $S08-032$ $2016NEC17$ $Mr \ Goodbar$ $23-Aug-16$ ALS $K1609847$ 1.00 1.50 $16NEC-S08-SD-034$ $S08$						1												~ ~				
I6NEC-S08-SS-030 S08-030 22-Aug-16 I655 SS,KR,CC,HM I clear glass 8 oz 4°C SS AK102/103,SW8270 30 DRO/RRO, PAH S08-030 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SS-031 S08-031 18-Aug-16 1526 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103,SW8270 30 DRO/RRO, PAH S08-031 2016NEC16 5th Avenue 19-Aug-16 ALS K160947 1.00 1.50 16NEC-S08-SS-032 S08-032 22-Aug-16 1616 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103,SW8270 30 DRO/RRO,PAH S08-032 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-033 S08-033 22-Aug-16 1622 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-033 2016NEC17			<u> </u>			1																
16NEC-S08-SS-031 S08-031 18-Aug-16 1526 SS, KR, CC, HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-031 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.00 1.50 16NEC-S08-SS-032 S08-032 22-Aug-16 1616 SS, KR, CC, HM 1 clear glass 8 oz 4°C SS AK102/103, SW8270 30 DRO/RRO, PAH S08-032 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-033 S08-033 22-Aug-16 1622 SS, KR, CC, HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-033 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-034 S08-034 22-Aug-16 1630 SS, KR, CC, HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-033 201			<u> </u>																			
16NEC-S08-SS-032 S08-032 22-Aug-16 1616 SS,KR,CC,HM 1 clear glass 8 oz 4°C SS AK102/103,SW8270 30 DRO/RRO, PAH S08-032 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-033 S08-033 22-Aug-16 1622 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO, PAH S08-033 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-033 S08-033 22-Aug-16 1630 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-033 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-034 S08-034 22-Aug-16 1630 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-035 2016NEC17			<u> </u>			1												~ ~				
16NEC-S08-SD-033 S08-033 22-Aug-16 1622 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO, PAH S08-033 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.00 1.50 16NEC-S08-SD-034 S08-034 22-Aug-16 1630 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-034 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-035 S08-035 22-Aug-16 1639 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-035 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-035 S08-035 22-Aug-16 1639 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO,PAH S08-035 2016NEC17			U U		, , ,	1	Ŭ							,				Ŭ				
16NEC-S08-SD-034 S08-034 22-Aug-16 1630 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-034 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-035 S08-035 22-Aug-16 1639 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO, PAH S08-035 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-036 S08-036 18-Aug-16 1533 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 30 DRO/RRO, PAH S08-035 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-036 S08-036 18-Aug-16 1533 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 90 DRO/RRO, PAH S08-036 2016NEC16			ě.			1	ě – – – – – – – – – – – – – – – – – – –											ě				
16NEC-S08-SD-035 S08-035 22-Aug-16 1639 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 30 DRO/RRO, PAH S08-035 2016NEC17 Mr Goodbar 23-Aug-16 ALS K1609847 1.50 2.00 16NEC-S08-SD-036 S08-036 18-Aug-16 1533 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103,SW8270 Primary 30 DRO/RRO, PAH S08-036 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.50 2.00			ě.		, , ,	1	Ŭ											Ŭ				
		S08-035	<u> </u>			1	Ŭ		4°C					,				Ŭ			1.50	2.00
16NEC-S08-SD-0369 S08-036 18-Aug-16 1533 SS,KR,CC,HM 1 clear glass 8 oz 4°C SD AK102/103, SW8270 Dup 30 DRO/RRO, PAH S08-036 2016NEC16 5th Avenue 19-Aug-16 ALS K1609742 1.50 2.00			ě.			1	Ŭ											ě				
	16NEC-S08-SD-0369	S08-036	18-Aug-16	1533	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-036	2016NEC16	5th Avenue	19-Aug-16	ALS	K1609742	1.50	2.00

Northeast Cape FUDS 2016 Sampling at Site 08 and Suqi River Table B-1-1 - Sample Summary Table

COC Sample ID	Location ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vol	Preservative	Matrix	Analytical Method Requested	QC Type	TAT	Notes	Site	COC Number	Cooler Name	Cooler Date	Lab	SDG Number	Sample Start Depth	Sample End Depth
16NEC-S08-SD-037	S08-037	22-Aug-16	1608	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Primary	30	DRO/RRO, PAH	S08-037	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	2.00	2.50
16NEC-S08-SD-0379	S08-037	22-Aug-16	1608	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-037	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	2.00	2.50
16NEC-S08-SD-038	S08-038	22-Aug-16	1601	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-038	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	1.50	2.00
16NEC-S08-SS-039	S08-039	22-Aug-16	1522	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-039	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	2.00	2.50
16NEC-S08-SD-040	S08-040	18-Aug-16	1543	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-040	2016NEC16	5th Avenue	19-Aug-16	ALS	K1609742	2.00	2.50
16NEC-S08-SD-041	S08-041	18-Aug-16	1616	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-041	2016NEC16	5th Avenue	19-Aug-16	ALS	K1609742	2.00	2.50
16NEC-S08-SD-042	S08-042	22-Aug-16	1553	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-042	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	1.50	2.00
16NEC-S08-SD-043	S08-043	22-Aug-16	1541	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-043	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	1.50	2.00
16NEC-S08-SS-044	S08-044	22-Aug-16	1537	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-044	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	2.00	2.50
16NEC-S08-SS-045	S08-045	17-Aug-16	1712	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-045	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.25	1.75
16NEC-S08-SS-046	S08-046	17-Aug-16	1717	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-046	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	1.75
16NEC-S08-SS-047	S08-047	17-Aug-16	1726	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-047	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.00	1.50
16NEC-S08-SS-048	S08-048	17-Aug-16	1704	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-048	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.00	1.50
16NEC-S08-SD-049	S08-049	17-Aug-16	1651	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-049	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.25	1.75
16NEC-S08-SD-050	S08-050	17-Aug-16	1656	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Primary	30	DRO/RRO, PAH	S08-050	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	0.90	1.25
16NEC-S08-SD-0509	S08-050	17-Aug-16	1656	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-050	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	0.90	1.25
16NEC-S08-SS-051	S08-051	17-Aug-16	1442	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-051	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.40	1.75
16NEC-S08-SD-052	S08-052	17-Aug-16	1459	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-052	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SD-053	S08-053	17-Aug-16	1620	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Primary	30	DRO/RRO, PAH	S08-053	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.00	1.50
16NEC-S08-SD-0539	S08-053	17-Aug-16	1620	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-053	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.00	1.50
16NEC-S08-SD-054	S08-054	17-Aug-16	1636	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-054	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SS-055	S08-055	17-Aug-16	1438	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-055	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.70	2.10
16NEC-S08-SD-056	S08-056	17-Aug-16	1432	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-056	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.75	2.25
16NEC-S08-SS-057	S08-057	17-Aug-16	1427	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-057	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SS-058	S08-058	17-Aug-16	1336	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270	Primary	30	DRO/RRO, PAH	S08-058	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SS-0589	S08-058	17-Aug-16	1336	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-058	2016NEC15	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SS-059	S08-059	17-Aug-16	1345	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-059	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	1.75
16NEC-S08-SS-060	S08-060	17-Aug-16	1403	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-060	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	1.80
16NEC-S08-SD-061	S08-061	17-Aug-16	1412	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-061	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.70	2.20
16NEC-S08-SD-062	S08-062	17-Aug-16	1330	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-062	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.50	2.00
16NEC-S08-SD-063	S08-063	17-Aug-16	1320	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-063	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.00	1.66
16NEC-S08-SS-064	S08-064	17-Aug-16	1310	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270	Primary	30	DRO/RRO, PAH	S08-064	2016NEC14	Baby Ruth	18-Aug-16	ALS	K1609653	1.30	2.00
16NEC-S08-SS-0649	S08-064	17-Aug-16	1310	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270	Dup	30	DRO/RRO, PAH	S08-064	2016NEC14	Hershevs	18-Aug-16	ALS	K1609649	1.30	2.00
16NEC-S08-SD-065	S08-065	17-Aug-16	1245	SS.KR.CC.HM	2	clear glass	8 oz	4°C	SD	AK102/103, SW8270	MS/MSD	30	DRO/RRO, PAH	S08-065	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.50	1.75
16NEC-S08-SD-066	S08-066	17-Aug-16	1253	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-066	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.50	1.75
16NEC-S08-SS-067	S08-067	17-Aug-16	1305	SS.KR.CC.HM	2	clear glass	8 oz	4°C	SS	AK102/103, SW8270	MS/MSD	30	DRO/RRO, PAH	S08-067	2016NEC14	Hersheys	18-Aug-16	ALS	K1609649	1.30	2.00
16NEC-S08-SD-068	S08-068	22-Aug-16	1423	SS.KR.CC.HM	2	clear glass	8 oz	4°C	SD	AK102/103, SW8270	MS/MSD	30	DRO/RRO, PAH	S08-068	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	1.50	2.00
16NEC-S08-SS-069	S08-069	22-Aug-16	1353	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-069	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609847	0.50	1.00
16NEC-S08-SD-070	S08-070	22-Aug-16	1430	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-070	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609852	1.50	2.00
16NEC-S08-SS-071	S08-070	22-Aug-16	1412	SS,KR,CC,HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-070	2016NEC17	Mr Goodbar Mr Goodbar	23-Aug-16	ALS	K1609852	1.50	2.00
16NEC-S08-SS-072	S08-071 S08-072	22-Aug-16	1412	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-071	2016NEC17	Mr Goodbar Mr Goodbar	23-Aug-16	ALS	K1609852	1.00	1.50
16NEC-S08-SS-072	S08-072	22-Aug-16	1442	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SS	AK102/103, SW8270		30	DRO/RRO, PAH	S08-072	2016NEC17	Mr Goodbar Mr Goodbar	23-Aug-16	ALS	K1609852	2.00	2.50
16NEC-S08-SD-074	S08-073	22-Aug-16	1504	SS.KR.CC.HM	1	clear glass	8 oz	4°C	SD	AK102/103, SW8270		30	DRO/RRO, PAH	S08-073	2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609852	1.00	1.50
16NEC-S08-SD-074	S08-074	22-Aug-16	1512	SS KR CC HM	1	clear glass	8 0Z	4°C	SD	AK102/103, SW8270 AK102/103, SW8270		30	DRO/RRO, PAH	S08-074	2016NEC17 2016NEC17	Mr Goodbar	23-Aug-16	ALS	K1609852	1.50	2.00
1014EC-506-5D-075	500-075	22-Aug-10	1312	55,KK,CC,HM	1	cical glass	0.02	40	50	11x102/105, 5 w 62/0		50	DRO/RRO, I All	500-075	2010INECT/	ini Ooouodi	25-Aug-10	ALO	K10070J2	1.50	2.00

				Location ID	S08-001	S08-002	S08-003	S08-004
				Sample ID	16NEC-S08-SS-001	16NEC-S08-SS-002	16NEC-S08-SS-003	16NEC-S08-SS-004
				Lab Sample ID	K160965301	K160965302	K160965303	K160984701
				SDG	K1609653	K1609653	K1609653	K1609847
				Sample Date	8/17/16	8/17/16	8/17/16	8/22/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	66.4	60.5	62.9	48.4
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	270 [50] J	120 [11] QL	110 [11]	850 [140]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	2300 [130]	1300 [28]	1200 [27]	2900 [350] J
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [1.9] QL	ND [2.1] QL, QN	ND [2] QL	ND [5.1]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	0.95 [0.27] J
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Anthracene	mg/kg	390	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.12] QL	ND [0.13] QL, QN	ND [0.12] QL	ND [0.31]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Chrysene	mg/kg	82	-	ND [0.057] QL	ND [0.062] QL, QN	ND [0.06] QL	ND [0.16]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Fluorene	mg/kg	36	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.23] QL	ND [0.25] QL, QN	ND [0.24] QL	ND [0.62]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
SW8270D	Pyrene	mg/kg	87	-	ND [0.096] QL	ND [0.11] QL, QN	ND [0.11] QL	ND [0.27]
Notes:	•							

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics Nor

Nondetect results with LODs exceeding 2016 ADEC Criteria

[] - limit of detection ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

						.	÷ · · · · · ·	
				Location ID	S08-005	S08-006	S08-008	S08-011
				Sample ID	16NEC-S08-SS-005	16NEC-S08-SS-006	16NEC-S08-SS-008	16NEC-S08-SS-011
				Lab Sample ID	K160965304	K160974201	K160965306	K160974204
				SDG	K1609653	K1609742	K1609653	K1609742
				Sample Date	8/17/16	8/18/16	8/17/16	8/18/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	69.6	61.1	47.8	58.5
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	320 [48]	430 [54]	2100 [35]	400 [56]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	2900 [120]	3600 [140] QN	2100 [86]	3600 [150]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [1.8] QL	ND [4.1]	15 [2.6]	ND [4.3]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.092] QL	ND [0.21]	3.5 [0.14]	ND [0.22]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.092] QL	ND [0.21]	0.28 [0.14] J	ND [0.22]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.092] QL	ND [0.21]	ND [0.27]	ND [0.22]
SW8270D	Anthracene	mg/kg	390	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.11] QL	ND [0.25]	ND [0.16]	ND [0.26]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Chrysene	mg/kg	82	-	ND [0.054] QL	ND [0.13]	ND [0.078]	ND [0.13]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
SW8270D	Fluorene	mg/kg	36	-	ND [0.092] QL	ND [0.21]	0.69 [0.14] J	ND [0.22]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.22] QL	ND [0.5]	ND [0.32]	ND [0.52]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.092] QL	ND [0.21]	0.57 [0.14] J	ND [0.22]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.092] QL	ND [0.21]	0.44 [0.14] J	ND [0.22]
SW8270D	Pyrene	mg/kg	87	-	ND [0.092] QL	ND [0.21]	ND [0.14]	ND [0.22]
Notes:		•						·

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

				Location ID	S08-012	S08-013	S08-013	S08-018
				Sample ID		16NEC-S08-SS-013	16NEC-S08-SS-0139	16NEC-S08-SS-018
				Lab Sample ID		K160984702	K160984703	K160974210
				SDG		K1609847	K1609847	K1609742
				Sample Date	8/18/16	8/22/16	8/22/16	8/18/16
				Matrix		SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC		Primary	Duplicate	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				,
E160.3M	Total Solids	Percent	-	-	61.2	73.3	75	58.8
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	950 [54]	19000 [88]	17000 [88]	530 [56]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	3900 [140]	1300 [220] J	1300 [230] J	6600 [150]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [4]	13 [3.4] QH, QN	7 [3.3] QH, QN	ND [4.2]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	0.14 [0.21] J	7.5 [0.18] QH, QN	3.8 [0.17] QH, QN	ND [0.22]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.21]	0.83 [0.18] J, QH	0.76 [0.17] J, QH	ND [0.22]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.21]	0.93 [0.18] J, QH, QN	0.54 [0.17] J, QH, QN	ND [0.22]
SW8270D	Anthracene	mg/kg	390	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.25]	ND [0.21] QH	ND [0.2] QH	ND [0.26]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Chrysene	mg/kg	82	-	ND [0.13]	ND [0.11] QH	ND [0.1] QH	ND [0.13]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
SW8270D	Fluorene	mg/kg	36	-	ND [0.21]	2.4 [0.18] J, QH, QN	1.4 [0.17] J, QH, QN	ND [0.22]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.49]	ND [0.41] QH	ND [0.4] QH	ND [0.51]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.21]	3.2 [0.18] J, QH	2 [0.17] J, QH	ND [0.22]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.21]	2.3 [0.18] J, QH	1.4 [0.17] J, QH, QN	ND [0.22]
SW8270D	Pyrene	mg/kg	87	-	ND [0.21]	ND [0.18] QH	ND [0.17] QH	ND [0.22]
Notes:					•			

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics Nor

Nondetect results with LODs exceeding 2016 ADEC Criteria

[] - limit of detection ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

F								
				Location ID	S08-018	S08-019	S08-020	S08-021
				Sample ID	16NEC-S08-SS-0189	16NEC-S08-SS-019	16NEC-S08-SS-020	16NEC-S08-SS-021
				Lab Sample ID	K160974211	K160974212	K160974213	K160984704
				SDG	K1609742	K1609742	K1609742	K1609847
				Sample Date	8/18/16	8/18/16	8/18/16	8/22/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Duplicate	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	59.9	66.2	79.3	77.1
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	600 [55]	520 [50]	1400 [42]	7100 [43]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	7900 [140]	6700 [130]	1300 [110]	920 [110] J
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [4.2]	ND [3.8]	ND [3.2]	ND [3.3]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.22]	ND [0.2]	ND [0.17]	0.31 [0.17] J
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Anthracene	mg/kg	390	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.25]	ND [0.23]	ND [0.19]	ND [0.2]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Chrysene	mg/kg	82	-	ND [0.13]	ND [0.12]	ND [0.095]	ND [0.098]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Fluorene	mg/kg	36	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.5]	ND [0.46]	ND [0.38]	ND [0.39]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.22]	ND [0.2]	ND [0.17]	0.17 [0.17] J
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.22]	ND [0.2]	ND [0.17]	0.28 [0.17] J
SW8270D	Pyrene	mg/kg	87	-	ND [0.22]	ND [0.2]	ND [0.17]	ND [0.17]
Notes:	*					· · · · · · · · · · · · · · · · · · ·		

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding 2016 ADEC Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

h					-	-	-	
				Location ID	S08-022	S08-023	S08-024	S08-027
				Sample ID	16NEC-S08-SS-022	16NEC-S08-SS-023	16NEC-S08-SS-024	16NEC-S08-SS-027
				Lab Sample ID	K160974214	K160974215	K160974216	K160974218
				SDG	K1609742	K1609742	K1609742	K1609742
				Sample Date	8/18/16	8/18/16	8/18/16	8/18/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	45.8	44.6	69.8	44.8
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	180 [72] J	610 [74]	300 [47]	180 [15]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	2100 [180]	8500 [190]	3500 [120]	2300 [37]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [5.4]	ND [5.6]	ND [3.6]	ND [5.6]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Anthracene	mg/kg	390	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.33]	ND [0.34]	ND [0.22]	ND [0.34]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Chrysene	mg/kg	82	-	ND [0.17]	ND [0.17]	ND [0.11]	ND [0.17]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Fluorene	mg/kg	36	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.66]	ND [0.67]	ND [0.43]	ND [0.67]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
SW8270D	Pyrene	mg/kg	87	-	ND [0.28]	ND [0.29]	ND [0.19]	ND [0.29]
Notes:		•	•					·

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

1								
				Location ID	S08-028	S08-030	S08-031	S08-032
				Sample ID	16NEC-S08-SS-028	16NEC-S08-SS-030	16NEC-S08-SS-031	16NEC-S08-SS-032
				Lab Sample ID	K160974219	K160984707	K160974220	K160984708
				SDG	K1609742	K1609847	K1609742	K1609847
				Sample Date	8/18/16	8/22/16	8/18/16	8/22/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	46.1	75.6	63.6	46.6
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	270 [72] J	14000 [87]	460 [52]	590 [71]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	3300 [180]	3700 [220]	4500 [130]	6300 [180]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [5.4] QL	9.5 [3.3]	ND [3.9]	6.4 [5.3]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.28] QL	14 [0.17]	ND [0.2]	9 [0.28]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.28] QL	0.39 [0.17] J	ND [0.2]	0.57 [0.28] J
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Anthracene	mg/kg	390	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.33] QL	ND [0.2]	ND [0.24]	ND [0.32]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Chrysene	mg/kg	82	-	ND [0.17] QL	ND [0.099]	ND [0.12]	ND [0.16]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
SW8270D	Fluorene	mg/kg	36	-	ND [0.28] QL	2 [0.17] J	ND [0.2]	0.93 [0.28] J
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.65] QL	ND [0.4]	ND [0.48]	ND [0.64]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.28] QL	0.93 [0.17] J	ND [0.2]	0.85 [0.28] J
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.28] QL	1.9 [0.17] J	ND [0.2]	0.46 [0.28] J
SW8270D	Pyrene	mg/kg	87	-	ND [0.28] QL	ND [0.17]	ND [0.2]	ND [0.28]
Notes:								

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

					000 000	0000044	0000045	000.040
				Location ID	S08-039	S08-044	S08-045	S08-046
				Sample ID	16NEC-S08-SS-039	16NEC-S08-SS-044	16NEC-S08-SS-045	16NEC-S08-SS-046
				Lab Sample ID	K160984715	K160984718	K160965307	K160965308
				SDG	K1609847	K1609847	K1609653	K1609653
				Sample Date	8/22/16	8/22/16	8/17/16	8/17/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	60.7	48.2	45.4	38.4
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	380 [54]	730 [68]	360 [37]	380 [43]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	4600 [140]	7700 [170]	4500 [92]	4300 [110]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [4.1]	ND [5.2]	ND [27]	ND [32]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.21]	0.59 [0.27] J	ND [1.4]	ND [1.7]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Anthracene	mg/kg	390	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.25]	ND [0.32]	ND [1.7]	ND [2]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Chrysene	mg/kg	82	-	ND [0.13]	ND [0.16]	ND [0.82]	ND [0.97]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Fluorene	mg/kg	36	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.5]	ND [0.63]	ND [3.3]	ND [3.9]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.21]	0.47 [0.27] J	ND [1.4]	ND [1.7]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
SW8270D	Pyrene	mg/kg	87	-	ND [0.21]	ND [0.27]	ND [1.4]	ND [1.7]
Notes:		•	•	•				

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

				Location ID	S08-047	S08-048	S08-051	S08-055
							16NEC-S08-SS-051	16NEC-S08-SS-055
				Sample ID	16NEC-S08-SS-047	16NEC-S08-SS-048		
				Lab Sample ID	K160965309	K160965310	K160965314	K160965319
				SDG	K1609653	K1609653	K1609653	K1609653
				Sample Date	8/17/16	8/17/16	8/17/16	8/17/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
		-		QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	44.4	71	66.1	80.4
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	330 [37]	190 [23]	87 [5] QL	310 [41]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	3700 [93]	1600 [58]	980 [13] QL	2700 [110]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [14]	ND [3.5]	ND [3.8]	ND [1.6] QL
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Anthracene	mg/kg	390	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.85]	ND [0.22]	ND [0.23]	ND [0.093] QL, QN
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Chrysene	mg/kg	82	-	ND [0.43]	ND [0.11]	ND [0.12]	ND [0.047] QL, QN
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Fluorene	mg/kg	36	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [1.7]	ND [0.43]	ND [0.45]	ND [0.19] QL, QN
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, Q N
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
SW8270D	Pyrene	mg/kg	87	-	ND [0.72]	ND [0.18]	ND [0.2]	ND [0.079] QL, QN
Notes:	•	5 0						

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

				1	000.057	000.050	000.050	000.050
				Location ID		S08-058	S08-058	S08-059
				Sample ID	16NEC-S08-SS-057	16NEC-S08-SS-058	16NEC-S08-SS-0589	16NEC-S08-SS-059
				Lab Sample ID	K160965321	K160965322	K160965323	K160965324
				SDG	K1609653	K1609653	K1609653	K1609653
				Sample Date	8/17/16	8/17/16	8/17/16	8/17/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Duplicate	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	74.1	76.7	76.7	78.2
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	280 [23]	280 [22]	270 [22]	130 [4.2] QL
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	2900 [56]	2900 [54]	2700 [54]	1500 [11]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [1.7]	ND [1.7]	ND [1.7]	ND [1.6]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QNN	ND [0.082] QNN
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.086] QN	ND [0.083] QNN	ND [0.083] QN	ND [0.082] QN
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Anthracene	mg/kg	390	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.11] QN	ND [0.098] QN	ND [0.098] QN	ND [0.096] QN
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Chrysene	mg/kg	82	-	ND [0.051] QN	ND [0.049] QN	ND [0.049] QN	ND [0.048] QN
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.086] QL, QN	ND [0.083] QL, QN	ND [0.083] QL, QN	ND [0.082] QL, QN
SW8270D	Fluorene	mg/kg	36	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.21] QN	ND [0.2 QN	ND [0.2] QN	ND [0.2] Q
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.086] Q N	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.086] QL, QN	ND [0.083] QL, QN	ND [0.083] QL, QN	ND [0.082] QL, QN
SW8270D	Pyrene	mg/kg	87	-	ND [0.086] QN	ND [0.083] QN	ND [0.083] QN	ND [0.082] QN
Notes:	· ·		•	•				•

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

				Location ID	S08-060	S08-064	S08-064	S08-067
				Sample ID	16NEC-S08-SS-060	16NEC-S08-SS-064	16NEC-S08-SS-0649	16NEC-S08-SS-067
				Lab Sample ID	K160965325	K160965329	K160964901	K160964904
				SDG	K1609653	K1609653	K1609649	K1609649
				Sample Date	8/17/16	8/17/16	8/17/16	8/17/16
				Matrix	SO	SO	SO	SO
					ALGK	ALGK	ALGK	ALGK
				Laboratory QA/QC	Primary	-	-	-
	A 1.4				Primary	Primary	Duplicate	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				- · · -
E160.3M	Total Solids	Percent	-	-	73.2	68.2	68	61.7
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	180 [4.6] QL	540 [48]	690 [24] QL, QN	950 [54] QL, QN
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	1900 [12]	6400 [120]	7100 [61]	9100 [140]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [1.7]	ND [1.9] QL	ND [0.37] QL	ND [0.8]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.087] QNN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Anthracene	mg/kg	390	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.11] QN	ND [0.11] QL, QN	ND [0.022] QL	ND [0.049]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Chrysene	mg/kg	82	-	ND [0.051] QN	ND [0.055] QL, QN	ND [0.011] QL	ND [0.025]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.087] QL, QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Fluorene	mg/kg	36	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.21] Q	ND [0.22] QL, QN	ND [0.044] QL	ND [0.097]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.087] QL, QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
SW8270D	Pyrene	mg/kg	87	-	ND [0.087] QN	ND [0.094] QL, QN	ND [0.019] QL	ND [0.042]
Notes:	-	00	1					· ·

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics No

Nondetect results with LODs exceeding 2016 ADEC Criteria

[] - limit of detection ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

				Location ID	S08-069	S08-071	S08-072	S08-073
				Sample ID	16NEC-S08-SS-069	16NEC-S08-SS-071	16NEC-S08-SS-072	16NEC-S08-SS-073
				Lab Sample ID	K160984720	K160985202	K160985203	K160985204
				SDG	K1609847	K1609852	K1609852	K1609852
				Sample Date	8/22/16	8/22/16	8/22/16	8/22/16
				Matrix	SO	SO	SO	SO
				Laboratory	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC ¹	Site Specific ²				
E160.3M	Total Solids	Percent	-	-	83.6	55.7	76.9	73.1
AK102	Diesel Range Organics (C10-C25)	mg/kg	250	9200	11 [4] J, B	2200 [59]	8300 [22]	2500 [44]
AK103	Residual Range Organics (C25-C36)	mg/kg	10000	9200	130 [9.9]	7400 [150]	1200 [54]	7000 [120]
SW8270D	1-Methylnaphthalene	mg/kg	0.41	-	ND [0.6]	ND [4.5]	ND [3.2]	ND [3.4]
SW8270D	2-Methylnaphthalene	mg/kg	1.3	-	ND [0.034]	0.28 [0.23] J	ND [0.17]	2.4 [0.18] J
SW8270D	Acenaphthene	mg/kg	37	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Acenaphthylene	mg/kg	18	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Anthracene	mg/kg	390	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Benzo(a)anthracene	mg/kg	0.28	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Benzo(a)pyrene	mg/kg	0.2	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Benzo(b)fluoranthene	mg/kg	2	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Benzo(g,h,i)perylene	mg/kg	2300	-	ND [0.04]	ND [0.27]	ND [0.2]	ND [0.21]
SW8270D	Benzo(k)fluoranthene	mg/kg	20	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Chrysene	mg/kg	82	-	ND [0.02]	ND [0.14]	ND [0.097]	ND [0.11]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	0.2	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Fluoranthene	mg/kg	590	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
SW8270D	Fluorene	mg/kg	36	-	ND [0.034]	ND [0.23]	ND [0.17]	0.14 [0.18] J
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	2	-	ND [0.08]	ND [0.54]	ND [0.39]	ND [0.42]
SW8270D	Naphthalene	mg/kg	0.038	120	ND [0.034]	ND [0.23]	ND [0.17]	0.34 [0.18] J
SW8270D	Phenanthrene	mg/kg	39	-	ND [0.034]	ND [0.23]	ND [0.17]	0.12 [0.18] J
SW8270D	Pyrene	mg/kg	87	-	ND [0.034]	ND [0.23]	ND [0.17]	ND [0.18]
Notes:								

Notes:

¹ 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration

to Groundwater (ADEC 2016)

² Decision Document (USACE 2009)

bold = Analytical results exceed the 2016 ADEC Criteria.

Analytical results exceed the Site Specific Criteria.

Italics

Nondetect results with LODs exceeding 2016 ADEC Criteria [] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SO - Soil

					0.00.000	
			Location ID		S08-009	S08-010
			Sample ID		16NEC-S08-SD-009	16NEC-S08-SD-010
			Lab Sample ID		K160974202	K160974203
			SDG		K1609742	K1609742
			Sample Date	8/17/16	8/18/16	8/18/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	48.8	61.5	58.7
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	350 [34]	450 [54]	690 [56]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	2400 [85]	3900 [140]	3700 [140]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [2.6]	ND [0.81]	ND [0.84]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	0.15 [0.13] J	0.043 [0.042] J	0.32 [0.043] J
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Anthracene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.16]	ND [0.049]	ND [0.051]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Chrysene	mg/kg	-	ND [0.077]	ND [0.025]	ND [0.026]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Fluoranthene	mg/kg	2	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Fluorene	mg/kg	0.8	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.31]	ND [0.098]	ND [0.11]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.13]	ND [0.042]	0.055 [0.043] J
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.13]	ND [0.042]	ND [0.043]
SW8270D	Pyrene	mg/kg	-	ND [0.13]	ND [0.042]	ND [0.043]
Mataai						-

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Leastier ID	S00.011	C00.015	S08.010
			Location ID		S08-015	S08-016
			Sample ID	16NEC-S08-SD-014	16NEC-S08-SD-015	16NEC-S08-SD-016
			Lab Sample ID		K160974207	K160974208
			SDG	K1609742	K1609742	K1609742
			Sample Date		8/18/16	8/18/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	66.1	70.2	53.9
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	290 [50] J	220 [47] J	680 [61]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	2400 [130]	2100 [120]	7400 [160]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [3.8] QL	ND [3.6]	ND [4.6]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Anthracene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.23] QL	ND [0.22]	ND [0.28]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Chrysene	mg/kg	-	ND [0.12] QL	ND [0.11]	ND [0.14]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Fluoranthene	mg/kg	2	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Fluorene	mg/kg	0.8	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.46] QL	ND [0.43]	ND [0.56]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.2] QL	ND [0.19]	ND [0.24]
SW8270D	Pyrene	mg/kg	-	ND [0.2] QL	ND [0.19]	ND [0.24]
· · ·						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Leasting ID	C00.047	C00 005	S08.020
			Location ID		S08-025	S08-026
			Sample ID	16NEC-S08-SD-017	16NEC-S08-SD-025	16NEC-S08-SD-026
			Lab Sample ID		K160984705	K160974217
			SDG	K1609742	K1609847	K1609742
			Sample Date		8/22/16	8/18/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	55.2	66.2	66.4
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	650 [59]	630 [50]	11000 [99]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	7100 [150]	5900 [130]	2700 [250] J
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [4.5]	ND [3.8]	ND [3.8]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	0.22 [0.24] J	ND [0.2]	ND [0.2]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Anthracene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.28]	ND [0.23]	ND [0.23]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Chrysene	mg/kg	-	ND [0.14]	ND [0.12]	ND [0.12]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Fluoranthene	mg/kg	2	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Fluorene	mg/kg	0.8	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.55]	ND [0.46]	ND [0.46]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.24]	ND [0.2]	ND [0.2]
SW8270D	Pyrene	mg/kg	-	ND [0.24]	ND [0.2]	ND [0.2]

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

·						
			Location ID	S08-029	S08-033	S08-034
			Sample ID	16NEC-S08-SD-029	16NEC-S08-SD-033	16NEC-S08-SD-034
			Lab Sample ID	K160984706	K160984709	K160984710
			SDG	K1609847	K1609847	K1609847
			Sample Date	8/22/16	8/22/16	8/22/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	71.1	68.4	74.2
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	780 [47]	600 [49]	300 [44]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	6200 [120]	6000 [130]	3300 [120]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [3.5]	ND [3.7]	ND [3.4]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Anthracene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.21]	ND [0.22]	ND [0.21]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Chrysene	mg/kg	-	ND [0.11]	ND [0.11]	ND [0.11]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Fluoranthene	mg/kg	2	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Fluorene	mg/kg	0.8	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.42]	ND [0.44]	ND [0.41]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.18]	ND [0.19]	ND [0.18]
SW8270D	Pyrene	mg/kg	-	ND [0.18]	ND [0.19]	ND [0.18]

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

Sample D 16NEC-S08-SD-035 16NEC-S08-SD-036 16NEC-S08-SD-036 Lab Sample ID K16098471 K160974221 K160974221 Sample Date 8/20/20 Sample Date 8/22/16 8/160/9742 Matrix SE SE Matrix <th colspan="2" dat<="" simple="" th=""><th></th><th></th><th></th><th>Location ID</th><th>S08-035</th><th>S08-036</th><th>S08-036</th></th>	<th></th> <th></th> <th></th> <th>Location ID</th> <th>S08-035</th> <th>S08-036</th> <th>S08-036</th>					Location ID	S08-035	S08-036	S08-036
SDG Sample Date K1609847 8/22/16 K1609742 8/18/16 K1609742 8/18/16 K1609742 8/18/16 Matrix Laboratory SE SE SE SE SE Matrix Laboratory ALGK ALGK ALGK ALGK ALGK Method Analyte Units Site Specific' - 69.3 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg 3500 5000 [240] 5500 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND				Sample ID	16NEC-S08-SD-035	16NEC-S08-SD-036	16NEC-S08-SD-0369		
Sample Date 8/22/16 8/18/16 8/18/16 8/18/16 Matrix Laboratory ALGK ALGK ALGK ALGK Method Analyte Units Site Specific' Primary Duplicate Method Analyte Units Site Specific' - 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg - ND [3.6] ND [3.6] ND [3.6] SW8270D 1-Methylnaphthalene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] <td< td=""><td></td><td></td><td></td><td>Lab Sample ID</td><td>K160984711</td><td>K160974221</td><td>K160974222</td></td<>				Lab Sample ID	K160984711	K160974221	K160974222		
Matrix Laboratory QA/QCSE ALGK PrimarySE ALGK PrimarySE ALGK PrimarySE ALGK PrimarySE ALGK DuplicateMethodAnalyteUnitsSite Specific'E160.3MTotal SolidsPercent-69.269.369AK102Diesel Range Organics (C10-C25)mg/kg3500750 [96]480 [48] Q450 [48] QAK103Residual Range Organics (C25-C36)mg/kg3500500 [240]5500 [120] Q5100 [120] QSW8270D1-Methylnaphthalenemg/kg0.60.29 [0.19] JND [0.19]ND [0.19]SW8270DAcenaphthenemg/kg0.5ND [0.19]ND [0.19]ND [0.19]SW8270DAcenaphthylenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DAcenaphthylenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(a)pyrenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(a)pyrenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(hfluoranthenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(hfluoranthenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(k)fluoranthenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(k)fluoranthenemg/kg-ND [0.19]ND [0.19]ND [0.19]SW8270DBenzo(k)f				SDG	K1609847	K1609742	K1609742		
Laboratory QA/QC ALGK Primary ALGK Primary ALGK Primary ALGK Duplicate Method Analyte Units Site Specific ¹ E160.3M Total Solids Percent - 69.2 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(k)fluoranthene mg/kg				Sample Date	8/22/16	8/18/16	8/18/16		
Wethod Analyte Units Site Specific ¹ Primary Puplicate E160.3M Total Solids Percent - 69.2 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg 3500 500 [240] 550 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [0.19] ND [0.19] SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] J ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] <td></td> <td></td> <td></td> <td>Matrix</td> <td>SE</td> <td>SE</td> <td>SE</td>				Matrix	SE	SE	SE		
Method Analyte Units Site Specific ¹ 69.2 69.3 69 E160.3M Total Solids Percent - 69.2 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg 3500 5000 [240] 5500 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] ND [3.6] ND [0.19] ND [0.19] SW8270D Acenaphthene mg/kg 0.6 0.29 [0.19] J ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND [0.19] ND [0.19] SW8270D Anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND [0.19] ND [0.19]				Laboratory	ALGK	ALGK	ALGK		
E160.3M Total Solids Percent - 69.2 69.3 69 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg 3500 5000 [240] 5500 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] J ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b/fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19]				QA/QC	Primary	Primary	Duplicate		
AK102 Diesel Range Organics (C10-C25) mg/kg 3500 750 [96] 480 [48] Q 450 [48] Q AK103 Residual Range Organics (C25-C36) mg/kg 3500 5000 [240] 5500 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] ND [3.6] ND [0.19]	Method	Analyte	Units	Site Specific ¹					
AK103 Residual Range Organics (C25-C36) mg/kg 3500 5000 [240] 5500 [120] Q 5100 [120] Q SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] ND [3.6] SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Actenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Actenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND	E160.3M	Total Solids	Percent	-	69.2				
SW8270D 1-Methylnaphthalene mg/kg - ND [3.6] ND [3.6] ND [3.6] ND [3.6] SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] J ND [0.19] ND [0.19] SW8270D Acenaphthene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19]			mg/kg	3500	750 [96]	480 [48] Q	450 [48] Q		
SW8270D 2-Methylnaphthalene mg/kg 0.6 0.29 [0.19] J ND [0.19] ND [0.19] SW8270D Acenaphthene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g),hi)perylene mg/kg - ND [0.19] ND [0.19] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] ND [0.19]			mg/kg	3500					
SW8270D Acenaphthene mg/kg 0.5 ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g),hi)perylene mg/kg - ND [0.19] ND [0.19] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg <		1-Methylnaphthalene	mg/kg	-	ND [3.6]	ND [3.6]	ND [3.6]		
SW8270D Acenaphthylene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D	SW8270D	2-Methylnaphthalene	mg/kg	0.6	0.29 [0.19] J	ND [0.19]	ND [0.19]		
SW8270D Anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.19] ND [0.11] ND [0.19] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D </td <td></td> <td>Acenaphthene</td> <td>mg/kg</td> <td>0.5</td> <td></td> <td></td> <td>ND [0.19]</td>		Acenaphthene	mg/kg	0.5			ND [0.19]		
SW8270D Benzo(a)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g,h,i)perylene mg/kg - ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.11] ND [0.11] ND [0.11] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.	SW8270D	Acenaphthylene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Benzo(a)pyrene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g,h,i)perylene mg/kg - ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(g,h,i)perylene mg/kg - ND [0.19] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(a),hanthracene mg/kg - ND [0.11] ND [0.11] ND [0.19] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44]	SW8270D	Anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Benzo(b)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.11] ND [0.11] ND [0.11] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW		Benzo(a)anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.22] ND [0.22] ND [0.22] SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.11] ND [0.11] ND [0.11] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Naphthalene mg/kg 3.2 ND [0.43] ND [0.19] ND [0.19] SW8270D	SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Benzo(k)fluoranthene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Chrysene mg/kg - ND [0.11] ND [0.11] ND [0.11] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Chrysene mg/kg - ND [0.11] ND [0.11] ND [0.11] SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.22]	ND [0.22]	ND [0.22]		
SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Fluoranthene mg/kg 2 ND [0.19] ND [0.19] ND [0.19] SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Chrysene	mg/kg	-	ND [0.11]	ND [0.11]	ND [0.11]		
SW8270D Fluorene mg/kg 0.8 ND [0.19] ND [0.19] ND [0.19] SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.19]		
SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.43] ND [0.44] ND [0.44] SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]		Fluoranthene	mg/kg		ND [0.19]		ND [0.19]		
SW8270D Naphthalene mg/kg 1.7 ND [0.19] ND [0.19] ND [0.19] SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]		Fluorene	mg/kg						
SW8270D Phenanthrene mg/kg 4.8 ND [0.19] ND [0.19] ND [0.19]	SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.43]	ND [0.44]	ND [0.44]		
		Naphthalene	mg/kg	1.7			ND [0.19]		
		Phenanthrene		4.8					
	SW8270D	Pyrene		-	ND [0.19]	ND [0.19]	ND [0.19]		

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID	S08-037	S08-037	S08-038
			Sample ID	16NEC-S08-SD-037	16NEC-S08-SD-0379	16NEC-S08-SD-038
				K160984712		
		Lab Sample ID		K160984713	K160984714	
			SDG	K1609847	K1609847	K1609847
			Sample Date	8/22/16	8/22/16	8/22/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Duplicate	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	67.7	68.4	70.9
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	420 [49]	420 [95] J	430 [93] J
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	3800 [130]	3900 [240]	5000 [240]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [3.7]	ND [3.6]	ND [3.5] QL
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.19]	ND [0.19]	0.3 [0.18] J, QL
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Acenaphthylene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.22]	ND [0.22]	ND [0.22] QL
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Chrysene	mg/kg	-	ND [0.11]	ND [0.11]	ND [0.11] QL
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Fluoranthene	mg/kg	2	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Fluorene	mg/kg	0.8	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.44]	ND [0.44]	ND [0.43] QL
SW8270D	Naphthalene	mg/kg	1.7	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.19]	ND [0.19]	ND [0.18] QL
SW8270D	Pyrene	mg/kg	-	ND [0.19]	ND [0.19]	ND [0.18] QL
Nataai						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID		S08-041	S08-042
			Sample ID		16NEC-S08-SD-041	16NEC-S08-SD-042
			Lab Sample ID		K160974224	K160984716
		SDG	K1609742	K1609742	K1609847	
			Sample Date	8/18/16	8/18/16	8/22/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	61.9	55.5	42.8
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	230 [27] Q	580 [60] Q	750 [160] J
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	2800 [67] Q	7600 [150] Q	11000 [390]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [4]	ND [4.5]	ND [5.8]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Anthracene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.25]	ND [0.27]	ND [0.35]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Chrysene	mg/kg	-	ND [0.13]	ND [0.14]	ND [0.18]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Fluoranthene	mg/kg	2	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Fluorene	mg/kg	0.8	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.49]	ND [0.54]	ND [0.7]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.21]	ND [0.23]	ND [0.3]
SW8270D	Pyrene	mg/kg	-	ND [0.21]	ND [0.23]	ND [0.3]
·						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID		S08-049	S08-050
			Sample ID		16NEC-S08-SD-049	16NEC-S08-SD-050
			Lab Sample ID		K160965311	K160965312
		SDG	K1609847	K1609653	K1609653	
			Sample Date	8/22/16	8/17/16	8/17/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	51.4	62.3	73.4
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	820 [65]	270 [27]	350 [45]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	10000 [170]	2600 [67]	3200 [120]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [4.9]	ND [4]	ND [3.4]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Anthracene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.3]	ND [0.24]	ND [0.21]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Chrysene	mg/kg	-	ND [0.15]	ND [0.12]	ND [0.11]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Fluoranthene	mg/kg	2	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Fluorene	mg/kg	0.8	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.59]	ND [0.48]	ND [0.41]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.25]	ND [0.21]	ND [0.18]
SW8270D	Pyrene	mg/kg	-	ND [0.25]	ND [0.21]	ND [0.18]
Nataa						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID	S08-050	S08-052	S08-053
			Sample ID	16NEC-S08-SD-0509	16NEC-S08-SD-052	16NEC-S08-SD-053
			Lab Sample ID	K160965313	K160965315	K160965316
			SDG	K1609653	K1609653	K1609653
			Sample Date	8/17/16	8/17/16	8/17/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Duplicate	Primary	Primary
Method	Analyte	Units	Site Specific ¹	Daphoato	Thinkiy	T finitury
E160.3M	Total Solids	Percent		72.9	74.7	76.9
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	420 [45]	320 [8.9]	260 [43]
AK102 AK103	Residual Range Organics (C25-C36)	mg/kg	3500	3800 [120]	3200 [23]	2200 [43]
SW8270D	1-Methylnaphthalene	mg/kg		ND [3.4]	ND [3.4]	ND [3.3]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Anthracene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.21]	ND [0.21]	ND [0.2]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Chrysene	mg/kg	-	ND [0.11]	ND [0.11]	ND [0.097]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Fluoranthene	mg/kg	2	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Fluorene	mg/kg	0.8	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.41]	ND [0.41]	ND [0.39]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.18]	ND [0.18]	ND [0.17]
SW8270D	Pyrene	mg/kg	-	ND [0.18]	ND [0.18]	ND [0.17]
Notoo						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID	S08-053	S08-054	S08-056
			Sample ID	16NEC-S08-SD-0539	16NEC-S08-SD-054	16NEC-S08-SD-056
			Lab Sample ID	K160965317	K160965318	K160965320
			SDG	K1609653	K1609653	K1609653
			Sample Date	8/17/16	8/17/16	8/17/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Duplicate	Primary	Primary
Method	Analyta	Units		Duplicate	Thindry	Thindry
E160.3M	Analyte Total Solids	Percent	Site Specific ¹	77.2	72.9	77.9
AK102	Diesel Range Organics (C10-C25)	mg/kg	- 3500	300 [43]	450 [45]	270 [42]
AK102 AK103	Residual Range Organics (C25-C36)	mg/kg	3500	2500 [43]	4000 [120]	2500 [110]
SW8270D	1-Methylnaphthalene		3000	ND [1.6] QL	ND [1.7]	ND [1.6]
SW8270D SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [1.0] QL ND [0.082] QL, QN	ND [0.087] QN	ND [1.0] ND [0.081] QN
SW8270D SW8270D	, ,	mg/kg			ND [0.087] QN	· ·
SW8270D SW8270D	Acenaphthene Acenaphthylene	mg/kg	0.5	ND [0.082] QL, QN ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN ND [0.081] QN
SW8270D SW8270D	Anthracene	mg/kg	-			
SW8270D SW8270D		mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
	Benzo(a)anthracene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.097] QL, QN	ND [0.11] QN	ND [0.096] QN
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Chrysene	mg/kg	-	ND [0.049] QL, QN	ND [0.052] QN	ND [0.048] QN
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Fluoranthene	mg/kg	2	ND [0.082] QL, QN	ND [0.087] QL, QN	ND [0.081] QL, QN
SW8270D	Fluorene	mg/kg	0.8	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.2] QL, QN	ND [0.21] QN	ND [0.2] QN
SW8270D	Naphthalene	mg/kg	1.7	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.082] QL, QN	ND [0.087] QL, QN	ND [0.081] QL, QN
SW8270D	Pyrene	mg/kg	-	ND [0.082] QL, QN	ND [0.087] QN	ND [0.081] QN

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID		S08-062	S08-063
			Sample ID	16NEC-S08-SD-061	16NEC-S08-SD-062	16NEC-S08-SD-063
			Lab Sample ID	K160965326	K160965327	K160965328
			SDG	K1609653	K1609653	K1609653
			Sample Date	8/17/16	8/17/16	8/17/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	71.1	75.7	72.9
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	440 [47]	190 [22]	200 [23]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	4600 [120]	1800 [55]	2200 [57]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [1.8] QL	ND [17]	ND [3.4] QL
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Acenaphthylene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Anthracene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.11] QL, QN	ND [0.99] QN	ND [0.21] QL, QN
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Chrysene	mg/kg	-	ND [0.053] QL, QN	ND [0.5] QN	ND [0.11] QL, QN
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Fluoranthene	mg/kg	2	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Fluorene	mg/kg	0.8	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.21] QL, QN	ND [2] QN	ND [0.41] QL, QN
SW8270D	Naphthalene	mg/kg	1.7	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
SW8270D	Pyrene	mg/kg	-	ND [0.09] QL, QN	ND [0.84] QN	ND [0.18] QL, QN
Mataai						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

6						
			Location ID	S08-065	S08-066	S08-068
			Sample ID	16NEC-S08-SD-065	16NEC-S08-SD-066	16NEC-S08-SD-068
			Lab Sample ID	K160964902	K160964903	K160984719
		SDG	K1609649	K1609649	K1609847	
		Sample Date	8/17/16	8/17/16	8/22/16	
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	71.1	64.2	60.1
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	300 [9.2] QL, QH, Q	570 [26] QL, Q	7600 [110]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	3200 [24]	5800 [64]	6900 [280]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [0.7]	ND [0.39]	5.3 [4.1]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.036]	ND [0.02]	6.8 [0.22]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.036]	ND [0.02]	0.39 [0.22] J
SW8270D	Acenaphthylene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Anthracene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.042]	ND [0.024]	ND [0.25]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Chrysene	mg/kg	-	ND [0.021]	ND [0.012]	ND [0.13]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Fluoranthene	mg/kg	2	ND [0.036]	ND [0.02]	ND [0.22]
SW8270D	Fluorene	mg/kg	0.8	ND [0.036]	ND [0.02]	0.41 [0.22] J
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.084]	ND [0.047]	ND [0.5]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.036]	ND [0.02]	0.69 [0.22] J
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.036]	ND [0.02]	0.25 [0.22] J
SW8270D	Pyrene	mg/kg	-	ND [0.036]	ND [0.02]	ND [0.22]
Notoo						

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

			Location ID	S08-070	S08-074	S08-075
			Sample ID	16NEC-S08-SD-070	16NEC-S08-SD-074	16NEC-S08-SD-075
			Lab Sample ID		K160985205	K160985206
			SDG	K1609852	K1609852	K1609852
			Sample Date		8/22/16	8/22/16
			Matrix	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹			
E160.3M	Total Solids	Percent	-	59.6	64.9	72.1
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	740 [56] Q	710 [51]	760 [46]
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	7100 [140] Q	4900 [130]	5800 [120]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [4.2] QL	ND [3.8] QL	ND [3.5]
SW8270D	2-Methylnaphthalene	mg/kg	0.6	0.35 [0.22] J, QL	0.19 [0.2] J, QL	ND [0.18]
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Acenaphthylene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Anthracene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.26] QL	ND [0.23] QL	ND [0.21]
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Chrysene	mg/kg	-	ND [0.13] QL	ND [0.12] QL	ND [0.11]
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Fluoranthene	mg/kg	2	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Fluorene	mg/kg	0.8	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.51] QL	ND [0.46] QL	ND [0.42]
SW8270D	Naphthalene	mg/kg	1.7	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.22] QL	ND [0.2] QL	ND [0.18]
SW8270D	Pyrene	mg/kg	-	ND [0.22] QL	ND [0.2] QL	ND [0.18]
						•

Notes:

¹ Decision Document (USACE 2009)

Bold

Analytical results exceed the Site Specific Criteria.

Italics Nondetect results with LODs exceeding Site Specific Criteria

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

Location ID S29-001 S29-002 S29-003 S29-003 S29-003 S29-003 INRC-S29-SD-003 INRC-S29-SD-004	. <u> </u>								
Lab Sample Db K160964905 K160964907 K160964907 K160964907 K160964908 K1609649 K16096490 K1609640 K16									
SDG K1609649 K1609649 K1609649 K1609649 K1609649 K1609649 Matrix SE SE<									
Sample Date &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &/16/16 &//16/1									
Matrix SE SE SE SE SE SE ALGK Primary Prima									
Laboratory QAVCC ALGK Primary ALGK Primary ALGK Primary ALGK Primary ALGK Primary ALGK Duplicate ALGK Primary Method Analyte Units Site Specific' 57.7 51.2 60.7 63.4 54.8 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 930 [15] 2500 [33] 1800 [14] 1700 [14] QN 1100 [16] SW6020A Arsenic mg/kg 930 14.4 [0.11] 2.67 [0.12] 1.76 [0.11] 1.27 [0.11] 2.73 [0.08] SW6020A Lead mg/kg 530 15.3 [0.06] 14.2 [0.06] 5.21 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Lead mg/kg 960 37.4 [0.6] QL 31.2 [0.6] 20.1 [0.5] 15 [0.6] 38.7 [0.4] SW6020A Zince mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW6022A PCB-102 (Arocior 124) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013]				Sample Date					
Image: Constraint of the state of				Matrix					
Method Analyte Units Site Specific 57.7 51.2 60.7 63.4 54.8 AK102 Diesel Range Organics (C10-C25) mg/kg 3500 110 [5.7] QL_QN 540 [13] QL_QN 420 [5.4] QL_QN 470 [5.2] QL_QN 230 [6.1] QL_QN AK103 Residual Range Organics (C25-C36) mg/kg 3500 930 [15] 2500 [33] 1800 [14] 1700 [14] QN 1100 [16] SW6020A Arsenic mg/kg 93 4.44 [0.11] 2.67 [0.12] 1.7.8 [0.11] 1.2.7 [0.12] 7.73 [0.08] SW6020A Chromium mg/kg 930 14.1 [0.22] QL 13.6 [0.24] 3.42 [0.21] 5.48 [0.19] 8.9.8 [0.17] SW6020A Lead mg/kg 960 37.4 [0.6] QL 31.2 [0.6] 20.1 [0.5] 15.10.5] 38.7 [0.4] SW8082A PCB-122 (Arcotor 122) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-122 (Arcotor 124) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] </td <td></td> <td></td> <td></td> <td></td> <td>ALGK</td> <td>ALGK</td> <td>ALGK</td> <td>ALGK</td> <td>ALGK</td>					ALGK	ALGK	ALGK	ALGK	ALGK
E160.3M Total Solids Percent - 57.7 51.2 60.7 63.4 54.8 AK102 Residual Range Organics (C10-C25) mg/kg 3500 110 [6.7] OL, ON 501 [3] 1800 [14] 1700 [14] QN 230 [6.1] OL, ON SW6020A Arsenic mg/kg 93 4.44 [0.11] 2.67 [0.12] 1.76 [0.11] 1.27 [0.1] 2.73 [0.08] SW6020A Chromium mg/kg 270 1.4.1 [0.22] QL 13.6 [0.24] 3.42 [0.21] 5.48 [0.19] 8.98 [0.17] SW6020A Lead mg/kg 950 15.3 [0.06] 14.2 [0.06] 5.21 [0.05] 4.42 [0.15] 5.8 [0.24] SW6020A Zinc mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1221 (Arcolor 1221) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1242 (Arcolor 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] <				QA/QC	Primary	Primary	Primary	Duplicate	Primary
AK102 Diese Range Organics (C10-C25) mg/kg 3500 110 [6,7] (L, ON 540 [13] (L, ON 420 [5,4] (L, ON 470 [5,2] (L, ON 100 [14] 1100 [14] (N) 1100 [16] SW6020A Arsenic mg/kg 93 4.44 [0,11] 2.570 [33] 1800 [14] 1700 [14] (N) 1100 [16] SW6020A Chromium mg/kg 230 4.44 [0,11] 2.67 [0,12] 1.76 [0,11] 1.27 [0,1] 2.73 [0.08] SW6020A Lead mg/kg 530 15.3 [0.06] 14.2 [0.06] 5.21 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Zinc mg/kg 960 37.4 [0.6] 0L 31.2 [0.6] 2.01 [0.5] 15 [0.5] 38.7 [0.4] SW8082A PCB-1016 (Aroclor 1221) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-124 (Aroclor 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-124 (Aroclor 1242) </td <td>Method</td> <td>Analyte</td> <td>Units</td> <td>Site Specific¹</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Method	Analyte	Units	Site Specific ¹					
Kri03 Residual Range Organics (C25C-36) mg/kg 93 4.44 [0.11] 2.57 [0.12] 1.76 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.08] SW6020A Lead mg/kg 530 15.3 [0.06] 14.4 [0.05] 3.42 [0.05] 4.42 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Lead mg/kg 960 37.4 [0.6] 1.31.2 [0.6] 2.01 [0.5] 15 [0.5] 3.87 [0.4] SW8082A PCB-1016 (Arccior 1016) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1224 (Arccior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1284 (Arccior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1280 (Arccior 1260) mg/kg 0.7 </td <td>E160.3M</td> <td>Total Solids</td> <td>Percent</td> <td>-</td> <td></td> <td>51.2</td> <td>60.7</td> <td>63.4</td> <td>54.8</td>	E160.3M	Total Solids	Percent	-		51.2	60.7	63.4	54.8
Kri03 Residual Range Organics (C25C-36) mg/kg 93 4.44 [0.11] 2.57 [0.12] 1.76 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.11] 1.27 [0.08] SW6020A Lead mg/kg 530 15.3 [0.06] 14.4 [0.05] 3.42 [0.05] 4.42 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Lead mg/kg 960 37.4 [0.6] 1.31.2 [0.6] 2.01 [0.5] 15 [0.5] 3.87 [0.4] SW8082A PCB-1016 (Arccior 1016) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1224 (Arccior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1284 (Arccior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1280 (Arccior 1260) mg/kg 0.7 </td <td>AK102</td> <td>Diesel Range Organics (C10-C25)</td> <td>mg/kg</td> <td>3500</td> <td>110 [5.7] QL, QN</td> <td>540 [13] QL, QN</td> <td>420 [5.4] QL, QN</td> <td>470 [5.2] QL, QN</td> <td>230 [6.1] QL, QN</td>	AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	110 [5.7] QL, QN	540 [13] QL, QN	420 [5.4] QL, QN	470 [5.2] QL, QN	230 [6.1] QL, QN
SW6020A Chromium mg/kg 270 14.1 [0.22] 0.L 13.6 [0.24] 3.42 [0.21] 5.48 [0.17] SW6020A Lead mg/kg 530 15.3 [0.06] 5.21 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Zinc mg/kg 960 37.4 [0.6] 2.01 [0.5] 15.6] 38.7 [0.4] SW6020A PCB-1016 (Aroclor 1016) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1232 (Aroclor 122) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1248 (Aroclor 1249) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1254 (Aroclor 1240) mg/kg 0.7 ND [0.013]	AK103	Residual Range Organics (C25-C36)	mg/kg	3500	930 [15]	2500 [33]	1800 [14]	1700 [14] QN	1100 [16]
SW6020A Lead mg/kg 530 15.3 [0.06] 14.2 [0.06] 5.21 [0.05] 4.42 [0.05] 12.5 [0.04] SW6020A Zinc mg/kg 960 37.4 [0.6] 31.2 [0.6] 20.1 [0.5] 14.2 [0.05] 12.5 [0.04] SW6020A PCB-1016 (Arocior 1021) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1221 (Arocior 1221) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1224 (Arocior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1248 (Arocior 1243) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1248 (Arocior 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082D PCB-1260 (Arocior 1260) mg/kg 0.7 ND [0.021] ND [0.012] ND [0	SW6020A	Arsenic	mg/kg	93	4.44 [0.11]	2.67 [0.12]	1.76 [0.11]	1.27 [0.1]	2.73 [0.08]
SW6020A Zinc mg/kg 960 37.4 [0.6] GL 31.2 [0.6] 20.1 [0.5] 15 [0.5] 38.7 [0.4] SW6082A PCB-1016 (Arcolor 1016) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW6082A PCB-1221 (Arcolor 1221) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW6082A PCB-1232 (Arcolor 1232) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW6082A PCB-1248 (Arcolor 1248) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW6082A PCB-1248 (Arcolor 1264) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1248 (Arcolor 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] SW8082A PCB-1248 (Arcolor 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013]		Chromium	mg/kg		14.1 [0.22] QL	13.6 [0.24]	3.42 [0.21]	5.48 [0.19]	8.98 [0.17]
SW8082A PCB-1016 (Arocior 1016) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1221 (Arocior 1221) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1224 (Arocior 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1242 (Arocior 1243) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1248 (Arocior 1254) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] ND [0.013] SW8082A PCB-1264 (Arocior 1254) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] ND [0.013] SW8027D 1-Methylnaphthalene mg/kg 0.7 ND [0.22] ND [0.21] ND [0.21] ND [0.21] ND [0.21] ND [0.21] ND [0.21] ND [0.21] <td>SW6020A</td> <td>Lead</td> <td>mg/kg</td> <td>530</td> <td>15.3 [0.06]</td> <td>14.2 [0.06]</td> <td>5.21 [0.05]</td> <td>4.42 [0.05]</td> <td>12.5 [0.04]</td>	SW6020A	Lead	mg/kg	530	15.3 [0.06]	14.2 [0.06]	5.21 [0.05]	4.42 [0.05]	12.5 [0.04]
SW8082A PCB-1221 Aroctor 1221 mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1232 (Aroctor 1232) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1242 (Aroctor 1242) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1248 (Aroctor 1248) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1260 (Aroctor 1264) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1260 (Aroctor 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.013] ND [0.013] SW8270D 1-Methylnaphthalene mg/kg 0.7 ND [0.22] ND [0.22] ND [0.042] QL ND [0.041 QL ND [0.047] QL SW8270D Acenaphthylene mg/kg - ND [0.22] <	SW6020A	Zinc	mg/kg	960	37.4 [0.6] QL	31.2 [0.6]	20.1 [0.5]	15 [0.5]	38.7 [0.4]
SW8082A PCB-1232 (Arocior 1232) mg/kg 0.7 ND 0.013 ND 0.014 ND 0.012 ND 0.012 ND 0.013 SW8082A PCB-1242 (Arocior 1242) mg/kg 0.7 ND 0.013 ND 0.014 ND 0.012 ND 0.013 ND 0.014 ND 0.012 ND 0.013 ND 0.014 ND 0.012 ND 0.012 ND 0.012 ND 0.012 ND 0.012 ND 0.012 ND 0.021 ND 0.021	SW8082A	PCB-1016 (Aroclor 1016)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8082A PCB-1242 (Arocior 1242) mg/rg 0.7 ND 0.013 ND 0.014 ND 0.012 ND 0.012 ND 0.013 SW8082A PCB-1248 (Arocior 1248) mg/kg 0.7 ND 0.013 ND 0.014 ND 0.012 ND 0.012 ND 0.013 SW8082A PCB-1260 (Arocior 1260) mg/kg 0.7 ND 0.013 ND 0.014 ND 0.012 ND 0.012 ND 0.012 ND 0.013 ND 0.014 ND 0.012 ND 0.013 ND			mg/kg		ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8082A PCB-1248 (Aroclor 1248) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1254 (Aroclor 1254) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1260 (Aroclor 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] 0.015 [0.013] SW8270D 1-Methylnaphthalene mg/kg 0.7 ND [0.43] ND [0.49] ND [0.42] ND [0.78] QL ND [0.047] QL SW8270D SW8270D Acenaphthene mg/kg 0.6 ND [0.22] ND [0.025] ND [0.042] QL ND [0.041 QL ND [0.047] QL SW8270D Acenaphthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.041 QL ND [0.047] QL SW8270D Acenaphthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.041 QL ND [0.047	SW8082A	PCB-1232 (Aroclor 1232)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8082A PCB-1254 (Arocior 1254) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] ND [0.013] SW8082A PCB-1260 (Arocior 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] 0.015 [0.013] SW8270D 1-Methylnaphthalene mg/kg - ND [4.3] ND [0.49] ND [0.81] QL ND [0.78] QL ND [0.97] QL SW8270D 2-Methylnaphthalene mg/kg 0.6 ND [0.22] ND [0.025] 0.071 [0.042] J, QN, QL ND [0.047] QL ND [0.047] QL SW8270D Acenaphthene mg/kg 0.5 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Acenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.041 QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg -<	SW8082A	PCB-1242 (Aroclor 1242)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8082A PCB-1260 (Aroclor 1260) mg/kg 0.7 ND [0.013] ND [0.014] ND [0.012] ND [0.012] 0.015 [0.013] J SW8270D 1-Methylnaphthalene mg/kg - ND [4.3] ND [0.49] ND [0.81] QL ND [0.78] QL ND [0.9] QL SW8270D 2-Methylnaphthalene mg/kg 0.6 ND [0.22] ND [0.025] 0.071 [0.042] J, QN, QL 0.010 J, QL ND [0.047] QL SW8270D Accenaphthene mg/kg 0.5 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Accenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Actinaphthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)pytene mg/kg - ND [SW8082A	PCB-1248 (Aroclor 1248)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8270D 1-Methylnaphthalene mg/kg - ND [4.3] ND [0.49] ND [0.81] QL ND [0.78] QL ND [0.9] QL SW8270D 2-Methylnaphthalene mg/kg 0.6 ND [0.22] ND [0.025] 0.071 [0.042] J, QN, QL 0.032 [0.04] J, QN, QL ND [0.047] QL SW8270D Acenaphthylene mg/kg 0.5 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Acenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)hinthene mg/kg - ND [0.22] ND	SW8082A	PCB-1254 (Aroclor 1254)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	ND [0.013]
SW8270D 2-Methylnaphthalene mg/kg 0.6 ND [0.22] ND [0.025] 0.071 [0.042] j, QN, QL 0.032 [0.04] j, QN, QL ND [0.047] QL SW8270D Acenaphthene mg/kg 0.5 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Acenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(b)fluoranthene mg/kg - ND [0.22] ND	SW8082A	PCB-1260 (Aroclor 1260)	mg/kg	0.7	ND [0.013]	ND [0.014]	ND [0.012]	ND [0.012]	0.015 [0.013] J
SW8270D Acenaphthene mg/kg 0.5 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Acenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] <t< td=""><td>SW8270D</td><td>1-Methylnaphthalene</td><td>mg/kg</td><td>-</td><td>ND [4.3]</td><td>ND [0.49]</td><td>ND [0.81] QL</td><td>ND [0.78] QL</td><td>ND [0.9] QL</td></t<>	SW8270D	1-Methylnaphthalene	mg/kg	-	ND [4.3]	ND [0.49]	ND [0.81] QL	ND [0.78] QL	ND [0.9] QL
SW8270D Acenaphthylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(b)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025]		2-Methylnaphthalene	mg/kg	0.6	ND [0.22]	ND [0.025]	0.071 [0.042] J, QN, QL	0.032 [0.04] J, QN, QL	ND [0.047] QL
SW8270D Anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(b)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.22] ND [0.025]		Acenaphthene	mg/kg	0.5	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Benzo(a)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.26] ND [0.03] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)(fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] </td <td></td> <td>Acenaphthylene</td> <td>mg/kg</td> <td>-</td> <td>ND [0.22]</td> <td>ND [0.025]</td> <td>ND [0.042] QL</td> <td>ND [0.04] QL</td> <td>ND [0.047] QL</td>		Acenaphthylene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Benzo(a)pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(b)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.26] ND [0.03] ND [0.049] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.22] ND [0.025] ND [0.024] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL	SW8270D	Anthracene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Benzo(b)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.26] ND [0.03] ND [0.049] QL ND [0.047] QL ND [0.055] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.055] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.22] ND [0.025] ND [0.024] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL		Benzo(a)anthracene	mg/kg	-		ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Benzo(g,h,i)perylene mg/kg 1.7 ND [0.26] ND [0.03] ND [0.049] QL ND [0.047] QL ND [0.055] QL SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.025] ND [0.049] QL ND [0.047] QL ND [0.047] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.13] ND [0.015] ND [0.025] QL ND [0.024] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Benzo(k)fluoranthene mg/kg - ND [0.22] ND [0.25] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Chrysene mg/kg - ND [0.13] ND [0.015] ND [0.025] QL ND [0.024] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.028] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.11] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.22] ND [Benzo(b)fluoranthene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Chrysene mg/kg - ND [0.13] ND [0.015] ND [0.025] QL ND [0.024] QL ND [0.029] QL SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.22] ND [0.059] ND [0.098] QL ND [0.047] QL ND [0.11] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.22] ND [0.059] ND [0.042] QL ND [0.11] QL SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL <t< td=""><td></td><td></td><td>mg/kg</td><td>1.7</td><td>ND [0.26]</td><td>ND [0.03]</td><td>ND [0.049] QL</td><td>ND [0.047] QL</td><td>ND [0.055] QL</td></t<>			mg/kg	1.7	ND [0.26]	ND [0.03]	ND [0.049] QL	ND [0.047] QL	ND [0.055] QL
SW8270D Dibenzo(a,h)anthracene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.52] ND [0.059] ND [0.098] QL ND [0.094] QL ND [0.11] QL SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL		Benzo(k)fluoranthene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Fluoranthene mg/kg 2 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.52] ND [0.059] ND [0.098] QL ND [0.094] QL ND [0.11] QL SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL			mg/kg	-	ND [0.13]	ND [0.015]	ND [0.025] QL	ND [0.024] QL	ND [0.028] QL
SW8270D Fluorene mg/kg 0.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.52] ND [0.059] ND [0.098] QL ND [0.094] QL ND [0.11] QL SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL	SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Indeno(1,2,3-cd)pyrene mg/kg 3.2 ND [0.52] ND [0.059] ND [0.098] QL ND [0.094] QL ND [0.11] QL SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL			mg/kg						
SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL			mg/kg	0.8	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
SW8270D Naphthalene mg/kg 1.7 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL ND [0.047] QL		Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.52]	ND [0.059]	ND [0.098] QL	ND [0.094] QL	ND [0.11] QL
SW8270D Phenanthrene mg/kg 4.8 ND [0.22] ND [0.025] ND [0.042] QL ND [0.047] QL	SW8270D		mg/kg	1.7	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL
		Phenanthrene	mg/kg	4.8					
SW8270D Pyrene mg/kg - ND [0.22] ND [0.025] ND [0.042] QL ND [0.04] QL ND [0.047] QL	SW8270D	Pyrene	mg/kg	-	ND [0.22]	ND [0.025]	ND [0.042] QL	ND [0.04] QL	ND [0.047] QL

Notes:

¹ Decision Document (USACE 2009)

Bold Analytical results exceed the Site Specific Criteria.

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

·					-	-			i
			Location ID	S29-005	S29-006	S29-007	S29-008	S29-009	S29-010
			Sample ID	16NEC-S29-SD-005	16NEC-S29-SD-006	16NEC-S29-SD-007	16NEC-S29-SD-008	16NEC-S29-SD-009	16NEC-S29-SD-010
			Lab Sample ID	K160964910	K160964911	K160964912	K160964913	K160964914	K160964915
			SDG	K1609649	K1609649	K1609649	K1609649	K1609649	K1609649
			Sample Date	8/15/16	8/15/16	8/15/16	8/15/16	8/15/16	8/15/16
			Matrix	SE	SE	SE	SE	SE	SE
			Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
			QA/QC	Primary	Primary	Primary	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹						
E160.3M	Total Solids	Percent	-	62.3	61.9	61.9	57.1	63.3	70.6
AK102	Diesel Range Organics (C10-C25)	mg/kg	3500	310 [11] QL, QN	210 [11] QL, QN	630 [27] QL, QN	410 [12] QL, QN	230 [11] QL, QN	410 [9.3] QL, QN
AK103	Residual Range Organics (C25-C36)	mg/kg	3500	2700 [27]	2100 [27]	5700 [67]	3500 [29]	2600 [26]	4200 [24] QH
SW6020A	Arsenic	mg/kg	93	4.22 [0.09]	3.86 [0.12]	4.41 [0.07]	5.82 [0.1]	3.42 [0.09]	4.63 [0.08]
SW6020A	Chromium	mg/kg	270	14.2 [0.17]	13 [0.23]	15.9 [0.15]	20.8 [0.2]	8.23 [0.18]	22.7 [0.16]
SW6020A	Lead	mg/kg	530	5.99 [0.04]	10.3 [0.06]	7.71 [0.04]	9.46 [0.05]	3.95 [0.05]	9.34 [0.04]
SW6020A	Zinc	mg/kg	960	17 [0.4]	37.1 [0.6]	22.1 [0.4]	41.8 [0.5]	14.4 [0.5]	42.2 [0.4]
SW8082A	PCB-1016 (Aroclor 1016)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1221 (Aroclor 1221)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1232 (Aroclor 1232)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1242 (Aroclor 1242)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1248 (Aroclor 1248)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1254 (Aroclor 1254)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8082A	PCB-1260 (Aroclor 1260)	mg/kg	0.7	ND [0.012]	ND [0.012]	ND [0.012]	ND [0.013]	ND [0.012]	ND [0.0099]
SW8270D	1-Methylnaphthalene	mg/kg	-	ND [0.4] QL	ND [4] QL	ND [0.8] QL	ND [0.87] QL	ND [0.78] QL	ND [3.5] QL
SW8270D	2-Methylnaphthalene	mg/kg	0.6	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Acenaphthene	mg/kg	0.5	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Acenaphthylene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Anthracene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Benzo(a)anthracene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Benzo(a)pyrene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Benzo(b)fluoranthene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Benzo(g,h,i)perylene	mg/kg	1.7	ND [0.024] QL	ND [0.24] QL	ND [0.049] QL	ND [0.053] QL	ND [0.048] QL	ND [0.22] QL
SW8270D	Benzo(k)fluoranthene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Chrysene	mg/kg	-	ND [0.012] QL	ND [0.12] QL	ND [0.025] QL	ND [0.027] QL	ND [0.024] QL	ND [0.11] QL
SW8270D	Dibenzo(a,h)anthracene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Fluoranthene	mg/kg	2	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Fluorene	mg/kg	0.8	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Indeno(1,2,3-cd)pyrene	mg/kg	3.2	ND [0.048] QL	ND [0.48] QL	ND [0.097] QL	ND [0.11] QL	ND [0.095] QL	ND [0.43] QL
SW8270D	Naphthalene	mg/kg	1.7	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Phenanthrene	mg/kg	4.8	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
SW8270D	Pyrene	mg/kg	-	ND [0.021] QL	ND [0.21] QL	ND [0.042] QL	ND [0.045] QL	ND [0.041] QL	ND [0.18] QL
1									

Notes:

¹ Decision Document (USACE 2009)

Bold Analytical results exceed the Site Specific Criteria.

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/kg - milligram per kilogram

SDG - Sample Delivery Group

SE - Sediment

Northeast Cape FUDS 2016 Sampling Table B-1-5 - Surface Water Sample Results at Suqi River

			Location ID	S29-001	S29-001	S29-002	S29-003	S29-004
			Sample ID	16NEC-S29-WS-001	16NEC-S29-WS-0019	16NEC-S29-WS-002	16NEC-S29-WS-003	16NEC-S29-WS-004
			Lab Sample ID	K160958105	K160958106	K160958107	K160958108	K160958109
			SDG	K1609581	K1609581	K1609581	K1609581	K1609581
			Sample Date	8/16/16	8/16/16	8/16/16	8/15/16	8/15/16
			Matrix	WS	WS	WS	WS	WS
			Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK
			QA/QC	Primary	Duplicate	Primary	Primary	Primary
Method	Analyte	Units	Site Specific ¹	,	•	,	,	
8270SIM	1-Methylnaphthalene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	2-Methylnaphthalene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Acenaphthene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	Acenaphthylene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	Anthracene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	Benzo(a)anthracene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	0.0000026 [0.000005] J	ND [0.000053]
8270SIM	Benzo(a)pyrene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	Benzo(b)fluoranthene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.000053]
8270SIM	Benzo(g,h,i)perylene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Benzo(k)fluoranthene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Chrysene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Fluoranthene	mg/L	-	ND [0.00002]	ND [0.00002]	ND [0.000023]	ND [0.00002]	ND [0.000022]
8270SIM	Fluorene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.0000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Naphthalene	mg/L	-	0.000004 [0.000005] J	0.0000043 [0.000005] J	0.0000043 [0.0000056] J	0.0000047 [0.000005] J	0.0000045 [0.0000053] J
8270SIM	Phenanthrene	mg/L	-	ND [0.000005]	ND [0.000005]	ND [0.000056]	ND [0.000005]	ND [0.0000053]
8270SIM	Pyrene	mg/L	-	ND [0.00001]	ND [0.00001]	ND [0.000012]	ND [0.00001]	ND [0.000011]
SW8260C	Benzene	mg/L	-	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]
SW8260C	Ethylbenzene	mg/L	-	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]
SW8260C	o-Xylene	mg/L	-	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]
SW8260C	Toluene	mg/L	-	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]
SW8260C	Xylene, Isomers m & p	mg/L	-	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]	ND [0.0002]
SW8260C	TAH ²	mg/L	0.01	0.0007	0.0007	0.0007	0.0007	0.0007
SW8260C /			0.0.	0.000.	0.000.	0.0001	0.0001	0.000.
8270SIM	TAgH ²	mg/L	0.015	0.000809	0.0008093	0.0008233	0.0008073	0.000817
Notes:	•		0.0.0	0.000000	0.000000	0.0000200	0.00000.0	0.00001.

Notes:

¹ Decision Document (USACE 2009)

² Total aromatic hydrocarbons (TAH) is the sum of the SW8260 BTEX

concentrations. Total aqueous hydrocarbons (TAqH) is the sum of the

SW8260 BTEX and 8270 SIM PAH concentrations. If the analyte was ND,

the LOD was used for the analyte concentration

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

SDG - Sample Delivery Group

WS - Surface Water

Northeast Cape FUDS 2016 Sampling Table B-1-5 - Surface Water Sample Results at Suqi River

			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	TB05 16NEC-TB05 K160958111 K1609581 8/16/16 WG ALGK Trip Blank
Method	Analyte	Units	Site Specific ¹	
8270SIM	1-Methylnaphthalene	mg/L	-	-
8270SIM	2-Methylnaphthalene	mg/L	-	-
8270SIM	Acenaphthene	mg/L	-	-
8270SIM	Acenaphthylene	mg/L	-	-
8270SIM	Anthracene	mg/L	-	-
8270SIM	Benzo(a)anthracene	mg/L	-	-
8270SIM	Benzo(a)pyrene	mg/L	-	-
8270SIM	Benzo(b)fluoranthene	mg/L	-	-
8270SIM	Benzo(g,h,i)perylene	mg/L	-	-
8270SIM	Benzo(k)fluoranthene	mg/L	-	-
8270SIM	Chrysene	mg/L	-	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	-
8270SIM	Fluoranthene	mg/L	-	-
8270SIM	Fluorene	mg/L	-	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	-	-
8270SIM	Naphthalene	mg/L	-	-
8270SIM	Phenanthrene	mg/L	-	-
8270SIM	Pyrene	mg/L	-	-
SW8260C	Benzene	mg/L	-	ND [0.0001]
SW8260C	Ethylbenzene	mg/L	-	ND [0.0001]
SW8260C	o-Xylene	mg/L	-	ND [0.0002]
SW8260C	Toluene	mg/L	-	ND [0.0001]
SW8260C	Xylene, Isomers m & p	mg/L	-	ND [0.0002]
SW8260C	TAH ²	mg/L	0.01	-
SW8260C / 8270SIM	TAqH ²	mg/L	0.015	-

Notes:

¹ Decision Document (USACE 2009)

² Total aromatic hydrocarbons (TAH) is the sum of the SW8260 BTEX concentrations. Total aqueous hydrocarbons (TAqH) is the sum of the SW8260 BTEX and 8270 SIM PAH concentrations. If the analyte was ND, the LOD was used for the analyte concentration

[] - limit of detection

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

SDG - Sample Delivery Group

WS - Surface Water

ATTACHMENT B-2 Qualified Sample Results Tables

Sample ID	Lab Sample ID	Method	Analyte	QC Batch	Result (mg/L)	LOD (mg/L)	Qualifier	Sample Date	Extraction Date	Analyzed Date
16NEC-14MW06-WG	K160943404	AK102	DRO	KWG1607446	1.4	0.021	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG-9	K160943405	AK102	DRO	KWG1607446	1.4	0.02	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW07-WG	K160943409	AK102	DRO	KWG1607446	0.12	0.021	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-17MW1-WG	K160943412	AK102	DRO	KWG1607446	0.092	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-20MW-1-WG	K160943413	AK102	DRO	KWG1607446	0.09	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-22MW2-WG	K160943414	AK102	DRO	KWG1607446	0.1	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-26MW1-WG	K160943411	AK102	DRO	KWG1607446	0.11	0.022	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW10-1-WG	K160943403	AK102	DRO	KWG1607446	0.49	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW10-1-DVW	K160943406	AK102	DRO	KWG1607446	0.08	0.021	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-1-WG	K160943407	AK102	DRO	KWG1607446	0.52	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-10-WG	K160943410	AK102	DRO	KWG1607446	0.3	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW03-WG	K160958101	AK102	DRO	KWG1607446	0.99	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW04-WG	K160958102	AK102	DRO	KWG1607446	2.2	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW05-WG	K160958103	AK102	DRO	KWG1607446	3.2	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW88-3-WG	K160958104	AK102	DRO	KWG1607446	0.49	0.021	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG	K160943404	AK103	RRO	KWG1607446	0.55	0.051	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG-9	K160943405	AK103	RRO	KWG1607446	0.47	0.05	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW07-WG	K160943409	AK103	RRO	KWG1607446	0.093	0.052	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-17MW1-WG	K160943412	AK103	RRO	KWG1607446	0.13	0.052	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-20MW-1-WG	K160943413	AK103	RRO	KWG1607446	0.13	0.052	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-22MW2-WG	K160943414	AK103	RRO	KWG1607446	0.36	0.052	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-26MW1-WG	K160943411	AK103	RRO	KWG1607446	0.79	0.053	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW10-1-WG	K160943403	AK103	RRO	KWG1607446	0.32	0.053	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW10-1-DVW	K160943406	AK103	RRO	KWG1607446	0.11	0.051	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-1-WG	K160943407	AK103	RRO	KWG1607446	0.23	0.053	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-10-WG	K160943410	AK103	RRO	KWG1607446	0.16	0.051	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW03-WG	K160958101	AK103	RRO	KWG1607446	0.16	0.053	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW04-WG	K160958102	AK103	RRO	KWG1607446	0.61	0.052	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW05-WG	K160958103	AK103	RRO	KWG1607446	0.61	0.052	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW88-3-WG	K160958104	AK103	RRO	KWG1607446	0.15	0.053	J, QL	8/14/2016	8/25/2016	10/6/2016

Table B-2-1Sample Results Qualified QL due to Hold Time Exceedance

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

 Table B-2-2

 Sample Results Qualified due to Method Blank and Trip Blank Contamination

SDG	QC Batch	Method	Analyte	QC sample	MB/TB Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	Qualifier
K1609581	511210	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW03-WG	28	В
K1609434	511209	A2320B	Alkalinity, Total	Method Blank	6	16NEC-20MW-1-WG	21	В
K1609317	510534	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW02-WG	40	В
K1609317	510534	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW02-WG-9	40	В
K1609581	511210	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW05-WG	47	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-14MW06-WG	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-14MW06-WG-9	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-TB02	0.00009	В
K1609434	KWG1607320	SW8260C	Methylene chloride	Method Blank	0.00011	16NEC-TB02	0.00014	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW01-WGF	0.00035	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW01-WG	0.00078	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW02-WGF	0.00034	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW02-WG	0.00053	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW02-WG-9F	0.00035	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW02-WG-9	0.00051	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW05-WGF	0.00046	В
K1609434	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-22MW2-WGF	0.0003	В
K1609434	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-22MW2-WG	0.00033	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-MW88-3-WGF	0.00028	В
K1609581	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-MW88-3-WG	0.00042	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW03-WGF	0.00065	В
K1609434	269412	SW6020A	Vanadium (Dissolved)	Method Blank	0.00003	16NEC-22MW2-WGF	0.00005	В
K1609434	269412	SW6020A	Vanadium	Method Blank	0.00003	16NEC-22MW2-WG	0.00006	В
K1609581	269412	SW6020A	Vanadium (Dissolved)	Method Blank	0.00003	16NEC-MW88-3-WGF	0.00012	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-14MW07-WG	0.12	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-17MW1-WG	0.092	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-20MW-1-WG	0.09	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-22MW2-WG	0.1	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-26MW1-WG	0.11	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-MW10-1-DVW	0.08	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-MW88-10-WG	0.3	В
K1609581	KWG1607340	SW8082A	PCB-1260 (Aroclor 1260)	Method Blank	0.0000063	16NEC-14MW03-WG	0.0000029	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW01-WG	0.12	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW02-WG	0.18	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW02-WG-9	0.17	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-14MW07-WG	0.093	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-17MW1-WG	0.13	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-20MW-1-WG	0.13	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW10-1-DVW	0.11	В

 Table B-2-2

 Sample Results Qualified due to Method Blank and Trip Blank Contamination

SDG	QC Batch	Method	Analyte	QC sample	MB/TB Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	Qualifier
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-1-WG	0.23	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-10-WG	0.16	В
K1609581	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-14MW03-WG	0.16	В
K1609581	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-3-WG	0.15	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	16NEC-TB02	0.00009	16NEC-14MW06-WG-9	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	16NEC-TB02	0.00009	16NEC-14MW06-WG	0.00007	В
K1609434	KWG1607320	SW8260C	Chloroform	16NEC-TB02	0.00009	16NEC-MW10-1-DVW	0.0001	В

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

SDG	Sample ID	Lab Sample ID	QC Batch	Method	Analyte	Percent Recovery	Result (mg/L)	LOD (mg/L)	LCL (%)	UCL (%)	Qualifier
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	1,2-Dichloroethane-d4	119	-	-	81	118	
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Naphthalene	-	0.00034	0.0003	-	-	J, QH
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	-	-	J, B, QH
K1609581	16NEC-14MW03-WG	K160958101	KWG1607370	SW8260C	Toluene-d8	115	-	-	89	112	
K1609581	16NEC-14MW03-WG	K160958101	KWG1607370	SW8260C	Ethylbenzene	-	0.00025	0.0001	-	-	J, QH
K1609581	16NEC-14MW04-WG	K160958102	KWG1607370	SW8260C	Toluene-d8	114	-	-	89	112	
K1609581	16NEC-14MW04-WG	K160958102	KWG1607370	SW8260C	Benzene	-	0.00013	0.0001	-	-	J, QH
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Toluene-d8	116	-	-	89	112	
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Xylene, Isomers m & p	-	0.00018	0.0002	-	-	J, QH
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Ethylbenzene	-	0.00021	0.0001	-	-	J, QH
K1609581	16NEC-MW88-3-WG	K160958104	KWG1607370	SW8260C	Toluene-d8	114	-	-	89	112	
K1609581	16NEC-MW88-3-WG	K160958104	KWG1607370	SW8260C	Ethylbenzene	-	0.00005	0.0001	-	-	J, QH
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	Decachlorobiphenyl	22	-	-	40	135	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1260 (Aroclor 1260)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1254 (Aroclor 1254)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1248 (Aroclor 1248)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1242 (Aroclor 1242)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1232 (Aroclor 1232)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1221 (Aroclor 1221)	-	ND	0.0004	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1016 (Aroclor 1016)	-	ND	0.0002	-	-	QL

Table B-2-3Sample Results Qualified due to Surrogate Accuracy

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

Table B-2-4
CCV Recoveries Less than True Value

SDG	Sample ID	Lab Sample ID	QC Batch	Method	Analyte	% Difference	Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	CCV	-	KWG1607320	SW8260C	Dichlorodifluoromethane	-25	-	-	-
K1609434	CCV	-	KWG1607320	SW8260C	Chloromethane	-22	-	-	-
K1609434	CCV	-	KWG1607320	SW8260C	Carbon disulfide	-23	-	-	-
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Carbon disulfide	-	0.00009	0.0002	J, B, QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Carbon disulfide	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	J, B, QH, QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	J, B, QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Carbon disulfide	-	ND	0.0002	QL

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

Table B-2-5Sample Results Qualified due to Field Duplicate Precision

Method	Analyte	Primary Sample ID	Primary Lab Sample ID	Duplicate Sample ID	Duplicate Lab Sample ID	Primary Result (mg/L)	Duplicate Result (mg/L)	RPD (%)	Qualifier
SW6020A	Silver (Total)	16NEC-14MW02-WG	K160931702	16NEC-14MW02-WG-9	K160931703	0.00001	0.000005	67	QN
SW6020A	Cadmium (Dissolved)	16NEC-14MW02-WGF	K160931702F	16NEC-14MW02-WG-9F	K160931703F	0.000018	0.000029	47	QN
SW6020A	Lead (Dissolved)	16NEC-14MW02-WGF	K160931702F	16NEC-14MW02-WG-9F	K160931703F	0.000054	0.000083	42	QN
8270SIM	Acenaphthene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.000017	ND [0.000005]	109	QN
8270SIM	Naphthalene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.00006	0.000033	58	QN
SW8260C	Naphthalene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.00034	0.00025	31	QN
SW8082A	PCB-1260 (Aroclor 1260)	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.0000015	0.0000026	54	QN
SW6020A	Cadmium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00008	0.000049	48	QN
SW6020A	Chromium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00034	0.00017	67	QN
SW6020A	Lead (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.000649	0.000208	103	QN
SW6020A	Selenium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	ND [0.001]	0.0005	67	QN
SW6020A	Silver (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00001	0.000004	86	QN
SW6020A	Vanadium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00054	0.00035	43	QN
SW6020A	Zinc (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00734	0.00412	56	QN

[] - limit of detection

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

 Table B-2-6

 Nondetect Sample Results with LODs Greater than ADEC Criteria

SDG	Sample ID	Location ID	Lab Sample ID	Method	Analyte	2016 ADEC Evaluation Criteria ¹ (mg/L)	Result (mg/L)	LOD (mg/L)	DF
K1609434	16NEC-TB02	TB02	K160943401	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-TB02	TB02	K160943401	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-MW10-1-WG	MW10-1	K160943403	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-MW10-1-WG	MW10-1	K160943403	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-14MW06-WG	14MW06	K160943404	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-14MW06-WG	14MW06	K160943404	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-14MW06-WG-9	14MW06	K160943405	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-14MW06-WG-9	14MW06	K160943405	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-MW10-1-DVW	MW10-1-DVW	K160943406	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-MW10-1-DVW	MW10-1-DVW	K160943406	SW8260C	1,2,3-Trichloropropane	0.000075	ND	0.0005	1

¹ Groundwater compared to 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016).

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

 Table B-2-7

 Sample Results Qualified due to Dual Column Confirmation

SDG	Sample ID	Lab Sample ID	Method	Analyte	Primary	Confirmation	RPD	Qualifier
K1609434	16NEC-20MW-1-WG	K160943413	8082A	Aroclor 1260	0.0000023	0.0000035	41	QN
K1609434	16NEC-MW88-10-WG	K160943410	8082A	Aroclor 1260	0.0000027	0.0000044	48	QN
K1609581	16NEC-14MW03-WG	K160958101	8082A	Aroclor 1260	0.0000029	0.0000044	41	QN

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

Equipment Blank LOD **Associated Result** SDG Method Analyte **Associated Sample** Qualifier Contamination (mg/L) (mq/L)(mq/L)K1609434 8270SIM 2-Methylnaphthalene 0.0000042 16NEC-MW10-1-WG 0.0000049 0.000005 J, B K1609581 8270SIM 2-Methylnaphthalene 0.0000042 16NEC-14MW03-WG 0.000015 0.0000056 J, B K1609581 8270SIM 2-Methylnaphthalene 0.0000042 16NEC-14MW05-WG 0.000029 0.000005 В K1609581 8270SIM 2-Methylnaphthalene 0.0000042 16NEC-MW88-3-WG 0.0000058 J. B 0.000005 K1609434 AK102 DRO 0.08 16NEC-14MW07-WG 0.12 J, B, QL 0.021 K1609434 AK102 DRO 0.08 16NEC-17MW1-WG 0.092 0.021 J, B, QL K1609434 AK102 DRO 0.08 16NEC-20MW-1-WG 0.09 0.021 J, B, QL DRO 0.08 K1609434 AK102 16NEC-22MW2-WG 0.1 0.021 J. B. QL K1609434 AK102 DRO 0.08 0.11 J, B, QL 16NEC-26MW1-WG 0.022 K1609434 AK102 DRO 0.08 16NEC-MW10-1-WG 0.49 0.021 J. B. QL K1609434 AK102 DRO 0.08 16NEC-MW88-10-WG 0.3 0.021 J. B. QL K1609434 AK102 DRO 0.08 0.52 J,B, QL 16NEC-MW88-1-WG 0.021 AK102 DRO 0.08 16NEC-MW88-3-WG J. B. QL K1609581 0.49 0.021 RRO 0.12 J, B K1609317 AK103 0.11 16NEC-14MW01-WG 0.051 K1609317 AK103 RRO 0.11 0.18 0.053 J. B 16NEC-14MW02-WG K1609317 AK103 RRO 0.11 16NEC-14MW02-WG-9 0.17 0.053 J. B K1609581 AK103 RRO 0.11 0.16 0.053 J. B. QL 16NEC-14MW03-WG K1609581 AK103 RRO 0.11 16NEC-14MW04-WG 0.61 0.052 B. QL RRO K1609581 AK103 0.11 16NEC-14MW05-WG 0.61 0.052 B, QL K1609434 AK103 RRO 16NEC-14MW06-WG 0.55 0.051 B. QL 0.11 AK103 RRO B. QL K1609434 0.11 16NEC-14MW06-WG-9 0.47 0.05 K1609434 AK103 RRO 0.11 16NEC-14MW07-WG 0.093 0.052 J, B, QL K1609434 AK103 RRO 0.052 J. B. QL 0.11 16NEC-17MW1-WG 0.13 K1609434 AK103 RRO 0.11 16NEC-20MW-1-WG 0.13 0.052 J, B, QL K1609434 AK103 RRO 0.11 16NEC-22MW2-WG 0.36 0.052 J, B, QL K1609434 AK103 RRO 0.11 16NEC-26MW1-WG 0.79 0.053 B. QL AK103 RRO J, B, QL K1609434 0.11 16NEC-MW10-1-WG 0.32 0.053 RRO 0.11 0.16 K1609434 AK103 16NEC-MW88-10-WG 0.051 J, B, QL K1609434 AK103 RRO 0.11 16NEC-MW88-1-WG 0.23 0.053 J, B, QL RRO K1609581 AK103 0.11 16NEC-MW88-3-WG 0.15 0.053 J. B. QL K1609317 SW8260C 0.00006 16NEC-14MW01-WG 0.0005 В Ethylbenzene 0.0001 K1609581 SW8260C Ethylbenzene 0.00006 16NEC-14MW03-WG 0.00025 0.0001 J, B, QH K1609581 SW8260C 0.00006 16NEC-14MW05-WG 0.00021 0.0001 J.B. QH Ethylbenzene K1609581 SW8260C Ethylbenzene 0.00006 16NEC-MW88-3-WG 0.00005 0.0001 J, B, QH K1609581 8270SIM Naphthalene 0.000011 16NEC-14MW04-WG 0.000022 0.000005 В K1609434 8270SIM Naphthalene 0.000011 16NEC-14MW06-WG 0.00006 0.000005 B. Q K1609434 8270SIM Naphthalene 0.000011 16NEC-14MW06-WG-9 0.000033 0.000005 B, Q K1609434 8270SIM Naphthalene 0.000011 16NEC-14MW07-WG 0.0000061 0.000005 J. B K1609434 8270SIM Naphthalene 0.000011 16NEC-17MW1-WG 0.0000076 0.000005 J, B K1609434 8270SIM Naphthalene 0.000011 16NEC-20MW-1-WG 0.0000054 0.000005 J. B K1609434 8270SIM Naphthalene 0.000011 16NEC-26MW1-WG 0.0000045 0.000005 J, B K1609434 8270SIM Naphthalene 0.000011 16NEC-MW10-1-WG 0.0000046 0.000005 J, B

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

Equipment Blank LOD Associated Result SDG Method Analyte **Associated Sample** Qualifier Contamination (mg/L) (mq/L)(mq/L)K1609434 8270SIM Naphthalene 0.000011 16NEC-MW88-10-WG 0.0000088 0.000005 J, B K1609434 8270SIM Naphthalene 0.000011 16NEC-MW88-1-WG 0.0000071 0.000005 J. B K1609581 8270SIM Naphthalene 0.000011 16NEC-MW88-3-WG 0.000035 0.000005 В В SW8260C 0.0024 16NEC-MW10-1-WG 0.0092 0.0002 K1609434 Tetrachloroethene (PCE) K1609317 SW8260C 0.00028 0.00038 Xvlene. Isomers m & p 16NEC-14MW01-WG 0.0002 J. B K1609317 SW8260C Xylene, Isomers m & p 0.00028 0.0006 В 16NEC-14MW02-WG 0.0002 K1609317 SW8260C Xvlene. Isomers m & p 0.00028 16NEC-14MW02-WG-9 0.00055 0.0002 В K1609581 SW8260C Xylene, Isomers m & p 0.00028 16NEC-14MW05-WG 0.00018 0.0002 J, B, QH K1609317 Chromium (Dissolved) 0.00012 0.00035 SW6020A 16NEC-14MW01-WGF 0.00005 В K1609317 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW02-WGF 0.00034 0.00005 В K1609317 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW02-WG-9F 0.00035 0.00005 В K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-MW10-1-WGF 0.00026 0.00005 В K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW06-WGF 0.00034 0.00005 B. Q J, B, Q K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW06-WG-9 0.00017 0.00005 K1609434 SW6020A 0.00012 0.00018 0.00005 Chromium (Dissolved) 16NEC-MW88-1-WGF J, B K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW07-WGF 0.00024 0.00005 В K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-MW88-10-WGF 0.0002 0.00005 В K1609434 SW6020A Chromium (Dissolved) 0.00012 0.00031 0.00005 16NEC-26MW1-WGF В K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-17MW1-WGF 0.00021 0.00005 В K1609434 SW6020A 0.00012 0.00033 0.00005 В Chromium (Dissolved) 16NEC-20MW-1-WGF K1609434 SW6020A Chromium (Dissolved) 0.00012 16NEC-22MW2-WGF 0.0003 0.00005 В K1609581 SW6020A Chromium (Dissolved) 0.00012 16NEC-14MW03-WGF 0.00065 0.00005 В K1609581 0.00012 0.00046 В SW6020A Chromium (Dissolved) 16NEC-14MW05-WGF 0.00005 K1609581 SW6020A Chromium (Dissolved) 0.00012 16NEC-MW88-3-WGF 0.00028 0.00005 В K1609317 SW6020A Chromium (Total) 0.00012 16NEC-14MW01-WG 0.00078 0.00005 В K1609317 SW6020A Chromium (Total) 0.00012 16NEC-14MW02-WG 0.00053 0.00005 В K1609317 SW6020A Chromium (Total) 0.00012 16NEC-14MW02-WG-9 0.00051 0.00005 В K1609434 SW6020A Chromium (Total) 0.00012 16NEC-MW10-1-WG 0.0009 0.00005 В K1609434 Chromium (Total) 0.00012 0.0002 В SW6020A 16NEC-14MW06-WG 0.00005 K1609434 SW6020A Chromium (Total) 0.00012 16NEC-14MW06-WG-9 0.00016 0.00005 J. B K1609434 SW6020A Chromium (Total) 0.00012 16NEC-MW88-1-WG 0.00016 0.00005 J. B K1609434 Chromium (Total) 0.00012 0.00045 SW6020A 16NEC-14MW07-WG 0.00005 В K1609434 SW6020A Chromium (Total) 0.00012 16NEC-MW88-10-WG 0.00048 0.00005 В K1609434 Chromium (Total) 0.00012 0.00025 0.00005 В SW6020A 16NEC-17MW1-WG K1609434 SW6020A Chromium (Total) 0.00012 16NEC-20MW-1-WG 0.00053 0.00005 В K1609434 SW6020A Chromium (Total) 0.00012 16NEC-22MW2-WG 0.00033 0.00005 В 0.00012 В K1609581 SW6020A Chromium (Total) 16NEC-14MW05-WG 0.001 0.00005 K1609581 SW6020A Chromium (Total) 0.00012 16NEC-MW88-3-WG 0.00042 0.00005 В K1609317 SW6020A Lead (Dissolved) 0.000021 16NEC-14MW01-WGF 0.000159 0.00001 В K1609317 SW6020A Lead (Dissolved) 0.000021 16NEC-14MW02-WGF 0.000054 0.00001 B. Q K1609317 SW6020A 0.000021 16NEC-14MW02-WG-9F 0.000083 0.00001 B, Q Lead (Dissolved) K1609434 0.000021 16NEC-14MW06-WG-9 0.000208 SW6020A Lead (Dissolved) 0.00001 B, Q

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

Equipment Blank LOD Associated Result SDG Method Analyte **Associated Sample** Qualifier Contamination (mg/L) (mq/L)(mq/L)K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-14MW07-WGF 0.000052 0.00001 В K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-17MW1-WGF 0.000045 0.00001 В K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-22MW2-WGF 0.000026 0.00001 В K1609434 0.000025 В SW6020A Lead (Dissolved) 0.000021 16NEC-26MW1-WGF 0.00001 K1609434 SW6020A 0.000021 0.000042 Lead (Dissolved) 16NEC-MW10-1-WGF 0.00001 В K1609434 SW6020A Lead (Dissolved) 0.000021 0.000075 В 16NEC-MW88-1-WGF 0.00001 K1609581 SW6020A Lead (Dissolved) 0.000021 16NEC-MW88-3-WGF 0.000158 0.00001 В K1609434 SW6020A Lead (Total) 0.000021 16NEC-22MW2-WG 0.000085 0.00001 В K1609434 Manganese (Dissolved) 0.000173 0.00156 0.000013 SW6020A 16NEC-17MW1-WGF В K1609434 SW6020A Manganese (Dissolved) 0.000173 16NEC-22MW2-WGF 0.000535 0.000013 В K1609434 SW6020A Manganese (Dissolved) 0.000173 16NEC-26MW1-WGF 0.000754 0.000013 В K1609317 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW01-WGF 0.00124 0.00005 В K1609317 SW6020A Nickel (Total) 0.00034 16NEC-14MW01-WG 0.00105 0.00005 В 0.00094 В K1609317 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW02-WGF 0.00005 K1609317 SW6020A Nickel (Total) 0.00034 0.00111 0.00005 16NEC-14MW02-WG В K1609317 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW02-WG-9F 0.00105 0.00005 В K1609317 SW6020A Nickel (Total) 0.00034 16NEC-14MW02-WG-9 0.00106 0.00005 В K1609581 SW6020A Nickel (Dissolved) 0.00034 0.00332 0.00005 16NEC-14MW03-WGF В K1609581 SW6020A Nickel (Total) 0.00034 16NEC-14MW03-WG 0.00289 0.00005 В K1609434 SW6020A 0.00034 0.00201 0.00005 В Nickel (Dissolved) 16NEC-14MW06-WGF K1609434 SW6020A Nickel (Total) 0.00034 16NEC-14MW06-WG 0.00175 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW06-WG-9 0.0018 0.00005 В K1609434 Nickel (Total) 0.00034 16NEC-14MW06-WG-9 0.00166 В SW6020A 0.00005 K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-17MW1-WGF 0.0023 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-17MW1-WG 0.0008 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-20MW-1-WGF 0.00167 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-20MW-1-WG 0.00114 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-22MW2-WGF 0.001 0.00005 В Nickel (Total) 0.00034 0.00028 В K1609434 SW6020A 16NEC-22MW2-WG 0.00005 0.00034 K1609434 SW6020A Nickel (Dissolved) 16NEC-26MW1-WGF 0.00126 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-26MW1-WG 0.00112 0.00005 В K1609434 Nickel (Dissolved) 0.00034 0.00122 SW6020A 16NEC-MW10-1-WGF 0.00005 В SW6020A 0.00034 0.00005 В K1609434 Nickel (Total) 16NEC-MW10-1-WG 0.00135 K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-MW88-10-WGF 0.00312 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-MW88-10-WG 0.00242 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-MW88-1-WGF 0.00104 0.00005 В 0.00034 В K1609434 SW6020A Nickel (Total) 16NEC-MW88-1-WG 0.00091 0.00005 16NEC-MW88-3-WGF K1609581 SW6020A Nickel (Dissolved) 0.00034 0.00246 0.00005 В K1609581 SW6020A 0.00034 16NEC-MW88-3-WG 0.00217 0.00005 В Nickel (Total) K1609317 SW6020A Vanadium (Dissolved) 0.00004 16NEC-14MW01-WGF 0.00034 0.00005 В K1609581 SW6020A Vanadium (Dissolved) 0.00004 16NEC-14MW03-WGF 0.00034 0.00005 В K1609434 0.00004 16NEC-14MW06-WG 0.00039 SW6020A Vanadium (Total) 0.00005 В

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

SDG	Method	Analyte	Equipment Blank Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-14MW06-WG-9	0.00035	0.00005	B, Q
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-14MW06-WG-9	0.00037	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-14MW07-WGF	0.00003	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-14MW07-WG	0.00016	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-17MW1-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-17MW1-WG	0.00017	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-20MW-1-WGF	0.00012	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-20MW-1-WG	0.00037	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-22MW2-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-22MW2-WG	0.00006	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-26MW1-WGF	0.00006	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-26MW1-WG	0.00021	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW10-1-WGF	0.00008	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-10-WGF	0.00007	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-10-WG	0.00035	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-1-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-1-WG	0.00006	0.00005	J, B
K1609581	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-3-WGF	0.00012	0.00005	J, B
K1609581	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-3-WG	0.00032	0.00005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW01-WGF	0.00313	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW01-WG	0.00322	0.0005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW02-WGF	0.00259	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW02-WG	0.00254	0.0005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW02-WG-9F	0.0034	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW02-WG-9	0.00237	0.0005	В
K1609581	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW03-WGF	0.00516	0.0005	В
K1609581	SW6020A	Zinc (Total)	0.00063	16NEC-14MW03-WG	0.00587	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW06-WG	0.00331	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW06-WG-9	0.00412	0.0005	B, Q
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW06-WG-9	0.00301	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW07-WGF	0.00394	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW07-WG	0.00384	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-22MW2-WGF	0.00343	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-22MW2-WG	0.00196	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-26MW1-WGF	0.00273	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-26MW1-WG	0.00218	0.0005	В

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

For definitions, refer to the Acronyms and Abbreviations section in the DQA.

ATTACHMENT B-3 ADEC Laboratory Data Review Checklists

Laboratory Data Review Checklist

Project Chemist	Date:							
	Date.	12/16/2016						
Iortheast Cape Groundwater	Report Date:	March 2017						
Jacobs Engineering Group Inc.								
LS, Kelso, WA.	Laboratory Report Number:	K1609581						
75.38.013	ADEC RecKey Number:	Haz ID: 25681						
 Laboratory a. Did an ADEC CS-approved laboratory receive and perform all of the submitted sample analyses ✓ Yes □ No □ NA (Please explain.) Comments Samples were shipped to ALS in Kelso, WA. b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? ✓ Yes □ No □ NA (Please explain.) Comments ALS Kelso transferred samples for method RSK175 to ALS Simi Valley. Chain of Custody (CoC) a. CoC information completed, signed, and dated (including released/received by)? ✓ Yes □ No □ NA (Please explain.) Comments b. Correct Analyses requested? 								
	acobs Engineering Group In LS, Kelso, WA. 75.38.013 S-approved laboratory rece NA (Please explain.) ed to ALS in Kelso, WA. ere transferred to another "f the laboratory performing th NA (Please explain.) ed samples for method RSF <u>C)</u> a completed, signed, and dat NA (Please explain.)	acobs Engineering Group Inc. LS, Kelso, WA. Laboratory Report Number: 75.38.013 ADEC RecKey Number: 75.38.013 ADEC RecKey Number: S-approved laboratory receive and perform all of the submic NA (Please explain.) Comments ed to ALS in Kelso, WA. Comments ere transferred to another "network" laboratory or sub-conthe laboratory performing the analyses ADEC CS approved NA (Please explain.) Comments ed samples for method RSK175 to ALS Simi Valley. C) n completed, signed, and dated (including released/received NA (Please explain.) Comments s requested? NA (Please explain.) Comments						

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?

	1	□ NA (Please explain.)	Comments
Τe	ooler Whatchamac emperature blank – ooler Temperature	- 0.9°C	
Τe	ooler 3 Musketeers emperature blank – ooler Temperature	- 0.9°C	
Τe	ooler Pay Day emperature blank – ooler Temperature		
Τe	ooler O'Henry emperature blank – ooler Temperature		
	ansferred Cooler te emperature blank –	2	
b.	1 1	tion acceptable – acidified water ated Solvents, etc.)?	s, Methanol preserved VOC soil (GRO, BTEX,
	🗹 Yes 🗖 No	□ NA (Please explain.)	Comments
Al	l samples were rec	eived properly preserved.	
c.	Sample condition	n documented – broken, leaking	(Methanol), zero headspace (VOC vials)?
	🗹 Yes 🗖 No	□ NA (Please explain.)	Comments
		ceived in good condition with the of 8 40 mL vials for 16NEC-TE	e exception of headspace in 3 of 8 40 mL vials for 805.
d.			nented? For example, incorrect sample ide of acceptable range, insufficient or missing
	🗹 Yes 🗖 No	□ NA (Please explain.)	Comments
No	o discrepancies we	re noted.	
e.	Data quality or u	sability affected? (Please explain	n.) Comments:
Da	ata quality and usa	bility was not affected.	
. 0	Case Narrative		
	Present and und	erstandable?	
	🗹 Yes 🗖 No	□ NA (Please explain.)	Comments

		b. Discrepancies, errors, or QC failures identified by the lab?						
			✓ Yes	🗆 No	🗆 NA (Please	explain.)		Comments
	[Al	l other di	screpanc	ies and anomali	es are discuss	sed in the rele	evant sections below.
		c.	Were al	l correcti	ve actions docu	mented?		
			Ves Yes	🗆 No	🗆 NA (Please	explain.)		Comments
	[Th	e lab ind	icated in	the case narrativ	ve that the D	RO samples r	needed re-analysis.
		d.	What is	the effec	et on data quality	//usability ac	•	e case narrative? Comments:
	[Al	l data is ı	isable, se	ee the relevant se	ections for ef	fects on data	quality.
5.	Sa	mpl	les Resul	ts				
					performed/repo	rted as reque	ested on COC	?
			✓ Yes	🗆 No	🗖 NA (Please	explain.)		Comments
	[
		b.	All appl	icable ho	olding times met	?		
			✓ Yes	🗆 No	□ NA (Please	explain.)		Comments
	[
		c.	All soils	s reported	d on a dry weigh	t basis?		
					☑ NA (Please			Comments
	[On			were submitted	1 /	nple group.	
	-	d.	Are the project?	-	PQLs less than	the Cleanup	Level or the 1	minimum required detection level for the
			✓ Yes	🗆 No	🗖 NA (Please	explain.)		Comments
					etect sample rest nup Level (ADE		npared to 18.	AAC 75 ADEC Table C. Groundwater
		e.	Data qu	ality or u	sability affected	!?		
			1	5	2			Comments:
			ita quality in ADEC		bility was not a	ffected. All r	esults are bel	ow the ADEC or significantly greater
6.	Q	C Sa	amples					
			Method					
					blank reported p		halysis and 20	•
	Г		▼ Y	es 🗆 I	No 🗆 NA (Ple	ase explain.)		Comments
			ii. All 1		lank results less			
	-		✓ Y		No 🗆 NA (Ple			Comments
		Al	l method	blank re	sults were non-d	letect for the	methods SW	8270SIM and SW8260.

Version 2.7

iii. If above PQL, what samples are affected? Comments:
NA
iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?
\square Yes \square No \blacksquare NA (Please explain.) Comments
NA
v. Data quality or usability affected? (please explain) Comments:
The data quality and usability were not affected.
 b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
\checkmark Yes \square No \square NA (Please explain.)Comments
A LCS and MS/MSD (sample 16NEC-S29-WS-003) were performed for method SW8270SIM and SW8260 (BTEX).
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
\Box Yes \Box No \bigtriangledown NA (Please explain.) Comments
NA
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
\checkmark Yes \square No \square NA (Please explain.)Comments
All LCS and LCSD and MS/MSD recoveries were within required QC limits.
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
✓ Yes □ No □ NA (Please explain.) Comments All LCS/LCSD and MS/MSD are within QC criteria. Comments
v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments:
No samples were affected.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
□ Yes □ No ▼ NA (Please explain.) Comments
No samples required qualification.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality and usability were not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

 \square Yes \blacksquare No \square NA (Please explain.)

Comments

Comments

PCB – surrogate decachlorobiphenyl for sample 16NEC-14MW04-WG was lower than QC criteria at 22%.

SW8260 – Surrogate Toluene-d8 recovery for samples 16NEC-S29-WS-001, 16NEC-S29-WS-0019, 16NEC-S29-WS-003 and 16NEC-S29-WS-004 was greater than QC criteria.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

SW8260 – All VOC results for the associated samples were non-detect therefore no qualifier is required for high surrogate recovery.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

VOC – The effect is minimal since the bias was high and results were less than ADEC criteria.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

✓ Yes □ No □ NA (Please explain.)

Comments

Comments

Comments

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Ves 🗆 No 🗖 NA (Please explain.)

Trip blank sample ID 16NEC-TB04

iii. All results less than PQL?

 \blacksquare Yes \square No \square NA (Please explain.)

iv. If above PQL, what samples are affected?

Comments:

NA

v. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability were not affected.

e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples?

1.	Vile ne	1	1	, analysis and to project samples?
	₩ Tes		□ NA (Please explain.)	Comments
	G 1	111.1	(1.1.0	
11.	. Submitt			
	Ves Yes		\square NA (Please explain.)	Comments
	ary 16NE0 icate 16NI			
I				
111			1	es (RPD) less than specified DQOs?
	(Recom		30% water, 50% soil) D (%) = Absolute value	of: $(R_1 - R_2)$
				x 100
				$((R_1+R_2)/2)$
			Where $R_1 = S_2$	ample Concentration
				ield Duplicate Concentration
				-
	Ves Yes	🗆 No	□ NA (Please explain.)	Comments
The F	RPDs were	e all less	than 30%.	
iv	. Data qu	ality or u	sability affected? (Use t	he comment box to explain why or why not.)
				Comments:
Data	quality an	d usabili	ty were not affected.	
f. D	econtami	nation or	Equipment Blank (If not	t used explain why).
	□ Yes	🗆 No	▼ NA (Please explain.)	Comments
Not s	ubmitted	with this	SDG	
i.	All resu	ilts less tl	an PQL?	
1.	The Yes		✓ NA (Please explain.)	Comments
NA	105		MINA (I lease explain.)	Comments
ii.	. If above	e PQL, w	hat samples are affected	? Comments:
NA				Comments.
iii	i. Data qu	ality or u	sability affected? (Pleas	1 /
Data	auality an	d usahili	ty were not affected.	Comments:
	1 2		•	
	ata Flags/ efined and		rs (ACOE, AFCEE, La jate?	<u>ab-Specific, etc.)</u>
a. D	Vermeu and		□ NA (Please explain.)	Commenta
Oual			· · · · ·	Comments
Quall	mers are (ienneu II	the DQA	

7.

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino						
Title:	Project Chemist		Date:	12/17/2016			
CS Report Name:	Northeast Cape Groundwater	r Report	Report Date:	March 2017			
Consultant Firm:	Jacobs Engineering Group Inc.						
Laboratory Name:	ALS, Kelso, WA. Laborate		Report Number:	K1609649			
ADEC File Number:	475.38.013 ADEC Ro		Key Number:	Haz ID: 25681			
Ves 🗆 N	CCS-approved laboratory receive and <u>perform</u> all of the submitted sample analyses? No						
laboratory, wa	as the laboratory performing the analyses ADEC CS approved? No ☑ NA (Please explain.) Comments						
No samples were2. Chain of Custody (
	tion completed, signed, and dated (including released/received by)?						
b. Correct Analy ✓ Yes □ N	vses requested? To DA (Please explain.)		Comments				
-	$nk - 3.6^{\circ}C$		ge at receipt (4° ± 2° C)? Comments				
b. Sample preser Volatile Chlor	ervation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, prinated Solvents, etc.)?						
	No NA (Please explain.) Comments e received properly preserved.						

	c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?						
		Ves Yes	🗆 No	□ NA (Please explain.)		Comments		
	All	Il samples were received in good condition.						
	d.		s/preser	1 / 1		or example, incorrect sample ceptable range, insufficient or missing		
		Ves Yes	🗆 No	□ NA (Please explain.)		Comments		
	Th	e lab recei	ved 4 x	8 oz jars instead of the a	mount of 6 listed	l on the chain of custody.		
_		1	-	sability affected? (Please	- <i>'</i>	Comments:		
	Da	ta quality a	and usa	bility was not affected.				
4.			and und	erstandable? □ NA (Please explain.)		Comments		
				(1111 F 1)				
	b.	Discrepa ☑ Yes	,	errors, or QC failures ide NA (Please explain.)	5	? Comments		
	DRO/RRO – The original analysis reported had a low LCS/LCSD. The reanalysis was performed past the analytical hold time. The original analysis was reported as the primary result with a low bias. See 6.b. for more details.							
		PCB – The ICV for Aroclor 1221 did not meet the primary evaluation criteria. The ICV was reported from the acceptable column. Data was not affected.						
	A	All other discrepancies and anomalies are discussed in the relevant sections below.						
	c.	Were all	correct	ive actions documented?)			
		Ves Yes	🗆 No	□ NA (Please explain.))	Comments		
	Tł	he lab indi	cated in	the case narrative that the	he DRO samples	needed re-analysis.		
	d. What is the effect on data quality/usability according to the case narrative? Comments:							
	A	ll data is u	sable, s	ee the relevant sections f	for effects on data	a quality.		
<u>Sa</u>		oles Result Correct a		s performed/reported as 1	requested on CO	C?		
		🗆 Yes	🗹 No	□ NA (Please explain.)		Comments		
		The laboratory did not analyze samples by the requested method of SW8270SIM, the lab analyzed samples by method SW8270D.						

5.

b. All applicable holding times met?

 \Box Yes \blacksquare No \Box NA (Please explain.)

Comments

DRO/RRO – The samples were re-extracted due to low LCS out of hold. However, the samples from original analysis were reported.

PAH – Several samples (16NEC-S29-SD-003, 16NEC-S29-SD-0039, 16NEC-S29-SD-004, 16NEC-S29-SD-005, 16NEC-S29-SD-006, 16NEC-S29-SD-007, 16NEC-S29-SD-008, 16NEC-S29-SD-009) were extracted past the holding time by 1 day. Sample results are flagged QL indicating a low bias.

c. All soils reported on a dry weight basis?

Ves 🗆 No 🗖 NA (Please explain.)

Comments

Comments

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

□ Yes I No □ NA (Please explain.)

The LODs for nondetect sample results were compared to 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration to Groundwater (ADEC 2016) for soil and site specific criteria for sediment.

PAH – The LODs for analytes 1-methylnaphthalene and naphthalene were greater than ADEC criteria in sample 16NEC-S08-SS-067. The laboratory did not analyze samples by the requested method of SW8270SIM which contributed to these elevated reporting limits.

e. Data quality or usability affected?

Comments:

Data quality and usability is minimally affected due to the reporting limit since the MDL was lower than the ADEC criteria.

The PAH results may be biased low. Majority of results are nondetect with reporting limits significantly less than the site specific criteria; therefore, data quality is minimally affected.

6. **QC Samples**

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Ves Yes	🗆 No	□ NA (Please explain.)	Comments

ii. All method blank results less than PQL?

 \Box Yes \blacksquare No \Box NA (Please explain.)

Comments

DRO/RRO – The method blank had detections for DRO and RRO.

iii. If above PQL, what samples are affected?

Comments:

Samples within 10 times the method blank detection were qualified.

No samples affected.

•	D (1	CC / 1	1 ()	1 1 /	CI 1.	C (1	1 1	1 1	1 0 10
1V	100 fh	e attected	sample(s)	have data	tlags and i	t so are f	he data flag	os cleariv	defined /
1	Dom	e uneccea	Sumple(S)	mave aata	ind b und i	1 50, ui e u	ne aata ma	50 ereurry	aermea.

IV. Do the affected sample(s) have data flags and i \square Yes \square No \blacksquare NA (Please explain.)	Comments
No samples affected.	Comments
▲	
v. Data quality or usability affected? (please expla	Comments:
Data quality and usability were not affected.	
 b. Laboratory Control Sample/Duplicate (LCS/LCSD i. Organics – One LCS/LCSD reported per matrix required per AK methods, LCS required per SV 	x, analysis and 20 samples? (LCS/LCSD
Ves 🗆 No 🗖 NA (Please explain.)	Comments
ii. Metals/Inorganics – one LCS and one sample of samples?	
✓ Yes □ No □ NA (Please explain.)	Comments
A LCS and MS/MSD were performed for the metals a	nalysis.
 iii. Accuracy – All percent recoveries (%R) report project specified DQOs, if applicable. (AK Pet 75%-125%, AK103 60%-120%; all other analy 	troleum methods: AK101 60%-120%, AK102
🗆 Yes 🛛 No 🗖 NA (Please explain.)	Comments
LCS anomalies: DRO – The LCSD was less than QC criteria at 55%. MS/MSD anomalies: Metals – The 16NEC-S29-SD-001 MS and MSD reco than QC criteria. DRO – The MS and MSD were greater than QC criter was less than QC criteria for sample 16NEC-S29-SD-	ia for sample 16NEC-S08-SD-065 and the MSD
and or sample/sample duplicate. (AK Petroleur laboratory QC pages)	ble. RPD reported from LCS/LCSD, MS/MSD,
Ves 🗆 No 🗖 NA (Please explain.)	Comments
LCS/LCSD anomaly: DRO – The LCS/LCSD RPD was 35%	
MS/MSD anomaly RRO – The 16NEC-S29-SD-0039 MS/MSD RPD was	s 57%

parent
arent
arent
arent
arent
n.
ote:
ly il data
?

see the laboratory report pages)

 \square Yes \blacksquare No \square NA (Please explain.)

Comments

RRO - n-triacontane was greater than criteria in sample 16NEC-S29-SD-010.

PAH - Surrogates were lower than QC criteria in the following samples: 16NEC-S08-SS-0649 and 16NEC-S29-SD-004

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

	clearly defined?		
		□ NA (Please explain.)	Comments
RRO –	The sample was	qualified QH indicating a high b	ias
PAH –	Samples were qu	alified QL for the potential low b	pias.
iv.	Data quality or u	sability affected? (Use the comm	nent box to explain.) Comments:
	Data quality was and a high bias.	minimally affected since the res	ult was significantly greater than site specific
	All results were ted criteria.	nondetect with a low bias; howev	ver, the reporting limits were less than
<u>Wat</u> i.	ter and Soil One trip blank re		olatile Chlorinated Solvents, etc.): for each cooler containing volatile samples?
		NA (Please explain.)	Comments
No vola	atile samples we	re submitted with this SDG.	
		d to transport the trip blank and V nt explaining why must be entered	/OA samples clearly indicated on the COC? ed below)
	□ Yes □ No	■ NA (Please explain.)	Comments
iii.	All results less th	nan PQL?	
	TYes No	NA (Please explain.)	Comments
iv.	If above PQL, w	hat samples are affected?	Comments:
V	Data quality or u	sability affected? (Please explain	n.) Comments:
Data qu	ality and usabili	ty were not affected.	
e Fiel	ld Duplicate		
	-	ate submitted per matrix, analysis	s and 10 project samples?
	✓ Yes □ No	NA (Please explain.)	Comments

ii. Submitted blind to lab?	
🔽 Yes 🛛 No 🗖 NA (Please explain.)	Comments
Primary 16NEC-S29-SD-003	
Duplicate 16NEC-S29-SD-0039	
Primary 16NEC-S08-SS-064 Duplicate 16NEC-S08-SS-0649	
iii. Precision – All relative percent differences (R	(PD) less than specified DQOs?
(Recommended: 30% water, 50% soil) RPD (%) = Absolute value of:	$(R_1 - R_2)$
	x 100
	$((R_1+R_2)/2)$
Where $R_1 = $ Sample	
1	Duplicate Concentration
🗆 Yes 🛛 No 🗖 NA (Please explain.)	Comments
The following RPD was greater than 50% and qualify	ied QN 16NEC-S29-SD-003/16NEC-S29-SD-
PAH – 2-Methylnaphthalene	
iv. Data quality or usability affected? (Use the co	omment box to explain why or why not.) Comments:
Data quality is minimally affected since all qualified	results are less than site specific criteria.
f. Decontamination or Equipment Blank (If not used	d explain why).
□ Yes □ No ☑ NA (Please explain.)	Comments
No blanks were collected with this SDG	
 All results less than PQL? □ Yes □ No ▼ NA (Please explain.) 	Comments
NA	Comments
ii. If above PQL, what samples are affected?	Commente
NA	Comments:
iii. Data quality or usability affected? (Please exp	
Data quality and usability wars not offsated	Comments:
Data quality and usability were not affected.	
ther Data Flags/Qualifiers (ACOE, AFCEE, Lab-Sp	<u>pecific, etc.)</u>
a. Defined and appropriate?	Commente
$\boxed{\mathbf{\nabla} \operatorname{Yes} \Box \operatorname{No} \Box \operatorname{NA} (\operatorname{Please explain.})}$	Comments
Qualifiers are defined in the DQA	

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino			
Title:	Project Chemist		Date:	12/17/2016
CS Report Name:	Northeast Cape Groundwater Report Rep		Report Date:	March 2017
Consultant Firm:	Jacobs Engineering Group Ir	10.		
Laboratory Name:	ALS, Kelso, WA.	Laboratory Report Number:		K1609653
ADEC File Number:	475.38.013	ADEC Recl	Key Number:	Haz ID: 25681
Ves 🗆 N	C CS-approved laboratory rece	ive and <u>perfor</u>	rm all of the submit Comments	tted sample analyses?
b. If the <u>samples</u> laboratory, w	ipped to ALS in Kelso, WA. s were transferred to another "fast the laboratory performing the No ☑ NA (Please explain.)		•	
No samples were	e transferred.			
2. <u>Chain of Custody</u> a. CoC information	(<u>CoC)</u> tion completed, signed, and da	ted (including	g released/received	by)?
Ves IN	No 🗖 NA (Please explain.)		Comments	
b. Correct Analy	vses requested?			
-	No 🗖 NA (Please explain.)		Comments	
a. Sample/coole	e Receipt Documentation r temperature documented and	l within range		C)?
Ves N Cooler Baby Rut Temperature blan Cooler Temperat	nk – 3.1°C		Comments	
	rvation acceptable – acidified prinated Solvents, etc.)?	waters, Metha	anol preserved VOC	C soil (GRO, BTEX,
	No 🗖 NA (Please explain.)		Comments	
All samples were	e received properly preserved.			

	c.	e. Sample condition documented – broken, leaking (M	lethanol), zero headspace (VOC vials)?
		Ves 🗆 No 🗖 NA (Please explain.)	Comments
	Al	All samples were received in good condition.	
	d.	I. If there were any discrepancies, were they documen containers/preservation, sample temperature outside samples, etc.?	1 / 1
_		Ves 🗆 No 🗖 NA (Please explain.)	Comments
	Th	There were no discrepancies noted	
	e.	e. Data quality or usability affected? (Please explain.)	Comments:
Γ	Da	Data quality and usability was not affected.	
4.		Case Narrative a. Present and understandable? ✓ Yes □ No □ NA (Please explain.)	Comments
	b.	b. Discrepancies, errors, or QC failures identified by	the lab?
	0.	\square Yes \square No \square NA (Please explain.)	Comments
	pe	DRO/RRO – The original analysis reported had low superformed past the analytical hold time. The original a low bias. See 6.c. for more details.	
		PAH - The original analysis reported had low surrogat performed.	e recoveries, a re-extraction and reanalysis was
	А	All other discrepancies and anomalies are discussed in	the relevant sections below.
	c.	c. Were all corrective actions documented?	
		Ves 🗆 No 🗖 NA (Please explain.)	Comments
	T	The lab indicated in the case narrative that samples ne	eded re-analysis for DRO and PAH.
	d.	d. What is the effect on data quality/usability according	ng to the case narrative? Comments:
	А	All data is usable, see the relevant sections for effects	on data quality.
<u>S</u> a	m	nples Results	
		a. Correct analyses performed/reported as requested of	on COC?
		Tyes Ves No NA (Please explain.)	Comments
		The laboratory did not analyze samples by the requests samples by method SW8270D.	ed method of SW8270SIM, the lab analyzed
	b.	b. All applicable holding times met?	
		\Box Yes $\overline{\square}$ No \Box NA (Please explain.)	Comments
		DRO/RRO – The samples were re-extracted out of hol from original analysis were reported for the low surrog	e 1

5.

C.	All soils report	ed on a dr	y weight basis?	
			J G	

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

 \Box Yes \blacksquare No \Box NA (Please explain.)

Comments

The LODs for nondetect sample results were compared to 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration to Groundwater (ADEC 2016) for soil and site specific criteria for sediment.

PAH – The soil LODs for analytes 1-methylnaphthalene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and naphthalene were greater than ADEC criteria in one or more samples. The laboratory did not analyze samples by the requested method of SW8270SIM which contributed to these elevated reporting limits.

The sediment LODs for analytes acenaphthene, fluorene, and 2-methylnaphthalene were greater than site specific criteria in sample 16NEC-S08-SD-062 due to dilution.

e. Data quality or usability affected?

Comments:

Data quality and usability is affected due to the reporting limit; however, all LODs were less than site specific criteria with the exception of sample 16NEC-S08-SD-062. Majority of samples needed dilution due to the presence of elevated levels of non-target analytes and extracts that were viscous.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - ✓ Yes □ No □ NA (Please explain.)

Comments

ii. All method blank results less than PQL?

Tyes INN NA (Please explain.)

Comments

DRO/RRO – The method blank had detections for DRO and RRO.

iii. If above PQL, what samples are affected?

Comments:

Samples within 10 times the method blank detection were qualified.

No samples affected.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

Tyes No NA (Please explain.)

Comments

No samples affected.

v. Data quality or usability affected? (please explain)

Comments:

Data quality and usability were not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Ves INO INA (Please explain.)	
-------------------------------	--

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \Box Yes \Box No \blacksquare NA (Please explain.)

Comments

Comments

No metals were submitted with this SDG.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 \Box Yes \blacksquare No \Box NA (Please explain.)

Comments

LCS anomalies:

PAH – The LCSD was less than QC criteria for fluoranthene and phenanthrene in QC batch KWG1607693.

MS/MSD anomalies:

DRO – The 16NEC-S08-SS-002 MS was less than QC criteria. The 16NEC-S08-SS-059 (re-extracted) MS was greater than QC criteria. This result is not used for reporting purposes. PAH – The 16NEC-S08-SS-002 and 16NEC-S08-SS-064 MS and MSD for majority analytes were lower than QC criteria.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

 \blacksquare Yes \square No \square NA (Please explain.) Comments

LCS/LCSD anomaly:

PAH – The LCS/LCSD RPD for all analytes in QC batch KWG1607693 was greater than QC criteria.

MS/MSD anomaly

PAH – The 16NEC-S08-SS-002 MS/MSD RPD for all analytes in QC batch KWG1607692 and and the 16NEC-S08-SS-64 MS/MSD RPD for all analytes in QC batch KWG1607693 were greater than QC criteria.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

LCS/LCSD anomaly:

PAH – All samples associated with this batch were affected by the low LCSD and the LCS/LCSD RPD.

MS/MSD anomaly: DRO -The parent sample 16NEC-S08-SS-002 was affected. PAH – parent samples 16NEC-S08-SS-002 and 16NEC-S08-SS-064 were affected. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

		1 () U	· · · · · · · · · · · · · · · · · · ·	U	5
T Yes	🗆 No	NA (Please explain.)		Comments	
LCS/LCSD and	maly:				
PAH – All sam	ples were	e qualified QL for fluorar	thene and pl	henanthrene	
1	ent samp	le was qualified QL les were qualified QL			
LCS/LCSD and	MS/MS	D RPD:			

Associated samples were qualified QN

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

LCS/LCSD anomaly:

PAH – All associated samples were nondetect for fluoranthene and phenanthrene and the reporting limits were orders of magnitude less than ADEC and site specific criteria. Data is minimally affected.

MS/MSD anomaly:

DRO - Data quality was minimally affected. The parent sample qualified due to the biased low MS was significantly less than ADEC criteria.

PAH - The parent samples were qualified QL and have nondetect results. The reporting limits are less than ADEC criteria for parent sample 16NEC-S08-SS-064 so the affect is minimal. 1- methylnaphthalene and naphthalene have LODs greater than ADEC criteria for sample 16NEC-S08-SS-002.

c. Surrogates - Organics Only

- i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 - 🔽 Yes 🔲 No 🔲 NA (Please explain.)

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

 Comments

Comments

RRO - n-triacontane was less than criteria in sample 16NEC-S08-SS-051. DRO - o-Terphenyl was less than criteria in sample 16NEC-S08-SS-051, 16NEC-S08-SS-059, and 16NEC-S08-SS-060.

PAH – Surrogates were lower than QC criteria in the following samples: 16NEC-S08-SD-0539, 16NEC-S08-SD-061, 16NEC-S08-SD-063, 16NEC-S08-SS-001, 16NEC-S08-SS-002, 16NEC-S08-SS-003, 16NEC-S08-SS-055, and 16NEC-S08-SS-064

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

 Yes
 No
 NA (Please explain.)
 Comments

 RRO, DRO, and PAH – The samples were qualified QL indicating a low bias.

Version 2.7

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

RRO and DRO - Data quality was minimally affected since the results were significantly less than site specific criteria.				
PAH – All results were nondetect with a low bias; however, associated criteria with the exception of 1-methylnaphthaler				
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u> i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 				
Tyes INO INA (Please explain.)	Comments			
No volatile samples were submitted with this SDG.				
ii. Is the cooler used to transport the trip blank and VOA (If not, a comment explaining why must be entered b	1 2			
Tyes INO INA (Please explain.)	Comments			
iii. All results less than PQL?				
Tyes Ves No No (Please explain.)	Comments			
iv. If above PQL, what samples are affected?	Comments:			
v. Data quality or usability affected? (Please explain.)	Comments:			
Data quality and usability were not affected.				
 e. Field Duplicate i. One field duplicate submitted per matrix, analysis an ✓ Yes □ No □ NA (Please explain.) 	d 10 project samples? Comments			
\mathbf{E} 105 \mathbf{E} 100 \mathbf{E} 107 (1 1000 \mathbf{C} \mathbf{C})	Comments			

ii. Submitted blind to lab?	
Ves No NA (Please explain.)	Comments
Primary 16NEC-S08-SD-050	
Duplicate 16NEC-S08-SD-0509	
Primary 16NEC-S08-SD-053	
Duplicate 16NEC-S08-SD-0539	
Primary 16NEC-S08-SS-058	
Duplicate 16NEC-S08-SS-0589	
Primary 16NEC-S08-SS-064	
Duplicate 16NEC-S08-SS-0649	
iii. Precision – All relative percent differences (RPD) less than specified DQOs?
(Recommended: 30% water, 50% soil)	
RPD (%) = Absolute value of:	(R_1-R_2)
	x 100
	$((R_1+R_2)/2)$
Where $R_1 = \text{Samp}$	ble Concentration
$R_2 = Field$	Duplicate Concentration
Yes □ No □ NA (Please explain.)	Comments
Sample result detections were evaluated. All sample	e results were within the RPD of 50%.
iv. Data quality or usability affected? (Use the c	
	Comments:
Data quality and usability was not affected.	
f. Decontamination or Equipment Blank (If not us	ed explain why).
🗆 Yes 🛛 No 🔽 NA (Please explain.)	Comments
No blanks were submitted with this SDG	
i. All results less than PQL?	
\square Yes \square No \square NA (Please explain.)	Comments
NA	Comments
ii. If above PQL, what samples are affected?	
NT A	Comments:
NA	
iii. Data quality or usability affected? (Please ex	-
Data quality and usability were not affected.	xplain.) Comments:

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)</u>

a. Defined and appropriate?

✓ Yes □ No □ NA (Please explain.)

Comments

Qualifiers are defined in the DQA

Laboratory Data Review Checklist

Completed by: Angela DiBerardino					
Title:	Project Chemist		Date:	12/17/2016	
CS Report Name:	Northeast Cape Groundwater Report		Report Date:	March 2017	
Consultant Firm:	Jacobs Engineering Group Ir	nc.			
Laboratory Name:	ALS, Kelso, WA.	Laboratory Report Number:		K1609742	
ADEC File Number:	475.38.013	ADEC Rec	Key Number:	Haz ID: 25681	
Ves 🗆 N	CCS-approved laboratory rece	eive and <u>perfo</u>	<u>rm</u> all of the submit Comments	tted sample analyses?	
b. If the <u>samples</u> laboratory, wa	pped to ALS in Kelso, WA. were transferred to another "fas the laboratory performing the laboratory performing the NA (Please explain.)		2		
No samples were	transferred.				
2. <u>Chain of Custody (</u>		4 1 (* 1 1*	1 1/ - 1	1 \0	
a. Coc information \mathbf{V} Yes $\mathbf{\Box}$ N	ion completed, signed, and da \Box NA (Please explain.)	ited (including	Comments	by)?	
			Comments		
b. Correct Analy	vses requested?				
-	Io 🔲 NA (Please explain.)		Comments		
a. Sample/coole	e Receipt Documentation r temperature documented and	d within range		C)?	
	Io 🗖 NA (Please explain.)		Comments		
Cooler 5 th Avenu Temperature blar Cooler Temperatu	nk – 2.5°C				
1 1	rvation acceptable – acidified rinated Solvents, etc.)?	waters, Metha	anol preserved VO	C soil (GRO, BTEX,	
	lo 🗖 NA (Please explain.)		Comments		
All samples were	received properly preserved.				

c.	-	Sample co	ondition	documented – broken, leak	ing (Methanol), zero headspace (VOC vials)?
	J	✓ Yes	🗆 No	NA (Please explain.)	Comments
A	11	samples w	vere rece	eived in good condition.	
d	(containers samples, e	s/preserv etc.?	vation, sample temperature of	cumented? For example, incorrect sample outside of acceptable range, insufficient or missing
		✓ Yes	🗆 No	□ NA (Please explain.)	Comments
Т	he	ere were no	o discrej	pancies noted.	
e.	.]	Data quali	ity or us	ability affected? (Please exp	plain.) Comments:
D	Data	a quality a	and usab	ility was not affected.	
			nd unde	rstandable? □ NA (Please explain.)	Comments
Γ					
ł	b.	-		rors, or QC failures identifi	ed by the lab?
_				□ NA (Please explain.)	Comments
1	All	l discrepai	ncies and	d anomalies are discussed in	n the relevant sections below.
(c.	Were all	correctiv	ve actions documented?	
		Ves Yes	🗆 No	□ NA (Please explain.)	Comments
]	No	correctiv	e action	s were documented.	
(d.	What is t	he effec	t on data quality/usability ad	ccording to the case narrative? Comments:
1	All	l data is us	sable, se	e the relevant sections for e	ffects on data quality.
Sam	ıpl	les Result	S		
				performed/reported as reque	ested on COC?
		□ Yes	🗹 No	□ NA (Please explain.)	Comments
			-	ot analyze samples by the re SW8270D.	equested method of SW8270SIM, the lab analyzed
ł	b.	All appli	cable ho	lding times met?	
		✓ Yes		□ NA (Please explain.)	Comments
Γ				× ± /	
	c.	All soils	reported	on a dry weight basis?	
		Ves Yes	🗆 No	NA (Please explain.)	Comments
(d.	Are the reproject?	eported	PQLs less than the Cleanup	Level or the minimum required detection level for the

Tyes No NA (Please explain.)

Comments

5.

The LODs for nondetect sample results were compared to 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration to Groundwater (ADEC 2016) for soil and site specific criteria for sediment.

PAH – The soil LODs for analytes 1-methylnaphthalene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthracene, and naphthalene were greater than ADEC criteria in one or more samples. The laboratory did not analyze samples by the requested method of SW8270SIM which contributed to these elevated reporting limits.

e. Data quality or usability affected?

Comments:

Data quality and usability is affected due to the reporting limit. Majority of samples needed dilution due to the presence of elevated levels of non-target analytes and extracts that were viscous. Clean-up of the extract was performed within the scope of the method.

6. **QC Samples**

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

🗹 Yes 🗖 No	🗖 NA (Please explain.)
------------	------------------------

- ii. All method blank results less than PQL?

DRO/RRO – The method blank had detections for DRO and RRO.

iii. If above PQL, what samples are affected?

Comments:

Comments

Comments

Samples within 5 times the method blank detection were qualified.

No samples affected.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

🗆 Yes	🗆 No	NA (Please explain.)
-------	------	----------------------

No samples affected.

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality and usability were not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

T Yes	🗆 No	NA (Please explain.)	Comments
a maatala www.	a an la maitt	ad with this SDC	

No metals were submitted with this SDG.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

□ Yes ☑ No □ NA (Please explain.)

Comments

LCS/LCSD anomaly: DRO/RRO – The LCS/LCSD (QC Batch KWG1607743) RPD was greater than 20%.

MS/MSD anomaly: All MS/MSD RPDs were within criteria.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

LCS/LCSD anomaly:

DRO/RRO –Samples 16NEC-S08-SD-036, 16NEC-S08-SD-0369, 16NEC-S08-SD-040, and 16NEC-S08-SD-041 were affected by the LCS/LCSD RPD.

MS/MSD anomaly:

DRO/RRO -The parent samples were not affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

LCS/LCSD RPD:

DRO/RRO -samples were qualified QN

MS/MSD anomaly:

DRO/RRO - The parent sample was not qualified either because the dilution factor was greater than 5 or the spike amount was less than the parent sample concentration.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

LCS/LCSD RPD:

DRO/RRO – Data is affected minimally since the LCS and LCSD were within the required QC parameters.

MS/MSD anomaly: DRO/RRO – Data quality and usability was not affected.

0	Surrogates -	Organica	Only
U.	Surrogates –	Organics	Omy

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?

I. <i>F</i>	Are surrogate rec	coveries reported for organic analysis	es – field, QC and laboratory samples?
l.	🗹 Yes 🛛 No	🗖 NA (Please explain.)	Comments
I s	project specified see the laboratory	DQOs, if applicable. (AK Petroleur	d within method or laboratory limits? And m methods 50-150 %R; all other analyses Comments
			ring samples: 16NEC-S08-SD-014 and
	-S08-SS-028	lower than QC criteria in the follow	ang samples. Towee-S08-SD-014 and
	Do the sample re clearly defined?	sults with failed surrogate recoverie	es have data flags? If so, are the data flags
Į.	🗹 Yes 🛛 No	🗖 NA (Please explain.)	Comments
PAH –	The samples wer	e qualified QL indicating a low bias	S.
iv. I	Data quality or u	sability affected? (Use the commen	t box to explain.) Comments:
consider	-	The results are nondetect and the re-	8-SD-014, results were not rejected but are porting limits are orders of magnitude less
<u>Wate</u> i. (er and Soil	1 1 7 2	tile Chlorinated Solvents, etc.): each cooler containing volatile samples?
Γ	Yes 🗆 No	✓ NA (Please explain.)	Comments
No vola	tile samples wer	e submitted with this SDG.	
(If not, a commen	nt explaining why must be entered b	A samples clearly indicated on the COC? pelow)
ſ	Yes No	NA (Please explain.)	Comments
iii. A	All results less th	-	
Γ	Yes 🔽 No	✓ NA (Please explain.)	Comments
iv. I	f above PQL, w	hat samples are affected?	Comments:
v. I	Data quality or u	sability affected? (Please explain.)	Comments:
Data qu	ality and usabilit	ty were not affected.	

e. Field Duplicatei. One field duplicate submitted per matrix, analysis and 10 project samples?

	\Box No. \Box NA (Dlagge or	ý 5	1 5 1
Ves	□ No □ NA (Please exp	pan.)	Comments
ii. Submittee	d blind to lab?		
Ves	🗆 No 🛛 NA (Please exp	plain.)	Comments
Primary 16NEC-	S08-SS-018	- ·	
Duplicate 16NE0			
Primary 16NEC- Duplicate 16NEC			
Duplicate ToNEC	-208-2D-0309		
	1		ess than specified DQOs?
(Recomm	ended: 30% water, 50% s	· ·	
	RPD (%) = Absolute γ	value of: (R	$(1-R_2)$ x 100
		$((R_1 - C_1)^2)$	$+R_{2})/2)$
	Where R	$R_1 = $ Sample Con	centration
	R	$R_2 = Field Duplic$	cate Concentration
Ves Yes	□ No □ NA (Please exp	plain.)	Comments
All sample result	s were within the RPD of	f 50%.	
iv Data qual	ity or usability affected? ((Use the comme	nt box to explain why or why not.)
IV. Duiu quui	ity of abaofility affected.		Comments:
Data quality and	usability was not affected	1.	
	tion or Equipment Blank	· -	• /
	□ No ☑ NA (Please exp	plain.)	Comments
No blanks were s	submitted with this SDG		
i. All result	s less than PQL?		
	🗖 No 🔽 NA (Please exp	nlain)	Comments
NA		P)	
ii. If above I	PQL, what samples are aff	fected?	
r	_		Comments:
NA			
iii. Data qual	ity or usability affected? ((Please explain.)	
1		/	Comments:
Data quality and	usability were not affecte	ed.	

7. <u>Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)</u>

a. Defined and appropriate?

✓ Yes □ No □ NA (Please explain.)

Comments

Qualifiers are defined in the DQA

Laboratory Data Review Checklist

Comp	oleted by:	Angela DiB	Berardino			
Title:		Project Che	emist		Date:	12/21/2016
CS R	eport Name:	Northeast C	Cape Groundwate	er Report	Report Date:	March 2017
Const	ultant Firm:	Jacobs Eng	ineering Group In	nc.		
Labo	ratory Name:	ALS, Kelso	o, WA.	Laboratory	y Report Number:	K1609847
ADE	C File Number:	475.38.013		ADEC Rec	Key Number:	Haz ID: 25681
1. <u>L</u>	▼ Yes □	No 🗆 NA (I	Please explain.)	eive and <u>perfo</u>	o <u>rm</u> all of the submi Comments	tted sample analyses?
l	 Samples were shipped to ALS in Kelso, WA. b. If the <u>samples</u> were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? □ Yes □ No ▼ NA (Please explain.) Comments 					
[No samples were transferred.					
2. <u>C</u>	hain of Custody			· 1 · 1 · 1	1 1/ 1 1	1 \0
				ited (includin	g released/received	by)?
ſ	Ves 🗆		Please explain.)		Comments	
L	b. Correct Ana	lucas requeste	42			
		No 🗖 NA (I			Comments	
[comments	
3. <u>La</u>	 3. <u>Laboratory Sample Receipt Documentation</u> a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? 					
	🗆 Yes 🔽	No 🗆 NA (I	Please explain.)		Comments	
	Cooler Mr. Goodbar Temperature blank – 1.7°C Cooler Temperature – -0.9°C					
		servation acceptorinated Solve		waters, Meth	anol preserved VO	C soil (GRO, BTEX,
-	Ves 🗆	No 🗖 NA (I	Please explain.)		Comments	
	All samples were received properly preserved.					

	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?		
-	\blacksquare Yes \Box No \Box NA (Please explain.)Comments		
	All samples were received in good condition.		
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?		
_	\checkmark Yes \square No \square NA (Please explain.)Comments		
	The temperatures below the acceptable range were listed.		
	e. Data quality or usability affected? (Please explain.) Comments:		
	Data quality and usability were not affected since the samples were not frozen upon receipt at the laboratory.		
4.	a. Present and understandable?		
	$\blacksquare Yes \square No \square NA (Please explain.) Comments$		
	b. Discrepancies, errors, or QC failures identified by the lab?		
	\Box Yes \Box No \blacksquare NA (Please explain.) Comments		
	AK102 – Surrogate n-triacontane exceeded in the closing CCV. Samples were re-analyzed yielding similar result. The results potentially could be biased high.	a	
	All discrepancies and anomalies are discussed in the relevant sections below.		
	c. Were all corrective actions documented?		
	Yes No NA (Please explain.) Comments		
	AK102 - Samples were re-analyzed yielding a similar result as stated above.		
	d. What is the effect on data quality/usability according to the case narrative?		
	Comments: All data is usable, see the relevant sections for effects on data quality.		
5. <u>Sa</u>	a. Correct analyses performed/reported as requested on COC?		
	$\square \text{ Yes } \square \text{ No } \square \text{ NA (Please explain.)} \qquad \qquad \text{Comments}$		
	The laboratory did not analyze samples by the requested method of SW8270SIM, the lab analyzed		
	samples by method SW8270D.		
	b. All applicable holding times met?		
	\checkmark Yes \square No \square NA (Please explain.) Comments		
	c. All soils reported on a dry weight basis?		
	$\mathbf{\overline{V}} \text{ Yes } \mathbf{\overline{\Box}} \text{ No } \mathbf{\overline{\Box}} \text{ NA (Please explain.)} $ Comments		

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

Comments

The LODs for nondetect sample results were compared to 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration to Groundwater (ADEC 2016) for soil and site specific criteria for sediment.

PAH – The soil LODs for analytes 1-methylnaphthalene, benzo(a)pyrene, dibenzo(a,h)anthracene, and naphthalene were greater than ADEC criteria in one or more samples. The laboratory did not analyze samples by the requested method of SW8270SIM which contributed to these elevated reporting limits.

e. Data quality or usability affected?

Comments:

Data quality and usability is affected due to the reporting limit; however, all LODs were less than site specific criteria. Majority of samples needed dilution due to the presence of elevated levels of non-target analytes and extracts that were viscous. Clean-up of the extract was performed within the scope of the method.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

 \blacksquare Yes \square No \square NA (Please explain.)

- ii. All method blank results less than PQL?
 - Tyes Ves No NA (Please explain.)

DRO- The method blank had detections for DRO.

iii. If above PQL, what samples are affected?

Comments:

Comments

Comments

Samples within 10 times the method blank detection were qualified.

DRO - 16NEC-S08-SS-069

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

🗹 Yes 🗖 No	🗆 NA (Please explain.)
------------	------------------------

Sample was qualified B.

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality and usability were not affected since the bias was high and the result is less than ADEC criteria.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 \checkmark Yes \square No \square NA (Please explain.)Comments

ii.	Metals/Inorganics - one LCS and one sample duplicate reported per matrix, analysis and 20
	samples?

samples?	
TYes No NA (Please explain.)	Comments
No metals were submitted with this SDG.	
 iii. Accuracy – All percent recoveries (%R) report project specified DQOs, if applicable. (AK Per 75%-125%, AK103 60%-120%; all other anal 	etroleum methods: AK101 60%-120%, AK102
Tyes Ves No NA (Please explain.)	Comments
All LCS and LCSD were within QC criteria	
MS/MSD anomalies: DRO/RRO – The MS and MSD percent recoveries w	ere less than QC criteria.
 iv. Precision – All relative percent differences (R limits? And project specified DQOs, if applica and or sample/sample duplicate. (AK Petroleu laboratory QC pages) 	able. RPD reported from LCS/LCSD, MS/MSD,
🗹 Yes 🗌 No 🔲 NA (Please explain.)	Comments
All LCS/LCSD and MS/MSD RPDs were within crit	eria.
v. If %R or RPD is outside of acceptable limits,	what samples are affected? Comments:
MS/MSD anomaly: DRO/RRO -The parent sample was not affected since concentration.	e the spike amount was less than the parent sample
vi. Do the affected sample(s) have data flags? If s	so, are the data flags clearly defined?
Tyes No NA (Please explain.)	Comments
MS/MSD anomaly: DRO/RRO - The parent sample was not qualified eith or the spike amount was less than the parent sample of	6
vii. Data quality or usability affected? (Use comm	nent box to explain.) Comments:
MS/MSD anomaly: DRO/RRO – Data quality and usability was not affec	eted.
 c. Surrogates – Organics Only i. Are surrogate recoveries reported for organic 	analyses – field, QC and laboratory samples?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

 Comments

Surrogates were evaluated in samples with dilution factors less than five. PAH – Surrogates were lower than QC criteria in the following sample: 16NEC-S08-SD-038 Surrogates were higher than QC criteria in the following samples: 16NEC-S08-SS-013 and 16NEC-S08-SS-0139

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

✓ Yes □ No □ NA (Please explain.)

Comments

PAH – The samples were qualified QL indicating a low bias or QH indicating a high bias.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

Data quality is minimally affected. Results were either significantly greater than screening criteria or significantly less than criteria. The reporting limits were less than screening limits.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - Tyes No NA (Please explain.)

Comments

No volatile samples were submitted with this SDG.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

 \Box Yes \Box No $\overline{\checkmark}$ NA (Please explain.) Comments

iii. All results less than PQL?

 \Box Yes \blacksquare No \blacksquare NA (Please explain.)

iv. If above PQL, what samples are affected?

Comments:

Comments

v. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability were not affected.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

🔽 Yes 🛛 No 🗖 NA (Please explain.)

Comments

ii. Submitted blind to lab?			
Ves 🗆 No 🗖 NA (Please explain.)	Comments		
Primary 16NEC-S08-SS-013 Duplicate 16NEC-S08-SS-0139			
Primary 16NEC-S08-SD-037 Duplicate 16NEC-S08-SD-0379			
 iii. Precision – All relative percent differences (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: 	RPD) less than specified DQOs? (R ₁ -R ₂)		
	x 100		
	$((R_1+R_2)/2)$		
Where $R_1 = $ Sampl $R_2 = $ Field	e Concentration Duplicate Concentration		
🗆 Yes 🛛 Ro 🗖 NA (Please explain.)	Comments		
PAH – 16NEC-S08-SS-013/16NEC-S08-SS-0139. 7 50%: 1-methylnaphthalene, 2-methylnaphthalene, ac qualified QN.			
iv. Data quality or usability affected? (Use the co	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:		
Data quality and usability was minimally affected signature than or less than the ADEC criteria and site s	1 1 1		
f. Decontamination or Equipment Blank (If not use	d explain why).		
Tyes No R NA (Please explain.)	Comments		
No blanks were submitted with this SDG			
i. All results less than PQL?			
TYes No No (Please explain.)	Comments		
NA			
ii. If above PQL, what samples are affected?	Commente		
NA	Comments:		
iii. Data quality or usability affected? (Please ex-	nlain)		
III. Data quality of usability affected? (I lease ex	Comments:		
Data quality and usability were not affected.			
Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-S	pecific, etc.)		
a. Defined and appropriate? $\mathbf{\nabla}$ Voc. $\mathbf{\nabla}$ No. $\mathbf{\nabla}$ NA (Please explain)	Commonto		
\checkmark Yes \square No \square NA (Please explain.)Qualifiers are defined in the DQA	Comments		
Quantiers are defined in the DQA			

7.

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino			
Title:	Project Chemist		Date:	12/21/2016
CS Report Name:	Northeast Cape Groundwater Report		Report Date:	March 2017
Consultant Firm:	Jacobs Engineering Group Ir	10.		
Laboratory Name:	ALS, Kelso, WA.	Laboratory	Report Number:	K1609852
ADEC File Number:	475.38.013	ADEC Recl	Key Number:	Haz ID: 25681
Ves 🗆 N	CS-approved laboratory rece NA (Please explain.) pped to ALS in Kelso, WA.	ive and <u>perfor</u>	r <u>m</u> all of the submi Comments	tted sample analyses?
b. If the <u>samples</u> laboratory, wa	were transferred to another "ras the laboratory performing the laboratory performing the NA (Please explain.)		2	
No samples were	transferred.			
2. <u>Chain of Custody (</u>		. 1.(* 1. 1*	1 1/ 1	1 .) 0
a. CoC informat ▼ Yes □ N	tion completed, signed, and dated (including released/received by)?		by)?	
	lo 🗖 NA (Please explain.)		Comments	
b. Correct Analy	vses requested?			
-	To \square NA (Please explain.)		Comments	
 3. <u>Laboratory Sample Receipt Documentation</u> a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? 				C)?
	lo 🗖 NA (Please explain.)		Comments	
Cooler Mr. Goodbar Temperature blank – 1.7°C Cooler Temperature – -0.9°C				
1 1	rvation acceptable – acidified v rinated Solvents, etc.)?	waters, Metha	anol preserved VO	C soil (GRO, BTEX,
	lo 🗖 NA (Please explain.)		Comments	
All samples were received properly preserved.				

	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?				
		Ves Yes	🗆 No	□ NA (Please explain.)	Comments
	Al	l samples	were rec	eived in good condition.	
	d.	 d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? ✓ Yes □ No □ NA (Please explain.) Comments 			
	Th			ow the acceptable range w	Comments
		-		ability affected? (Please ex	
		ta quality oratory.	and usab	oility were not affected sine	ce the samples were not frozen upon receipt at the
4.			and unde	erstandable?	
		ĭr Yes		□ NA (Please explain.)	Comments
	b.	Discrepa	ancies, ei	rrors, or QC failures identi	fied by the lab?
				NA (Please explain.)	Comments
	AK102 – Surrogate o-terphenyl in the CCV was outside criteria of $\pm 20\%$ but within 60-120%.				
	All discrepancies and anomalies are discussed in the relevant sections below.				
		i		ve actions documented?	
	U.	□ Yes		\square NA (Please explain.)	Comments
	N			s were necessary	Comments
				-	
	d. What is the effect on data quality/usability according to the case narrative? Comments:				
	All data is usable, see the relevant sections for effects on data quality.				
a				te the relevant sections for	eneels on data quanty.
<u>Sa</u>		oles Resul Correct		performed/reported as req	uested on COC?
		□ Yes	2	\square NA (Please explain.)	Comments
		he laborat	ory did n	· · · · · ·	requested method of SW8270SIM, the lab analyzed
	b.	All appl	icable ho	olding times met?	
		✓ Yes		\square NA (Please explain.)	Comments
				()	
			renorted	l on a dry weight basis?	
	U.	✓ Yes		\square NA (Please explain.)	Comments
		E 105			Comments

5.

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

□ Yes I No □ NA (Please explain.)

Comments

The LODs for nondetect sample results were compared to 18 AAC 75 ADEC Table B1 and B2. Most Stringent of Under 40 Inch Zone Human Health And Migration to Groundwater (ADEC 2016) for soil and site specific criteria for sediment.

PAH – The soil LODs for analytes 1-methylnaphthalene, benzo(a)pyrene, dibenzo(a,h)anthracene, and naphthalene were greater than ADEC criteria in one or more samples. The laboratory did not analyze samples by the requested method of SW8270SIM which contributed to these elevated reporting limits.

e. Data quality or usability affected?

Comments:

Data quality and usability is affected due to the reporting limit; however, all LODs were less than site specific criteria. Majority of samples needed dilution due to the presence of elevated levels of non-target analytes and extracts that were viscous. Clean-up of the extract was performed within the scope of the method.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

 \blacksquare Yes \square No \square NA (Please explain.)

- ii. All method blank results less than PQL?
 - \Box Yes \blacksquare No \Box NA (Please explain.)

DRO/RRO - The method blank had detections for DRO and RRO.

iii. If above PQL, what samples are affected?

Comments:

Comments

Comments

Samples within 5 times the method blank detection were qualified.

No samples affected.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

 \square Yes \square No \blacksquare NA (Please explain.)

No samples affected.

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality and usability were not affected.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments

ii.	Metals/Inorganics - one LCS and one sample duplicate reported per matrix, analysis and 20
	samples?

San	ipies?		
	Yes 🗆 No	NA (Please explain.)	Comments
No metals	were submit	ted with this SDG.	
pro	ject specified	d DQOs, if applicable. (AK Petr	d and within method or laboratory limits? And oleum methods: AK101 60%-120%, AK102 ses see the laboratory QC pages)
	les 🔽 No	🗖 NA (Please explain.)	Comments
All LCS at	d LCSD we	re within QC criteria	
MS/MSD a DRO/RRC		and MSD percent recoveries wer	e less than QC criteria.
lim and	its? And pro	ject specified DQOs, if applicab ample duplicate. (AK Petroleum	D) reported and less than method or laboratory le. RPD reported from LCS/LCSD, MS/MSD, n methods 20%; all other analyses see the
	les 🗆 No	□ NA (Please explain.)	Comments
All LCS/L	CSD RPDs v	were within criteria.	
	RPD anomal and RRO RP	y: D was greater than 20%.	
v. If %	ar RPD is	s outside of acceptable limits, w	hat samples are affected? Comments:
MS/MSD . DRO/RRC concentrat	-The parent	sample was not affected since t	he spike amount was less than the parent sample
MS/MSD 16NEC-S0			
vi. Do	the affected	sample(s) have data flags? If so	, are the data flags clearly defined?
	Yes 🗆 No		Comments
MS/MSD a		· · · /	
	•	t sample 16NEC-S08-SD-070 w	vas qualified QN.
vii. Dat	a quality or	usability affected? (Use commen	nt box to explain.) Comments:
	– Data qual	ity and usability was minimally y less than or greater than the si	affected since the DRO and RRO concentration te specific criteria.
	ates – Organi surrogate re		alyses – field, QC and laboratory samples?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Comments

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Surrogates were evaluated in samples with dilution factors less than five.
PAH – Surrogates were lower than QC criteria in the following sample: 16NEC-S08-SD-070 and
16NEC-S08-SD-074.
TONEC-500-5D-0/4.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

 \checkmark Yes \square No \square NA (Please explain.)

Comments

Comments

PAH – The samples were qualified QL indicating a low bias.

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

Data quality is minimally affected. Results and reporting limits were either significantly less than site specific criteria.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

🗆 Yes	🗆 No	NA (Please explain.)	
-------	------	----------------------	--

blain.) Comments

No volatile samples were submitted with this SDG.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

 \Box Yes \Box No $\mathbf{\overline{V}}$ NA (Please explain.) Comments

iii. All results less than PQL?

□ Yes I No I NA (Please explain.)

Comments

iv. If above PQL, what samples are affected?

Comments:

v. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability were not affected.

e. Field Duplicate

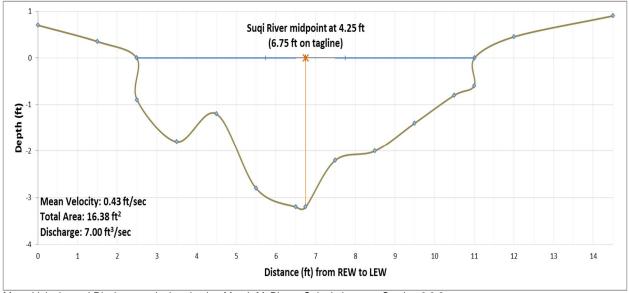
i. One field duplicate submitted per matrix, analysis and 10 project samples?

Ves 🗆 No 🗖 NA (Please explain.)

Comments

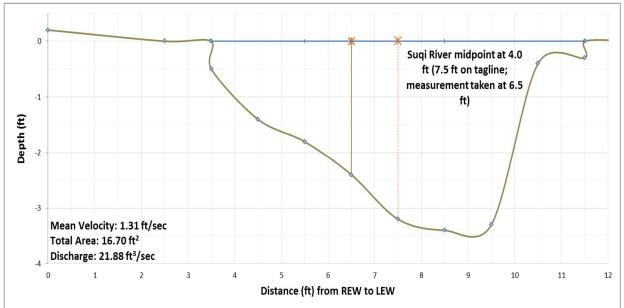
No duplicates were analyzed with this SDG but the project frequency was met.

i	i. Submit	ted blind	to lab?	
	✓ Yes	🗆 No	🗖 NA (Please explai	n.) Comments
NA				
i			elative percent differe 30% water, 50% soil	ences (RPD) less than specified DQOs?
	(Recon		D(%) = Absolute val	
			_ (, , ,)	x 100
				$((R_1+R_2)/2)$
			Where $R_1 =$	Sample Concentration
			$R_2 =$	Field Duplicate Concentration
	T Yes	🗆 No	NA (Please explai	n.) Comments
Dup	licates not	analyzed	with this SDG.	
i	v. Data qu	ality or u	sability affected? (Us	e the comment box to explain why or why not.) Comments:
Data	quality ar	ıd usabili	ty was not affected.	
f. I	Decontami	nation or	Equipment Blank (If	not used explain why).
	□ Yes	🗆 No	NA (Please explai	n.) Comments
Not	lanks wer	e submitt	ed with this SDG	
i	. All resu	ılts less tl	nan PQL?	
	□ Yes	🗆 No	NA (Please explai	n.) Comments
NA				
i	i. If above	e PQL, w	hat samples are affect	ed?
			1	Comments:
NA				
i	ii. Data qu	ality or u	sability affected? (Ple	ease explain.)
	Ĩ	2	•	Comments:
Data	quality ar	ıd usabili	ty were not affected.	
	Data Flags		rs (ACOE, AFCEE, iate?	<u>Lab-Specific, etc.)</u>
			□ NA (Please explai	n.) Comments
Oual			the DQA	,


7.

ATTACHMENT B-4 Laboratory Deliverables

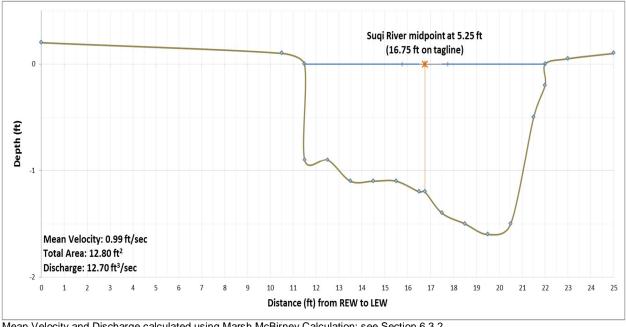
Provided electronically on CD


APPENDIX C Suqitughneq River Cross-Sections

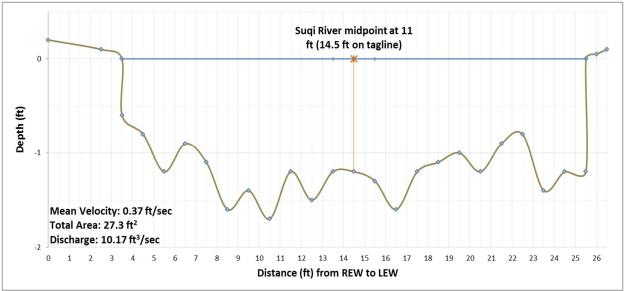
C-1.1. S29-001 Cross Section

Mean Velocity and Discharge calculated using Marsh McBirney Calculation; see Section 6.3.2. Proportion of depth, depth at center point (ft), velocity (ft/sec): (1) 0.2, 2.56, 0.40; (2) 0.4, 1.92, 0.45; (3) 0.8 0.64, 0.41. Notes: Rocky streambed; sides silty with organics.

C-1.2. S29-002 Cross Section


Mean Velocity and Discharge calculated using Marsh McBirney Calculation; see Section 6.3.2. Proportion of depth, depth at center point (ft), velocity (ft/sec): (1) 0.2, 1.92, 0.60; (2) 0.4, 1.44, 1.32; (3) 0.8 0.48, 2.0.

Notes: Due to eddy at center point of stream, measurement taken 1 ft from center point. Smooth gravel and silt covered streambed.


S29-002 - 16 August 2016; 1632 hours. Cross section S29-002. Facing east, flow to the west.

C-1.3. S29-003 Cross Section

Mean Velocity and Discharge calculated using Marsh McBirney Calculation; see Section 6.3.2. Proportion of depth, depth at center point (ft), velocity (ft/sec): (1) 0.2, 0.96, 0.74; (2) 0.4, 0.72, 0.96; (3) 0.8 0.24, 1.31. Notes: Boulder lined streambed.

C-1.4. S29-004 Cross Section

Mean Velocity and Discharge calculated using Marsh McBirney Calculation; see Section 6.3.2. Proportion of depth, depth at center point (ft), velocity (ft/sec): (1) 0.2, 0.96, 0.25; (2) 0.4, 0.72, 0.39; (3) 0.8 0.24, 0.46.

Notes: Boulder lined streambed.

S29-004 - 16 August 2016; 1524 hours. Collecting depth measurements along the tag line at cross section S29-004. Facing northeast, flow to the northeast.

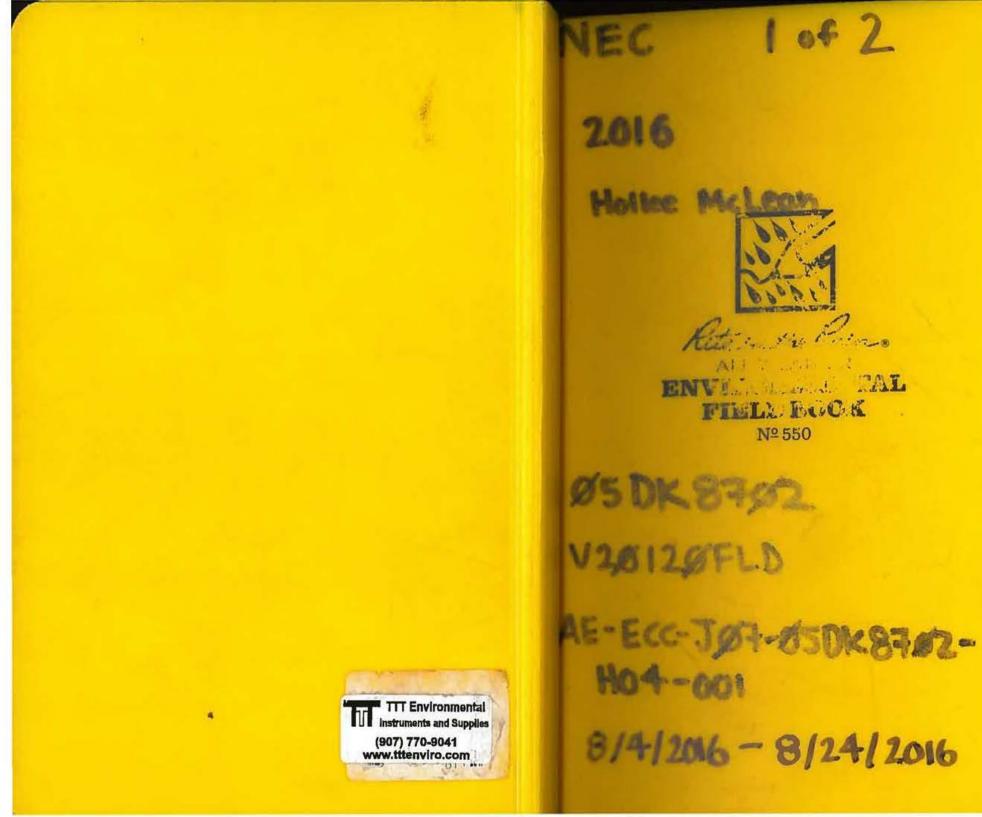
APPENDIX D Field Documentation

Sample ID	Sample Start Depth	Sample End Depth	Depth Units	USGS Classification Code
16NEC-S08-SS-001	1.00	1.50	ft bgs	ML
16NEC-S08-SS-002	1.00	1.50	ft bgs	ML
16NEC-S08-SS-003	0.75	1.00	ft bgs	ML
16NEC-S08-SS-004	1.00	1.50	ft bgs	ML
16NEC-S08-SS-005	1.50	1.75	ft bgs	ML
16NEC-S08-SS-006	1.75	2.25	ft bgs	ML
16NEC-S08-SD-007	1.75	2.00	ft bgs	ML
16NEC-S08-SS-008	1.25	1.75	ft bgs	ML
16NEC-S08-SD-009	1.75	2.25	ft bgs	ML
16NEC-S08-SD-010	1.50	2.00	ft bgs	ML
16NEC-S08-SS-011	1.50	2.00	ft bgs	ML
16NEC-S08-SS-012	1.75	2.25	ft bgs	ML
16NEC-S08-SS-013	1.00	1.50	ft bgs	ML/SW
16NEC-S08-SD-014	1.50	2.00	ft bgs	ML
16NEC-S08-SD-015	2.00	2.50	ft bgs	ML
16NEC-S08-SD-016	1.50	2.00	ft bgs	ML
16NEC-S08-SD-017	1.50	2.00	ft bgs	ML
16NEC-S08-SS-018	1.50	2.00	ft bgs	ML
16NEC-S08-SS-019	2.00	2.50	ft bgs	ML
16NEC-S08-SS-020	1.25	1.50	ft bgs	SW
16NEC-S08-SS-021	1.00	1.50	ft bgs	ML/SW
16NEC-S08-SS-022	1.00	1.50	ft bgs	ML
16NEC-S08-SS-023	2.00	2.50	ft bgs	ML
16NEC-S08-SS-024	1.50	2.50	ft bgs	ML/SW
16NEC-S08-SD-025	0.50	1.00	ft bgs	ML
16NEC-S08-SD-026	1.00	1.25	ft bgs	ML
16NEC-S08-SS-027	1.50	2.00	ft bgs	ML
16NEC-S08-SS-028	2.00	2.50	ft bgs	ML
16NEC-S08-SD-029	1.50	2.00	ft bgs	ML
16NEC-S08-SS-030	1.00	1.50	ft bgs	SW
16NEC-S08-SS-031	1.00	1.50	ft bgs	ML
16NEC-S08-SS-032	1.00	1.50	ft bgs	ML
16NEC-S08-SD-033	1.00	1.50	ft bgs	ML
16NEC-S08-SD-034	1.50	2.00	ft bgs	ML
16NEC-S08-SD-035	1.50	2.00	ft bgs	ML
16NEC-S08-SD-036	1.50	2.00	ft bgs	ML
16NEC-S08-SD-037	2.00	2.50	ft bgs	ML
16NEC-S08-SD-038	1.50	2.00	ft bgs	ML
16NEC-S08-SS-039	2.00	2.50	ft bgs	ML
16NEC-S08-SD-040	2.00	2.50	ft bgs	ML
16NEC-S08-SD-041	2.00	2.50	ft bgs	ML
16NEC-S08-SD-042	1.50	2.00	ft bgs	ML
16NEC-S08-SD-043	1.50	2.00	ft bgs	ML

Sample ID	Sample Start Depth	Sample End Depth	Depth Units	USGS Classification Code
16NEC-S08-SS-044	2.00	2.50	ft bgs	ML
16NEC-S08-SS-045	1.25	1.75	ft bgs	ML
16NEC-S08-SS-046	1.50	1.75	ft bgs	ML
16NEC-S08-SS-047	1.00	1.50	ft bgs	ML
16NEC-S08-SS-048	1.00	1.50	ft bgs	ML
16NEC-S08-SD-049	1.25	1.75	ft bgs	ML
16NEC-S08-SD-050	0.90	1.25	ft bgs	ML
16NEC-S08-SS-051	1.40	1.75	ft bgs	ML
16NEC-S08-SD-052	1.50	2.00	ft bgs	ML
16NEC-S08-SD-053	1.00	1.50	ft bgs	ML
16NEC-S08-SD-054	1.50	2.00	ft bgs	ML
16NEC-S08-SS-055	1.70	2.10	ft bgs	ML
16NEC-S08-SD-056	1.75	2.25	ft bgs	ML
16NEC-S08-SS-057	1.50	2.00	ft bgs	ML
16NEC-S08-SS-058	1.50	2.00	ft bgs	ML
16NEC-S08-SS-059	1.50	1.75	ft bgs	ML
16NEC-S08-SS-060	1.50	1.80	ft bgs	ML
16NEC-S08-SD-061	1.70	2.20	ft bgs	ML
16NEC-S08-SD-062	1.50	2.00	ft bgs	ML
16NEC-S08-SD-063	1.00	1.66	ft bgs	ML
16NEC-S08-SS-064	1.30	2.00	ft bgs	ML
16NEC-S08-SD-065	1.50	1.75	ft bgs	ML
16NEC-S08-SD-066	1.50	1.75	ft bgs	ML
16NEC-S08-SS-067	1.30	2.00	ft bgs	ML
16NEC-S08-SD-068	1.50	2.00	ft bgs	ML
16NEC-S08-SS-069	0.50	1.00	ft bgs	SW
16NEC-S08-SD-070	1.50	2.00	ft bgs	ML
16NEC-S08-SS-071	1.50	2.00	ft bgs	ML
16NEC-S08-SS-072	1.00	1.50	ft bgs	SW
16NEC-S08-SS-073	2.00	2.50	ft bgs	ML
16NEC-S08-SD-074	1.00	1.50	ft bgs	ML
16NEC-S08-SD-075	1.50	2.00	ft bgs	ML

ft - feet

bgs - below ground surface


USGS - U.S. Geological Survey

SS - surface soil

ML - inorganic silt & very fine sand, silty or clayey fine sands, clayey silt with slight plasticity

SD - sediment

SW - well-graded sand, gravelly sand, little or no fines

ALL-WEATHER ENVIRONMENTAL FIELD BOOK Numbered Pages

Address		
Phone		
Project NEC	050K8792	

Rite in the Rain — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, *Rite in the Rain* ensures that your notes survive the rigors of the field, regardless of the conditions.

Specifications for this book

Page P	attern	Cover Options				
Left Page	Right Page	Polydura Cover	Fabrikold Cover			
Columnar	1/4" Grid	Item No 550	Item No 550F			

2 1996 - 2012, All Rights Reserved

RiteintheRain.com

Made in the USA US Pat No. 6,863,940

PAGE	REFERENCE	DATE
3-11	Mob to Nome; prepare for mob to	8/4 -
	NEC; mob to NEC	8/8
9-27	Groundwater@ MOC	8/8 -
	wells	8/14
28-42	SUKI River (S29) SD, WS, & Flow	8/15 -
	SD, WS, & Flow	8/16
43-64	SØB	8/17-
1	SS & SD	8/22
65-67	Demob	8/23-
		8/24

Reference Page Index

147	Error codes, Hazardous classifications, Container Lypos
148	Sampling guidelines (Liquids)
149	Sampling guidelinės (Solids)
150	Approximate Volume of Water in Casing or Hole, Ground Water Monitoring Well
151	PVC Pipe casing tables
152	Soil Classification
153	Soil Classification
154	Maximum Concentration of Contaminants for the Toxicity Characteristic
155	Conversions (Concentrations, Volume/Flow or Time, Velocity, Acceleration)
156	Conversions (Length, Weight, Volume, Temp, etc.,.)

	CONTENTS	
PAGE	REFERENCE	DATE
	*	
		1
- 2		
-		
-		-
_	and a set of the set o	
_		
_	ne n	
_		

Location NURTHEAST CAPE (NEC) Date 8/4/2016

Project / Client 050K8702 / USACE & ECC.

Nome

0715	Pick up - remaining items from Jacobs
	office
0830	Arrive at airport
0955	Depart for Nome.
	Prepare SPAs on plane.
1130	Arrived in Nome.
1200	Taxi to Stampede Auto.
	Performed vehicle inspection.
1215	Arrive at BSNC Building. Receive access
	to office space.
1300	Arrive at old Alaska Rooms
1345	Receive first shipment from Alaska
-	Air cargo.
1645	Complete transfer of all gear from
	AK Air Cargo to office space.
	start unpacking boxe's.
1930	EoD
1	
	Haldermedoan
	Summary: Mob to Nome
	Started preparing office & equipment.

	tion NEC /Nome Date 2/5/2016
Proje	ect / Client \$50K8702 / USACE \$ECC
	Nome
0730	Arrive at BSNC office space.
	unpack coolers & prepare sample kits.
1130	Receive call that ECC (Stan Segars
	& Kristopher Reidt) & AK Total Safety
_	(chris Carson) arrived in Nome . Trans-
	ported ECC & AKT.S. to vehicle rented
	#AK Rooms.
1230	continue prepping Sample kits.
1530	Drop gear at Bearing Air.
1	Atranged 8 AM departure.
	Discussed w/ pilot likelihood of flight
_	and best time of day to fly
1700.	Review SPAs & HSP
1745	Drop additional gear at Bearing Air
-	because elected to upgrade Navajo
3	flight to larger aircraft
1815	EOD
1	
-	. Holde melean
	Summary: Ecc & TS arrive
	in Nome
	- continue to prepare MOB to NEC.

Location NEC / Nome Date 8/6/2016 Project / Client \$5DK87\$2 / USACE \$ ECC

	Arrive at Bearing Air 40m 816
OIFU	
	Weather: cloudy, poor visibility, rain, Sois
	Personnel: Stan Seegars (55)
	Kristopher Reidt (KR)
	chris Carson (CC)
	Hollee McLean (HM)
	concerns: driving - pedestrians & atvs
	N/o helmet
	weather delays likely (spoke w/ Bearing)
	Obi: continue kit prep
	gothrough all equipment assuming
	Review Schedule (re-assess at
	Review WP \$ SPAs Bearing Air
	PPE: Modified Level D appropriate for
	HASK
0750	Depart for Bearing Air.
00800	Arrive at Bering Air.
0810	Briefed at Bering Air. Stand down from Pilot Key
	No one has been to run way this year;
	need 3 mile visibility so they can
	assess the runway and 1000 ft ceiling.
0000	Managed ike, reviewed WP, schedule, tof
	sample juis, and equipment (flow meter).

1

.

Proje	ect/Client 050K8702/USACE # ECC
-	Nome
1015	Ecc & Total Safety mob to Bering Air;
	will try to perform dry set-up of tent
P41	in hangar to ensure comfort w/ \$
010	knowledge of process.
1045	Mob to Bering Air to set up emergency
	shelter. Model # H0004-067 weatherport
1315	completed set up and take down of
	emergency shelter.
1330	Procure additional items from hardware
1.2-	store.
1345	Talked with Bering Air. Aiming
	for 9 AM tomorrow. Someone flying
Parte	to Savoonga today; should help w/
_	determining conditions.
1450	Calling EOD
1	
	Harromatioan
	Summary:-Weather Day
	- Practiced creating emergency
	sheiter

	/ Client _				1	-0.5	in		-	- Albert			
_	_	_	_			-	-		N	iom	e	_	<
0730	Mob	to	of	fice	: +0	0	he	ck	ìc	e .	and		
_	JOOK	for	2	nd	co	PY	of	WP			<u> </u>		
0733	WP 10	cat	ed	in	+r	uci	c;	wi	11 0	hea	Ki	e la	ter
0180	Safe	4	Ta	ilg	ate	:	-						
-	Perso	nne	e1:	55		R	, 0	с,	H	M		_	
	PPE:	Mo	dif	ied	Le	vel	D						
	WX:	Nor	ne-	SU	nny	w	110	ins	a	rour	nd r	noor	
		NE	C-	ove	erca	st	*	fe	99				
	safety								22		Beri	ng	Air
	Obj:	set	UP	sh	elte	r		-				Child	
		SIT	e I	Nall	41	ride	e				1		
		we	11 0	lept	hs	ε			1	1.			
	- Per	for	ned	a	ver	bal	9	roug	s	PA	ws/	les	sons
	learne	A fe	or :	set-	UP	fu	rs	she	Her	-			
0840	Mob to 1	Beari	ng	Air									
0850	and a summer of the		9		Air	tra	vel	to	NE	C.1	Hold	of	¢
	a few h			-						ų <i>1</i>			
852	Mobto	offi	æ;	ma	naa	e ic	e.						
0920	Mob to				1			er.	Add	itiot	al		
1	practic			La T									
1045	Mob to	Bei	ring	Air	. ch	eck	fli	4ht	sta	tus.			
	Ground		3										
	"test fl										-		
	the is !	1.00											

4

.

Proje	ect/Client OSDK8702/ USACE & ECC
	Nome
115	Make decision to go ahead.
	Will start loading Plane. First
	flight will keep plane on ground
	to set-up camp. Likely will not
	have time for groundwater measurements.
200	Reviewed Process/ Procedure for Tsunami
	while on island w/o alert system.
	completed SPA.
1205	watched video tutorials for flow meter.
	Team feels much more prepared for
	tasik
405	Told we are not flying.
450	Practice stream flow measurements.
630	Complete field practice w/ stream
	Flow mater.
	Downloaded test data.
	Changed some settings on moter.
1720	Return to field, continue testing
	stream flow meter,
900	Transfer data to laptop.
930	EOD
	Summany Weither standown
	Acquainted selves w/ flow meter

	Client (/						/N	Er
	1 1								INC	STIC	TEV	
0600	Call	Be	rin	9	Air	; n	hee	t a	0	100		
0610	safet	4	rai	ga	te:				-			
	WX:	Part	14	clu	uch	+1	ne	ove	vcas	+ 8	clove	14
		NEL	- 5	imil	ar	but	1	0 * 1	co	eler		
	Perso	nne	1:	SS,	K	R,	00	2,1	M			1.51
	sa fet	4:	one	a	ircr	aft	N	1i 11	St	ay	w	5
	obj:	set	UP	Ca	mp						-	
		si	te	visi	ł			12		G		
		w	11.	dep	ths							
1.00	PPE :	Mod	ifie	d	Le	Jel	D	-	-	has	ie.	
0900	Arrive	ot	Be	rind	A	ir.						
0930	Depar				,		wl	C	ASA	te	fo	1100
	Novaj					~					4	
	Casa											
1020	Arrive					-	-111-	te p	hon	e. 1	inp	CK
	Nava											
1040	Casa		ves.	un	pac	K C	asq					
	Sta rt		1						elte	r.		
1100	Set up	1	3							4		
1325	Break											
	Coord		C. Andrew		or	Ba	sec	amp	fr	om	Sta	n's 6
	E 060					UTC						
		35									-	

>

	tion <u>NEC/</u>		-/ USACE	8 ECC	
					IEC-MOC
1500	Calibr	ate PID		Isobolylen	e
	S/N 910	685	Lot	# 16-5516	
	Zero	Cal =	0.0 PP	m	
	Span	cal =	100.0 P		
1510	SS CC	set-up	weather	station	check beach
15-	KR & H	M mob	to DTW (Ft)	to col	ect
	well de		BTOC	TO (++)	
Time	Well ID	SU(ft)	Depth to	GW(f+)	PID
1534	MWID-1	2.21	5.04	11.0	0.0
1550	14MWO7	(-0.25)	25.7	33.21	0.0
1610	Having			ting we	lls.
_		J	forward		
1645				all wells	tomorrow.
15			o shelter,		
1765	Load Na	vajo.	22	10- 8/12	500 ' ceiling
	for uning	strument	upproac	n. nany sta	500 ceiling
				ity is go	
	fur a wa	1 15 M 8/8	, they dry		cu u
1715	Depart	NECFOR	Nome	saw ATVers	on beach.
1801	1250 X 150 X 120	Nome.	~,		1
i.	Discussed	w/ Berin	Air f	sture file	hts.
	and a second second	to morrow	14 ST		

Ficiery	/ Client 0			- Longe				
			IN CONTRACT			NOV	ne	-
1816	Mob to	o did A	laska	Rooms				
1830	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mane	and the second s	and the second se				
								- 44
00	aily su	mmar						12
		to NE		fir		Hime		
		depa		1				
		indby	ice j	Varva	Je re	THE T	CH 01	
		weath	or al			ant -	P	
-			er sr	Merter	ap v	Jeun	14	
		ation						
		ed all	1.5					-
	Perfo	rmed	site v	valk	•			
1					2			-
			1		_	100	-	
			Ha	Doe	mc	Jam)	
	8							
				1				
				N				_
1.								
					-			

	ition NEC/Nome Date 8/9						/ N					Dat	e 8	/18	-ord	13
Proje	ect / Client OSDK8702 / USACE * ECC		Proje	ect /	Clien	nt 05	DK	870	02/	US	ACE	# E	Ecc			
-	Nome	1- 1	1											N	NEC-1	noc
0800	Call Bering Air, weather delay.	pare												30		
0805	Safety Tailgate:	Headspo	e	9	0.1	-	0.1	0	- ~	1 1+	01	2	0	\$p	3.6	>
	personnel: SS, KR, CC, HM	Hei	0	4	4	ö	ŝ	0.	5 0	0.	0	m	Ξ.	Ŧ	<i>in</i> <	
	PPE: Modified Level D						S	S.	+ 7	δ		2	2	36		
_	WX: overcust with showers, 55-F-59-F in Nome	0	1 7		_	_	2.2	4	10	Ē		3.6	5	32		
	Safety: Non- Project Personnel, wind, wildlife			00	8	0.2	5	4	1 2	1	88	野	2	SP	to	2
	objectives: survey, Gw depths, sample	E E	-	5	0	28	-	7	E HING	\$	5	4		₹ť	in	
	wells	+	話		_	-	3		13	HT I		ET B	£+			
0930	Mob to get ice Prepare for 11 AM	1 .						-	-				-	٩		
P	departure.	- Lo				_	_	-	9	5		_	_	34.9		
0945	Mobto Bering Air. Discuss with pilot	1	1 10			-	*	0	- 35	2	-			40		1
	Stan about flying. We will try to go	The for		.65	20	5.	50.	2.60	, "g	9.9	6.0	2	.33	T	# .	
-	after surveyor arrives.	. 4	-	15	0	13	2	7	m g	22	5	ŝ	2	T	5	-
1020	Received brief from David ". The plane will		-	-	-		-	-	-	-	-	-	-	2	-	-
	stay on the ground on stand-by.	1 3	1	~	-		0		~	-		7		3		
	Scott from Eco-Land arrives. Hold		3	3	30	45	. 2	5	1 00	2 5	4	10	2	4	8 0	2
	meeting for preparation of tudays activities.	1	-	0.	.0	0	J	0-	01	0	(-0	5-0	9	J	0-) -	4
1030	David olsen states weather is deteriorating.	C.H.S	4	-		-	-1	-		-	-		-	-	-	
1100	We will wait on the ground for better weather.	- 45	23.	230	ETT	1205	d	1202	1219	1153	156	215	PHI	1710	1144	2
1238	Call'No Flight" for now.	μ.	F	-	-	-	-	-	- :		-	-	-	~		
1-30	Conference call with Kevin Maher.	9	-	-	. var	-	•			5		-	+	-	1270	-
*	Discussed weather, concern about local/	-	2	ION	W62	M	No3	I-M	No4		to	V05	8-3	1	MOG	5
-	visitor theft. Zero exposure on our end.	AVA	MW Ł	14MW01	14 MW62	22 MW 2	14 mmo3	1-MWOZ	HAMWO4	MW 88-1	FOWM41	4mh	MW 88-3	26MWI	14 MW06	
	keep following the plan & check in.	+	-			1000	-	~	- 2		A	-	h	Access.	3	

Projec	ct / Client OSC	K8702	USAC					Project /	Glein
		-		N	some			_	9 1
1310	Calling	day	as we	ather c	say.			0800	Call
c	5					_			will
/				41.	-	1.4	-	0845	Saf
									Pers
			1.1				11		
		1.1	the state				1		
			1						
1		467	bend	ham)			-		PPE
54		1 Vec	and the	JUTIC .	-				WX
1.0									saf
24		1	E.Y		1		6	1	obje
			1.	1 di 1					sa
		1		in 1		1.1		0920	Mob
10			1					0925	Arr
10	-							0935	Mob
			1			. 1		0948	Arr
				1.		-12-1	·	1016	De
10				- \			-	1100	Arr
10				16.	- 14- 1				tha
11			-	1		14	1	1116	Cali
			-				-		SA
1			1.		1-	-	N	niniRae .	410689
			-	-			M	0.0	1123)
				_					

			02/USA		a construction of the second s
Project	Cilent_	050001	czy van	Non	
0800	call	Bering	Air. Br	eak in th	e weather.
	will	try to	depart -	- 1000 -	
0845	125 1157 10	ty Tail	1010		
	Perso	nnel:	stanley s	eegars ('ss)
			Kristoph	er Reidt	(KP)
			chris c	arson (CC)
			Hollee	McLean	(1+M)
	PPE:	Modifie	d Level	D	
			1 showers		10.745
			nnel, wil	d life, mar	Standby aircraft
			entory ca		
		ple GW			
0920			to gather	ine	
0925			ce and pi		
0935		to Berina		epare ree	
0948			,	airers ft	
			-		ill remain onsite.
1016			ering Ai		
1100			C; perfor		
	1		r is stil	present	K
1116		ate PIDs	125		
aiR an	SA		Zero	S	pan
	110685		U.U ppm	100	· O ppm
Rae	123)		0.0 ppm	FO	iled

	NEC / Nome			10
Project	/ Client _05 DK 870	DZ/USACE,		No a composition
			NE	C- MOC
1138	MOB to MOC	La measure	GW De	pths
1136	See pg 13	10 110-01	01.0	
1245				
1345		ero · O ppm	span 100	
1350	Calibrate Tu	A Burner and a second		
1	Lot # 46061	and a second second		
4.	Turbidimeter	17396 -	calid	
checik	540 6.86	Read 6-95		
	60.5	60.2		
1. Sec. 1	506	507		4
	Turbidimeter	17212 .	cal'd	
check	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000		3
	10-5 Sho 51		55.7	
	506 513		515	
1500	All Mob to 14 M		e wellas	a group ut
and the second	See sample			
1705	GAC FAter	pp tox 4 9 .	about	(KR)
	5 meters from	14MWO1	-	
1715	Meb to 14MI	N02 (cc #+	(M) [1817]	4
1	See Sample	will a	ole on COL	metals
	Collect DUP	jar	may not b	
1855	GAC Filter a		100 miles 100 miles	U (a labelini
1055	Mob to shelter		(in the j	
111.3	sinpack gear &		Tank a line	

Location	NEC /	Nome	2	Date	8/10	
Project /		50K8702 / V		CE EC		44
					NEC-	MO
1945	Depart	for	Nome			

1945	Depart for Nome
	Perform sample sheet QC.
	Prepare labels.
2034	Arrive in Nome.
2039	Packout gear & samples.
_	Arrive at office. Label samples &
	manage ice.
2135	Depart office after call to kevin
	Maher
2145	Br Bompiete sample summary.
	Break for dinner
2230	Complete Sit Rep
2400	EOD
	Daily summary:
	sampled 2 wells
	- 2 primary \$ 1 DUP.
	Issues w/turbidimeter & pump
-	controller / battery.
	· 16NEC - 14 MWOI - WG @ 1625
	· 16NEC-14MWD2-WG(-9)@1817
	Holes molean
	in the second

Projec	t/Client USDK8702 / USACE & ECC
_	Nome
OOF	sample management.
	Create chains
	Pack coolers
300	call Bering Air. check in at 1000.
930	List of items to bring back from
	NEC:
	Tape, PIDs & Batteries,
	Ziplocs, Trip Blank
	To purchase: Battery from auto shop.
0945	MOB to AK Air cargo
	# 9357
	907-563-3322
	05 DK 8702
0955	Artive at AK Air Cargo.
	Ship samples Air way Bill # 027-4010-5785
1000	call Bering Air. No travel today.
1100	purchase additional Battery Clar Quest.
105	EOD
	, Daily Summarg: Shipped 2 coolers
	cac #1 Almond Joy
	cac#2 Moundis
	AWB# 027-4010 -5785

COAST-SOL	Client 050K8702/USACE	Nome / NEC
0800	call Bering Air ; will try to	depart at 930
0830	Safety Tailgate:	
	Personnel: Stan Seegars	
	Kris Reidt	
	chris Carson	E -
	Hollee McLean	
	PPE: Modified Level D	NEC.
	WX: 54-61°F & showers in Nom	S. Valen S.
	Safety: Will not have stand	
	objectives: Sample at Mc	
	Eco-Land SI	
		or veg camor
	make today's flight.	
	Mob most of r	
	because of travel on a King	
0850	communicate w/ Kevin Mah	r. sample
	all wells 1-2' below DTW.	
0855	Mob to office to gather gear.	
0110	Arrive at Bering Air. Meet wi	th pilot Kevin.
0920	call KM. Target away tes av	
	of column. will be drawing of	rom surroundi
	of column. will be drawing f aquifer. 1-2' by sfor Aall the prive for Aall	mples.
0935	Load onto King Air w/ pi	ot Kevin.

Proje	ct/Client OSDK8702/USACE & ECC	
	Nome/NEC	
955	Received mid air report that ceilir	9
	in Sauconga dropped to 200'.	
025	could not make landing safel	۹·
	Did not land, Return to Nome,	- E
056	Landed in Nome.	Ę
1100	Weather not expected to improve .	
	Summary:	• •
	· Attempted flight to NEC	
	but could not land.	
	weather stand-down.	
	· Need to check minimum	
	weather requirements.	
1		
	stadae madams	1 .
		-
		1
		- 13 C

Location	NEC / Nome Date 8/13	21
Project /	Client 05DK2702 / USACE & ECC	
	Nome	
		-
0800	Call Bering Air; need to call back at	-
	900.	
0830	Safety Tailgate:	_
	Personnel: stanley seegars (SS)	_
	Kristopher Reidt (KR)	
	Christopher carson (cc)	
	Hollee McLean (HM)	
	PPE: Modified Level D	
	WX: 53-65°F, overcast, showers (Nome)	
	405 - 505 ° F	
		_
	safety: 10w cloud ceiling	
-	objectives: sample GW	.11
	Survey	_
0900	call Bering Air. Discuss waiting one	
	more hour to ensure weather holds.	
	Bering Air wants team to be read	4
	to go at 1000.	1
0016	Mob to office for ice & coolers.	
		_
	Arrive at Bening Air.	-
0445	Scott (Eco-Land) arrives at Bering Air.	-
	New personnel: SLOTT McClintock (SM)	_
1010	Depart Nome on Bering Air Navajo.	
1054	Arrive at NEC	
	1 tom	

9	t / Client _05		ŭ	NEC	
			, sample	anar t	-libra la
1055			brief u		anorac
	-			10.11	
1108		Turbidin	leter 5		
	10000	eadings:	17212		
		17 396		150	
	W Vm	6.52 NTU		NTU	
_	60.5	59.2	59.95		
	506	509 J	512	4	
	150.01	2.2 (aborte)		
	12	PIDs (100.0	
	SIN		Zerc	1	bbw
120	910685		0.0	100	0
1120	11231		0.0	100.	0
in 5 8	Mob to	MOC		-	
205	Arrivea	+ MWID-1			
1221	start p	urging u	vell		-
1254	Sample	e well [MWID-1	t MS	/MSD
			pling for		
		urs: CC,			
			EC- MW	10-1-14	16
1250					-
1350		ilter app	MW10-	and the second s	

	Client 050K8702/USAC	-		152			
-			N	IEC		_	
1421	collect equipment	Blank					
	16 NEC- 10MW-1-4	ovs	Dvw				
	Sampler: ici HM	HM 0/1	12016				
	5-40 mL VOAS W/HCI	1003,	GRO	SW	8264	AK	101
	2-40ML VOAS G	19001		Swe	015	-	
	3-1Lamber si	007280	SIM, SWE	082	PA	Hs, F	CB
		O/RRC		A	KIQ	1103	
1	250 ML HDPE WLHNO3 SW	6020/7	470	plus		Ni,V	
1440	Mob to camp for 1	unch.					
1520	Return to Mac.						
1545	Arrive at [MW88-1]			100			
1553	Begin purge of we	11.					
1628	Sample well MWBE	9-1.					
	16NEC- MW88-1- N		-				_
	Samplers: cc, HM						
	See GW sampling	For	m				50
1647	End sampling MWE	88-1-				_	
	GAC filter approxi		129	allo	ns.		
1710				-			
	3 people; 2 adults & Eugene Tooleyi- used	1 1	nild				
	E Tala Marie,	11.	N 1.1	Brid	int		

	/ Client 05 DK8702 / USACE & ECC
Project	NEC/Nome
730	Mob to [14MW07]
146	Start purging 14MW07
1815	Sample 14MWO7
	16NEC- 14MW07-WG
	See Gw sample form
	Samplers : cc, HM
1832	Endsampling 14MW07
19:05	GAC Filter approx 3 gallons
1105	GAC filter approx 3 gallons Rinse
	water,
	GAC filter approx 2 gallons alconoy
	GAC filter approx 2.5 gallon & DI
	H20 Rinse
2 000	Pack Plane w/ Gear & samples.
2040	Depart NEC
2132	Arrive in Nome
2150	Transport gear & samples
	to office.
1036 Hm	Return to old Alaska Rooms
	EOD
	Daily summary:
	Survey for s29 \$ SOB

Location N	EC/	Nome
------------	-----	------

Date 8/13/2016

25

Project / Client 050K 8702 / USACE & ECC

_	Sa	mple	d	6	we	115	10	oll	ect	ed	1	D	191	
-	1	MS/	MS	D,	Ł	1	E	B						
1254	-	MU	10	-1	1	GNI	EC-	MW	10-	1-	We		MS	/MS
1310	-	14M	WOE	>	V	SNE	K-1	44	NOE	- 4	G(-9)	ĩ	JUP
1628	-	MWS	8-1		16	NEO	- M	WBE	5-1-	W	51			
1644	-	14Mu	003		161	NEC	- 14	Mut	53	- w	G			-
1815	-	14m	WOT	F	16	NE	- 1-	4Mu	502	W	G			
1829	-	MWB	8-10	2										
1421	-	EB	2		16	NE	C-	IOM	w-	1-	PV	W		
									-		L	=		
				4	tol	bot	rof	an)					
			-			1.24								
									-					
				1										
			-		1									
													1	
			2											
								1						
												2.		
								-		1				
						1		1.05		- 12	1			
										-		1		

Proje	ct/Client 05 DK 8702 / USACE & ECC	Project /	Client OSOK8702 / USACE + ECC
	Nome	_	Nome
830	Safety Tailgate:		review equipment rentals vs. purchases.
	PPE: Modified Level D	2140	Mob to office to label samples
	safety: weather & flying		à prepare coolers & sample manageme
	WX: clear, 50-65 Nome	2300	Depart for old AK Rooms.
	45-55, variable in NEC		Comptete EOD paperwork
	Obj: Drive & fly	2330	EOD
	Cotlect Samples		Daily symmetry:
	Prepare samples for shipment		
6900	call Bering Air. weather hold.		sampled of wells @ Moc
0900	Mot to office . When B/14	-	C 1422 17MW
0900	Enter well depths from 8/10/2016		@ 1542 Z2MW2
	into spreadsheet		C 1737 26 MWI
0930	Mob to office for sample management.		@ 1858 20 MW-1
932	Battery that did not work in field shows		Packed 7 coolers for shipment to
	full charge after less than 1 hour.		ALS on 8/15/2016
	According to SS, after 5 min battery		@1422 17M HM 8/14/16
1999	showed 707.		CoC # 3 Milky way
030	SS , KR , & CC mob to Bering Air for		" 4 100 Grand
	flight to NEC. HM Stays behind to		" 5 snickers
	perform sample management.		"6 Caramello
	Prepare 5 coolers for shipment		"7 Butterfinger
	on 8/15/2016.	e 1	" 8 Twix
1530	Complete sample management.		" 9 Kit Kat
1 ¹⁰ 1	Return to Old Alaska Rooms to		Halle mahaan

0600	Nome / NEC	NEC
1600		the second se
	Mob to office to continue sample mgmt.	1235 Mob to \$29 to collect sediment, swift flow. Samplers: SS \$ HM
0830	SS & KR ourrive at office to help	Surface water (WS) at S29
5	pack coolers.	2-1 Lamber PAH SW8270SIM
905	Arriveat AK Air Cargo. Ship 7 coolers	3-40ml VUA vial 4/14CL BTEX SW8260
12	to ALS	Sediment (SD) at S29
0940	AWB# 027-4010-6113	2-8 02 cumber DRO/RRO AK102/103
	Depart for Bering Air.	PAH SUSEZTOSIM
0945	Received call from KM.	RB SW8022
1 1	Need to resample 14MW03.	Metals
	will have to get glass wave from lab.	Asi Cri Pbi NZh
	Need filter from KM	Sample 1D Time Date Depth bas USCS 16NEC-529-50-010 1310 8/51241 Signics saturated
	14MW03 did not meet stability	
14	before sample collection.	1-5 H20 SD collected Biswhite
030	Load plane to NEC.	parienes.
1123	Arrive in NEC. Plane remains on ground.	16NEC-529-50-008 1350 Organics ML, grey
1150	Turbidimeter check SN 17212	0.5 1H20 Sprollected of 117+1e
the second	check Std Reading	
140	6.86 6.77	* 16NEC-529-50-005 1420 Urganics ML, brown 0-0.5' Withorgan
	60.5 58.9	1.5 H20 0.5-1' At 1.0 foot
2-11	506 509	. Collected samela for SD. bgs, bravg
	All Turbidimeter checks akay	1 ft from stake Cobble of
- 30	PID Calibrate theck : Zero cal Span cal	3° und gravel

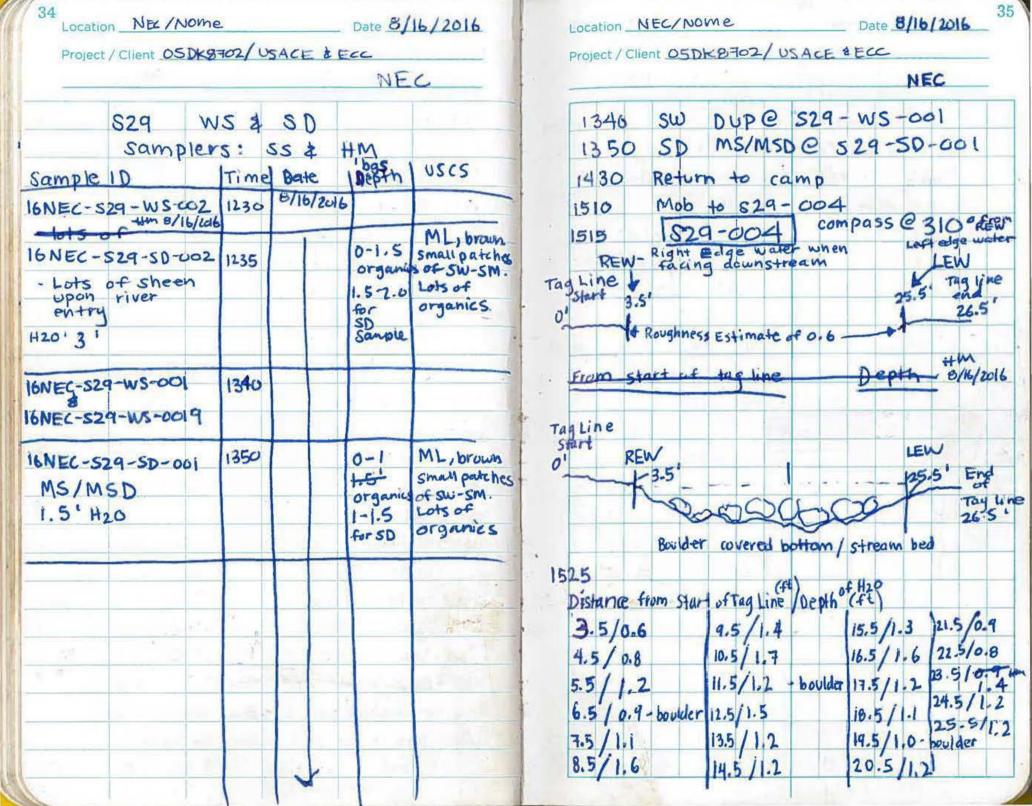
Location INEC/ Nome Date 8/15/2016

Project / Client 05DK 8702 / USACE & ECC

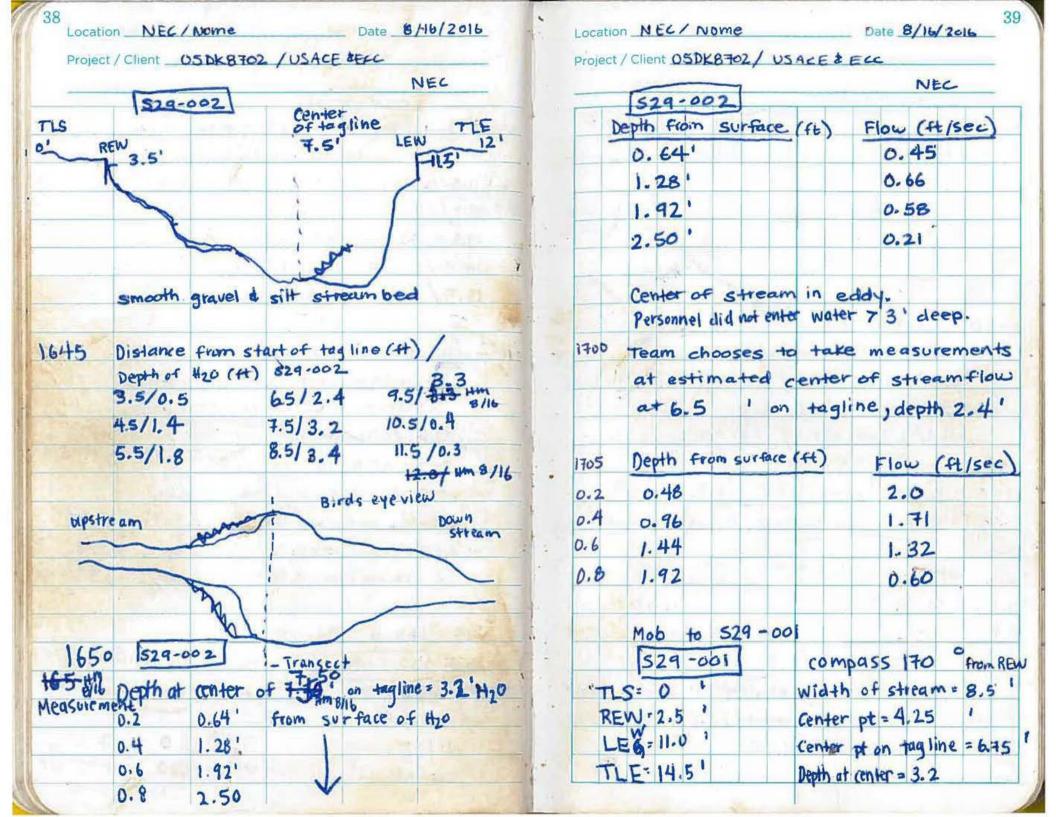
and the second second		-	NE	C 11
Sample ID	Time	Date	Depth	uscs
16NEC-529-50-006	1445	Bishal		ML, trace gravel,
2.0 'H20	1 ar		2.0	Litte or gamire
Organics 1.0 'bgs	142	11		Brewn Cobbie E gravel P 2 bgs
6NEC-28-50-007	1520		0.5-	ML, little Sand, little
1.0' H20			2.0 mm 1.0	organies.
Organics U. 5 'bgs				Brown . Some Rust color.
16NEC- 529-50-009	1555		urgani 1.5-	ML, ittle sand (medium)
1.5' H20 Organics 1.5' bgs			2.0	damp. Little J organics. Broom
		e T	logs	color strong
16NEC-529-WS-004	1803			
16NEC-529-50-004	1810		1.5-	SM, brown
U.#5 H20			removed	with
organics 0.75-1.75			organic	gravel
Ruks @ 2' (boulders)	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		12000	3
16NEC- 529-50 WS-003 MS/MSD	5 1910		1to	1
6NEC- 529-50-003	1925	TT,	0-1.0 feet	1.0-1.25 ML, some
\$ 16NEC - 529-50-0039				brown,
420 1.0' by 5 m	1		SD	saturated.
			Sample	SW, medium
1.5 bgs boulders a cubbles	-	1	1.5'00	sand, no fines.
1.4		N	1. 1	mey.

31 Location NEC / Nome Date 8/15/2016 Project / Client 05DK8702 / USACE & ECC NECINUME * Require re-survey 529-SD-005 529-001 (8/16/2016) 808-054 (B/11/2016) B/7 \$29- SD-006

\$24-5D-007


1740 verified mouth of suki River blocked by sand berm. 1800 At sample location 529-004, strong winds prevail but water still flowing downstream. Collected WS from flawing water / subi River."SD" sample collected from peninsula under submerged vegetation. 1910 collected WS MS/MSD for 529 @ 529-003, 3x volume 1920 - Saw the observed sheen while collecting SD sample - 2x volume. 1925 collect Duplicate sample@ 529-50-003 2020 Depart NEC for Nome. 2110 Arrive in Nome. Take Samples to office. Replace ice. Took 2 bags of IDW.

21 30 Mob to old Alaska Rooms; break for dinner. yum


30

	NEC/A				15/2016
Project /	Client 05	DK8404	USACE	Nome	
1015 AM	Safety	Tailgat	et 🐁		
		odified		5-55°F;	44-56°P
		Stanley	Seegars	(55)	24
			er Reidt her Cars		1 million and the second se
	-	Hollee	McLean	(HM)	
ď	њј:	Continue	sampling at S29.	g at Mo	C
5	satety:	weather	\$ wind		
	1.01			a ser e	
		Summ			
0	2 prim	rang W	p a	1 MS/M	Osn
	3 MV	ve n	noc	1 001	Sec. 1
	14 M	w03 .	@ 135		
Server			@ 184	+0	1. 2011
	h	'5	@ 15	21.0	v
			ton o		h; sand,
			ags 1D		
2300	Start s	H Rep &	EOD	- 2	

	Client _050				Non	ne	-	_
0915	safety	Tail	acte.					
	WX S		-	d to b	igh	40	efs	
-	PPE : MO							
	Personnel		100.00					
		Krist		1 C				
		christ						
	1.1	Hollee						
	safety :			100			^	
	Ubj Fi	nish N	IOC					
		nish		1		-	4	
120	Mob to off	ice Pre	p cool	erst	ic	e.		100
950	Arrive a		·					
1015	pepart	Nome	FOR NI	EC				
054	Arrive in	NEC.	un load	plane	. P	ani	e will	
	remain c	in groun	d.			_		
167	calibrate	Tur bic	imeter	172	12	_		
	Check std		1	Rea	odin	9		
	6.19			5.	59	-		_
_	60.5			58	3.9			
8	506			50	8			
1121	calibrate P	1D 5/1	N' 910				-	
7	erc Cal D.	2 ppm	Spe	an Cal	100	0.0 p	pm	
210	Mob to si	te 29. 3	visitors	- the	Tool	43		

	on NEC Nome		ate 8/16/2016		Location N				Date 8	116/20	37
21 1777Acres	529-004		NEL		1	529-0				NE	C
1538	Depth measures	ter of stream	t.5' of tagline at 14.5' tagline 1 ft Isec	-	1555 0	istance o	FH20 (f	-			
-	0.2 Dept shit		Flow Reading		11-5/0.9		16.5/1.			10.5	
	0.2 from surf		0.32 0.46	12.5	125/0.9		17.5/1.4	N	22 /	0.2	
	0.6 "	= 0.48' = 0.72'	0.41	- 1	13.5/1.1		19.5/ 1.				
100	0.8 "	' = 0.96'	0.25		15.5/1.		20.5/ 1.				
	Although wir			160			cross str				-
	Subi still flow	and the second s		1	BSI	ream	flow n	neasur	emen-	tat	Flow
- 11-	1529-00		ass 289 from REW	2	Depti	at 16	+agline .75' is	1.2			Flow Reading
Tag Line Start	REVO	Center 15:00 Hagiine	LEW Tag	[.			face = 0		0.24		.31
0'	- 11.5	1	-22' 25'		and the second second		face = 0.4		0.48'		.23
	ma	2000					ace = 0.72 Face = 0.96		0.72' 0.96'		.96 74
	Boulder lined	streambed.	1					-		-	
		10.20	1016	-	-	b to	529-002	1		185	O REW
1-12	Contraction of the second	1 20		1.2.4.4		29-0		comp	Dass	al on	+IM 8/16
	11-2		1 1 1 2		Tag Line		0'	Cen ler	Ptag	time	g
61 1						5.5'		width	= 2 0'	7	.5' um
-	10. 1 1. 1.				LEW 11.7 Tag Line Er				- 4.00	or 7	75 8116

Projec	t / Client _05D	COTOG /	USALE			Project	1
- [.	529-00]	anler.	N	EC		
TLS "	REW		center of 16.75 of tagin	LEW	TLE 14.5	1750	
01	1=2.5		1 42	11.0'	17.5		
~~~	1				1		
1.	1.31 -				silty sides	TLS	
	1			2	wlorganics.	REW	J
			- 4	Rod	eambed	LEN	1
		1		str	eambed	TLE	
1730	Distance	from st	art of t	agline (+	t)/	-	
With the state			r (ft)	-			
	.5/0.9		1 State 1 Stat		0 11/0.6		
	1.5/ 1.8			9.5/ 1.			
	4.5/ 1.2						
			/				
1735	Depthe a	renter	(6.5) is	3.2' H	20		
	Depth fro	m Sui	face (ft	Josepho FI	low (ft/sec)	17.54	4
0.2	0.64			0,4			
0.4	1.28			0.4			
0.6	1.92			0.4		0-2	
0.8	2.56		·	0.40		0.4	
						0-6	
	vegetation	n appro	ximately	2' UPS	tream	0.8	
•					ct flow.		
	Vegetation				4 12 / L	1810	
		.)		- 10 year	1.4.	1815	N.

	_	-	_	_	_	-	_	_	_		NE	c	_	
1750	Te	an	n e	lea	tea	+	o te	ake	ad	ldit	ion	2	~ 0	ost
										. 6.			.0	•
	21		-1				-							
TLS	0	1					e	mie	-	7.	Hm	<b>s</b> /il	S	
TLS	++ =	5	2.0	•			Wi	dth	•	-0				
LEW					Ŋ.		(et	nter		3.75	j litte	Silo	3.	5'
TLE	11.	5'					Cent	er oi	Hag	line	- 1	5.5	8	
										-				
	Di	sta	nce	fr	om.	sta	H	of	tag	line	Cf	t)	1	
	d	ept	h o	f	wa	ter	(	ft)		[co	mpa	556	17	0.
	2.	0/2				5.	01	2.0	1	Eco e	01	12.	2	
	3.0	12	, 3			6.	01	2.	9	9	.0	12	.1	
	4.0	12	.9					2.					1	
1754	D	ept	ħ	at	cer	Her	- (	5.5	5' 0	in to	agli	ne)	is	
	1	2.0	1 1	Hz	0.			-				-		-
	Dep	ŧ) .	+to	Hz	SUP	tact	L	F	100	u (1	F41	se	<)	
0.2	0.	58							0.	16				
0.4	1.1	6							0.1					
0-6	1.3	4							0.	23				
0.8	2.3	12							0.7					
	AII	dep	th \$	Flue	me	asu	rem	ents	coll	sched	M	ss.	CL, 1	HM
										moi				
810														

Proje	ct/Client 050K8702 /USACE	SECC.	16/2016	*		Client 050K8702/		ate 8/17/ CC	
2		NECIN	some_	12		1 and the second		Nome	
1852	Depart NEC for N Arrive in Nome.	ome			1015	Safety Tailgate: Personnel: Stanley Se	ogars, Kristoph		Hollee M clas
2000	Perform sample man	agement	-			wx:		-	
2200	End management	1-				PPE : Modified Level			
2300	Complete Sit Rep & EOD					Safety : Fatigue m	anagement	, witalife	, weather
Ye	Daily Summary					Objectives : Sample			
1	· sample 1 well @ Moc.	MOC CON	nplete.						
	1 primary sample				0845	Depart for offic	e to pres	pare coo	piers.
	· sample \$ 29		1. A.	- le	0930	Arrive at AK Air	Cargo to	ship 4	4
	2 sediment : 2 primary	\$ 1 MS/W	ASD		-	coolersto ALS			
	2 surface water = 2 prime	my \$ 1 D	UP	211		coc#s 10-13		Junitor	ion chauda
	· collected flow on SUB			-		AWB# 027-401	0-6345	from St	EA to PDX.
	4 measurements	1	*	-	1000	Arrive at Bering			
-	· Remove 1 bag IDW			-	1015	safety Tailgate S	e above		
	. Pack 4 coolers	6 P.	Sec.		1035	Depart Nome for	NEC.		
1	the second s	· · · · ·	•		1125	Arrive in NEC 8	pack g	ear to	mob to
)		0		- 1 -		site \$8. GAC fil	tered 91:0	f Decon	water
	Holeoma	ban	F	- 5	1210	Mob to Sø 8to			
		10 11		-		Samplers: SS1		HM	
		-				Bottles; Methods;	Analyses		
		1. 11.		-		1-8 cz amber	DRU/RR	O AK	102/103
7.01 -		-	4				PAHS	SWS	MIRCORS
		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L. 4.	-		·All sample nam	es start w	vith:	
			1	-		= 16 NEC- 501	3-"		

Location (D)	ple 10 Date		l'ime	Sample Depth (Ht)	n	USCS & other observations Project
50-0.65 (MS/	MSD) 8/17	12016	245	1.5-1.	75	Grey, ML 0-1.5' organics & Cling wet/saturated H20
50-066		1	253	1.5-1.	75	Grey & Brown, ML, 0-1.5 organics
55 - 067 (MS	AMSD		305	1.3-7		0-1.3 organics wet 1.3-2' prown, mpisto ML, little
85-064 (9)(D	UP)	0	510	1.3-7	2	organics. See above
50-063		1	320	1.0-		
SD -062		-	330	-	2,0	D-1.5' organics & water wet
5-058 (9)(00	P)	45	336	1.5-2.	0	Ort 0-1.5' organics 1.5-2.0' brown ML wet
55-059			345	1.5-1.		0-1.5' organic layer 1.5-1.75' brown ML, damp, trace organics
mainder of Imple 10 \$\$;-060	Date . 8/17/2016	Time 1403	Dep		0-1	1.5 organics & water -1.8 ML, brown, wet, trace
		1412	1.7-	2.2	0-1	orgenics
D -061			1		10.00	1.7 organics & water
SS 05:7		1427	1.5 -	2.0	1.7-	
		1427-		2.0	1.7- 0-1 1-5-	-2.2 ML, brown, wet, little organics -2.0 ML, brown, wet 1.75' organics
SS 05:7				-2.25	1.7- 0-1 1-5 - 0-1 1.79	-2.2 ML, brown, wet, little organics -2.0 ML, brown, wet 1.75' organics -5 -2.25 ML, brown, wet 1.7 organics
SD - 057 SD - 056 SS - 055		1432	1.75	-2.25	1.7- 0-1 1-5- 1.79 0-1 1.79	-2.2 ML, brown, wet, little preanils 1.5 organics -2.0 ML, brown, wet 1.75' organics 5-2.25 ML, brown, wet 1.7 organics H-2.1 ML, brown, damp 1.4 organics
SD - 054		1432 1438	1.75	-2.25 2.1 -1. <del>1</del> 5	1.7- 0-1 1-5- 0-1 1.7 0-1 1.7 0-1 1.7	-2.2 ML, brown, wet, little preanics 1.5 organics -2.0 ML, brown, wet 1.75' organics -5 -2.25 ML, brown, wet 1.7 organics H-2.1 ML, brown, damp

SD - 044         011/M4         135         135         01         036         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037         037 <th0< th=""><th>Remainder of</th><th>Date</th><th></th><th></th><th></th><th>d</th></th0<>	Remainder of	Date				d
	+1	9141126	1636	1-0 1-0 1-0-1-0	ML, wet, medium_s	10000
048     100     1056     0-0-1     10-1     0-0-1     10-1       048     100     10-1     10-1     10-1     0-0-1     10-1       003     1141     1.2     1.2     1.2     1.2     1.0     1.0       003     1141     1.2     1.2     1.2     1.2     1.0     1.0     1.0       003     1141     1.2     1.2     1.2     1.2     1.2     1.2     1.2       003     1142     1.2     1.2     1.2     1.2     1.2     1.2     1.2       003     1142     1.2     1.2     1.2     1.2     1.2     1.2     1.2       003     1142     1.2     1.2     1.2     1.2     1.2     1.2     1.2       003     1142     1.2     1.2     1.2     1.2     1.2     1.2     1.2       100     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2       100     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2       100     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2     1.2	11		1651	-	H20007th 0.75'; 0-1.25' bys organius. 1.25-1.75 ML, girl & brown, wet/sqtura	
-048     1304     1.0-1.5     0-1.0     0-1.5     0-1.0     0-1.5     0-1.0     0-1.5     0-1.0     0-1.5     0-1.0     0-1.5     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0     0-1.0	2.1		1656	4	ganics ML, grey & brown,	NOSO
= -045 $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -045 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -046 $ $= -0$	SS-048		4041	1-0-1-5	.5 ML , brown , moist/wet ,	0190
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1712	25-1	0-1.251 organics 1.25-1.75' ML, brown, dam	> HSU
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	il	-	+I+I	5-1.7	aist, brawin	8 <b>3</b> .
-003 1142 0.75-1.0 1142 0.75-1.0 1142 1.5-3.0 1142 1.5-3.0 1142 1.5-3.0 11452 1.5-3.0 114	:0	-	1726	1.0-1.5	damp, medium	FCC
S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-000 S-			1742	0-1-5-1-0	ML, brown, moist, foct odor *	NE
21-00 5 -00 1001 Januel 100 1001 Januel 100 1000 Januel 100 1001 Janu	55-004	+	i <del>15</del> 2	ů,	Sampled ; along foodside. V or go down to gilt?	*
- 002 - 003 - 002 - 003 - 002 - 003 - 013 - 015 - 15 -	6S-00B	_	1806	1.45	PID into holed	4
	-	1			m on PLD + 25	
			1613		organics metatics 905 p 1990	<b>0</b> 10911
- 1002 (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB) (MS/MSB)	1		1829	1.15	submeryed ML + - 6 ( se	ada
	200-55		1835	1.0-1.5	Soluces of Soluces	701
100 100 100 100 100 100 100 100	(MSIMSD)				ML. brown, trace 0 1 2 2 0 organics, w/ medium 2 2 2 2 0 grave of st. trace 1 2 2 0 0	150 /
01-97560 01-97560 01-97560		4	1840	.0-1	1 5 6 21 1 At simil 508-00 508-00	7037 33
					101-9756 101 to the those	NEC

48 Loca	tion NEC/Neme Date 2/17/2016
Proje	ect / Client 050k8 102 / USACE ECC
	NEC/Nome
1850	Mob to camp. Load up samples & gear.
1926	Depart NEC for Nome.
2015	Arrive in Nome, Take Samples to
	office & refresh ice. Transported
	I bag Samptrash & I bag IDW.
	See Logbook 2 for info on B visitors today
	Daily summary:
	shipped 4 coolers to NS
	Collected SS: 17 primary, 2 DUP, 2 MS/MSD
	SD: 12 primary, 2 DUP, 1 MS(MSD
2100	Break for dinner
2230	Sample Summary & sample tracking
2330	EOD
~	
	Holdo maban
	Nexes
1	
1	

					707	1								
-								_		Nom	IE		_	-
OOFO	Pre	pa	re	10	bel	s	for	Se	imp	le	sh	ipn	nent	t.
0760	ca	.11	fro	m	KM	1	re	ga	di	ng	Se	im	ple	
	100	cat	rio	ns	al	ong	2	wi	thir	n	oad	bec	4.	
0805	Sa.	fet	TY	aile	ate	1			-		1			
	Per	sor	ine	: .	Sta	an	See	gat	s					
				820					Reid	+				
				1785			ca							
				250	140	lle	e M	clea	in					
	TPPE	: 1	loch	fie	d 1	eve	ID			34	1			
	WX	2												
	Safe	++	Fa	tiqu	e							1		
					mple	<, S	am	ple	SOE					
0225		_			for					1 m	ent			
0930				1.	Air				-	,				-
	sh	qii	tu	10	soi	11	sed	ime				St	A	19
			1.0		02-						1.00	-4-1		
1000					ring			Me	et	w	20	ott		
					ov s			-			THE S	000 0		-
10.10													sam	1.0
				L								ro	adsi	de
	1 1			102000	40			- A.S	1	A's 2-				-
1035	CO	n	fer	en	ce Snew	mar	al	1 -	KM	4 D	on M	lalon	R	_
	Fri	om	Ac	aron	. 5	hou	Id	no g ro	t se	cm p	lei	nr	road	

50 Locati	ion NEC/Nome Date 8/18/2016	L	ocation _	NEC/ N	jome		_ Dat	e 8/18	12016	- 51
Projec	t/Client 050K8702/USACE & ECC	P	roject / C	lient 050	K8702/	USACI	ENE	cc		-
	Nome / NEC	-	N			it's.	1	NE	C	-
	directly west at vegetation. From 10' centroid, relocate N/MW Until we reach vegetation. (73\$75) (69)		I, witherganic	VI Little	ganics. Wet /Saturated,	PID= 7.3 ppm mois t strace orga	Janies	anics, moist	end, damp/maist	
1000	Field team boards plane. Very strong fuel odor. Alerted pilot to strong smell. Pilot (Jack) got out of plane to check for leaks. JHM 8/10/1016 No leaks. Pilot started plane but team continued to express concern. Asked pilot to please not take off. We all got out of plane. Turns out the odor was epoxy from a new door seal that HTM 8/ 0/2016 had been installed the	uscs & other observations	0-1.5' arganies 1.5-2.0' ML, brown, littlesand	damp/moist 0-1.5° organics 0 0 H10 1.5-2! ML, braun, trace san	5-20' ML, brown ,	ganics ML, brown	75" organics P10=1.4 pr 5-2.25 ML brown, trace	Hie or g	0-1.5' organies 1.5-2.0' ML. brown. trace San	
1150	night before. The fumes were trapped inside the aircraft, Depart Nome for NEC	Depth	1.5-2.0	1.5-2.0	1.75-225	1.75-2.25	1:75-	1.5-2.0	1.5-2.0	
1242	Arrive in Nome. Missing survey equipment. Must still bein other plane?	t SU	1415	1422	1425	1432	Offi-	bhh	1459	
1245	2 visitors (Floyd and his wife) arrive to collect birthday cake -	Dotte Dotte	8/10/201							>
1335	Field team mobs to SØB to determine pts that need to be relocated.	Sedim		ò	60	210	006	014	6	
1345	Field team elects to relucate SOB- 04,13,21,39,69,73,\$75 \$ For samplers, bottles, & Methods see pg # 43.	Site of Site of Remainder of	110- SS	5000-010	- 004	SS	SS: - C	- <b>Q</b> S	(p) 810-22	

		No.	Tel				5		~				. 3	1			water	Hasser	E00	
V			ds	00	)	12				1	*	55	SS	Remainder of 10 (Loc 10)	. sm		al nottota			
¥	2		0	1-	1	1	19	5	tus	SS	1.1	5		aind			p1 \$ hi	10 prima	-05	
-010			1	04		SD-040	20	4500	Jussi de	- 031	-+	1027	-022	10)	(matrest)	ad will gu				
ő	5		£ 10.	-			-	030	T.	31	- tussick	T	h	4			808	9 2319mp	· collect 6	
-	+	1 6	-				5	-036(9)			T			amp	-boos thim to	iltro) tott	2201 SIGM	and the second se	· Relocat	1.1.1.1
	+			1	1-	-	-	-			-	1	Q	Sample Date		10		howwo	is flipa	
-	+				-		1	-		-	-	-	8/18/	ate	· 1040201	a sigmos	to sot	yd puas	Sit Rep.	
-	=	-			-	-	-	15	-	-		TR	-					\$ 21900	ecmplete 1	0017
7591	3	-	1626	1616		1543		1533		1526		1517	1510	Time	1. 1. 1. 1. 1.	1		· alitice .	dear to	
-	-				-	-	1	-	-			-	-	-	1	salqmpz	trodsno	T . SMON	Arivein	OEDI
1.5-2.	+		1.5-2.0	2.0-2		2.0		1.5-		1.0-1.		1.5-	1.0-1.5	Depth			8.3MON	NEC tor	Debart	210
~	1	_	2.0	1 is		-2.5		2.0		1.5		2.0	in	5	1		parture to		1 1 1 1 1 1 1 1 1	588
0		- 0	TNO	+			-	1			-			<u> </u>	mater!		268 8 de			509
15-201		0-1.5 organics.	1.0		1.0-2.5	0-2'	is	0-1.5' organics	1.0-1.5 0rga	0-1'	ncis	-2-1	1.0-1.51 ML,	uscs &	× 18					
		20'0	50me				N	.s	90.1	0	+ 2	2.0	101	S	and a l		mdd g.0	JUDIS	PID Bag F	SSH
	17	N IS	1 1 1	HIL B	MC .	organies	Ó	0	organics	60	uet.	20	32	· g]						
MILLAND	Inter Distant	S	ML; dark	8/11/20			3	2	N'S	lics		Es	ACS	other		oM	,S'Ł	TOA	PEO-802	_
	(WO		500		See	-	is	2.	greats n biom			darkbiown,	5.4	0	· · · · ·	oMN	, G · 9	TOA	SE0-805	
+		-	St	e i	above	HIDE	, grevisn bro	5	3	-		k b	104	bse			57'8	TAA	Et0 - 805	-
taie	THUE		1019	-	Ce	00	SNP		0.0			me	1010	avia	41	March .		TOA	120 - 805	-
			1 3.	2 10	1.3	S	1 8	2					brown, moist	observations		0.W	,9		10-805	-
Ornanirs	-un	U-Topm	Mo	3 1	moist	urface	07.0		me			3	1	6		, MN	, S£.E	TOA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.	15	phil	moist	45	12	e .	organics		1	-		ec	with		81/8 W		Call	TOA	120-805	
	1010	an Pub	1-w	1-9	wer	-	SH	T		+	•	qa	nord		4	•M	,STL	401	E10-805	
4 	20	<del>4</del> 8	iwet,	-			1	6		-		organic	with organics	-		0	N'F	TOA	100-802	
f-	1	NBC		Ŧ		_	1		L (		1	6:	S	-	(EC	N				
_	_	250		יבת	2 2	745	01	7.01	BADS	11 D	Clien	/ 10	elor	1 14			T ESASO	TOESHO	Client 05	Projec
-					- =	545			MON						3102/81			N		Locati
3	41	07/81	18					d	MAIN	11			and and		11-10					52

	rganics		oulders	ML Herech, SC	el (SW)	Heergands	
	or 25' bgs. moist, little a	e crganics, M	9", Some boulders	0	00	ML, brown, 17	vith organics.
observation s	sh brewn .	0-2' brganics 2.0-2.5' brawn, damp, fittle crganics, ML	bbles 3"-	0-15 organizs ' 0.25 - 1' gravel & colles 1. 0 - 1. 25 Some organizs, saturated, ML Junauti * sheen & odor during saturpling 3.7 ppm PID	2-2' organics w/ coarse sand igravel (SW) 2'-25 ML, brown, damp	ics * Permafrost, M., brown, little organics.	0-2.0' organics 2.0-2.5 brown, ML, damp, with organics.
hepth USCS & other Observations	U-2' organics 2-2.5 ML, giry:	-2' brganics	0-0,251 organics 0.25-B1.25- Co (Similer + thi 1.25- 1.5' SW	North Strand Stands	2-2' organics w/ coan 2'-25 MI, brown, damp	0-2' organics	0-1.0' organics 1.0-2.5 brown,
	2.6- 1	2.0-2.5 0-2.	0 - 51 0 - 51	52.1	122-2	2.5	2.5
Time	1638	1643	1715	07F1	£££1	1349	1081
" Date	8/18/ Loit	-	8				>
Remainder of Date Sample 10 (Lac 10)	30-015	- 619	020	076	55 - 024.	SS-023 *	820-55

	T-				-		Now	e	
0800	call Be	ring	Air.	Cal	1 6	ack	at	930	2
	call B	-							1
	Call TT								fo:
	Batteries			89,0	46	1 10	2 Y		
1	PID cal								. *
1	Return unu	Sec. 1 2 1							
	sticke	r Bo	Hen	. n	on -	Spill	able		
		1.1.1	1 280						
					pilla	S TO SAL		,	
A	NB		OT RE			-	pre	DE/	IAL.
And and a second	467					CU F		Pro	rision
- 1	101				•				
10	al gas -	1.	1	مسلبة	cia	1	chi	~	1
- 0	JI 343-	and contract	0 -		and the second		511	4.	
-		The second second second	5 - +	and the second second	-				
-			C.M.	and a large		a outrat			
-	IF FULLY					2011	e o	way	8
	Punctul			IE.		-		-	
1050		Angelo		14 ²	-	-		-	-
	Give	away	air	horns	s .	-		-	17
_	Neutr	uize	acids	fron	n boi	tles		24	_
*	337	F2	OR	(ell	907	350	674	12	_
	Gre	q Rut	Kowsk	i	_				
105	called P	Lawile -	ALC	110	1		tod	0.1	

56 Location NEC/NOME Date 8/19/2016 Project/Client 05DK8702/USACE & ECC

Call Greg RutKowski JOL * Lithium - ion battery Flow meter? PID Checkall batteries - Lithium 10h battery sticker -- on AWB: Nature & quent of Goods lithium ion batteries in compliance with section I of PI966. * NAC- for chemetrics test leit # 1019 - NAC shipping account Prepare samples & supplies for 1115 shipment. 1345 Ship 1 cooler to ALS via Goldstreak AWB# 027-4010- 6555 Ship 2 pallets of gear from Nome to Anchorage office; notify K. Maher on arrival. To ship on cargo flight 8/20 Issue wiknowing AMPS of Lithium ion batteries contained in equipment. Confirmed w/ agent "DOES NOT CONTAIN DG!" AWB# 027-4010-6566 œ, EOD / Hallemolen

Location NEC/Nome

Date 8/19/2016

57

Project / Client USDK8702 / USACE & ECC

2300	Receive message from Linda at
*	Receive message from Linda at AK Air Cargo. Cooler/ broke & shipmen
	not taken on plane samples placed
	outside in a secure cart. I will step
_	by tomorrow to replace the ice.
	called agent back so we could get cooler
-	tonight to refreshice . Linda will
	get cooler & drop it off atold Alaska
_	Rooms
2325	Linda calls. Cooler is in the mail
	truck behind locked gate. she
_	cannot find the key to the touck.
	I will pick up cooler to morrow at 830.
/	
	1 tolloometoon

	Date 8/20/2016	Location NEC/Nome Date 8/21/2
Proje	ct / Client 050K \$702 / USACE & ECC	Project / Client 05DK8702 / USACE & ECC
	T tomo	
0800	Call Bering Air. Weather hold. Bering	0800 Call Bering Air. No one answers phone.
	Air is not making any scheduled	0830 Call Bering Air. Not lecking good.
	filights . (41) back at 1000	1000 called as wx day.
0835	Arrive at AKAir Largo. Pick up cooler.	started working on reports.
0846	Arrive at office to replace ice.	EOD
09.15	Ship cooler to PDX on same	
	AWB.	
1015	call Bering Air. NO -flight yet. call	Hoep makan
	back at noon.	-
	TO DE:	
	Ship chemetrics via NAC to ANC	
	Ship/pkg remaining items to ANC	
	- defrost freezer.	
	-ship coolers to ALS.	
1200	No flight.	

59

	t / Client USACE/ 050K8702 / USACE & ECC	1.12	and the second sec				- / USA	CE	Ecc			
	Nome/NEC		SØB	SD \$	SS	sam	pling		2.		IEC	1
0800	Call Bering Air. Depart at 930.					1			ML	1	e.st.	
0900	Safety Tailgate: WXX 38-49.7, windy		5-1.5	559	والحار		sha i	3	sw & ML		sivel, moist,	
19	PPE: Modified Level D	1.	0	2.			a to	Se	SP	4	ce 5 3	
-	Personnel: Stanley Seegars	č	S.	0.25	3		a-5" r		en. sand		trac	
32	Kristopher Reidt	bservations	ganiès.	HIDE	dray brown / with	arganics			4 sheen.		Sand	
	Christopher Carson	Serv	ore		be	381	H2 Jan	0-0.5' organics. 0.5-1.0'	4 .			
-	· itollee McLean	ob	sig	cs.	m	10	6 0	0	to		cont	
	safety: wind & windchill	other	0.45 10	organics.	MLIC	trace	HI	1.05	el o	otes	SW . course	
	obj: site 08	-		019	٤	tra	0-1.0° organics ML, brown, little o	rigan	i.e-1.5", Fuel udar brown, medium to	0-0.5° cubies		
0905	Depart for office	5 44	420.	0-0.5'	0.5-1.0	wet,	brow	S.	Sil	·s.	0.5-LC'	
0930	Arrive at Bering Air	vscs	0.5' H20 Cobbles	0-0	Ś	3	ML.	0-0	1.0- bro	0-0	01-2-0	
0945	Load plane	0		-	0		5	-		-0.		
2950	Depart Nome for NEC.	Sample		5	. 0			-0-1	S	1-5		
035	Arrive in NEC		1	0.5	1.0		-	-	-	0		
	over in wind. someone came an second the	Time			1330		1338	1343		1353		
	tent in our absence	4	016								2.1	
1200	Try to verify that all moved locations are there.	pate	8/22/2016	$\Box$		#						
	529-006 still + here but under approx. 5# of H20	4	Moved 025	S	it.2'		÷	S -013.(9)	<u></u>	669	ed from	MS/MSD not needed.
10.00	See Legbuckt 2	der o	105	- 025	7' Acm ach	from 028	400	10-	'a	1		5/5
1300	Mob to site 8. See pg 43 for bittles, analyses, 2 samplers	Remainder Sample 10	love	SD.	7. 400	5	3	SS	3	SS	origina lockhon	Fort

Sample 10 Date	e Time	me Depth	3E 0 0
021	14041 122/18	1.0-	1.0-1.5' su & ML, wet 11 the gravel, with organics
110- 55	1412	2 1.5 - 2:0	0-1.5' organics. 1.5'-2 0' ML, brown & grey; little organics, trace gravel, damp/moist.
SD - 068	1423	3 1.5-20	6-25' organics 0-1.5' organics & cobbles. H200 1.5-20' Brown ML, Little organics moist fuel 0.25' bys
070 - C	1430	0 1.5-	0-1.5' erganics. H20 @ Surface 1-5-2.0' brinn, ML, withe organics, little coarse sand, moist
240 - 55	1442	2 1.0-	0-1' cobles 1.0-1.5' Sw i fourse sand inthe sith wet
Eto- SS	1456	-	U-1' organizs 1'-2' cobbiles 2'-D ci - Grey ML, little organics, damp/moist, somptie
\$40 + 70S	105!	1.5 -	imet, sample submerged
SD , 7075	1512	2 1.5-	a-1.0 regenden. 1.0-1.5 coubles, 1.5-2.0 grey, mil, imme arganics, moist/wet, sample submerged
- 25 - 22	1522		
1 140- 55	FE61	7 2.0-	0-2 organics with complex. Sample under 1420. 2-2.5 see 55-039
501-043	1 1541	11 1.57.0	1.5-7.0' ML brown, trace pragnics moist, trace gravel
501-042	1553		0.5' H20 0-1.5 'organics 1.5-2.
50 038	1601	1 1.5-2	trace organis, moist 11 1.5-2.0 tonew grey, Mis
(P)teo, ds	1608	08 2-2-5	0.5' H20 0-2.8' branics. 2.0-2.5' ML, gry, trace
2 60-55	1016	5-101 0	damp organics. 1.0-1.5' ML, brown, little organics,
50 033	1622	511 2	anics 1-1.5' ML,
50-034	1630	0 1-5-20	0-1.5. urga
50-035	1639	9 1.5-2	0.75" H20 0- 1.5 organics 1.5-2 Sec 033
50 -029	16H2	5 1.5-2	Hype surface O-1. Sorganics. 1.5-2.0 see 033 with little organics i willes
55 - 630	1655	5 1-1.5	Fuel odor: 0-1.0 organies 1.0-1.5 SW; course sand with gravel. Trace organics. Wet.
		200	
		- 0	
~			

Location Nome / NEC Date 8/23 (2016 65 Location Nome / NEC Date 8/22/2016 Project / Client USACE ECC / 05DKB702 Project / Client 050K8702 / USACE SECC Nome Arrive at office to prepare samples for 0630 Empty vials of HCI from vola 1700 shipment & gear for demold. trip branks. called chemetrics GAC filter approximately (7 galions 0930 of decon water ship - as dangerous good in accepted quantities class #8 Mob to shelter; pack plane. 1 Bay 10W 1715 Disposal-special Handling W/RCRA Start plane to leave NEC. iB20 Arrive at AK Air Cargo. Waiting for them 1005 Arvive in Nome. 1915 to open at 1030 AM. opened early for me. Daily Summary: 1015 Shipped 1 coolers to ALS Goldstreak. salvage shelter. verify swing tie method for survey. AWB 027-4010-6765 027-4010-6776 - Empty coolers general freight SOB finished nut needed. SS-11 primary (1Dup & 1005 1005 D) Shipped sampling supplies to ANC SD - 13 primary (& 1 DUD & 1 MS/MSD) AWB 027-4010-6780 Prepare to depart Nome for NEC. 1115 Arrive in NEC. 1216 complete sample labels & sit Rep sheak beach ( mouth of sugi. Beach has been revered -2200 EOD off. 1247 Stopat culvert on Sual. Water is higher Hallometoan than yesterday downstream of 5401. HAM

66 Locati	on Nome	/NEL		Date_811	3/2016		Location	Nome / NEC	Date 8/24/2016
Projec	t / Client 09	50K8702/	USACE	Ecc		-	Project	/ Client 05018702 / USACE 2 1	ECC
ADJ,	Pt	Dist	pt	Dist NE	i L				Name
054	054	3.06	57	19.27			0645	Dispose of 2 bags ger	eral trash )
039	039	7.35	44	22.10'				Recycle amber bottles (	
075	0 30	8.40'	75	6.11		1	0900		
UTB	073	8.16'	072	7.05			UIUU	NOA - H. McLean	
021	021	5.83'	071	17.17				AWB# 345 2303	9041
013	013	7.25'	068	15-21			1100 1	Return vehicle to Stampede	
004	007	23.73	003	13.38'			1115	Receive ride to airport to	wait for
	1							~1220 departure.	
1406	Floyd \$ 2 kids visit camp. Spent 1.5 hours						1400	Arrived in Anchorage	1
		vr shelter.							
	1						5		
1500	Mob +	· 508 d	529.	Removed	/				
	all stakes @ SOB. From							1 Holdona	span
				,002, 20	003.				5
1515	3 AT	VS 185	peple ani	HZO. ive at S\$8.					
				1					
15.35	Return	to camp	. Wait to	CASA.		-			
1730	CASA a	rrived . Los	d gear d	1 Ibag gener	al trash	-			
1755		Navajo. He							
1844		in Nome			1	1			
1000	Arrive o	t ou Ak	Rooms.			4			
	EOD								X
	1 -	Hallo Mack	born						
4			1						/

2 08 2

# 2016

MEC

Kristopher Reidt



ALL-WEATHER ENVIRONT

030K8702 V2012.0 FLD

AE-ECC-J07-950K8762-H04-002

550 Environmental Poly 43/4 in x 7 1/2 is TTT Environmental Instruments and Supplies (907) 770-9041 www.tttenviro.com 6 mm3 2 2 81 m5 5 0 1 1 mm 2 ISBN 976 1932149 15 4

8/6/2016-8/23/2016

Pr	0.	N
Rite in the	Main ING PAPER	NUM

# ALL-WEATHER ENVIRONMENTAL FIELD BOOK

Numbered Pages

Name	Ecc	+	Jacobs	
Address _				
_				

Project NEC ØSDK 8702

**Rite in the Rain** — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, *Rite in the Rain* ensures that your notes survive the rigors of the field, regardless of the conditions.

Specifications for this book:

Phone

Page P	Pattern	Cover Options		
Left Page	Right Page	Polydura Cover	Fabrikold Cover	
Columnar	1/4" Grid	Item No. 550	Item No. 550F	

1996 - 2012, All Rights Reserved

153 154

155

## **RiteintheRain.com**

Made in the USA US Pat No. 6,863,940

1000		
PAGE	REFERENCE	DATE
*		
a 161		
2		

#### **Reference Page Index**

C	Error codes, Hazardous classifications, Container types
L .	Sampling guidelines (Liquids)
1	Sampling guidelines (Solids)
)	Approximate Volume of Water in Casing or Hole, Ground Water Monitoring Well
	PVC Pipe casing tables
ba -	Soil Classification
	Soil Classification
	Maximum Concentration of Contaminants for the Toxicity Characteristic
	Conversions (Concentrations, Volume/Flow or Time, Velocity, Acceleration)
	Conversions (Length, Weight, Volume, Temp, etc)

	CONTENTS	
AGE	REFERENCE	DATE
-		
_		
	71	_
1		
	1	
		-5
_		

Location NEC /Nome Date 8/6/16 Project / Client 050K8702/USACE + ECC

Hold tailgate sofety meeting @ 0710 Old Alaska Rouns: 1/4 mile U.S. in Swoonga, Expersed weather delays personnel: Stan Sugars (SS) Kistopher Reizt (KR) Chrs Casar (cc) Hollee Miclean (HM) Safety Topics: Driving though above (pedestrians + ATU'S), weather delays ansite, air travel. Today's objectives : Contrue Says bet prep. - contine go Thagh all equipment and hakplan. - Kevian schedule ad possible Scenaros - Practice setting op energency cap tent. 0750 Deput for Berny Hu 0010 Anne at Ben An. Disessed warke and flight stedie of kevin (Pilot) No are his flow to site yet This year. Bering Air will require low ft ceiling and 3 mik usbilt/ ogo Anne at field office. Discuss wother and saple procedies.

 $\mathbf{2}$ 

Location NEC/Nome , Date 8/6/16 Project / Client \$5 KD 8792 /USACE + BCC Return to Borny Arir to practice Setting 1045 cp weathepert shelfer. Finsh setting yo and pacting sheller. 1300 Go to Builder Sypty & prehase tols and cable chaps for setting p shelt in the field. Reten to Bern Hor. Discuss of Chris (schedules) 1300 about attempting a Hight tommercon many @ 0900. Responded to a email correspondence from 1330 Scott Mclintock (Surveyor) regarding remaining questions about suple locations. Also called Dan Malany (ECC PU) and gave him a statis' update at the project. End of day 1400

VZ

Location NEL / Nome Date 3/7/16 Project / Client 05048702 /USACE + ELC

Mostly sunny Scattle Cluds, 154 and. Figsy conditions in Fricange. Fig expected to lift soun. 0830 Held trigat solely meetin @ OH Alaska Rooms. Expect to the to NEC this warning. Personnel in attendance : Sten Sugars (55) Kistopher Reizt (KK) Chris Carson (Cc) Hollie McLean (HM) Satety topics: Marads associated as/ setting up emergering shelter, meany oppopulate PPE, Hageds associated with water at the site. Today's abjectives: Ist fight to NEC setup engines carp and stage field equipment. 0840 Depart ta Being Air 0850 Check in with Schedule Chis regady This maning's Hight. was not fied that There was a littline tag aver saccongs that is expected to clear later in the Marnine.

Location NEC / Norma Date 8/7/16 Project / Client OSDK8702 / USACE + ECC

Annie at the de the to check an 0900 get ice. Restand and sarted freeze to allow for better frequen at Gel is parts Will want to please call them Ber Anfor also they autopate they will be able to thy. Set op stream the celocity weter on the 0915 slaw atside it tam to produce Collecting Stean the ingquenests. Chis Case had noticed the lack of cell please signal art that locutor. We kned to tick atthe to wat for place call from Beny Air ta 1000 possible Rodot to NEC. 1130 Begin loading egipment canto ane rolt to attempted mobelization figut to NEC. Chus the Berry Ar worked their interpreting of the Aught schedule. Being the was use The impossion that Hights would be daily" at not necessarily three a day. Atreast will want as The yard while Field team Sets up every camp. Schedule Changes_ or possible changes to number of Thights a day the tield duration.

Location NEC /Nome Date 8/7/16 Project / Client 050168702 /USACE + ECC

1200 was survived by Beng Ar that the awarder are laided and are now harmy for a weather update for the attension scheduled Hight to the Island. Tergrand about sound by rates for the Naveje and King the average to not ousite. Reversed Stream velocity garging priledies 1230 while agiting an stud by at Bern Aw. Emailed a project to Da Malary vegandin flight states, articipated areatt and chang in plans al known place an good as site. Emailed -Scott time Eloland Survey and responded to his earlier greater regular site #29 locatar names us. Candinates. Holla Miclan had suggested he venice the date as the second tab of the speed short. IF This does not asper his gestas, he will need to avage & meeting to abless. 1430 Los whitiet by Kyle from Berry Au that today's flight has been cancelled. CASA Growth is loaded and will make another ablenpt tommanow maring at 0900.

Location NEC/NOME Date 8/7/16 Project / Client 05068752 /USACE + BCC 1430 Contacted Scott regarding Survey Stedile. Addessed his questians about sike 29 by pointing at the search tab on the Breel File. Will a stupt the site survey on Tuesday tollowing the militization AUNT. Cartined to practice with The Strem Flee 1300 velocity meto. Updated Da Making an Schedle. 1645 Rehm to lodging to revie expanded equipment manal for than make and Catch up a log back hotes. Reviewed user's manual tor Stea Phoeneter 1730 End I day re

Location NEC /NOME Date 8/8/16 Project / Client OSOK 8702 /USACE + ECC Mostly Sung, light breeze, good is in Strongg 0000 Called David Olsen to discuss pessible flight to NEC. Was hithed that we will plan for 0900 departure. 0810 Condicted tulgate setty weeks: at Alasta Rooms Personnel in Alterdace Sten Seegars (SS) Kns Reidt (KR) Chris Carson (cc) Hollee Malen (HM) Discussed similar topics as \$17/10. with the addition of safe wildlife evants and preparing attending excus the plan. 0900 Anne at Being Him 0930 Deput on Navajo w/ CASA for melalization Flight. Marcijo pilot--Sta CASA pitlet - Kyk 1020 Anne of NEC. wat for CASA to Ame. 1040 CASAAnnes. Begin unloady aircreft and setting up weatherpart. 1325 Finish fent setup. Break to hunch

10 Location NEC / Nome Date 3/8/16 Project / Client OSDK 8702 / USACE + ECC Calibrate PID: 3/10: 910685 150 200 cal = 0.0 ppm Span cal = 100.0 ppm 1510 SS + CC Finish sike Settip KR + HM begin Grandwater electrons at the MOC. Well dysth measurements are recorded in field not back # 1). Reasses effert. FUCIS on Shirtly 1600, locating wells. All grandwater saple locations identified. 1645. Return to Base Camp and propare to demote back to powe. 1715 Depat NEC. Anice at Berry Arr. Discos Duranis 1801 Schedele a/Kyle. Will they to allar for drop-att many flight and they veter Aght. Othruse, may have to keep place a Studby. Will notify Don Malovey if they will not prarie two Aghts. End & day

Location DEC/None Date 3/8/16 11 Project / Client OSDK8702 /USACE +ECC Overast, 1000 ft + ceily, 50F, expected shows 0805 Condect many talgat stely noting at OH Aliska Rows. Personnel present: Stan Seagers (55) Kis Razt (KR) Hollee McLea (HM) Chis (asan (cc) New topics ! Seam egipunt a s.k. Will get lock the failer head to consider how to sear equipment able the the is in Nane. OSIZ Make Marun Call to Ben An. to check states of 0900 depende. Was notoried that they are anoble to get weather internation Thom Scrouga and may not get a Hight at at 0900. Called Scott McClintock and left 0815 Vocemal to relay stats yout. 0840 Called Don Malary to discuss Flight delays. Was told to See how las The Swey will the and take a fight to see it we

12 Location NEC/Nove Date 3/9/16 Project / Client _ \$50K8702 /USACE + ECC Cherast, SO'F, Fogsy in Swanga. get in to the site assume we can possibly be on the grand kay enough to Finish. 0850 Called Sout Medintoc. Was worthed his surey at NEC will take at last 8 has to complete. 1000 Clad Ceiting in Savourga seems to be holding at Sto". Will make attapt to fly in to NEC. Contacted South Ancelinhock and posified him afar intertra to decuber Actified Don Malarey of the worth Seley. 1100 Weather march in are Jacouga. Delyed Plught. Fickt team decided to take the follow day of walk as Surveye is fireasty to be taggy the several days, Called Da Malany and Ascussed The 1200 possibility of internally staying at a le Bland as a glowature ggreach to com the camp to eugeneres only. Les told Part he will isuss this gother and Jacks Gd USACE. . .... 1230 Bud & Day w

Location NEC/NOME Date 8/10/16 Project / Client 05DK 8702 / USACE + ECC Overcest, SOF, 3 milet Use lity in Strongs 0815 Called David @ Ben Av. Chas. institud that The weather has Cleard are Savaye and we can attapt a flight to NET. sechedled Flight departure @ 1000. No bred Don Malary of change & tield Schedule Conducted manine sofety weating 0900 COLL Alaska Rooms. Posamet in attendance : Stan Seegers (35) Chrs Reist (KR) Chrs Cash (Cc) Hollie McClean (HW) Stepy topes: An perel, heather delays with the people encountry and doing an morentary of equipment an SE before direct deputs. Will make see Benny At has an Cantact into m The field. 1000 Amire @ Ben Am to wat to departe 1100 Anno @ NEC. Bogin site therity Everythin agrees to here. Begin Collecting GW electrics See Frete notebosic # 1) for data.

14 Location NBC/NomE Date 210/16 1: Project / Client 05 PK 8702 /USACE + ECC Owerst, how clad ceiting (300') SOFF 1354 Bosin calibation of YSI's YSI # 1 (SU: UNE101038) YSI + 2 (SW.096101665) Condiction by Subon: 1413 ms/cm EXP: 11/2013 Pet # 00653-13 - gened 8/10/16 15I Pre-cal Post-cal YSI # 2 1.432 1.43 YSI # 2 1.375 1.413 Dissolut Oxygen \$51 ×1 106.1 100.1 YS202 104.3 99.7 PH 7. W Pat # 00654-04 APP = 11/2017 YSZ 41 7.28 7.01 YSI #2 6,38 7-01 PH 4.00 Part # 00654-00 Exp = 7/2017 75261 4.20 4.04 YSIAZ 3.97 4.04 PH 10: ~ pat # 00654-08 = 08/2017 751#1 9,85 9.89 751#2 9.96 9.90 ORF POHE 8032 ERP. 09/2019 751+1 256.3 240.0 YSI#2 264,9 240.0

Location NEC/None Date \$10/16 Project / Client \$50k8702 USACE + ECC avasty hav dard certing (300') Sort, him day 1430 Bain and of genderate suply. 1500 Set op an unitern well 14/11/001. Repar to field notebook # 1 for details of sampling at this location. Refer to Gend act allector Firm for supe details. # 1620 Collected Gus sample ID 16NBC-14MWCOI-WG-1712 Setup at maniton well 14MW03. Sayptos: KR + 55 Having issues with subvesible pup. unable to hold a land on the cantollor. 1730 Stop Saysly effect at this Weather Return Red equipment to Base Camp and assist samples HM ECC at well bocation 14MW02. * 1817 Collected bis sample ID 16 NEC-14MOZ-WG(-9) Refer to Ge samply form for detail to sayplay 1915 Return to shelter. Begin compart dean and preparing for Flyint to nome.

Location USC / Nome Date 8/10/16 Project / Client 050k 8702/csAce + BCC Ande @ Dave. 2034 Anne C affre. Prepare sample labels 2050 and get Ice. - Was workfied by pilot (Sta) that NOC is not an the charter ittnessy the taran He said he want make his set aaldde If weather is Frank for Alghot townow. - Notified Scott Malintack That we will afferent to they to NOC in the many -- Pupare duity report to BIC PW. End of day 2400 M

Location WIST / Wome Date 8/11/16 17 Project / Client 050K8702 / USACE + BCC

Call Bern Au to check an weather 0800 conditions. White we thend I low clad ceiting above Savonga. Norified Dan Malary and 0815 Satt McIntock about weather deley. KR, SS, CL go to Field SFC 0930 to help prepars samples for shipment. Go to Alaska Air Cago to ship 0945 Single Cookers, Called Ben Air, Was ustiled at 1015 low clad ceiling. Will call @ 1300. Called Bong the likes anothed I Ba Construed cland Cover. Field tegan will and attests to the to KE.

18 Location - NEC/NOME Date 08/12/16 Project / Client 05068702 / USALE + ECC Overast, 50°F, Clad copy in Scrange and Yes' all Made maring call to Bong An. Les antitud It triangle Curdthers. Will pla a a drop of Aght@ 0870. Ben An will provide gir King Air git the expuse of a Naugo Avant. Called Scott Michart He will not be available todage due to meeting a another chest. 0930 Anne @ Bern Am Report & depart to NEC. 1020 Fly are NEC. Clad ceiting had dryped to Zoo' w/ Zeo usbitty. Retured average to None 1110 Called Da Malerey ad notherd him it the eventher delay. Today will be the 4th Option task 1 " Weather delay and first optim Task 3 turn and Aght die to weather.

Location DEC/NOME Date G8/13/16 project / Client 05PK870C / USACE + ECC aures + 45-50% @ ate 1. Any Clard's Sor celling ola Called Ben Hir. Whis winfred of lifting Clad celiz. Will call back @ ogen. nehre Scot Melmback. 0830 Conducted Tailgate Safety meeting Q Old Alasta Raying Personvel a Ste: Star Sugars (55), Chis Casa (Cc) Hollee Miclen (HMM), and Kis Reat spery Topes: Travel in None Chil Tovel to ABC Tovel clife ansite Bugging weather are Churc. Ola Called Ben Av. his uskilled that we all astropt a fight @ 1000. 1015 Departed Ben Ar (None) for NEC 1100 Anne at Ben Ar DEC. All equipuent allanted for. Usishing has grox. 15 wi and clad aring arend SW' duy the approach. Unputed tied cap equipment. calibated instructs ad pepaed to Ger sapling.

areast	e itoc, sw' cel.	50 F 15m m	sib-lity
115 GL	bated YSI m	fors.	
Condictivity	Solution		
Instant	pre-cal	post-Cal	
Y 51# 1	1.378	1.413	
15\$#2	1.036	1.415	
Dissource	1 Oxygen		
	104.9	99.3	
YSIAZ	97.5	99.5	
PH 4.W	(4.01)		
751 A 1	3.75	4.01	
45142	4.05	4.01	
PH 10.00	(10.01		-
431×1	9.93	10.01	
YSI HE	9.34	10.01	
PH T.W	(7.01)		
YSIAI	7.10	7.01	
YSIAZ	6.98	7.01	
OLP Sol	ita		
451#1	238.7	240.1	
75102	237.6	240,0	
See p. 1	y for calibrat	ian Lot #'s and	٤

Location NEC/Wave Date 8/13/16 21 Project / Client OSDK 8702 /USACE + SCC Bolun cluds, Soo't ceiling. So"F nownd. 1220 Samples KR + SS Setup @ manitaria well 14 MW206 1732 Began prom arell. * 1310 Collect Gw sample 16NEC-14MWW6-W6. and deplicate sample 16WEC-14MW06-26-9 Break for kuch . Finished sayster this location @ 1417. 1600 Scuptors KR + SS set up a well 14/10/03 *1644 Collect GW sample 16NEC-14MOB-WG. Finished Sauplus this locate @ 1727. 1800 Samplers Kil + SS Setup @ well lacatran 16NEC-MW38-10-WG ¥1829 Collect GW Sample IGNEC-MW 23-10-WG. Furshed Sangola @ the location at 1859. Begu Sote breakdown. 2040 Depart NEC for None.

Location NEC/Nove Date 8/14/16 Project / Client 05048702 /USACE +BCC Mostly Suny @ Nove. 200° clad ceth @ Sarange. 0330 Conduct manuna Solety @ Old Alaska Rusus Posawel: Kris Reat, Sten Seegars, Hollee Michan, Churs Casa. Safety Topics: Travel to us from Site. Travel and Mane, Wildlike executes tatique management. 0920 Called Berg Av. Was whiled that he are presulty on a weather delay, will call after was am. Nonfiel Dan Malary of delay. Hille Melen and Sta Seegars downed the the Stile to pepae Suple labels. has called by Being Ahr. Nothfield 1009 That the field team can head down For departure. Hollee Michea will Stay In None to process samples. Depart None for NBC in Marcijo 1114 Gir place, Anne @ NEC, Limited Usibility and 1200 Clad Ceiting @ 400'- Sco'. Pillot had Suggested That he remain a the send for a while,

Location NEC/Nous Date 8/14/16 Project / Client OSDK 8702 / USACE + ECC hav clud certing 400' SO'F, Lisht here 120 Calibated PID SN:592-910685 Fresh giv calibation: O. Oppun Fisherthyene calges: 100 ppm 1229 Calibrated YSI SU: U96101665 (YSIAZ) (see pg 14 for cal soluna lot #s \$ exp dak) Conductionly Pre- Cal Post-Cal andictuly 1.403 1.413 uslan2 рн 7.00 7.00 7.01 рн 4.00 3.99 4.00 рн 10.00 9.98 10.06 ORP 238.1 240.0 РО 96.0% 99.6% 1245 Break Fe lunch. 1310 setup at well 17/11W-2 DTw = 12.10 TD = 15.65 PID: 0.0 the all spaces 1328 Start Rigin Initial tuberty = 149 NTU 7 1422 allected GW sample 16NEC-17MW-WG 1505 Setup at well ZZMWZ 1540 visitors avoile on 4-wheelv. Since usters as yesterdy. Eigen ad his From by at allectra water at The ky of the weller.

Location NEC/Nome Date 8/14/16 Project / Client 050K8702 /USACE + ECC Wardy, 454=, areast, Sa'a. They * 1542 Collect GW sample 16NBC-22MWZ WG 1640 Setys at well 26MW 1. Begin Pyrs Q 165 Z. * 1757 Collected Giv Sample /6NEC-76MW1-W6 (see Gin Sungly disk sheet for details) 1815 Setupat well TOMW -1. Begin Puguy @ 1873. # 1858 Collect ON Sapk 16NEC. 20 MW-1-45 (see Ou Samples Sheet for details) Breakden site, Return to Camp. 1958 Boad Navejo ad disembak far None. 2045 Anie in Wone. Dryp sample adus If at affice and get fresh ice an samples. -End & day -

Location MBC / Nome Date 3/4 /16 25 Project / Client 05068702 Windy, 40-458 accest 0900 - Made house check-in call to Banky to cartin flight to NBC. Was hiddened that the weather @ Sacrongs looks favache So Rey all attempt & Fight. Regulated a depathe the of loso. · Package and ship sauple coolers to ALS. 1000 Anne at Boy the Was addied by Don Malary that USACE had directed BCC to vessigale montan well 14MW03 de to lock of stabilization of three peravetus. 1034 Depart Neve lie have suplace. 1000' clad caring an approach to NEC 1140 Anna @ WEC. Bogn prepara for Gu Saupla and Sutace hato Skean garsing. 1158 Cabak PID (see field book #1) 1159 Calibake YSI (see followy pg).

26 Location NEC/NomE Date 8/15/16 Project / Client _0501<8702 Windy, 40-457, about YSISN: 096101665 pe-cal post-cal Dissolved Oxygen 105.5 % 99.6 % Specific Conductance 1.398 ms/an 1413 ms/cm2 рн 7.0 (7.06) 7.00 7.06 рн 4.00 (4.0) 4.00 4.00 PH 10.00 (10.05) 10.06 10.06 ORP (200.0) 242.9 240.0 Son 1300 Samplers Kit + CL setyp an Manitarius well 14MOS. Byin pogues @ 1215. * 1354 allect Ga suple 10AEC - 14MW03-46 1454 Samplers Kit & de setup at well 14Ma 05. # 1553 allect Gu Saysle 16NB-14MW165-16-1640 Break 1740 Saupes R+ CC setup at well MMW of Begin puging @ 1801. * 1840 Collect Gu Sample ISNEC-14Mhours 1920 Return to camp and begin prepares for departure. 2010 Depart NBC For Nome. Total at 3 60 suples allecte

Location NEC/NOME Date 5/15/14 27 Project / Client 050K8702 Windy, 40-45 F, areast 0955 Anne at Beng Air in Rome * lok on manhan well 14MW wit: Puze water clas very killed throughet progra process. Initial tribility read was approximately 860 while the subsequent readings Showed a. evor cide on the instruct Which indicated the water way too tubile for the instruct to read. A Calibration solution was used with was vead accurately. # TAI gave Selety briefing was conducted @ 1015 at Bene Ar. personnel an site: Sta Seegers, this Rest, Kollee Melea, Chinis Casa Safety topics " Timel a site, Fight to - From Wave / NOC, alway and Nove, Ofpose to weather, fattigue management * Discused the bags of IDW and thash From Cap at Ben Mr.

28Location NEC/ NOME Date 8/15/16 Project / Client 05 DK6702 areast, 500'- 300' ceity, 45"F, light broke Oron Called Da Makey shart hanney Sample locatus beganged @ the Sela River site. Called Scott Michatelle about veryon The site. Scott Sad he will let is than his availability in two days there. 0915 Conducted unnung tubeck Setty metry 0 Old Alaska Roans, Posamel or site: Skn Spegers, Kis Robit Habe Molean, Chis Casa Safety discoses: Tarel and have, Travel to USC, having in your chater exposure to elembs. Mave @ Ben Av. Disanbut fe ico WEC Arrive @ NEC. 800-900 clad com, 1055 good usibility, moderte Lund, Apor 157 Anemaneter does not apper to be have go accurately.

29 Date 8/45/16 Location NEC/NOME Project / Client 050k8toz areast PARC, 45-F, light - no breeze Calibate Justicents for GW saply Y31 #2 SN: 096101665 (see ps 14 tar Gil. Exchans Lot #'s and expension dates) - pre-cal post-al exen 101.2% 100.4% 100.4% Dissuked Owner Condemity 1.931 45/cm2 1432 m3/an2 pH 7. w (7.01) 7.06 7.01 pH 4.00 (4.01) 3.96 4.01 PH 4.00 (4.01) 3.96 PH 1020 (10.01) 10.00 10.01 239.7 240.0 ORF 1220 Samples KR + CC setip Q well MW88-3, Bagan prym @ 1233 * 1330 Cullet Gu Sample 16 QUEC - Mines - 3- NG 1405 Frush @ well Mile 8-3. Retur to Cayo to reduce too lat to close well manues to 1500 Collect Tanal total depth from well ZZMWZ, Return to camp to Propar on Field egyment to note back to pome. Sample C.C. goes to asist the 1600 vest of the field team of stee matin flow measurents.

Location NFC/NOMS Date 8/14/16 Project Client OSDIC 8 For Checast. 500' Cloud Ceity 454 Checast. Soo' Cloud Ceity 454 Checast. Soo' Cloud Ceity 454 Checast. Soo' Cloud Ceity 454 1730 Sample K.R. goes to join the the field bear w/ Steam water measurements. (Kot to field hole back \$1) te details petaining to Site ZG) 19a Complete Scaplan and Sdean Him measurements along the Sigi over, A Camp was usite I by Figure Tilly and his family again. They had let a package to are of the pilots at the A shelk the the tield team to bring back to above. 1955 Anne in None. Discard I bay of Camp related bash at Ben Nov. · Luky Dan Malary of progress. Contact Scott Michatick that we all reque additional Survey @ NBC. He will citizent to come of the ten tomarrow 2020 - los to sifice to prepare samples ter Shipment to lab. 2730 End of day.

Location NEC/anno Date 8/14/16 project / Client OSDK8702 clea Stres in line, SU+ F light - to breeze 0830 Retin Reitel Make (Dec) to the Dredge R2 7 Becase a balding fre has beginning to show the klineads. Replaced vehicle of a jeap. Orov Gu to affice to pepae sayles for Shipnest. 1000 Drup sample Cueles of @ Maske Mules 1015 Conduct Tailgate Sweety Meeting P Dering Mr. Passonel a site: Star Segars, Chrs Cosa Hollee Miclean, Kristopher Realt Safety Topos discussed: Taksue massement, Slips/ trips / Falls, there to - From site. 1035 Depart None for NJSC in Hongo applie 115 April Nor Stars late clear al Unlimited us, billy, Conducted 360" Agree NOT for aerel photos. 128 Anne C MAR. Report For saying O Site E. 1224 Field lon annes @ Site 8. 1530 Far usites came by the camp on two 4-Wheelers One of the waiters is the dereptor & Bigue Tilly who has a calm 10 miles to the west. The verters had asked the pilot of they gold big a builday

Location NFC/NOME Date 8/17/16 Project / Client 050K8702 /USACE + ECC Clear slaves, GU+"F, Ight breete Cale to his Sais buthday, For more UBAtars shared up (8 total). It ars Bigene Tully and his water and gradchildren 1857 Bud suppy @ Ste 8. Collected a total of 29 sedwarts samples and additional QA/QC suples ( deplocate + Kis/Kisos) - Begin sit cleage and proper to departe back & Usue. 1932 Take St In have. Are back at Ben An. 2015 Disorded Z bogs & Lash (1 camp tash, 1 IDcc). Go to affice to pit Fresh ice 2045 on sayples, Collected à total of 17 privery soil suples w/ 2 deplates and 2 instaso Saplis 3 12 Septiment a/ 2 deplicate and 1 MS/MSD Scholes. the f da -2110

33 Location Not None Date 8/18/16 Project / Client OSOK 8702 /USACE + BCC aveast, light breeze, 45%, clad any 600 700' Many tiket Set week @ ott 0300 Alaska Keoms. Personnel on site: Stan Seegars, tons Reist Hollee Melein, Chris Carson Satty types: Travel to and for Kene, fatigue management, shos/kups/fells 0830 Field kan heads to office to prepare samples to ship to the lap. Called Berry Hir to confirm many 0900 Aught to NBC. Followed up with Confination to Scott Michatak to antin Schedle to today. D956 Anne @ Berry Arr. Communicated and Vein Make ad De Maling abut adjust several sample locations at sike 8. Held conference call up being and Dan 1040 regady plan for adjusting suple beating at site 8 and sweyner adjusted scyle locations at site 9. (Refe to for (Rafer to fie for unterpeak # 1 for details garding which samples will be adjusted ].

Location MFC/Wave Date 8/10/16 Project / Client 05DK8702 /USAC+ BCC Oberanst in Done 30+ "F Bard Marajo anplane for DEC. 1100 Strag petroleum odar was appraved in the cabin, Aslad plat if the sull use insural for this public average. -Pilot cubické a well and the place to athen there are us fiel leaks an For any obvices judgatas of Suce of Swell, No saves I the oder were find, Field team commuted again a how share The oder was, signing it was gaing people a boadache. Agai, ten asked pilot If we and ask the mantuage people If they and cather the same I dow. Pilot shat down awatt and said we work use a differt place. Churs, who waks in schedeling both had said the oder was not the petrobern bet from "remaining the engines up" adjais time new plastic, pehaps from a new toke in the plane. 1140 Bad her avost. Pilot whiled field team That save I oder in previous gives for the due to door sealant instral on the door.

Location WEC/ NOMIS Date 8/18/16 35 Project / Client 05068702 Windy, Owerst, 60-Euicely 4592 1200 Annie O NEC. Upou un log hu the averat, the survey a realised his toke at equipment was not linded on to the new encrift. Surger will not le able to surg be adjusted lacations to day, will be available tourner. 1325 Calibrate PID SN: 592-910685 Boo cal ges: Q.O ppu Spa Cal gas: 100,7 ppm tield ten heads to site 8 rew to Consure sediment / soil samply 1808 Prepare to disembak fe Nome. Field team heads to cap to clear up wal 1930 Take st for None 1915 Hive back at Ben Av. Field ten heads to affice to put fresh ite of on scuples 2030 End & day -

36 Location NEC/RDWE Date 8/19/16 Project/Client 05068707 USACE + VECC Foggy + four clad Ceity in fine, high ands and ran 0749 Called Berry Av to cleak states of charter fight. Was worthed that we are an a weather Stadley and has instructed to call back @ Ho, 0930. 0930 Called Berry Ohr. Still an Studly. Will call again @ 1100 - Commenty hope winds and van in Savoonga. Teoperate in the SO"S, Called Berny Av, Spok a/ David Olsa 1100 veganding today's flight. Was fold a star is blown thrugh and the west will be tomera, will shad down today and call in the morning. - provided Scott Michatal of delay and told him that we will pla in form marine . - NotFred Den Malary & beather delay. - Field fear heads to office to pain field gupment and pepce Saples to Suprest. 1400 Go to Alask Allers to shop gyment

Location NFC/WOME Date 8/20/16 Project / Client 050K8702 USACE +ECC None - Fogsy, rain, breety 0757 called Berry du to check a states of chate About to are. Les fold they are not figure any scheded Plights today. Foggy in Sacanga Will Cell beck @ low 0845 Call Scott Mc Cluteck, MotoRed him at the weather delay, was told that he will not be available to conduct the vest the sney Suggested that we save the in the reading points 0500 Called Dan Malary. Astried hu at weather delay and states of the survey. Regrested a 300 survey tope to b sing hes. Called Bern Aur to check a thight Shits. Still pape weaker canditions in Savanga. The WORA loir weather observation at the Savaga aupat vepats Overast sky u/ Zer' clad Certury. Will call back at 1200.

Location NEC/NOME Date 8/21/16 Project/Client 05 DK8707 / USACE + ECC Krone- averast / Kgs- 159 , rainy Savounga - averast, 459 , conty; chad cang bar Called Ben Ar for Aget sends to NEC. 0830 has told by the schedule that Flocats this marine. Will be contacted by K/k (methad manger a Dave Olsa) regarding Alst today. Called Ben Mr. Still a stort denn 1030 de to tenses flight these IK

Location NEC/NOME Date 8/22/16 39 Project/Client OSDK8702 /USACE +ECC None - Misstly andy, andy 759 0800 - Called Berry Not to check on Hight. has while that and has a facelle and will deport @ 0930. 0900 - Go & affile & pick y ide and sape cookers. 0940 - Disembuck Bern Art for NEC 1070 - More @ Upt. Shang - Cruds (40 mgh) . 40 F. The cap shelter had been Blans are doing the 3 day waster delay. The Tilly's had come by to Secre it down the tit is destaged. The field equipment use 13 9 mess but appeals serviceble. - Contacted Da Malarey and gobt & him a the solic to. Uses ristick ! to look at the adjusted side backing to see if they can be sure bed - The lower Sign fiver is several feet 1200 hige the when person says d.

40 Location UBC/WOUR , Date 8/22/16 Project / Client OSDKEFOZ /USACE + 500 Sample locations for Side 29 Heart reque Siver 5-290 529-005- Surered 329-006 -Adjusta in the field, Presently Schwerged unde water, Appens alin 700 to loant soi 005 to ad SZ9-008 which is sures the mer. - SZ9-007 - Adjester in The held. Citin the men New Water w/in. 30' of 529-005 ad 529-008. Lovalin is about clust dop in the water. - 529-001 - All sayes 4 Plu use alles & sit the surveyed point after the maning were allected from a better were in The Shan This loop count be soning tred Theis any The angend beach of n Use property. Maybe does not agree Begin sediment / soil saply @ Site & 1700

Location NEC/NOME Date 8/23/1C Project/Client OSDKOTOL /USACE + ECC avecest/andy/ 459= ship field empluent parted by 1030 "Scolos' Fugineen back to Anchinge. 1115 Depart Ben The Ar NEC 1210 For det gener Europ of the estray of the gay. Live. Land a WEC. Conduct sand suggest the cottenp, 1730 Sand be appears leveled the the ine actin. Griss a 10 J Sad be knowld are then acres, Tep of Sad by latter to share avent were acto bel The nonlucks sever Text high the Reach Avea of Sugi Rive new the bridge where samples were allected appears hite The yesteday. 1245 Field tea herds to Sole 8 to Collect sun the weasurents for Select Shuple locations (Ret to field book # 1 for date)

## APPENDIX E Photograph Log

#### PHOTOGRAPH LOG TABLE OF CONTENTS

## Photo Number

#### Page

Photo No. 1	08 August 2016; 1038 hours. Suqi River and estuary. Facing northeast	E-1
Photo No. 2	08 August 2016; 1044 hours. Field gear loaded into CASA. Facing northwest.	E-1
Photo No. 3	08 August 2016; 1058 hours. Field gear unloaded from the Bering Air CASA. Facing north	E-2
Photo No. 4	08 August 2016; 1113 hours. Erecting emergency shelter along the Airstrip. Facing south	E-2
Photo No. 5	08 August 2016; 1534 hours. Emergency and field gear stored inside weatherport shelter. Inside.	E-3
Photo No. 6	08 August 2016; 1704 hours. Emergency weatherport shelter, weather station, and ATV along the Airstrip. Facing northeast.	E-3
Photo No. 7	13 August 2016; 1522 hours. ECO-Land LLC performing survey at Site 8. Facing west.	E-4
Photo No. 8	14 August 2016; 1245 hours. Washout near Suqi River culvert. Facing southeast.	E-4
Photo No. 9	14 August 2016; 1253 hours. Flagging placed as safety barrier around washout near Suqi River culvert. Facing southeast.	E-5
Photo No. 10	15 August 2016;1258 hours. Collecting sediment from S29-010 in Suqi River estuary with hand auger. Facing southeast, flow to the northeast.	E-5
Photo No. 11	15 August 2016; 1305 hours. Collecting sediment from S29-010 in Suqi River estuary with hand auger. Facing south, flow to the northeast.	E-6
Photo No. 12	15 August 2016; 1316 hours. Classifying sediment from Suqi River estuary using a USCS chart at S29-010. Facing down	E-6
Photo No. 13	15 August 2016; 1430 hours. Sediment from Suqi River estuary sample location S29-008. Facing down.	E-7
Photo No. 14	15 August 2016; 1522 hours. Method used to locate actual proposed sample location for S29-006 in Suqi River estuary. Facing south, flow to the northeast.	E-7
Photo No. 15	15 August 2016; 1555 hours. Organic layer encountered and removed prior to sampling sediment at Suqi River sample location S29-009. Facing down.	E-8
Photo No. 16	15 August 2016; 1740 hours. Terminus of the Suqi River estuary, berm, and Bering Sea. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.1 ft mean lower low water) at	
	Photograph Log	

## TABLE OF CONTENTS (Continued)

Photo Numbe	<u>}r</u>	<b>Page</b>
	1609 on 15 August 2016 and high tide (1.8 ft mean lower low water at 0115 on 16 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east	E-8
Photo No. 17	15 August 2016; 1740 hours. Terminus of the Suqi River estuary, berm, and Bering Sea. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.1 ft mean lower low water) at 1609 on 15 August 2016 and high tide (1.8 ft mean lower low water at 0115 on 16 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east	E-9
Photo No. 18	15 August 2016, 1933 hours. Sheen observed prior to collecting sediment from Suqi River sample location S29-003. Facing down	E <b>-9</b>
Photo No. 19	15 August 2016; 1942 hours. Collecting sediment from peat and gravel sample at Suqi River sample location S29-003. Facing down	E-10
Photo No. 20	16 August 2016; 1306 hours. Debris in Suqi River near Suqi River cross section S29-002. Facing down, flow to the west (right)	E-10
Photo No. 21	16 August 2016; 1524 hours. Collecting depth measurements along the tag line at Suqi River cross section S29-004; while the source of the downstream foam was not investigated, it is likely the result of natural decomposition. Facing northeast, flow to the northeast	E-11
Photo No. 22	16 August 2016; 1632 hours. Suqi River cross section S29-002. Facing east, flow to the west.	E-11
Photo No. 23	16 August 2016; 1641 hours. Collecting the depth measurement at the midpoint of the Suqi River at cross section S29-002. Facing down, flow to the west (right).	E-12
Photo No. 24	17 August 2016, 1358 hours. Soil and sediment sampling at Site 8. Facing west.	E-12
Photo No. 25	17 August 2016, 1400 hours. Decontaminating sample collection equipment during soil and sediment sampling at Site 8. Facing west	E-13
Photo No. 26	17 August 2016, 1419 hours. Soil and sediment sampling at Site 8 UDU. Facing southeast.	E-13
Photo No. 27	17 August 2016, 1638 hours. Soil and sediment sampling at Site 8 UDU. Facing east.	E-14
Photo No. 28	17 August 2016, 1709 hours. Typical depth of samples (1 to 2 feet bgs) collected from Site 8; ; this sample was collected southwest of the UDU and northwest of the MDU from SS-045. Facing down	E-14
Photo No. 29	18 August 2016, 1343 hours. Slope and extent of road toe along the MDU and LDU at Site 8. Facing south	E-15

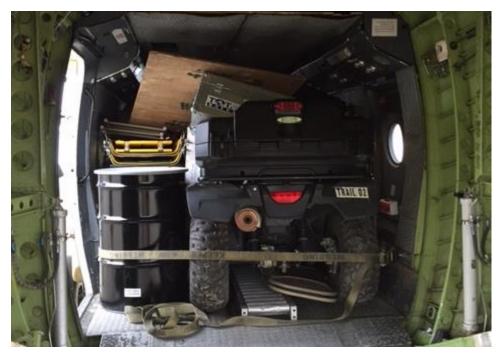

## TABLE OF CONTENTS (Continued)

Photo Numbe	<u>er</u>	Page
Photo No. 30	18 August 2016, 1411 hours. Survey lathe with blue flagging (left edge of photo) represents the adjusted Site 8 sample location for S08- 073 (right edge of photo); both the original proposed and adjusted sample location are east of the MDU. Facing northeast	
Photo No. 31	18 August 2016, 1655 hours. Site 8 sample collection at S08-020 in the LDU. Facing down.	E-16
Photo No. 32	18 August 2016, 1705 hours. Site 8 sample collection at S08-020 in the LDU. Facing down.	E-16
Photo No. 33	18 August 2016, 1732 hours. Collecting sample S08-020 at from the LDU at Site 8, a saturated coarse gravel and sand surface soil. Facing down	E-17
Photo No. 34	18 August 2016, 1738 hours. Soil sampling on a tussock at Site 8 location SS-024 near the southwestern edge of the MDU. Facing northwest.	E-17
Photo No. 35	18 August 2016, 1757 hours. Soil sampling on a tussock at Site 8 sample location SS-023 west of the MDU and LDU boundaries. Facing northwest.	E-18
Photo No. 36	22 August 2016, 1038 hours. Location of emergency shelter along the Airstrip after storm event. Facing east.	E-18
Photo No. 37	22 August 2016, 1040 hours. State of equipment in emergency shelter upon arrival to NEC after storm event. Inside.	E-19
Photo No. 38	22 August 2016, 1105 hours. Water in drip pan after storm event. Facing down.	E-19
Photo No. 39	23 August 2016, 1236 hours. Terminus of the Suqi River estuary, berm, and Bering Sea after storm event. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.2 ft mean lower low water) at 0936 on 23 August 2016 and high tide (2.2 ft mean lower low water at 1539 on 23 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east	E-20

(intentionally blank)




**Photo No. 1** – 08 August 2016; 1038 hours. Suqi River and estuary. Facing northeast.



**Photo No. 2** – 08 August 2016; 1044 hours. Field gear loaded into CASA. Facing northwest.



**Photo No. 3** – 08 August 2016; 1058 hours. Field gear unloaded from the Bering Air CASA. Facing north.



**Photo No. 4** – 08 August 2016; 1113 hours. Erecting emergency shelter along the Airstrip. Facing south.



**Photo No. 5** – 08 August 2016; 1534 hours. Emergency and field gear stored inside weatherport shelter. Inside.



**Photo No. 6** – 08 August 2016; 1704 hours. Emergency weatherport shelter, weather station, and ATV along the Airstrip. Facing northeast.



**Photo No. 7** – 13 August 2016; 1522 hours. ECO-Land LLC performing survey at Site 8. Facing west.



**Photo No. 8** – 14 August 2016; 1245 hours. Washout near Suqi River culvert. Facing southeast.



**Photo No. 9** – 14 August 2016; 1253 hours. Flagging placed as safety barrier around washout near Suqi River culvert. Facing southeast.



**Photo No. 10** – 15 August 2016;1258 hours. Collecting sediment from S29-010 in Suqi River estuary with hand auger. Facing southeast, flow to the northeast.



**Photo No. 11** – 15 August 2016; 1305 hours. Collecting sediment from S29-010 in Suqi River estuary with hand auger. Facing south, flow to the northeast.



**Photo No. 12** – 15 August 2016; 1316 hours. Classifying sediment from Suqi River estuary using a USCS chart at S29-010. Facing down.



**Photo No. 13** – 15 August 2016; 1430 hours. Sediment from Suqi River estuary sample location S29-008. Facing down.



**Photo No. 14** – 15 August 2016; 1522 hours. Method used to locate actual proposed sample location for S29-006 in Suqi River estuary. Facing south, flow to the northeast.



Photo No. 15 – 15 August 2016; 1555 hours.
Organic layer encountered and removed prior to sampling sediment at Suqi River sample location S29-009. Facing down.



**Photo No. 16** – 15 August 2016; 1740 hours.

Terminus of the Suqi River estuary, berm, and Bering Sea. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.1 ft mean lower low water) at 1609 on 15 August 2016 and high tide (1.8 ft mean lower low water at 0115 on 16 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east.



**Photo No. 17** – 15 August 2016; 1740 hours.

Terminus of the Suqi River estuary, berm, and Bering Sea. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.1 ft mean lower low water) at 1609 on 15 August 2016 and high tide (1.8 ft mean lower low water at 0115 on 16 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east.



Photo No. 18 – 15 August 2016, 1933 hours.
Sheen observed prior to collecting sediment from Suqi River sample location S29-003. Facing down.



**Photo No. 19** – 15 August 2016; 1942 hours. Collecting sediment from peat and gravel sample at Suqi River sample location S29-003. Facing down.



**Photo No. 20** – 16 August 2016; 1306 hours. Debris in Suqi River near Suqi River cross section S29-002. Facing down, flow to the west (right).



**Photo No. 21** – 16 August 2016; 1524 hours.

Collecting depth measurements along the tag line at Suqi River cross section S29-004; while the source of the downstream foam was not investigated, it is likely the result of natural decomposition. Facing northeast, flow to the northeast.



**Photo No. 22** – 16 August 2016; 1632 hours. Suqi River cross section S29-002. Facing east, flow to the west.

Photograph Log E-11



**Photo No. 23** – 16 August 2016; 1641 hours. Collecting the depth measurement at the midpoint of the Suqi River at cross section S29-002. Facing down, flow to the west (right).



**Photo No. 24** – 17 August 2016, 1358 hours. Soil and sediment sampling at Site 8. Facing west.



**Photo No. 25** – 17 August 2016, 1400 hours.

Decontaminating sample collection equipment during soil and sediment sampling at Site 8. Facing west.



**Photo No. 26** – 17 August 2016, 1419 hours. Soil and sediment sampling at Site 8 UDU. Facing southeast.

Photograph Log E-13



**Photo No. 27** – 17 August 2016, 1638 hours. Soil and sediment sampling at Site 8 UDU. Facing east.



Photo No. 28 – 17 August 2016, 1709 hours.
Typical depth of samples (1 to 2 feet bgs) collected from Site 8; ; this sample was collected southwest of the UDU and northwest of the MDU from SS-045. Facing down.



**Photo No. 29** – 18 August 2016, 1343 hours. Slope and extent of road toe along the MDU and LDU at Site 8. Facing south.



**Photo No. 30** – 18 August 2016, 1411 hours.

Survey lathe with blue flagging (left edge of photo) represents the adjusted Site 8 sample location for S08-073 (right edge of photo); both the original proposed and adjusted sample location are east of the MDU. Facing northeast.



**Photo No. 31** – 18 August 2016, 1655 hours. Site 8 sample collection at S08-020 in the LDU. Facing down.



**Photo No. 32** – 18 August 2016, 1705 hours. Site 8 sample collection at S08-020 in the LDU. Facing down.



Photo No. 33 – 18 August 2016, 1732 hours.
Collecting sample S08-020 at from the LDU at Site 8, a saturated coarse gravel and sand surface soil. Facing down.



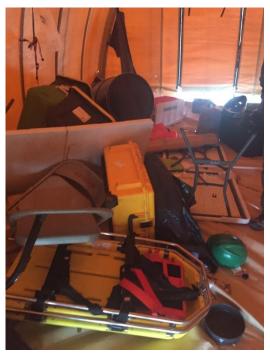
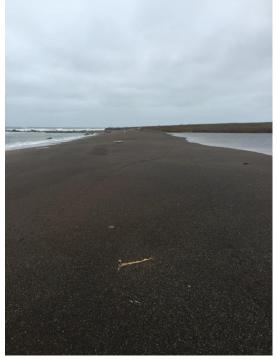

**Photo No. 34** – 18 August 2016, 1738 hours. Soil sampling on a tussock at Site 8 location SS-024 near the southwestern edge of the MDU. Facing northwest.



Photo No. 35 – 18 August 2016, 1757 hours.
Soil sampling on a tussock at Site 8 sample location SS-023 west of the MDU and LDU boundaries. Facing northwest.




**Photo No. 36** – 22 August 2016, 1038 hours. Location of emergency shelter along the Airstrip after storm event. Facing east.



**Photo No. 37** – 22 August 2016, 1040 hours. State of equipment in emergency shelter upon arrival to NEC after storm event. Inside.



**Photo No. 38** – 22 August 2016, 1105 hours. Water in drip pan after storm event. Facing down.



**Photo No. 39** – 23 August 2016, 1236 hours.

Terminus of the Suqi River estuary, berm, and Bering Sea after storm event. For Northeast Cape (No. 2435), using Nome as a reference station, predicted low tide (0.2 ft mean lower low water) at 0936 on 23 August 2016 and high tide (2.2 ft mean lower low water at 1539 on 23 August 2016. Data Source: NOAA Tide Tables 2016: High and Low Water Predictions. Facing east.

APPENDIX F Survey Data



Scott McClintock <nomesurveyor@gmail.com>

# OPUS solution : 52701880.090 OP1385486917463

1 message

opus <opus@ngs.noaa.gov> Reply-To: ngs.opus@noaa.gov To: nomesurveyor@gmail.com Tue, Nov 26, 2013 at 11:30 AM

FILE: 52701880.09o OP1385486917463

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy

USER: nomesurveyor@gmail.com RINEX FILE: 5270188p.09o DATE: November 26, 2013 TIME: 17:30:12 UTC

 SOFTWARE: page5
 1209.04 master93.pl
 072313
 START: 2009/07/07
 15:03:00

 EPHEMERIS: igs15392.eph [precise]
 STOP: 2009/07/07
 23:37:00

 NAV FILE: brdc1880.09n
 OBS USED: 18860 / 21412
 88%

 ANT NAME: SPP39105.90
 NONE
 # FIXED AMB: 132 / 149
 89%

 ARP HEIGHT: 1.763
 OVERALL RMS: 0.017(m)

REF FRAME: NAD_83(2011)(EPOCH:2010.0000)

IGS08 (EPOCH: 2009.5146)

X: -2817926. Y: -549234.8		-2817927.148(m) -549233.866(m)	
Z: 5676379.0		5676380.116(m)	
LAT: 63 19 32.4	19100 0.011(m)	63 19 32.47589	0.011(m)
E LON: 191 1 44		191 1 44.68199	
W LON: 168 58 1	5.23220 0.001(m)	168 58 15.31801	
EL HGT: 45.26 13.	.794(m) 0.001(m)	14.555(m) (	0.001(m)
ORTHO HGT:		[NAVD88 (Computed	using GEOID12A)]
	28.99		
UTM	COORDINATES S	TATE PLANE COOR	DINATES
UTM	I (Zone 02) SPC	; (5009 AK 9)	
Northing (Y) [meters]	7023485.836	1039081.435	3409052.9734
Easting (X) [meters]	601619.811		18095727601
Convergence [degree	s] 1.81330383	0.91959769	
Point Scale	0.99972647 0	.99993255	
<b>Combined Factor</b>	0.99972431	0.99993039	

US NATIONAL GRID DESIGNATOR: 2VPR0161923485(NAD 83)

BASE STATIONS USED PID DESIGNATION LATITUDE LONGITUDE DISTANCE(m)

https://mail.google.com/mail/u/0/?ui=2&ik=0e42c46d69&view=pt&search=inbox&th=14295765e801d3ab

File> C:\Users\Scott\Documents\NOME\16-JOBS\AK16-017\SURVEY DATA\AK16-017.crd
Job Description> N.E. Cape Sample Locations
Job Number>AK16-017 Survey Date> 08/13/2016
Projection: State Plane 83: AK Zone 9
Lat/Lon Datum: WGS84
Geoid: GEOID 2012A

(NOTE: "As-Surveyed" points are designated with a "S")

Point#	Northing	Facting	Flowation	Latitude (DMS)	Longitude (DMS)	Grid Scale(Grd->Gnd)
1	9	1812033.0154	0		W168°57'22.6783"	1.00006650483215
1 1S		1812033.0154			W168°57'22.6783"	1.00006650483213
2		1812053.0148	0		W168°57'22.2405"	1.00006649702291
2S		1812053.0188			W168°57'22.2404"	1.00006649702139
3		1812073.0148	0		W168°57'21.8027"	1.00006648921240
3S		1812073.0249			W168°57'21.8025"	1.00006648920844
4		1812093.0148	0		W168°57'21.3649"	1.00006648140116
4S		1812093.0103	43.3		W168°57'21.3650"	1.00006648140286
5	3405374.8028	1812033.0148	0	N63°18'55.8935"	W168°57'22.6712"	1.00006650483280
5S	3405374.7906	1812033.0096	40.8	N63°18'55.8934"	W168°57'22.6713"	1.00006650483486
б	3405374.8028	1812053.0148	0	N63°18'55.8903"	W168°57'22.2334"	1.00006649702321
6S	3405374.7881	1812053.0146	41.2	N63°18'55.8901"	W168°57'22.2334"	1.00006649702329
7	3405374.8028	1812073.0148	0	N63°18'55.8871"	W168°57'21.7956"	1.00006648921289
7S	3405374.8328	1812073.0226	41.1	N63°18'55.8874"	W168°57'21.7954"	1.00006648920969
8	3405374.8028	1812093.0148	0	N63°18'55.8839"	W168°57'21.3578"	1.00006648140148
8S		1812093.0277	41.5		W168°57'21.3575"	1.00006648139647
9		1812033.0148	0		W168°57'22.6641"	1.00006650483325
9S		1812033.0198			W168°57'22.6639"	1.00006650483127
10		1812053.0148	0		W168°57'22.2263"	1.00006649702368
10S		1812053.0269			W168°57'22.2260"	1.00006649701884
11		1812073.0148	0		W168°57'21.7885"	1.00006648921319
11S		1812073.0026			W168°57'21.7887"	1.00006648921783
					W168°57'21.3507"	
12		1812093.0148	0			1.00006648140180
12S		1812093.0288			W168°57'21.3504"	1.00006648139636
13		1812113.0148	0		W168°57'20.9129"	1.00006647358950
13S		1812113.0071			W168°57'20.9131"	1.00006647359254
14		1812033.0156	0		W168°57'22.6569"	1.00006650483317
14S		1812032.9951			W168°57'22.6574"	1.00006650484125
15	3405414.8028	1812053.0152	0		W168°57'22.2191"	1.00006649702379
15S	3405414.8147	1812053.0401	41.3		W168°57'22.2186"	1.00006649701406
16	3405414.8028	1812073.0148	0	N63°18'56.2808"	W168°57'21.7813"	1.00006648921350
16S	3405414.8256	1812073.0009	41.4	N63°18'56.2810"	W168°57'21.7816"	1.00006648921900
17	3405414.8028	1812093.0148	0	N63°18'56.2776"	W168°57'21.3436"	1.00006648140213
17S	3405414.7999	1812093.0525	41.6	N63°18'56.2776"	W168°57'21.3427"	1.00006648138747
18	3405434.8028	1812073.0148	0	N63°18'56.4777"	W168°57'21.7742"	1.00006648921381
18S		1812073.0035	42.8	N63°18'56.4777"	W168°57'21.7745"	1.00006648921832
19		1812093.0148	0		W168°57'21.3364"	1.00006648140245
19S		1812093.0356	43.7		W168°57'21.3360"	1.00006648139436
20		1812113.0148	0		W168°57'20.8986"	1.00006647359018
20S		1812113.0212			W168°57'20.8985"	1.00006647358763
21		1812133.0148	0		W168°57'20.4608"	1.00006646577699
21S		1812132.0741			W168°57'20.4815"	1.00006646614447
22		1812053.0152	0		W168°57'22.2049"	1.00006649702456
22S		1812053.0132			W168°57'22.2049 W168°57'22.2051"	1.00006649702430
223		1812073.0148	43.7		W168°57'22.2051 W168°57'21.7671"	1.00006648921412
23S		1812073.0086			W168°57'21.7672" W168°57'21.3293"	1.00006648921663
24		1812093.0148	0			1.00006648140277
24S		1812093.0075			W168°57'21.3295"	1.00006648140565
25		1812113.0148	0		W168°57'20.8915"	1.00006647359052
25S		1812112.9996			W168°57'20.8918"	1.00006647359638
26		1812133.0148	0		W168°57'20.4537"	1.00006646577735
26S		1812133.0173	43.5		W168°57'20.4537"	1.00006646577630
27	3405474.8028	1812093.0148	0	N63°18'56.8682"	W168°57'21.3222"	1.00006648140310
27S	3405474.7977	1812092.9985	47.0	N63°18'56.8682"	W168°57'21.3225"	1.00006648140949
28	3405474.8028	1812113.0148	0	N63°18'56.8650"	W168°57'20.8844"	1.00006647359085
28S	3405474.8134	1812113.0241	45.3	N63°18'56.8651"	W168°57'20.8842"	1.00006647358718
29		1812133.0148	0		W168°57'20.4466"	1.00006646577770
29S		1812133.0290	43.8		W168°57'20.4463"	1.00006646577209
30		1812153.0148	0		W168°57'20.0088"	1.00006645796363
30S		1812153.0280			W168°57'20.0085"	1.00006645795848
303		1812073.0148	0		W168°57'20.0085 W168°57'21.7528"	1.00006648921491
31S		1812073.0148			W168°57'21.7528"	1.00006648921491
		1812073.0178	46.9		W168°57'21.7528" W168°57'21.3150"	
32						1.00006648140342
32S		1812093.0244			W168°57'21.3148"	1.00006648139979
33		1812113.0148	0		W168°57'20.8773"	1.00006647359119
33S	3405494.7947	1812113.0231	44.2		W168°57'20.8771"	1.00006647358793
				Page 1 d	JL 3	

34	3405494.8028	1812133.0148	0	N63°18'57.0587"	W168°57'20.4395"	1.00006646577805
34S	3405494.8166				W168°57'20.4392"	1.00006646577332
35	3405494.8028		0		W168°57'20.0017"	1.00006645796383
35S	3405494.7971				W168°57'20.0011"	1.00006645795308
36	3405514.8028		0		W168°57'20.8701"	1.00006647359153
36S	3405514.7931	1812113.0369	44.3	N63°18'57.2586"	W168°57'20.8696"	1.00006647358291
37	3405514.8028	1812133.0148	0	N63°18'57.2555"	W168°57'20.4323"	1.00006646577841
37S	3405514.8190	1812133.0416	43.5	N63°18'57.2557"	W168°57'20.4317"	1.00006646576798
38	3405514.8028		0		W168°57'19.9945"	1.00006645796420
38S	3405514.8111				W168°57'19.9939"	1.00006645795300
39	3405514.8028		0		W168°57'19.5567"	1.00006645014925
39S	3405514.8076				W168°57'19.5570"	1.00006645015321
40	3405534.8028	1812073.0147	0	N63°18'57.4620"	W168°57'21.7386"	1.00006648921554
40S	3405534.8082	1812073.0344	44.7	N63°18'57.4621"	W168°57'21.7382"	1.00006648920791
41	3405534.5316	1812112.9236	0	N63°18'57.4529"	W168°57'20.8651"	1.00006647362744
41S	3405534.5155				W168°57'20.8649"	1.00006647362413
42	3405534.8028		0		W168°57'20.4252"	1.00006646577877
42S	3405534.7916				W168°57'20.4249"	1.00006646577352
43	3405534.8028		0		W168°57'19.9874"	1.00006645796456
43S	3405534.7889		43.7	N63°18'57.4490"	W168°57'19.9875"	1.00006645796662
44	3405534.8028	1812173.0148	0	N63°18'57.4460"	W168°57'19.5496"	1.00006645014964
44S	3405534.8127	1812172.9960	44.1	N63°18'57.4461"	W168°57'19.5500"	1.00006645015702
45	3405554.2603	1812112.8325	0	N63°18'57.6472"	W168°57'20.8600"	1.00006647366353
45S	3405554.2432				W168°57'20.8597"	1.00006647365682
46	3405554.8028		0		W168°57'19.9803"	1.00006645796494
	3405554.7968					
46S					W168°57'19.9802"	1.00006645796311
47	3405554.8028		0		W168°57'19.5425"	1.00006645015002
47S	3405554.7917		44.9	N63°18'57.6427"	W168°57'19.5424"	1.00006645014924
48	3405574.8048	1812133.0139	0	N63°18'57.8461"	W168°57'20.4110"	1.00006646577967
48S	3405574.8281	1812133.0153	49.4	N63°18'57.8464"	W168°57'20.4109"	1.00006646577928
49	3405574.8028		0	N63°18'57.8429"	W168°57'19.9731"	1.00006645796531
49S	3405574.7921				W168°57'19.9727"	1.00006645795757
50	3405574.8028		0		W168°57'19.5353"	1.00006645015023
50S	3405574.8157				W168°57'19.5354"	1.00006645015174
51	3405593.4654		0		W168°57'20.3964"	1.00006646563887
51S	3405593.4731	1812133.3593	47.9	N63°18'58.0298"	W168°57'20.3967"	1.00006646564517
52	3405594.8028	1812153.0148	0	N63°18'58.0398"	W168°57'19.9660"	1.00006645796569
52S	3405594.7921	1812153.0098	46.0	N63°18'58.0397"	W168°57'19.9661"	1.00006645796758
53	3405594.8028	1812173.0148	0	N63°18'58.0366"	W168°57'19.5282"	1.00006645015062
53S	3405594.7694		45.0		W168°57'19.5279"	1.00006645014487
54	3405594.8028		0		W168°57'19.0904"	1.00006644233464
54S	3405594.8066				W168°57'19.0903"	1.00006644233181
55	3405614.8028		0		W168°57'19.9589"	1.00006645796605
55S	3405614.7783				W168°57'19.9582"	1.00006645795358
56S	3405614.8028	1812173.0148	46.5	N63°18'58.2334"	W168°57'19.5211"	1.00006645015101
57	3405614.8028	1812193.0148	0	N63°18'58.2302"	W168°57'19.0833"	1.00006644233505
57S	3405614.7874	1812192.9787	46.2	N63°18'58.2301"	W168°57'19.0841"	1.00006644234923
58	3405634.8046	1812133.0139	0	N63°18'58.4367"	W168°57'20.3896"	1.00006646578075
58S	3405634.8089		48 8	N63º18'58 4368"	W168°57'20.3896"	1.00006646578059
59	3405634.8028		0		W168°57'19.9517"	1.00006645796625
	3405634.8172				W168°57'19.9514"	
59S						1.00006645795974
60	3405634.8028		0		W168°57'19.5139"	1.00006645015140
60S	3405634.7820		46.3		W168°57'19.5138"	1.00006645014894
61	3405634.8028		0		W168°57'19.0761"	1.00006644233545
61S	3405634.8202	1812193.0131	46.2	N63°18'58.4273"	W168°57'19.0762"	1.00006644233610
62	3405654.8028	1812153.0148	0	N63°18'58.6304"	W168°57'19.9446"	1.00006645796663
62S	3405654.7908				W168°57'19.9443"	1.00006645796048
63	3405654.8028		0		W168°57'19.5068"	1.00006645015160
63S	3405654.8001				W168°57'19.5066"	1.00006645014748
	3405654.8001				W168°57'19.0690"	
64			0			1.00006644233568
64S	3405654.8362				W168°57'19.0692"	1.00006644234000
65	3405674.8028		0		W168°57'19.9375"	1.00006645796700
65S	3405674.7980	1812153.0264	47.1	N63°18'58.8272"	W168°57'19.9372"	1.00006645796251
66	3405674.8028	1812173.0148	0	N63°18'58.8241"	W168°57'19.4997"	1.00006645015199
66S	3405674.8499	1812173.0110	47.1	N63°18'58.8245"	W168°57'19.4997"	1.00006645015354
67	3405674.8028		0		W168°57'19.0619"	1.00006644233608
67S	3405674.7998				W168°57'19.0620"	1.00006644233909
68	3405409.8028		0		W168°57'21.0170"	1.00006647554291
68S	3405409.8125				W168°57'21.0172"	1.00006647554690
69	3405409.8028		0		W168°57'20.7981"	1.00006647163645
69S	3405409.7862		42.6		W168°57'20.7981"	1.00006647163706
70	3405419.8028		0		W168°57'21.0134"	1.00006647554299
70S	3405419.8146	1812108.0268	42.3	N63°18'56.3245"	W168°57'21.0132"	1.00006647553842
71	3405419.8028	1812118.0148	0	N63°18'56.3228"	W168°57'20.7945"	1.00006647163671
71S	3405419.8069				W168°57'20.7945"	1.00006647163674
72	3405454.6605		0		W168°57'20.2901"	1.00006646285592
72s	3405454.6526				W168°57'20.2902"	1.00006646285784
, 20	5105151.0520	1012110.10/1	10.1			1.00000010200/04
				Page 2 (	2 10	

73	3405454.6605 1812150.49			W168°57'20.0712"	1.00006645894892
73S	3405454.6600 1812150.49			W168°57'20.0711"	1.00006645894802
74	3405464.6605 1812140.49	•		W168°57'20.2865"	1.00006646285619
74S	3405464.6708 1812140.49			W168°57'20.2865"	1.00006646285572
75	3405464.6605 1812150.49		N63°18'56.7592"		1.00006645894901
75S	3405464.6566 1812150.48			W168°57'20.0678"	1.00006645895273
76	3409097.8668 1810061.61	.67 0	N63°19'32.8552"	W168°58'04.5122"	1.00006727021731
76S	3409098.0629 1810061.55	6.0	N63°19'32.8572"	W168°58'04.5136"	1.00006727024232
77	3408989.2788 1809883.22	21 0	N63°19'31.8146"	W168°58'08.4568"	1.00006733903423
77S	3408989.2956 1809883.22	44 9.0	N63°19'31.8148"	W168°58'08.4568"	1.00006733903327
78	3405575.8969 1810985.15	74 0	N63°18'58.0403"	W168°57'45.5370"	1.00006691272849
78S	3405575.0291 1810985.09	85 37.1	N63°18'58.0318"	W168°57'45.5386"	1.00006691275139
79	3405585.0370 1811417.78	98 0	N63°18'58.0613"	W168°57'36.0635"	1.00006674462361
79S	3405585.0080 1811417.82	73 39.2	N63°18'58.0610"	W168°57'36.0627"	1.00006674460903
80	3409845.2020 1810703.75	94 0	N63°19'40.1096"	W168°57'50.1866"	1.00006702191352
80S	3409845.1866 1810703.75	70 5.4	N63°19'40.1094"	W168°57'50.1867"	1.00006702191448
81	3409760.6872 1810824.24	02 0	N63°19'39.2585"	W168°57'47.5781"	1.00006697521774
81S	3409760.6587 1810824.24	71 5.4	N63°19'39.2582"	W168°57'47.5780"	1.00006697521491
82	3409313.1244 1810196.18	96 0	N63°19'34.9528"	W168°58'01.4895"	1.00006721825933
82S	3409313.1760 1810196.16	55 6.6	N63°19'34.9533"	W168°58'01.4900"	1.00006721826865
83	3409253.4394 1810252.80	32 0	N63°19'34.3563"	W168°58'00.2709"	1.00006719638632
83S	3409221.4514 1810252.75	21 6.3	N63°19'34.0414"	W168°58'00.2833"	1.00006719640539
84	3409181.5346 1810180.69	49 0	N63°19'33.6599"	W168°58'01.8752"	1.00006722424209
84S	3409151.3101 1810168.89	17 6.5	N63°19'33.3643"	W168°58'02.1443"	1.00006722880028
85	3409087.7546 1810139.27	77 0	N63°19'32.7434"	W168°58'02.8152"	1.00006724023548
85S	3409076.8758 1810139.19	07 6.6	N63°19'32.6363"	W168°58'02.8210"	1.00006724026904
	Grand Total				

Min X: 1809883.2221 Max X: 1812193.0221

Min Y: 3405354.7880 Max Y: 3409845.2020

Min Z: 0 Max Z: 56.4

Number of points listed> 169

# Northeast Cape FUDS 2016 Surface Water and Sediment Sampling Activities Table F-1.1 Sample Locations at Site 8

Sample ID	Northing	Easting	Elevation (feet)	Description	Date a	nd Time
S08-001	3405354.79	1812033.02	56.4	Sample location	8/13/16	18:07:03
S08-002	3405354.79	1812053.02	41.5	Sample location	8/13/16	18:09:29
S08-003	3405354.80	1812073.02	42.1	Sample location	8/13/16	18:12:50
S08-004 ¹	3405354.79	1812093.01	43.3	Sample location	8/18/16	13:50:00
S08-005	3405374.79	1812033.01	40.8	Sample location	8/13/16	18:03:12
S08-006	3405374.79	1812053.01	41.2	Sample location	8/13/16	17:59:45
S08-007	3405374.83	1812073.02	41.1	Sample location	8/13/16	17:56:32
S08-008	3405374.83	1812093.03	41.5	Sample location	8/13/16	17:53:55
S08-009	3405394.80	1812033.02	41.0	Sample location	8/13/16	17:33:39
S08-010	3405394.80	1812053.03	41.1	Sample location	8/13/16	17:36:59
S08-011	3405394.80	1812073.00	41.1	Sample location	8/13/16	17:39:36
S08-012	3405394.82	1812093.03	41.7	Sample location	8/13/16	17:45:42
S08-013 ¹	3405394.80	1812113.01	42.8	Sample location	8/18/16	13:55:00
S08-014	3405414.81	1812033.00	41.2	Sample location	8/13/16	17:30:08
S08-015	3405414.81	1812053.04	41.3	Sample location	8/13/16	17:26:40
S08-016	3405414.83	1812073.00	41.4	Sample location	8/13/16	17:23:12
S08-017	3405414.80	1812093.05	41.6	Sample location	8/13/16	17:19:52
S08-018	3405434.81	1812073.00	42.8	Sample location	8/13/16	17:01:40
S08-019	3405434.82	1812093.04	43.7	Sample location	8/13/16	17:06:11
S08-020	3405434.80	1812113.02	42.9	Sample location	8/13/16	17:09:59
S08-021 ¹	3405434.72	1812132.07	43.7	Sample location	8/18/16	14:05:00
S08-022	3405454.81	1812053.00	43.7	Sample location	8/13/16	16:57:06
S08-023	3405454.80	1812073.01	46.4	Sample location	8/13/16	16:54:19
S08-024	3405454.81	1812093.01	45.8	Sample location	8/13/16	16:51:29
S08-025	3405454.80	1812113.00	43.2	Sample location	8/13/16	16:47:52
S08-026	3405454.81	1812133.02	43.5	Sample location	8/13/16	16:44:57
S08-027	3405474.80	1812093.00	47.0	Sample location	8/13/16	16:14:23
S08-028	3405474.81	1812113.02	45.3	Sample location	8/13/16	16:18:37
S08-029	3405474.79	1812133.03	43.8	Sample location	8/13/16	16:21:33
S08-030	3405474.78	1812153.03	44.3	Sample location	8/13/16	16:24:40
S08-031	3405494.80	1812073.02	46.9	Sample location	8/13/16	16:09:08
S08-032	3405494.79	1812093.02	46.9	Sample location	8/13/16	16:05:58
S08-033	3405494.79	1812113.02	44.2	Sample location	8/13/16	16:03:00
S08-034	3405494.82	1812133.03	43.8	Sample location	8/13/16	16:00:57
S08-035	3405494.80	1812153.04	43.6	Sample location	8/13/16	15:57:27
S08-036	3405514.79	1812113.04	44.3	Sample location	8/13/16	15:29:29
S08-037	3405514.82	1812133.04	43.5	Sample location	8/13/16	15:36:46
S08-038	3405514.81	1812153.04	43.8	Sample location	8/13/16	15:39:59
S08-039 ¹	3405514.81	1812173.00	45.0	Sample location	8/18/16	14:25:00
S08-040	3405534.81	1812073.03	44.7	Sample location	8/13/16	15:22:14
S08-041	3405534.52	1812112.93	44.0	Sample location	8/13/16	15:19:06
S08-042	3405534.79	1812133.03	44.0	Sample location	8/13/16	15:16:04
S08-043	3405534.79	1812153.01	43.7	Sample location	8/13/16	15:12:25
S08-044	3405534.81	1812173.00	44.1	Sample location	8/13/16	15:09:09

# Northeast Cape FUDS 2016 Surface Water and Sediment Sampling Activities Table F-1.1 Sample Locations at Site 8

Sample ID	Northing	Easting	Elevation (feet)	Description	Date a	nd Time
S08-045	3405554.24	1812112.85	45.1	Sample location	8/13/16	14:53:54
S08-046	3405554.80	1812153.02	44.9	Sample location	8/13/16	14:57:59
S08-047	3405554.79	1812173.02	44.9	Sample location	8/13/16	15:01:20
S08-048	3405574.83	1812133.02	49.4	Sample location	8/13/16	14:42:51
S08-049	3405574.79	1812153.03	45.2	Sample location	8/13/16	14:46:03
S08-050	3405574.82	1812173.01	46.4	Sample location	8/13/16	14:51:15
S08-051	3405593.47	1812133.36	47.9	Sample location	8/13/16	14:32:45
S08-052	3405594.79	1812153.01	46.0	Sample location	8/13/16	14:35:16
S08-053	3405594.77	1812173.03	45.0	Sample location	8/13/16	14:38:58
S08-054 ¹	3405594.81	1812193.02	46.1	Sample location	8/18/16	14:10:00
S08-055	3405614.78	1812153.05	46.6	Sample location	8/13/16	14:24:55
S08-056	3405614.80	1812173.01	46.5	Sample location	8/13/16	lost data
S08-057	3405614.79	1812192.98	46.2	Sample location	8/13/16	13:42:38
S08-058	3405634.81	1812133.01	48.8	Sample location	8/13/16	14:15:06
S08-059	3405634.82	1812153.03	46.6	Sample location	8/13/16	14:17:55
S08-060	3405634.78	1812173.02	46.3	Sample location	8/13/16	14:20:37
S08-061	3405634.82	1812193.01	46.2	Sample location	8/13/16	13:38:32
S08-062	3405654.79	1812153.03	46.4	Sample location	8/13/16	13:58:57
S08-063	3405654.80	1812173.03	46.5	Sample location	8/13/16	14:11:57
S08-064	3405654.84	1812193.00	46.8	Sample location	8/13/16	13:36:16
S08-065	3405674.80	1812153.03	47.1	Sample location	8/13/16	13:55:57
S08-066	3405674.85	1812173.01	47.1	Sample location	8/13/16	13:52:56
S08-067	3405674.80	1812193.01	47.3	Sample location	8/13/16	13:32:19
S08-068	3405409.81	1812108.00	42.1	Sample location	8/13/16	18:24:33
S08-069	3405409.79	1812118.01	42.6	Sample location	8/13/16	18:27:41
S08-070	3405419.81	1812108.03	42.3	Sample location	8/13/16	18:31:35
S08-071	3405419.81	1812118.01	42.3	Sample location	8/13/16	18:34:39
S08-072	3405454.65	1812140.49	43.7	Sample location	8/13/16	18:39:33
S08-073 ¹	3405454.66	1812150.49	45.4	Sample location	8/18/16	14:15:00
S08-074	3405464.67	1812140.49	43.4	Sample location	8/13/16	18:47:22
S08-075 ¹	3405464.66	1812150.48	44.5	Sample location	8/18/16	14:20:00

Note:

¹ Elevation and time are approximate.

## Northeast Cape FUDS 2016 Surface Water and Sediment Sampling Activities Table F-1.2 Sample Locations at Suqi River

Sample ID	Northing	Easting	Elevation (feet)	Description	Date ar	nd Time
S29-001	3405585.01	1811417.83	39.20	Sample location	8/13/16	13:00:23
S29-002	3405575.03	1810985.10	37.10	Sample location	8/13/16	13:07:02
S29-003	3408989.30	1809883.22	9.00	Sample location	8/13/16	11:37:50
S29-004	3409098.06	1810061.55	6.00	Sample location	8/13/16	lost data
S29-005 ¹	3409087.75	1810139.28	6.60	Sample location	8/15/16	15:35:00
S29-006 ¹	3409181.53	1810180.69	6.50	Sample location	8/15/16	15:25:00
S29-007 ¹	3409253.44	1810252.80	6.30	Sample location	8/15/16	15:15:00
S29-008	3409313.18	1810196.17	6.60	Sample location	8/13/16	12:21:30
S29-009	3409760.66	1810824.25	5.40	Sample location	8/13/16	19:21:04
S29-010	3409845.19	1810703.76	5.40	Sample location	8/13/16	19:44:42

Note:

¹ Northing, easting, elevation, and time are approximate. Due to unsafe conditions, locations were not re-surveyed.

APPENDIX G Silica Gel Cleanup Comparison at Site 8

## Northeast Cape FUDS 2016 Surface Water and Sediment Sampling Activities Silica Gel Cleanup Comparison at Site 8 for DRO and RRO

			DRO	RRO	DRO after Silica Gel Cleanup	RRO after Silica Gel Cleanup
Decision Unit	Sample ID	Sample Year	mg/kg	mg/kg	mg/kg	mg/kg
LDU	10NC08SB01	2010	2800	1600	3100	1000
LDU	11NC08SS003	2013	L 550	820	550	1300
LDU	11NC08SS004-DUP	2013	L 1500	690	1600	1200
LDU	12NC08SS001	2012	2 2900	2400	2700	680
LDU	12NC08SS002 ^D	2012	2 2500	2200	2200	570
MDU	10NC08SB02	2010	) 7100	3300	6700	1300
MDU	10NC08SB03 ^D	2010	9300	5300	8500	2100
MDU	11NC08SS002	2013	L 1800	1100	1800	1800
MDU	12NC08SS003	2012	2 960	2100	940	1500
UDU	10NC08SB04	2010	) 660	6300	310	3000
UDU	11NC08SS001	2013	L 58	380	36	320
UDU	12NC08SS004	2012	2 290	2700	220	1900
		Average Concentration	n <b>2535</b>	2408	2388	1389

Change in average DRO concentration from before to after silica gel cleanup -6%

Change in average RRO concentration from before to after silica gel cleanup -42%

Notes:

^D Duplicate sample

Source for 2010 results: USACE. 2011a (July). Northeast Cape HTRW Remedial Actions, Northeast Cape, St. Lawrence Island, Alaska.

Source for 2011 results: USACE. 2012 (June). Northeast Cape HTRW Remedial Actions, Final Removal Action Report, Northeast Cape, St. Lawrence Island, Alaska.

Source for 2012 results: USACE. 2013 (May). Northeast Cape HTRW Remedial Actions Report, Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Revision 1.

# APPENDIX H Responses to Comments

# Alaska Department of Environmental Conservation (ADEC)

Contaminated Sites Program

Document Reviewed: Draft April, 2017 Northeast Cape 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report Commenters: Curtis Dunkin-ADEC Project Manager

**Date Submitted:** June 1, 2017 ADEC Received RTCs on August 7, and Submitted Review Determinations on August 24, 2017 (post-comment resolution meeting conducted on August 10, 2017)

#	Page #	Section	ADEC Comment	Response
1.		General ADEC File Number	Please add the ADEC file number 475.38.013 to applicable references and/or sections throughout the report. Please also revise incorrect references to the file number throughout the document; noting that all/most of the ADEC checklists in Appendix B-3 state an incorrect file number.	Accepted. The ADEC file number 475.38.013 will be applied throughout the report as necessary. <b>ADEC-Accepted August 24, 2017</b> First sentence of ES, Section 1.0, and Section 1.0 in Appendix B will be revised to state: "…Northeast Cape (NEC) on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation [ADEC] file number 475.38.013)". <b>ADEC-Accepted August 24, 2017</b> The checklists in Appendix B will be revised to state "475.38.013". <b>ADEC-Accepted August 24, 2017</b> Accepted. Where appropriate, headers, sub- headers, or introductory text will be added to better
			Please create headers and sub-headers that provide better separation and presentation of the information for Site 8 vs. the Suqi River throughout the report where applicable. There are multiple instances throughout the report where narrative discussion, bullet summaries, etc. run from one AOC to another making it difficult for the reader to differentiate; i.e. in the bullets listed on pages ES-1 and ES-2.	<ul> <li>separate information presented for Site 8 versus the Suqi River.</li> <li>ADEC-Accepted August 24, 2017</li> <li>The bullets in the ES will be separated and preceded as follows: "sample results at Site 8 include the following" or "sample results at the Suqi River include the following".</li> <li>ADEC-Accepted August 24, 2017</li> <li>First paragraph of Section 1.1 will be revised to state: "Project goals specific to Site 8 and the Suqi River were defined in the work plan. Goals for Site</li> </ul>

Page 1 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
				8 were to collect sediment and soil samples. Goals
				for the Suqitughneq (Suqi) River were to collect
				surface water and sediment samples from the Suqi
				River and estuary, and measure river flow velocity.
				The 2016 field effort, sample results, and
				observations satisfied these goals. All planned
				samples were collected. The sample results and
				observations were used to determine if the
				historical Site 8 decision units encompassed the
				lateral extent of petroleum, oil, and lubricant
				(POL) affected sediment and soil at Site 8, to
				assess Suqi River and estuary sediment and surface
				water quality following remedial actions at the Site
				28 drainage basin performed from 2010 through
				2013, and to compare 2016 Suqi River surface
				water discharge measurements with measurements
				collected during previous RIs".
				ADEC-Accepted August 24, 2017
				Section 4.0 will be revised to categorize deviations
				as: (1) Project Wide; (2) Site 8; and (3) Suqi River.
				Please see the text at the end of this document.
				ADEC-Accepted August 24, 2017
				The bullets in Section 7.0 will be separated and
				preceded as follows: "conclusions of the 2016
				Site 8 field effort were as follows" or
				"conclusions of the 2016 Suqi River field effort
				were as follows".
				ADEC-Accepted August 24 2017

Page 2 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
2.	ES-1	Executive Summary	Please provide more information re: what is stated as 'discontinuous surface water ponds interspersed with areas of soil' in the first bullet on this page and elsewhere throughout the document. This is the first mention of this type of feature, and/or first naming associated with Site 8. This would be applicable for the Site 28 Drainage Basin, Suqi River, greater/larger wetland areas in general but doesn't seem to be appropriate for Site 8. Please provide more detail and clarification re: how this relates to determining/delineating material to be sediment vs. soil at the time of sampling, as well as rationale to determine whether the sample locations/areas are primarily considered upland or wetland. ADEC's tentative position is that the entirety of Site 8 material that is located within the pathway of the primary seasonal surface water overflow and drainage, should be considered sediment; and compared to applicable/site-specific cleanup levels. Further resolution discussion is necessary on this subject by the project team prior to finalizing this report.	Accepted. As suggested in comment #21, "discontinuous surface water ponds" will be replaced with "discontinuous ephemeral surface water" throughout the document. <b>ADEC-Accepted August 24, 2017</b> The description of discontinuous ephemeral surface water is based on the observations of field personnel. As stated in Section 3.3 of the WP, Site 8 sediment mapping followed the definition of sediment used during the 2012 Site 28 mapping effort (that defined all loose submerged material except for that which is actively growing vegetation or is part of the vegetative mat). Photographs and survey elevations show the varied topography at Site 8; this is stated in the second sentence of the second paragraph of Section 5.2.1. Not all areas are within the seasonal surface water overflow and drainage area. <b>ADEC-Accepted August 24, 2017</b> Accepted. See text at the end of this document to remove definitive statements and to reference
			Re: the statements in the third bulled on this page and also the subject of biogenic interference in general, it is not appropriate to make statements in the executive summary that have not been definitively demonstrated, referenced, and/or ADEC-approved. While ADEC does not necessarily disagree with the biogenic interference as presented and discussed in this report, it is not appropriate to state 'was present' without adequate reference and correlation.	Appendix B. <b>ADEC-Accepted August 24, 2017</b> Additionally, statements throughout the document indicating biogenic interference will be revised to indicate that "biogenic interference 'likely' contributed to elevated DRO and RRO concentrations" or similar. <b>ADEC-Accepted August 24, 2017</b>

#	Page #	Section	ADEC Comment	Response
			Further, ADEC notes that numerous statements are made throughout the document that i.e. 'results will not be discussed further due to biogenic interference'; however none of these statements include references to the 'biogenic interference' on page B-1-9 of section 1.2.9 of Appendix B. Please also see and apply further ADEC comment(s) on this topic and respective work plan section(s) below.	See text at the end of this document (Executive Summary, Sections 6.3, 6.3.1, 6.4, and 7.0) for most changes. <b>ADEC-Accepted August 24, 2017</b> The first sentence of Section 6.3.1, second paragraph, will be revised to state: "Silica gel or other cleanup techniques should be applied to future samples so that the likely biogenic contribution to DRO and RRO results can be minimized". <b>ADEC- Partially Accepted August</b> <b>24, 2017; however please amend the proposed</b> revision to state 'can be evaluated in more relevant detail for the purpose of determining actual biogenic contributions.".
3.	ES-2	Executive Summary	Please revise the statements and discussions associated with 'target analytes above the SSCLs' to also include ranges of concentrations, detections to provide a better site characterization, site status overall. The sampling and analysis (and visual inspections) for both sites/AOCs is intended to evaluate contaminant migration and fate and transport issues and not only whether or not a respective cleanup/action level was exceeded. Please apply this comment and expand/elaborate respective statements and discussions throughout the document as applicable. Throughout the document there seems to be no real connection re: the flow investigation for the Suqi River. Please provide more detail re: the objectives, the results and conclusions of the Suqi river flow measurements; which was presumed by ADEC's review and approval of the work plan that it was conducted and evaluated based on better	Accepted. Ranges of concentrations will be included in the text. See text at the end of this document for revised Executive Summary second and fourth bullets. Additional revisions will be made throughout the document. See text at the end of this document for Section 6.3 second paragraph and Section 6.4. <b>ADEC-Accepted August 24, 2017</b> Discuss during comment resolution meeting. The intent of sampling at the Suqi River was to determine whether the remedial activities at Site 28 impacted the Suqi River by revisiting previous sampling locations and comparing historical results to the 2016 results.

#	Page #	Section	ADEC Comment	Response
			characterizing and improving the site CSM for contaminant fate and transport. ADEC-Tentatively Accepted August 24, 2017; ADEC concurs with the RTC and agrees re: overall intent of sampling, however please amend/elaborate on the revision to the narrative to emphasize/clarify that the primary DQO of the flow investigation was as a control evaluation to prior investigation results in the event that elevated COC concentrations were detected.	ADEC-Tentatively Accepted August 24, 2017; please see further response on the left.
4.	1-1	1.1	Please revise/amend the last sentence of the first paragraph of this section to clarify whether sample analyses results (and data quality) also accomplished the project goals. ADEC notes that the actual project goals are stated in the second paragraph of this section; for which the field effort was part of the overall project goals. I.e. if confirming/updating the fate and transport CSM was a goal of the flow study, then did the field efforts accomplish this?	Accepted. Section 1.1 will be combined into one paragraph and indicate that samples results and observations were used to meet objectives. <b>ADEC-Accepted August 24, 2017</b> Section 1.1 will be revised to state: " <i>The 2016 field</i> <i>effort, sample results, and observations satisfied</i> <i>the project goals. Project goals specific to Site 8</i> <i>and the Suqi River were defined in the work plan.</i> <i>Goals for Site 8 were to collect sediment and soil</i> <i>samples. Goals for the Suqitughneq (Suqi) River</i> <i>were to collect surface water and sediment samples</i> <i>from the Suqi River and estuary, and measure river</i> <i>flow velocity. All planned samples were collected.</i> <i>The sample results and observations were used to</i> <i>determine if the historical Site 8 decision units</i> <i>encompassed the extent of petroleum, oil, and</i> <i>lubricant (POL) affected sediment and soil at Site</i> <i>8, to assess Suqi River and estuary sediment and</i> <i>surface water quality following remedial actions at</i> <i>the Site 28 drainage basin performed from 2010</i> <i>through 2013, and to compare 2016 Suqi River</i> <i>surface water discharge measurements with</i>

Page 5 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			<ul> <li>Please revise the objective statement in the last sentence of this section to clarify that the subject Suqi River investigation objective was not limited to characterizing site conditions after the stated Site 28 removal/remedial actions, but also as a follow on site investigation to reevaluate the site conditions since the last historical Suqi River characterization activities; which were also postponed until after all primary removal/remedial actions were complete in order to allow for a true 'post remedial' site characterization.</li> <li>Further, please revise the stated dates of 2012 and 2013 associated with the Site 28 drainage basin remedial actions and also specify other sites that are known and/or considered to be potential contaminant contributors to the Suqi River drainage system; noting that dates should range from the span of actual removal/remedial actions associated with the subject sites since the last time that the Suqi River was investigated prior to 2016.</li> </ul>	<ul> <li>measurements collected during previous RIs".</li> <li>ADEC-Accepted August 24, 2017</li> <li>Accepted. See response above.</li> <li>ADEC-Accepted August 24, 2017</li> <li>Accepted in part. The last sentence of Section 1.1</li> <li>will be revised to include the culvert removal in</li> <li>2010. Also, please see the response above. ADEC-</li> <li>Accepted August 24, 2017</li> <li>Discuss during comment resolution meeting.</li> <li>The specific goal of the sediment and surface water</li> <li>effort was to verify that Site 28 remedial actions</li> <li>have not affected the river and to compare surface</li> <li>water discharge measurements collected during RI</li> <li>activities.</li> <li>ADEC-Tentatively Accepted August 24, 2017;</li> <li>this should be clarified/specified and discussed</li> <li>further in this section per project team</li> <li>conclusions/concurrence during the August 10,</li> <li>2017 resolution meeting.</li> <li>Additional, potential contaminant contributors</li> <li>were not specifically investigated. ADEC-</li> <li>Tentatively Accepted August 24, 2017; however,</li> <li>this should be clarified/specified and discussed</li> <li>further in this section.</li> </ul>
5.	2.5- 2.6	2.2.1	Instead of only stating the residual exceedances would be helpful to include a brief summary of the historical investigation events and analyses results that identified the stated site COCs which were carried forward and included in the DD; as well as the sampling and analyses that were approved and used to determine specific COCs that were no	Accepted. The analytical suite and a more detailed description of historical results will be presented. See revised text for Section 2.2.1 at the end of this document. ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
			further concern. Noting with emphasis on Site 8 since the 2016 effort is a re-characterization of the extent of surface/shallow contamination vs. the NA monitoring approach that was planned based upon the selected remedy. Please also discuss any decisions/determinations that were made re: the upper decision unit (UDU) since the DD was finalized; i.e. was it previously postulated that the UDU was not contaminated and/or was outside/upgradient of the areas of contamination? <b>ADEC-Accepted</b> <b>August 24, 2017; agree re: original purpose of the three DUs, however,</b> has there been further determination/change in how the DUs are perceived with re: to contamination since the DD – as also discussed/concurred by the project team during the August 10, 2017 comment resolution meeting.	Discuss during comment resolution meeting. The Sediment Section of Section 2.2.1 details the original purpose of the three decision units (and indicated that the UDU was upgradient of the suspected source area). ADEC-Partially Accepted August 24, 2017; please see further response on the left.
6.	2-7	2.2.1	Please insert 'sediment' in the header statement beginning with 'A summary of the 2010 [sediment]'; here and elsewhere throughout the document in similar sections, headers, and statements in order to always specify the matrix, AOC, etc.	Accepted; also see comment #1. Header statements will be revised to clarify matrix and AOC throughout the document. Specifically, the header section referenced will be revised to state: " <i>A</i> <i>summary of the 2010 sediment exceedances are as</i> <i>follows:</i> ". Similar changes will be made throughout the document. ADEC-Accepted August 24, 2017
7.	2-8	Table 2-1	Please include all years that sampling was conducted regardless of whether or not exceedances were observed. Since the selected remedy for this site is MNA, it would helpful to also to include information on the ranges of concentrations for all significant detections over the years of investigation and monitoring. This logic should be applied to all tables, charts, etc. for which the intent is to present/evaluate trend(s) over time.	Accepted. Table 2-1 will be revised to include DRO, RRO, and 2-methylnaphthalene results for the three decision units collected in 2010, 2011, and 2012. Table 6-1 will be revised to include 2- methylnaphthalene concentrations. Remaining tables and charts will be revised as necessary. See tables at the end of this document. <b>ADEC-</b> <b>Accepted August 24, 2017</b>

#	Page #	Section	ADEC Comment	Response
			Per other comments related to re-characterizing Site 8, the Corps and ADEC need to better identify and agree upon which areas/material should be considered sediment and which should be soil. ADEC's tentative position is that all of the samples collected at Site 8 to date (at least post-DD) should potentially be considered sediment samples and be reported and compared to the sediment criteria. Please confirm (and clarify in a table note) whether the listed 2012 LDU 'DNE' in the duplicate is applicable since this appears to be listed instead of the primary results for 2-Methylnaphthalene; in order to clarify whether stated duplicate results are applicable for all the COCs.	Discuss during comment resolution meeting. Reports documenting sampling performed by Bristol from 2010 through 2012 interchangeably refer to samples collected at Site 8 as soil and sediment. <b>ADEC- Tentatively Accepted August</b> 24, 2017; per the resolution discussion and concurrence re: defining soil vs. sediment in this report and going forward. Accepted. See response to comment above. In addition, only the duplicate sample results (as indicated in the Bristol Reports) will be marked as a field duplicate. <b>ADEC-Accepted August 24, 2017</b>
8.	2-8	2.2.2	Similar to comment above associated with Site 8, please state the categories and/or specific analytes that were included over the years of investigation to demonstrate that all potential COCs were adequately investigated; noting that if only a limited set POL COCs were included as analytes then state i.e. 'DRO was the only one of the limited range of COCs that were investigated at this site in 2016 that exceeded'. Please apply this logic and revision/amendments throughout the document where applicable.	Accepted. The Surface Water Section of Section 2.2.1 will be revised to include the historical surface water analytes. See text at the end of this document for revisions to Section 2.2.1. Section 2.2.2 will be revised to include the historical analytical suite. Bulleted text and the bulleted header will be revised. See text at the end of this table. ADEC-Accepted August 24, 2017
9.	2-9	2.2.2	ADEC noted in its comments on the draft 2016 work plan that there were COCs detected in sediment and surface water associated with the Site 28 drainage, at concentrations that exceeded applicable cleanup criteria, that required evaluation in this and future investigations/monitoring of the Suqi. Further, the discussion should be expanded beyond drinking water cleanup levels, since this should	Discuss during comment resolution meeting. Since historical surface water sampling results were compared to drinking water cleanup levels in the DD, surface water results discussed in Section 2.2.2 refer to drinking water cleanup levels. DD

#	Page #	Section	ADEC Comment	Response
			also include human and ecological risk assessment criteria; referring to the statement made in the first bullet on this page.	numerical surface water criteria only exist for TAH and TAqH. <b>ADEC-Partially Tentatively Accepted August</b>
			This report should also include references and summarize the status and determinations of the most recent ATSDR evaluation and also evaluate any differences, changes over time, etc. with re: to regulatory/agency evaluations and/or determinations as well as site conditions.	24, 2017; noting that this subject has come up numerous times over the years, and ADEC's position remains that although SSCLs for surface water were not specified in the DD, that 1) the DD does reference 18AAC70 as applicable, and 2) the criteria and action levels apply regardless. Further ADEC's position is that this issue was addressed and reconciled in the last Five-year Review. This effort was not meant to evaluate current results in the context of the recent ATSDR or changes over time with regard to regulatory/ agency evaluations or site conditions. ADEC-Tentatively Accepted August 24, 2017; noting however that these issues need to be addressed further in future efforts within the
10.	4-1	4.0	Re: the mention of the State's regulation and cleanup level revisions, please clarify further what impacts this did or did not have on this project as well as the selected remedy in the DD and prospective future site work and decisions. Please also clarify why this issue is considered a deviation.	current FYR period. Accepted. Section 4.0 screening level deviation will indicate that the values used were more stringent than those agreed to in the 2016 WP. As stated, this is a deviation because the 2016 WP referenced Tables B1 and B2 from January 2016. This does not impact the selected remedy at this time. Text will be revised. Please see text at the end of this document. ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
			Please include a statement indicating any impacts to the project for each deviation; noting the site 8 equipment blank; noting also that this appears to not be included in the data quality review/assessment later in the report.	Accepted. Deviations discussing the screening levels, lack of equipment blank, and Suqi River sample locations will be revised to include project impacts. <b>ADEC-Accepted August 24, 2017</b> Other deviations did not impact the overall project. Please see text at the end of this document. <b>ADEC-</b> <b>Accepted August 24, 2017</b> Accepted. The DQA will be revised to include discussion regarding the lack of an equipment blank at Site 8 (Section 1.2.12). Please see text at the end of this document. <b>ADEC-Accepted August 24, 2017</b>
			Further discussion and resolution is necessary prior to finalizing this report to clarify why the proposed sample locations were located within the roadbed vs. relocating them within the site 8 drainage/migration pathway; noting that the work plan objective was to sample the drainage, not the road. The deviation for the Suqi River survey issues needs to clarify how the compass and tape measure locations are noted/identified on tables, figures, etc.	Discuss during comment resolution meeting. Proposed sample locations that ended up in the roadbed were relocated closer to Site 8 so that undisturbed material could be collected as identified in Section 4.0 <b>ADEC-Accepted August 24, 2017</b> Accepted. Figure A-5 already includes a note that the locations of S29-005, S29-006, and S29-007 are approximate. Appendix F already highlights locations measured using a tape and compass. No changes will be made to Appendix B tables. <b>ADEC-Accepted August 24, 2017</b>
11.	4-2	4.0	Please amend the discussion in the first bullet on this page i.e. what were the dates associated with the lathes being put in place and when they were attempted to be removed.	Accepted August 24, 2017 Accepted. Dates will be added to the deviation. See text at the end of this document. ADEC-Accepted August 24, 2017 Discuss during comment resolution meeting.

#	Page #	Section	ADEC Comment	Response
			It would helpful and of interest to include photos and respective references for this and other site conditions, issues, deviations, etc. Did heavy rain and resulting increase in water levels occur the entire time of the field effort or just towards the end? How did site conditions differ at Site 8 at the very end (presuming the end was the wettest/greatest precipitation accumulation) of the field effort vs. when sample collection activities occurred? How many locations which were originally delineated as 'soil' locations would have been considered 'sediment' based upon the rationale/logic implemented in this report?	No additional photos of this condition are available. <b>ADEC-Accepted August 24, 2017</b> The heavy rainfall event referenced in the report occurred between the field team's departure from NEC at 1842 on 18 August 2016 and return to NEC at 1035 on 22 August 2016. One day of sampling at Site 8 occurred after the heavy rainfall event; no specific change in general Site 8 conditions were noted at the time by the field team. <b>ADEC-Accepted August 24, 2017; please</b> <b>include the RTC and further clarifications as</b> <b>discussed during the August 10, 2017 comment</b>
			Please amend the discussion in the second bullet to include reference and respective photo of the subject eddy and cross section location. Please also apply this throughout the document for all AOCs, referenced site-specific features, etc.	<ul> <li>resolution meeting in the applicable</li> <li>discussions/sections in the report.</li> <li>Accepted. This and other deviations will now</li> <li>include reference to photos in Appendix E if a</li> <li>photo of the deviation exists. See end of document</li> <li>for updated text.</li> <li>ADEC-Accepted August 24, 2017</li> </ul>
12.	5-1	5.0	Please revise/amend/relocate some of the discussion associated with mobilization vs. field activities throughout this section (and elsewhere throughout the report where applicable) to better clarify the chronology of activities; noting it is misleading to the reader to state that field activities occurred August 4-23 in the first section but then to state later in section 5.2 that NEC sampling activities were from August 13-22. Propose relocating the 'mob/demob section title to the overall dates of the project, then title each section based upon the major portions of work.	Accepted. Field activities and sampling activities did not occur over the exact same span of time. Included in the field activities period of time were mobilization, demobilization. <b>ADEC-Accepted August 24, 2017</b> First paragraph of Section 5.2 will be revised to state: "NEC sampling activities occurred from 10 through 22 August 2016. Groundwater sampling activities at the MOC occurred from 10 through 16 August and are presented under separate cover

Page 11 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
				(USACE 2017). Soil, sediment, and surface water sampling activities occurred from 13 through 22 August 20 ADEC-Accepted August 24, 2017
13.	5-4	5.2.1	Re: the statement in this and other associated sections throughout the document that sample grids and collection locations were surveyed, staked, and collected 'across the three historical decision units', please elaborate the discussion re: the issue with the sample locations staked in the road as well as the reference to the 'three decision units' since these statements appear to be contradictory and unclear re: what ADEC understood as the objectives outlined in the approved work plan vs. what appears to have been implemented in the field.	Accepted in part. The intent of the sampling was to confirm that the decision units capture the extent of contamination. <b>ADEC-Accepted August 24, 2017</b> The text will now indicate that some sample locations were outside the decision units. <b>ADEC-</b> <b>Accepted August 24, 2017</b> Third sentence of Section 5.2.1 will be revised to state: "Sample locations were the center point of either 20-foot or 10-foot sample grids that spanned across the three historical decision units and adjacent areas". <b>ADEC-Accepted August 24, 2017</b> In text Photo 6-2 caption will be revised to state: "Sampling a tussock at SS-24 near the southwestern edge of the MDU at Site 8 on 18 August 2016". <b>ADEC-Accepted August 24, 2017</b>
14.	5-5	5.2.1	Please elaborate on the discussion of sample locations such as SS-020 which is shown in Photo 5-6, i.e. re: whether or not the observed lithology/soil profile is indicative of anthropogenic disturbances or naturally occurring.	Accepted. No evidence of anthropogenic disturbance was noted below the vegetative mat. The last sentence of the first paragraph of Section 5.2.1 will be revised to state: " <i>No specific evidence</i> <i>of anthropogenic disturbance was noted below the</i> <i>vegetative mat</i> ". ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
15.	5-6	5.2.1	Re: the classification of soil and sediment samples, while ADEC realizes that this was the objective per the agreed upon and established definition for sediment at all NEC sites to date, this subject should be discussed further in prospective resolution to determine the most appropriate way to report the information; both in this report and future actions. Consider whether the report should evaluate the locations and/or areas that were previously delineated as sediment or soil during prior actions but were then delineated differently/the opposite in 2016. This should be applied to both the Site 8 and Suqi River AOCs throughout the report in conjunction with also discussing the ranges of detection concentrations and not just exceedances based upon whether the sample location/material was classified as soil or sediment. Recommend revising/combining the two sentences in the last paragraph of this section; i.e. relocate the second sentence to the beginning, omit the first part of first sentence and combine to one statement.	Discuss during comment resolution meeting. Delineation has not been performed in the past and historical statements regarding sediment and/or soil at Site 8 may be subjective. The goal of this effort was not to reclassify previous sampling efforts but to make the distinction between the two media less subjective. <b>ADEC-Accepted August 24, 2017</b> Accepted. The last sentence/paragraph of Section 5.2.1 will be revised to state: "Sediment and soil samples collected from Site 8 were analyzed for DRO by Alaska Method 102 (AK102), RRO by AK103, and PAH by EPA Method SW8270D". <b>ADEC-Accepted August 24, 2017</b>
16.	5-7	5.2.2	Please elaborate the description under Photo 5-8. ADEC presumes that the subject organic layer is the surface material that was removed to access the target material to be sampled.	Accepted. The photo caption will better describe that the vegetative layer shown was removed in order to collect the sediment sample. The caption will be revised to state: "Organic layer encountered and removed prior to sampling sediment at Suqi River sample location S29-SD-009 on 15 August 2016". ADEC- Accepted August 24, 2017 A similar change will be made to the Photo No. 15 caption in Appendix E. ADEC-Accepted August 24, 2017

Page 13 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
17.	5-8	5.2.2	Please discuss the rationale re: why the analytes for surface water	Accepted. The rationale for the analytical suites for
			samples were not the same as the sediment samples.	the Suqi River will be included. The second and
			ADEC-Partially Accepted August 24, 2017; the proposed revision should	fourth sentences of the third paragraph of Section
			also reference the site -specific cleanup levels for sediment (along with	5.2.2 will be revised to state: " and xylenes by
			soil and surface water), since the COCs associated with these matrices	EPA Method SW8260 based on the DD SSCLs for
			should also be included for the rationale for analytes associated with the	surface water" and "The sediment analytes included
			2016 Suqi River sampling and analysis – which should have included all	constituents that exceeded soil evaluation criteria for
			COCs associated with upgradient removal actions, with emphasis on Site	soil following sediment removal activities at Site 28 plus
			28.	the addition for PCBs".
				ADEC-Partially Accepted August 24, 2017;
				please see further response on the left.
18.	5-9	5.2.2	Please state/clarify in the photo description what is indicated in Photo	Accepted. A description of the white material on
			5-10 as a white colored material on the water surface.	the water surface will be added to the end of the
				first sentence in the captions for Photo 5-10 and
				Appendix E Photo No. 21 as follows: "; while the
			Per other comment/request to include a chain of sequential photos in	source of the downstream foam was not
			the report that depicts the entire length of the investigated stretches of	investigated, it is likely the result of natural
			the Suqi, it would also be helpful to add the photo IDs to a new figure	decomposition.
			with an arrow depicting the view perspective for the purposes of	ADEC-Accepted August 24, 2017
			improving the CSM. It would also be helpful to indicate the direction	Accepted. Water flow direction will be added to in-
			of flow in all applicable photos; i.e. 'View facing north, flow to the	text photograph captions and those in Appendix E.
			west.'	ADEC-Accepted August 24, 2017
			ADEC-Noted August 24, 2017; given that the work plan objectives	A photographic series of the entire Suqi River was
			included photographing project areas/AOCs, with regard to evaluating	not collected as part of this effort. The
			fate and transport pathways along a stretch of stream or river, this	photographs presented in Appendix E are in
			implies that the stretches of the river pertinent to this project would be	chronological order.
			well documented – i.e. from Site 28 all the way to the estuary. This is	ADEC-Noted August 24, 2017; please see
			primarily for the purpose of supporting the demonstration of potential	further response on the left.

#	Page #	Section	ADEC Comment	Response
			contaminant sources (or lack thereof) to the Suqi River and not just sampling locations.	
19.	5-10 – 5-11	5.4	Please revise/amend the references to 'in accordance with the work plan' in this section by specifying/referencing the actual permit, regulatory requirement, etc. to clarify that while the detailed information is included in the work plan, it is not an issue associated with 18AAC75; i.e. state 'per the [specific permit/regulatory requirement] that is included in the work plan', and then specify those issues that are a requirement of 18AAC75, ADEC Guidance, etc. Please apply this throughout the report where applicable.	Accepted. Reference to the 2016 WP will be removed from Section 5.4. <b>ADEC-Accepted August 24, 2017</b> The first reference will be replaced with the following text: " <i>feet each were disposed of by</i> <i>ECC in accordance with the Resource</i> <i>Conservation and Recovery Act and state waste</i> <i>regulations</i> ". Please see text at the end of this document. <b>ADEC-Accepted August 24, 2017</b> Additionally, Section 5.2 will state specific SOPs. Text will be revised to state: "All samples were <i>collected, labeled, stored, and shipped in</i> <i>accordance with Jacobs Standard Operating</i>
			<u>Table 5-1</u> : applicable statements, references, sections, tables, etc. in this report need to clarify that this effort was conducted in conjunction with the mobilization and implementation of the 2016 MOC MNA Monitoring work plan; since the statement 'and groundwater sampling at the MOC' in the table note appears to be the only actual mention of this issue in the entire report – and is potentially confusing to a reader. It would be helpful to include a summary of this issue in the introduction section at the very beginning of both respective reports. Please also apply all applicable comments in this template for the subject Site8/Suqi report to the draft 2016 MOC MNA Monitoring report.	<ul> <li>Procedures 2000, 3000, 4000, 5010, 5030, and 7000 provided in the 2016 work plan (USACE 2016b)".</li> <li>ADEC-Accepted August 24, 2017</li> <li>Accepted. Section 5.2 will introduce the concurrent groundwater sampling event. First paragraph of Section 5.2 will be revised. See response to comment #12 above.</li> <li>ADEC-Accepted August 24, 2017</li> <li>Accepted. Applicable comments will be applied to the MOC report.</li> <li>ADEC-Accepted August 24, 2017</li> </ul>

#	Page #	Section	ADEC Comment	Response
20.	6-1	6.1	In association with other similar comments, please elaborate on the	Discuss during comment resolution meeting.
			rationale to select sample locations within the roadbed, how this relates	The rationale was to select sample location across
			to historical site characterization and monitoring, the selected remedy	and adjacent to the three decision units. However,
			and DD, etc.	while positioning the proposed sampling locations
				at Site 8, the field team identified that some of the
				proposed locations were within the roadbed and
				road toe. ADEC-Accepted August 24, 2017;
				please ensure that this is clearly explained in the
			<u>Photo 6-1</u> : Please indicate on this and/or other applicable photos and	report.
			references the sample locations which are located outside of the	Accepted. The captions for photos from Site 8 will
			historical decision units, roadbed, etc.	be revised to state location relative to the decision units whenever possible.
				ADEC-Accepted August 24, 2017
				Changes will also be made to Appendix E.
				ADEC-Accepted August 24, 2017
				For example, the caption for Photo 5-5 will be
				revised to state: "Typical depth of samples (1 to 2
				feet bgs) collected from Site 8 on 17 August 2016;
				this sample was collected southwest of the UDU
				and northwest of the MDU from SS-045. View
				facing down". ADEC-Accepted August 24, 2017
21.	6-2	6.1	<u>Photo 6-2</u> : Please clarify in the description that the area within the view	Accepted. See response to comment #13.
			is outside of the decision unit (not sampled) or if this was actually a	ADEC-Accepted August 24, 2017
			sample location; and if then specify the location ID.	Accepted. See response to comment #2.
				ADEC-Accepted August 24, 2017
			Please elaborate on and/or revise the references to 'discontinuous	Surface water conditions were not the only
			surface water ponds' since the term 'pond' doesn't seem necessarily	observations used to distinguish sediment from
			applicable; rather i.e. discontinuous ephemeral surface water'; noting	soil. Again, see response to comment #2.
			that ADEC's understanding is that the surface water conditions	ADEC-Accepted August 24, 2017

Page 16 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			(especially re: presence or absence of surface water) associated with Site 8 are essentially in constant flux depending on the time of year, status of accumulated precipitation, etc.	Since samples were collected beneath the vegetative mat, the material that was sampled does not likely reflect recently deposited sediment. Additionally, the density of the vegetation
			Is the sediment associated with areas where surface water was present indicative of material that would have been transported downgradient from another location and deposited at the subject 2016 sample location?	throughout Site 8 would likely limit surface transport. ADEC-Accepted August 24, 2017; however please include RTC and clarification with applicable statements and sections throughout the report.
22.	6-3	6.2	<u>Photo 6-4</u> : Please indicate the sample ID in the photo description if this was a sample location. Please also elaborate the respective applicable narrative discussions to clarify if the observed water below the mat was delineated to be the actual groundwater elevation at the time and/or if this was saturated soil/organic matter that drained as a result of disturbance.	Accepted. The sample location will be included. The caption for Photo 6-4 will be revised to state: "Water present below the vegetative mat at Site 8 sample SS-020 in the LDU on 18 August 2016. View facing down". ADEC-Accepted August 24, 2017
23.	6-3	6.2	Re: the title of this section and associated references to 'extent of contamination' throughout the report, does the extent of the sampling and analyses conducted in 2016, which was limited to the upper most profile, actually provide a thorough overall characterization of the total extent of contamination at Site 8 or only that which is located in the upper most profile based upon the surface water migration pathway? Re: the discussion of 2016 RRO detections and 'no record of	Accepted. References to the extent of contamination at Site 8 (Section 1.1 and header of Section 6.3) will be revised to state: " <i>lateral</i> <i>extent</i> " and/or " <i>nature and lateral extent of</i> <i>contamination</i> " throughout the document. <b>ADEC-Accepted August 24, 2017</b> Discuss during comment resolution meeting.
			anthropogenic RRO sources at Site 8' in the last paragraph on this page, and elsewhere throughout the document where applicable, please revise/amend statements and discussions throughout the document by providing more supporting information/data associated with the historical evaluations of biogenic fractions of NEC soils/sediments. Please also clarify that the SG cleanup data is for evaluation purposes	How should we apply the chromatographic evidence where observed DRO range and RRO range response does not match calibration standard patterns for reference DRO or RRO material? ADEC - Tentatively Accepted August 24, 2017; per agreed upon revisions/amendments to the

#	Page #	Section	ADEC Comment	Response
			only and not approved by ADEC for making final determinations re: site characterization, whether cleanup levels have been achieved etc. ADEC notes other statements throughout the report that RRO exceedances will not be discussed further due to contributing the detected concentrations to biogenic interference - which is not appropriate and should be revised.	report that were discussed/concurred by the project team during the August 10, 2017 comment resolution meeting.
24.	6-4	6.2	<u>Table 6-1</u> : This table and other applicable narrative discussions throughout the document should also reference and elaborate on ranges of significant detections and not just exceedances; since the sampling and analysis is intended to evaluate the fate and transport (which would include contributions from any source) and not just exceedances related solely to the location of sample collection.	Discuss during comment resolution meeting. The focus of this report is to provide additional data for future periodic reviews which would determine if the current understanding of fate and transport or the CSM should be revised. <b>ADEC-Accepted August 24, 2017</b> Accepted. Text will be revised to clarify the
			Please revise/amend the discussion in the last two paragraphs of this section re: the sample location S08-SS-013 to clarify whether or not the subject contamination in soil was taken into consideration during development and monitoring of the decision units and to also clarify that the migration to surface water pathway is also a concern; both via surface transport as well as hydrologically connected groundwater and surface water. ADEC notes further that based upon indication of elevations across the site as depicted in Figure A-3, that the flow direction appears to trend towards S08-SS-013 and from there continuing downgradient to where Site 8 discharges into the stream.	locations of the 2016 exceedances in relation to known historical contamination. See text at the end of the document for Section 6.3. <b>ADEC-Accepted August 24, 2017</b> Discuss during comment resolution meeting. The focus of this report is to provide additional data for future periodic reviews which would determine if the current understanding of fate and transport or the CSM should be revised. <b>ADEC-Tentatively Accepted August 24, 2017;</b> <b>please include the RTC in the applicable</b>
			Please revise/amend the last statement of this section to clarify that although the State does not have promulgated sediment cleanup levels, that there are both site-specific cleanup levels identified in the DD, and, that ADEC generally considers the NOAA SQuiRT criteria as a starting point for exposure risk evaluations associated with sediment.	narrative sections of the report to ensure this is captured going forward. Discuss during comment resolution meeting. SSCLs for sediment are referred to and used for comparison in the preceding paragraphs.

#	Page #	Section	ADEC Comment	Response
				Recommend deleting last paragraph in its entirety. NOAA SQuiRT tables do not include petroleum hydrocarbons in sediment and the 2- Methylnaphthalene value is higher than the SSCL <b>ADEC-Accepted August 24, 2017</b>
25.	6-5	6.2.1	Please clarify the statement in the last sentence of this section, which appears to be a general summary and postulation statement rather than having been stated and re-quoted in final approved reports over the stated years. Further, ADEC does not necessarily concur with the statement that SG cleanup results indicated 'up to 80 and 70 percent' reduction as stated; noting that many of the SG cleanup results were actually similar to and higher than the primary non-SG cleanup results from samples collected from numerous sites. Similar to other comments associated with SG cleanup results, this issue needs to be revised/amended and elaborated on further throughout the report.	Accepted. The last sentence of Section 6.3.1 will be revised to state concentration changes found at Site 8 in particular: " <i>Results from NEC FUDS</i> <i>samples with the silica gel cleanup typically</i> <i>indicated a significant reduction in both DRO and</i> <i>RRO across NEC, and at Site 8 by six and forty-</i> <i>two percent, respectively (see Appendix G)</i> ( <i>USACE 2011a, 2012, 2013)</i> ". <b>ADEC-Accepted August 24, 2017</b> The supporting numerical evidence will be supplied in Appendix G. <b>ADEC-Accepted August 24, 2017</b>
26.	6-5	6.3	Similar to comment above, ADEC does not consider 'extent and magnitude' appropriate as a title and/or reference for applicable sections and narrative discussions throughout the report. Please consider revising 'extent and magnitude' to i.e. 'Updated CSM of Residual Contamination at 2016 Suqi River Sample Locations'. Please revise/amend the first sentence of this section, and also apply to similar statements throughout the document, to clarify the total number of samples being referenced; i.e. '[A total of]samples [were] collected'.	Accepted in part. The Sections 6.3 and 6.4 headers and subsequent mentions of "nature and extent" will be revised to state: " <i>nature and lateral extent</i> ". <b>ADEC-Accepted August 24, 2017</b> Accepted. The statement will include " <i>total</i> ". First sentence of Section 6.4 will be revised to state: "A total of five surface water and 11 sediment samples…". <b>ADEC-Accepted August 24, 2017</b> Accepted. While the determination of the cause of the sheen was not investigated, the sheen was

#	Page #	Section	ADEC Comment	Response
			Please elaborate on the sheen which was observed and discussed in the	confined to a limited area and noted before field
			later portion of the first paragraph of this section. Was there any	personnel entered the Suqi River.
			indication of whether the sheen was biogenic or petrogenic, was the	ADEC-Accepted August 24, 2017
			sheen confined to a 'location' or did it extend along a reach of the river,	The seventh sentence of Section 6.4 will be revised
			could it be traced to any specific location, was the sheen the result of	to state: "While isolated pools of surface water
			disturbance during sediment sample collection, etc.?	sheen were observed at S29-002 and S29-003
				(Photo 6-5) prior to disturbance or sample
				collection, the source and whether or not the sheen
				was biogenic or petrogenic were unknown".
				ADEC-Accepted August 24, 2017
				Photo caption beneath Photo 6-5 on page 6-6 will
				also be updated to "Photo 6-5: Sheen observed
				prior to collecting sediment from S29-SD-003 on
				15 August 2016. View facing down." ADEC-
				Accepted August 24, 2017
				Accepted. Reference to sediment results will be
			Please revise/amend the last two sentences on this page.	removed.
			The second to last sentence is potentially misleading/contradictory and	ADEC-Accepted August 24, 2017
			requires further resolution discussion. The statement is making a	The third to last sentence (formerly the second to
			connection between sediment sample and surface water results based	the last sentence) of Section 6.4 will be revised to
			upon a different list of analytes; while also stating that results 'do not	state: "results from the 2016 sampling effort for
			support an anthropogenic source' for the observed sheen.	total aromatic hydrocarbons (TAH) and TAqHs in
				surface water do not support an anthropogenic
				source for sheen". ADEC-Accepted August 24,
				2017
			The last sentence on this page should be revised/amended to clarify that	Accepted. Text will be changed to present other
			while the 2016 results indicate that prior remedial actions as well as	sources of contamination and historical sheen. See
			remaining upgradient sources of contamination (i.e. Site 28), were not	text at end of this document.
			resulting in contaminant migration via the surface water pathway at the	ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
			<ul> <li>time of sampling, that sheens been previously observed in the Suqi River when disturbing sediment and/or stream bank material, and that the MOC and Site 28 contamination sources that remain are potential ongoing/future sources of contamination migration to downgradient areas.</li> <li>Please revise/amend the discussion further in this section to clarify if the statements re: 2016 analyses results are based on drinking water criteria for surface water and/or SSCLs for sediment only; and/or if analyses results might indicate other ecological exposure risk(s).</li> <li>Please also apply revisions to statements in this section re: RRO concentrations in sediments as indicated in other similar comments above.</li> <li>ADEC - Tentatively Accepted August 24, 2017; per agreed upon revisions/amendments to the report that were discussed/concurred by the project team during the August 10, 2017 comment resolution meeting.</li> </ul>	Accepted. As stated in Section 4.0, results were compared to criteria presented in the 2016 WP. The second to last sentence of Section 6.4 will be revised to state: "Surface water TAH and TAqH results were below SSCLs". ADEC-Accepted August 24, 2017 Discuss during comment resolution meeting. How should we apply the chromatographic evidence where observed DRO range and RRO range response does not match calibration standard patterns for reference DRO or RRO material? ADEC - Tentatively Accepted August 24, 2017; please see further response on left.
27.	6-6	6.4	Please state the date(s) associated with the stated 'commencement of remedial actions at Site 28' and also specify when actions were considered complete.	Accepted. The dates of the remedial actions at Site 28 will be changed. <b>ADEC-Accepted August 24, 2017</b> The first sentence of Section 6.5 will be revised to state: "Flow measurements were collected from the Suqi River to compare to measurements collected in 2001 and 2002 prior to the 2010 through 2013 remedial actions at the Site 28 Drainage Basin (Figure A-6.1)". <b>ADEC-Accepted August 24,</b> <b>2017</b> Similarly, the last sentence of Section 6.4 will be revised to state: "Remedial action efforts from

#	Page #	Section	ADEC Comment	Response
				2010 through 2013 at the Site 28 Drainage Basin
				do not appear to have caused contamination to
				migrate to the Suqi River or its estuary".
				ADEC-Accepted August 24, 2017
28.	6-8	6.4	Please re-review and consider revising the second sentence on this page	Accepted. As presented in the first sentence of
			to clarify the context and points that are actually being made. Are the	Section 6.5, the 2016 flow measurements are being
			points in this sentence being made as a comparison to the 2001 and	compared to those that were collected in 2001 and
			2002 data; otherwise wouldn't one anticipate the increased velocity and	2002. The results presented are those based on
			discharge from the drainage basin inputs and that the upgradient	measurements collected by field personnel. It is
			drainage inputs would be less than the sum of the total downstream of	possible that even though the field team avoided
			the confluence?	the observable eddy, the eddy and estuary
				conditions (intact sand berm) may have affected
				the measurements. See revised Section 6.5 text at
				the end of this document. ADEC-Accepted
				August 24, 2017 Accepted. Dates of measurement
				collection will be added to the text in Section 6.5
				along with water level information. See text at the
			Please elaborate on the potential differences between the 2001/02 and	end of this document. Please note: the heavy
			2016 measurements that are either known or postulated based upon	precipitation event in 2016 (mentioned in the text)
			seasonal and/or precipitation events associated with the 2016 field	occurred after all streamflow measurements were
			event; vs. the overall characteristics of the river when it is ice-free and	collected.
			flowing. Are the two sets of river measurement data comparable?	ADEC-Accepted August 24, 2017
				Discuss during comment resolution meeting.
			Please also elaborate on the role of the river flow measurements and	The intent of sampling at the Suqi River was to
			evaluation of changes over time in evaluating the contamination fate	determine whether the remedial activities at Site 28
			and transport issues within the drainage.	impacted the Suqi River by revisiting previous
				sampling locations and comparing historical results
				to the 2016 results.
				ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
20	( )		<u>Table 6-2</u> : Please include the dates associated with the collection of measurement data. Were all measurements associated for each cross section collected on the same day and were there potentially notable fluctuations based on short-term changes in site conditions, precipitation, etc.?	Accepted. The date flow measurements made will be added to the notes of Table 6-2. Note will state: "All measurements were made on 16 August 2016 within a three hour period". ADEC-Accepted August 24, 2017
29.	6-9	6.4	Based upon the photographs (6-6 and 6-7) of the estuary berm, it appears that the berm is composed primarily (if not entirely) of tidal material. Is this the case and is there any visual indication of sediment material buildup on the south side of the berm – material that indicates active transport and deposition within the estuary from upgradient sources? Is the surface water on the south side of the berm intertidal and was surface water flowing from the Suqi River and discharging all the way up/in to the estuary at the time of inspection/data collection? Please state the tide status of the two different photograph events and relative differences in tide; also the photograph locations appear to be significantly different i.e. photo 6-6 appears to be much closer to the eastern edge of the estuary than photo 6-7.	Accepted. The berm appeared to be comprised primarily of sand. There was no observable evidence of sediment material buildup on the south side of the berm. The field team did not observe surface water being affected by intertidal forces. However, the team did observe the Suqi River flowing into the Suqi River estuary (see response to comment #28 above). <b>ADEC-Accepted August</b> <b>24, 2017</b> Tide information will be presented with appropriate photos in the text and Appendix E similar to the following: " <i>For Northeast Cape (No.</i> <i>2435), using Nome as a reference station,</i> <i>predicted low tide (0.1 ft mean lower low water) at</i> <i>1609 on 15 August 2016 and high tide (1.8 ft mean</i> <i>lower low water at 0115 on 16 August 2016</i> ( <i>NOAA [National Oceanic and Atmospheric</i> <i>Association] 2015)</i> ". <b>ADEC-Accepted August 24, 2017</b> Additionally, a photo (Photo No. 17) will be added to Appendix E that better depicts the terminus of the estuary. <b>ADEC-Accepted August 24, 2017</b>

Page 23 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
30.	6-10	6.5	ADEC does not necessarily concur with the biogenic interference discussion in the second paragraph on this page. It is also not necessarily appropriate to exclude the RRO results from discussion in the data quality assessment, especially when asserting that no distinguishable distillate fingerprint was observed. The biogenic interference section that is included in a later appendix in the report should be moved to the beginning of the document and elaborated/discussed more thoroughly with regard to the potential impacts to the results.	Discuss during comment resolution meeting. How should we apply the chromatographic evidence where observed DRO range and RRO range response does not match calibration standard patterns for reference DRO or RRO material? <b>ADEC - Tentatively Accepted August 24, 2017;</b> <b>per agreed upon revisions/amendments to the</b> <b>report that were discussed/concurred by the</b> <b>project team during the August 10, 2017</b> <b>comment resolution meeting.</b> Section 6.5 will be moved to Section 6.1. <b>ADEC-Accepted August 24, 2017</b> For Section 1.2.9 (now Section 1.2.1), see response to comment #37. <b>ADEC-Accepted August 24, 2017</b>
31.	7-1	7.0	Please provide headers/paragraph breaks etc. to better differentiate the discussion of Site 8 from the Suqi River, noting that the sentence at the top of the bullets states Site 8 but then transitions in the bullets to the Suqi without indication/separation. Please revise/amend references to 'drainage basin' to clarify if this is specifically Site 28 and/or intended to reference the overall Suqi drainage (or other sub drainages); please apply this clarification throughout the document. Re: the last bullet on this page, please see and apply comment(s) above associated with the sand berm and the tidal impacts on the estuary. Are there photos available from both low and high tide events that can be included in the report?	Accepted. See response to comment #1. <b>ADEC-Accepted August 24, 2017</b> Accepted. The drainage basin will be clarified to specifically reference Site 28. Last bullet of Section 7.0 will be revised to state: "… <i>result of in- flow from the Site 28 Drainage Basin…</i> ". <b>ADEC-Accepted August 24, 2017</b> No photos of the berm at low tide and high tide were collected. The field personnel did not travel to the estuary terminus on a daily basis. Only two trips were made to the estuary terminus during the sampling event. <b>ADEC-Accepted August 24, 2017</b>

#	Page #	Section	ADEC Comment	Response
32.		Figure A-2	Please include AOC boundaries and/or call out IDs on this and all applicable figures for all of the NEC sites; i.e. Site 28 Drainage Basin, Site 21, roofing tar area, etc.	Accepted. AOC polygons will be added to Figures A-2 (similar to Figure A-2 of the LTMP), A-5, A- 6.1, A-6.2, and A-6.3 and labeled as " <i>Remediation</i> <i>Site</i> ". <b>ADEC-Accepted August 24, 2017</b>
33.		Figure A-3	Please revise/replace references to 'local' and 'regional' groundwater flow direction and actually state the name of the site and/or 'general site wide' respectively to avoid confusion.	Accepted. Additional errors were noted. Figures A- 3 and A-4 will include " <i>Site 8 Surface Water Flow</i> <i>Direction</i> ". Figures A-5, A-6.1, A-6.2, and A-6.3 will include "General Site Wide Groundwater <i>Flow Direction</i> ". ADEC-Accepted August 24, 2017
			Please include applicable date(s) in all figure titles and legend entries, actions, etc. Please apply this revision for all applicable figures.	Accepted. Figures will be revised to include 2016 as appropriate. Figure A-2 legend will be revised to include "2016 Area of Interest". Figure A-3 title will be revised to include "2016 Distribution of Sediment and Surface Soil Samples at Site 8". Figure A-4 title will be revised to state "2016 Site 8 Sediment and Surface Soil Exceedances". Figure A-5 title will be revised to state "2016 Suqitughneq River Surface Water & Sediment Exceedances". Figures A-6.1 through A-6.3 title will be revised to state "2016 Suqitughneq River Cross Sections". ADEC-Accepted August 24, 2017 Legends will be revised to include sample year. ADEC-Accepted August 24, 2017 Accepted. See response to comment above. A note
			Also revise the title by inserting 'Surface Soil [Samples] At] and also add a figure note to clarify that these samples were designated sediment or soil based on field and sample observation at the time of	will be added to state: "Samples designated as sediment or soil based on field observations at the

Page 25 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			sample collection; and that this is not necessarily a site wide delineation.	<i>time of sample collection</i> ". <b>ADEC-Accepted</b> <b>August 24, 2017</b>
34.		Figure A-4	Please include dates for all actions in the legend. Please also include a figure note as well as detail in the respective applicable sections that states the sample depths, range of depths, etc. The respective narrative sections should also discuss any limitations that sample depths may have on adequately characterizing the overall extent of contamination at the site and associated migration pathways.	Accepted in part. Legend will be revised to include "2016" before all 2016 sample results and historical sediment exceedance will be revised to state "2004". <b>ADEC-Accepted August 24, 2017</b> A note will be added to state: "Sediment and soil sample depths ranged from 0.5 feet to 2.5 feet below ground surface". Sample depths are discussed in the first paragraph of Section 5.2.1. Samples were collected in accordance with the
			Figure A-4 has a lot of good information, however ADEC recommends adding a new figure that depicts the boundary of the extent of site investigation to date (i.e. 2016 if that is the furthest horizontal extent to date), and then to depict all of sample locations for all matrices where respective cleanup level exceedances were observed (i.e. as red with different shapes similar to Figure A-4) but then to do the same for all locations where notable concentrations were detected however were below respective cleanup levels (i.e. in yellow) and exclude the insignificant detections/non-detects. This would provide a better CSM for evaluation of the fate and transport concerns. Please clarify if all of the prior samples associated with sediment were delineated/considered sediment; noting that the pre-2016 samples indicated in the legend are all 'sediment and surface water'.	<ul> <li>WP; no visual contamination was noted. ADEC- Accepted August 24, 2017</li> <li>The current Figures A-3 and A-4 depict the lateral extent of historical sampling at Site 8. While samples collected in 2016 were distinguished as sediment or soil, historical samples results were interchangeably referred to as sediment or soil and would make the requested assessment difficult to complete.</li> <li>ADEC - Tentatively Accepted August 24, 2017; per agreed upon revisions/ amendments to the report that were discussed/concurred by the project team during the August 10, 2017 comment resolution meeting.</li> <li>See response to comment #33 for Figures A-3 and A-4 title revision.</li> <li>ADEC-Accepted August 24, 2017</li> </ul>

#	Page #	Section	ADEC Comment	Response
				Accepted. The legend will be revised to state <i>"Sediment/Soil &amp; Surface Water Sample"</i> . Earlier presentation of sample matrices at Site 8 did not consistently present sediment or soil. It is not the purpose of this effort to reclassify earlier sampling efforts. <b>ADEC-Accepted August 24, 2017</b>
35.		Figure A-5	<ul> <li>Please apply all applicable comments on other figures above to this figure.</li> <li>Recommend revising 'regional' to 'Suqi River Drainage Basin' for the groundwater flow direction.</li> <li>Similar to the Site 8 depictions of analyses results, the Suqi results need to be depicted and evaluated based on ranges of concentrations and not just exceedances/non-exceedances since these areas are being evaluated for fate and transport concerns and not just whether an exceedance is observed at a specific location at a point in time.</li> </ul>	Accepted Title will be revised; see response to comment #33. The historical sediment samples in the legend will be revised to state the sample year. <b>ADEC-Accepted August 24, 2017</b> Accepted in part. Flow arrow label will state " <i>General Site Wide Groundwater Flow Direction</i> ". See response to comment #33. <b>ADEC-Accepted August 24, 2017</b> Accepted. Ranges of concentrations will be presented. See response to comment #3. <b>ADEC-</b> <b>Accepted August 24, 2017; per responses to</b> <b>RTC #3.</b> Discuss during comment resolution meeting. The intent of sampling at the Suqi River was to determine whether the remedial activities at Site 28 impacted the Suqi River by revisiting previous sampling locations and comparing historical results to the 2016 results. <b>ADEC-Accepted August 24, 2017</b>
36.		Figure A-6	It would be helpful to provide an enhanced, closer aerial view/figure for the Site 28 Drainage Confluence Area and depict the different flow directions, river cross section data, etc.	Accepted. The extent for Figure A-6.1 will be zoomed in slightly while Figure A-6.2 will be zoomed in significantly. Additionally, arrows will

Page 27 of 38 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			It would be helpful to add a few smaller flow direction arrows along the path of the river sections, drainage basin, etc. to better indicate the path of surface water flow as compared to the indicated generalized flow of the overall Suqi drainage basin. Please label/call out all significant site features i.e. the pond in the middle of the figure, the estuary, the direction to the marine shoreline, etc. It would also be helpful to label the road.	be placed along the Suqi River and Site 28 drainage basin to depict surface water flow direction for all A-6 Figures. <b>ADEC-Accepted August 24, 2017</b> Accepted. See response above. <b>ADEC-Accepted August 24, 2017</b> Accepted in part. Significant site features will be labeled. <b>ADEC-Accepted August 24, 2017</b>
37.		Appendi x B	Table B-1: Please add a table note to clarify whether duplicate totals for the sediment and soil samples at Site 8. Were there four duplicates or eight for the total of 75 samples?         1.2.3: The narrative of the report mentions a trip blank that was excluded that is not mentioned here. Please clarify.	Accepted. The following note will be added to Table B-1, "A total of 8 duplicates were collected for soil and sediment at Site 8". <b>ADEC-Accepted August 24, 2017</b> The DQA will be revised to include discussion regarding the lack of an equipment blank at Site 8 (Section 1.2.12). Please see text at the end of this document. <b>ADEC-Accepted August 24, 2017</b>
			<ul> <li>1.2.8: Potential further resolution discussion necessary re: the discussion of LOD discrepancies and the comparison discussion of cleanup levels vs. site-specific DD criteria; noting the draft report's position on the RRO results and other biogenic interferences. Please provide better clarification and elaborated discussion on these issues here and elsewhere throughout the report where applicable.</li> <li>1.2.9: As noted in prior comments, given the importance/impact of the stated biogenic interference, this section should be relocated to the beginning of the report and expanded by amending with correlation</li> </ul>	Discuss during comment resolution meeting. Despite laboratory results with LODs greater than ADEC cleanup criteria, LODs did not exceed the soil SSCLs presented in the DD. <b>ADEC-Accepted August 24, 2017</b> Accepted. Section 1.2.9 will be moved to Section 1.2.1. <b>ADEC-Accepted August 24, 2017</b> Definitive statements will be removed or altered. <b>ADEC-Accepted August 24, 2017</b>

#	Page #	Section	ADEC Comment	Response
			references, data sets and trends observed, etc. Please also revise 'definitive statements on this subject to, for example in the second sentence 'indicated a high potential to bias the results.'.	Please see text at the end of this document for revised text. ADEC-Accepted August 24, 2017 Accepted. Reference to silica gel cleanup will be
			Please revise the statement in this section that SG cleanup was not utilized for this sampling effort; since ADEC presumes this is meant to state that SG cleanup analyses was not conducted on 2016 samples. The report makes repeated references that SG cleanup results actually confirm a bias to the historic and the 2016 results. Noting further that this rationale appears to have been applied to the sample information that is listed in table B-2 and requires further clarification. What is the data/information in Table B-2 implying if SG cleanup analyses was not conducted in 2016?	removed from the DQA. <b>ADEC-Accepted August 24, 2017</b> Section 1.2.1 (formerly Section 1.2.9) identifies that chromatograms were visually evaluated and compared to calibration chromatograms to determine likely biogenic interference. Table B-2 presents samples where a chemist determined that results were significantly affected by the observed interference. See revised text at the end of this
38.		Attachment B-1	Table B-1-1:This table indicates multiple samplers for the same samples, which is also indicated on sample containers observed in many of the photos and field log. Please discuss and clarify this in table notes and applicable narrative sections throughout the document. The data quality assessment should also discuss any impacts that may have resulted over the start/stop times, different sampling days with different samplers, etc.; or clarify the multiple samplers listed and demonstrate no impacts. Each sample should be marked/indicated for the primary sampler; noting the rationale is unclear for why multiple sampler initials are listed on one container.Please include references to acronyms and abbreviations in all tables and specify those which are not in other primary lists.	document. ADEC-Accepted August 24, 2017 Accepted. The following text will be added to the DQA Section 1.2.3, "Multiple samplers were utilized at Site 8. The sampling team consisted of soil diggers, container labeler, compositor, and classifier. The team worked cohesively and in a timely manner. There was no impact to the data." ADEC-Accepted August 24, 2017 Accepted. Notes will be included in the sample summary. ADEC-Accepted August 24, 2017

#	Page #	Section	ADEC Comment	Response
39.		Attachment B-3	Note that the stated ADEC file number is incorrect; should be .013 and not .023.	Accepted. This number has been changed. Please see response to comment #1. ADEC-Accepted August 24, 2017
40.		Appendi x C	It would be helpful to include a site-specific photo in this appendix for each of the respective cross sections; and also include these photos in the photo log.	Accepted. Photos will be added to Appendix C for cross sections 002 and 004. Photos were not collected at cross sections 001 and 003. ADEC- Accepted August 24, 2017
41.		Appendi x E	Please indicate the associated site for each photo description; i.e. Photo 10 is presumed to be Suqi River. Similar/associated with prior comments above, it would be helpful to have a sequenced order of photos for transects/views of the Suqi and other drainage features from the estuary upward/upgradient.	Accepted. Site names (such as Suqi River, Site 8, and the Airstrip) have been added to all photos as appropriate. ADEC-Accepted August 24, 2017
42.			End of ADEC Comments	

## Executive Summary, 2nd Bullet

Sample locations with concentrations above SSCLs were generally found adjacent to Cargo Beach Road's western toe at Site 8. DRO concentrations in sediment and soil ranged from 190 mg/kg to 11,000 mg/kg and 11 mg/kg J,B to 19,000 mg/kg, respectively. RRO concentrations in sediment and soil ranged from 1,800 mg/kg to 11,000 mg/kg and 130 mg/kg QL to 8,500 mg/kg, respectively. Sample locations with diesel-range organics (DRO) and residual-range organics (RRO) exceeding SSCLs were identified outside the historical decision unit boundaries. The eastern edge of elevated DRO soil levels has not been defined and may extend under the shoulder of the road. 2-Methylnaphthalene concentrations in sediment ranged from not detected to 6.8 mg/kg. ADEC-Accepted August 24, 2017 *Executive Summary*, 3rd Bullet

Naturally occurring organic material in sediment and soil identified in other areas throughout NEC were found at Site 8. Chromatographic interference to DRO and RRO sample concentrations was likely due to the presence of biogenic organics (see Section 1.2.9 in Appendix B). ADEC-Accepted August 24, 2017

## Executive Summary, 4th Bullet

Surface water and sediment samples collected from the Suqi River and estuary in 2016 did not contain analytes above the SSCLs; this assumes RRO levels are attributed to biogenic organics (see Section 1.2.9 in Appendix B). In surface water samples, total aromatic hydrocarbons (TAH) concentrations were 0.0007 mg/L and total aqueous hydrocarbon (TAqH) concentrations ranged from 0.000807 mg/L to 0.0008233 mg/L. In sediment samples, DRO concentration ranged from 110 mg/kg QJ, QN to 670 mg/kg, RRO concentrations ranged from 930 mg/kg to 5,700 mg/kg, 2-methylnaphthalene ranged from not detected to 0.71 mg/kg J,QL,QN, arsenic ranged from 1.27 mg/kg to 5.82 mg/kg, chromium ranged from 3.42 mg/kg to 22.7 mg/kg, lead ranged from 3.95 mg/kg to 22.7 mg/kg, zinc ranged from 14.4 mg/kg to 42.2 mg/kg; the remaining analytes with SSCLs were not detected. ADEC-Accepted August 24, 2017

Section 2.2.1, Surface Water

Page 30 of 38 August 4, 2017

Surface water sampling occurred at Site 8 from 2010 through 2012 and in 2014. Samples collected from 2010 through 2012 were analyzed for DRO, residual-range organics (RRO), and polycyclic aromatic hydrocarbons (PAH) and results were below ADEC surface water standard criteria. In 2010, 2011, and 2013, only DRO and RRO were detected in the surface water samples collected from the LDU. DRO was found at concentrations of 0.064 mg/L J in 2010 (USACE 2011a), 0.061 mg/L J in 2011 (USACE 2012), and 0.031 mg/l J in 2012 (USACE 2013). RRO concentrations were 0.055 mg/L J in 2010 (USACE 2011a), 0.058 mg/L J in 2011 (USACE 2012), and 0.039 mg/l J in 2012 (USACE 2013). While the 2010 primary and field duplicate surface water samples from the MDU had detectable concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, DRO, and RRO, PAH results were estimated below ADEC surface water standard criteria and DRO and RRO concentrations were below ADEC surface water standard criteria ranging from 0.38 mg/L to 0.44 mg/L and 0.56 mg/L and 0.7 mg/L, respectively (USACE 2011a). Although BTEX and PAH concentrations were not detected, the primary and field duplicate samples collected from the MDU had DRO and RRO in concentrations ranging from 0.19 mg/L QN to 0.28 mg/L QN and 0.28 mg/L QN to 0.44 mg/L QN, respectively, in 2011 (USACE 2012). In 2012, m & p xylenes, o-xylene, toluene, 1-methylnaphthalene, 2-methylnaphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorine, naphthalene, phenanthrene, pyrene, GRO, DRO, and RRO were detected in the primary and field duplicate surface water samples collected from the MDU (see Table H15 in Appendix H [USACE 2013]). DRO concentrations ranged from 0.97 mg/L QN to 1.6 mg/L QN and RRO concentrations ranged from 0.24 mg/L QN to 0.45 mg/L QN (USACE 2013). In 2014, surface water samples were analyzed for gasolinerange organics (GRO), DRO, RRO, benzene, toluene, ethylbenzene, and xylene (BTEX), and PAHs. Two surface water samples (one primary and one duplicate) were collected from the Middle Decision Unit (MDU) and one surface water sample was collected from the Lower Decision Unit (LDU) at the same locations as the 2012 surface water samples. The primary and field duplicate surface water samples from the MDU contained total aqueous hydrocarbons (TAqHs) levels of 0.0193 and 0.0329 milligrams per liter (mg/L), respectively. The TAqH levels exceeded the site-specific cleanup levels (SSCLs) of 0.015 mg/L. The TAqH levels in the sample from the LDU closest to the Suqi River at 0.00242 mg/L did not exceed the SSCL. The TAH levels from both the MDU and LDU were below the SSCL of 0.01 mg/l at 0.0088 mg/L and 0.002 mg/L, respectively. No surface water sheen was observed at either location at the time of sample collection (USACE 2015b).

#### ADEC-Accepted August 24, 2017

## Section 2.2.1, Sediment, 2nd, 3rd, and 4th paragraphs

From 2010 through 2012, discrete samples were collected from eight random grid nodes in each decision unit and composited to provide one representative sample from each decision unit; these samples were analyzed for both DRO and RRO before and after silica gel cleanup, PAHs, and total organic carbon (TOC). Samples were inconsistently referred to as sediment and/or soil during this time so the application of the appropriate DD-specified SSCLs is not possible. Samples collected from the MDU and LDU exceeded the SSCLs for sediment identified in the DD (USACE 2009) for DRO (3,500 mg/kg), RRO (3,500 mg/kg), and 2-methylnaphthalene (0.6 mg/kg) in 2010 and 2012 as follows:

In 2010 the MDU primary sample exceeded the sediment SSCL for 2-methylnaphthalene at 7.5 mg/kg (USACE 2011a). The MDU primary sample contained DRO at 7,100 mg/kg and RRO at 3,300 mg/kg (below the sediment SSCL).

In 2010 the MDU field duplicate exceeded the sediment SSCL for DRO at 9,300 mg/kg, RRO at 5,300 mg/kg, and 2-methylnaphthalene at 7.6 mg/kg. In 2010 the LDU sample contained 2-methylnaphthalene at 1.2 mg/kg (USACE 2011a).

In 2012 the LDU primary and field duplicate samples contained for 2-methylnaphthalene, at 1.7 mg/kg and 1.9 mg/kg, respectively (USACE 2013). For sediment and soil samples collected from Site 8, all analytes in 2011 and the remaining analytes in 2010 and 2012 were below sediment SSCLs. While most analytes were present in concentrations less than 10 percent of the SSCL or not detected, 2-methylnaphthalene, anthracene, naphthalene, and fluorine were detected at greater than 10 percent of the sediment SSCLs (see Table F3 in Appendix F [USACE 2013]). ADEC-Accepted August 24, 2017 *Table 2-1* 

Page 31 of 38 August 4, 2017

Sample ID/ Decision Unit Type		Year	DRO (mg/kg)	RRO (mg/kg)	2-Methylnaphthalene (mg/kg)	
	Sedime	nt SSCL	3,500	3,500	0.6	
	Sc	oil SSCL	9,200	9,200		
04NE08SD102	Discrete	2004	19,500	3,880	NA	
04NE08SD103	Discrete	2004	6,700	4,360	NA	
		2010	660 ¹	6,300 ¹	0.0068	
UDU	Composite	2011	58 ¹	380 ¹	0.0035	
		2012	290 ¹	2,700 ¹	ND (0.0039)	
	Composite	2010	7,100 ¹	3,300 ¹	7.5	
MDU			9,300* ¹	5,300* ¹	7.6*	
MDU		2011	1,800	1,100	0.15	
		2012	960 ¹	2,100 ¹	0.3	
		2010	2,800	1,600 ¹	1.2	
		0011	550	820	0.210	
LDU	Composite	2011	1,500	690	0.092	
		0040	2,900 ¹	2,400 ¹	1.7	
		2012	2,500* ¹	2,200* ¹	1.9*	

Notes:

-- = not specified

* = field duplicate sample NA = not analyzed

ND = not detected

¹ Concentration decreased after application of silica gel cleanup. For definitions, refer to the Acronyms and Abbreviations section.

#### **ADEC-Accepted August 24, 2017**

### Section 2.2.2

RIs conducted at the Suqi River, also known as Site 29, between 1994 and 2004 identified DRO as the only contaminant of potential concern. These investigations are summarized in the DD as follows (USACE 2009):

In 1994, surface water samples were analyzed for GRO, DRO, and BTEX. Surface water samples did not exceed drinking water cleanup levels.

In 1996, sediment and surface water samples were analyzed for DRO and PCBs. Sediment samples contained DRO at 25,000 mg/kg approximately 850 feet downgradient of the drainage basin (Site 28). Subsequent sampling efforts in 1998 and 2001 in this area did not duplicate this contamination level in sediment. Surface water samples did not exceed drinking water cleanup levels. (USACE 2009).

> Page 32 of 38 August 4, 2017

### Alaska Department of Environmental Conservation (ADEC)

**Document Reviewed:** Draft April, 2017 Northeast Cape 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report

In 1998, sediment samples were analyzed for DRO, RRO, BTEX, and PAHs, and contained DRO ranging from 11 to 2,200 mg/kg. Surface water samples did not exceed drinking water cleanup levels.

In 2001, sediment samples were analyzed for DRO, RRO, PAHs, polychlorinated biphenyls (PCB), TOC, total solids, chromium, lead, and zinc while surface water samples were analyzed for DRO, RRO, and PCBs. Sediment contained DRO ranging from 15 to 1,400 mg/kg. Surface water samples did not exceed drinking water cleanup levels.

In 2004, sediment samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, PCBs, pesticides, TOC, and mercury while surface water samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, and PCBs. Sediment samples contained DRO ranging from 157 to 988 mg/kg. Surface water samples did not exceed drinking water cleanup levels. **ADEC-Accepted August 24, 2017** 

#### Section 4.0

Deviations from the 2016 work plan (USACE 2016b) occurred during the execution of fieldwork. None of the deviations significantly affected the data usability. The work plan deviations were as follows:

Project Wide:

In the absence of DD-based SSCLs for soil, by USACE request analytical results from soil samples collected in 2016 were screened against Title 18 of the Alaska Administrative Code (AAC), Section 75 (18 AAC 75) Tables B1 and B2, promulgated in November 2016 (ADEC 2016). The November guidance

**ADEC-August 24, 2017; revise/replace references to 'guidance' in associated with 'promulgated cleanup levels' to avoid confusing with actual guidance.** was published after the 2016 work plan (USACE 2016a) was accepted. The 2016 WP referenced 18 AAC 75 Tables B1 and B2, which was promulgated in January 2016. For all soil analytes measured as part of the 2016 field effort, the November 2016 values presented in Tables B1 and B2 (ADEC 2016) were more stringent than those referenced in the 2016 WP (USACE 2016a).

Some final sampling locations at Site 8 and the Suqi River estuary were not surveyed using a real-time kinematic Global Positioning System (GPS) or mapping grade GPS. ECO-Land LLC performed an initial survey stakeout of all planned sampling locations on 13 August 2016. During sampling, it was determined that some sample locations would need to be moved. ECO-Land LLC returned to NEC on 18 August 2016. However, the survey gear was left in Nome. After communication between field personnel and the USACE, it was determined that the swing-tie method at Site 8 and a compass and tape measure at the Suqi River would be used to identify the position of relocated sample collection points (see Photo No. 14 in Appendix E). Although resurvey was planned, heavy rainfall flooded the estuary and the water depth made wading into the Suqi River impossible. For additional information, see below. Site 8:

Soil and sediment PAH samples were analyzed by ALS Environmental using U.S. Environmental Protection Agency (EPA) Method SW8270D instead of EPA Method SW8270-SIM due to laboratory error. While the limits of detection (LODs) for soil samples were greater than ADEC evaluation criteria, all LODs were less than SSCLs (USACE 2009). For additional information, refer to the DQA in Appendix B.

A Site 8 equipment blank was not collected and submitted for laboratory analysis. The 2016 WP required one equipment blank sample be collected following the decontamination of hand tools used to collect soil samples at Site 8. For additional information, refer to the DQA in Appendix B. Some sample locations were relocated to minimize the collection of **non-native material**. Six proposed locations were several feet into the roadbed and could not be accessed with hand tools (see Photos No. 29 and 30 in Appendix E). After discussions with the USACE, Site 8 sample locations 004, 013, 021, 039, 073, and 075 were relocated so that no more than approximately 1 foot of roadbed would need to be moved to access undisturbed soil. Due to large cobbles encountered at 2 feet below ground surface (bgs), similar to those lining the toe of the road, sample location 054 was also relocated. ADEC-Accepted August 24, 2017; noting

Page 33 of 38 August 4, 2017

### Alaska Department of Environmental Conservation (ADEC)

### Document Reviewed: Draft April, 2017 Northeast Cape 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report

additional comments and red highlighted references. Please revise/amend the mention and discussion of the highlighted references above to better clarify. The objective wasn't so much related to not sampling the 'non-native material' as it was ensuring that the most likely profile of potential extent of contamination was targeted. Further, 'undisturbed soil' should be better specified, similar to the sentence prior associated with 'non-native material'; noting that the soil/profile(s) located directly underneath the roadbed are actually disturbed.

Suqi River:

The original stakeout did not match the locations proposed in the 2016 work plan (USACE 2016a). In order to collect sediment samples adjacent to historical sample locations, sample locations 005, 006, and 007 were not collected in the surveyed location. Using a compass and tape measure, an attempt was made to collect samples in the proposed locations; these sample locations are estimated (see Photo No. 14 in Appendix E).

Due to heavy rainfall during the field effort, survey lath, put in place on 13 August and 15 August 2016, marking sediment sample locations in the Suqi River estuary were left in place. At the time of attempted retrieval on 23 August 2016, survey lath for samples 004 through 010 were underwater and could not be safely retrieved due to water depth.

Flow measurements were collected from the Suqi River at two points at Cross Section S29-002 (Figure A-6.2). Although flow measurements were collected from the midpoint of the Suqi River channel, the midpoint at this location had an eddy (see Photo No. 21 in Appendix E). An additional velocity measurement was collected 1 foot closer to the right edge of water (when facing downstream) from the midpoint and used to calculate discharge at this location.

### ADEC-Accepted August 24, 2017

#### Section 5.4

Investigation-derived waste (IDW) was transported and disposed of in accordance with all applicable local, state, and federal regulations. IDW included used personal protective equipment, sampling spoons, decontamination water, and general refuse. Solid wastes were stored in contractor bags and four bags of approximately 5 cubic feet each were disposed of by ECC in accordance with the Resource Conservation and Recovery Act and state waste regulations. Wastewater generated during decontamination was collected in a 5-gallon bucket. The liquid waste was transferred to a GAC filter drum and gravity-fed through the filter prior to discharge on-site (Table 5-1). Discharge was performed downgradient of adjacent sampling. After use, the GAC filter drum was transported to Anchorage via Northern Air Cargo and returned to ECC for re-use. Sanitary waste collected from the portable toilet system was collected and disposed of by ECC (USACE 2016b). ADEC-Accepted August 24, 2017

### Section 6.1, 3rd paragraph

Biogenic interference from naturally occurring organic material (NOM) likely contributed to DRO and RRO concentrations in sediment and soil and biased the analytical results (see Section 1.2.9 in Appendix B). DRO exceedances of the SSCL presented in the text are attributable to POL contamination. Biogenic interference likely contributed to all RRO results because no distinguishable residual-range distillate product fingerprint was observed when sample chromatograms were compared to calibration chromatograms. Therefore, RRO exceedances are not discussed in this section. ADEC-Partially Accepted August 24, 2017; noting project team concurrences on revising/amending this discussion further to better support the statements and associations to biogenic interference.

## Section 6.3, 2nd, 3rd, 4th, and 5th paragraphs

In 2016, sediment samples exceeded the SSCLs of 3,500 mg/kg for DRO, 3,500 mg/kg for RRO, and 0.6 mg/kg for 2-methylnaphthalene. For analytes with sediment SSCLs, sample concentrations of DRO ranged from 190 mg/kg to 11,000 mg/kg, RRO ranged from 1,800 mg/kg to 11,000 mg/kg, 2-methylnaphthalene ranged from not detected to 6.8 mg/kg, fluorene ranged from not detected to 0.41 mg/kg J, naphthalene ranged from 0.69 mg/kg J, and phenanthrene ranged from not detected to 0.25 mg/kg J; acenaphthene, benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene were not detected (see Table B-1-3 in Appendix B). Although RRO exceeded the sediment SSCL from 22 of the sample locations, there is no record of anthropogenic RRO sources at Site 8 and all RRO detections are likely to be biogenic in nature (see Section 1.2.9 in Appendix B).

Page 34 of 38 August 4, 2017

## Alaska Department of Environmental Conservation (ADEC)

Document Reviewed: Draft April, 2017 Northeast Cape 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report

In 2016, soil samples exceeded the SSCL of 9,200 mg/kg for DRO (Table 6-1). For analytes with soil SSCLs, sample concentrations of DRO ranged from 11 mg/kg J,B to 19,000 mg/kg, RRO ranged from 130 mg/kg QL to 8,500 mg/kg, and naphthalene ranged from not detected to 3.2 mg/kg J,QH (See Table B-1-2 in Appendix B).

In 2016 DRO exceeded the sediment SSCL in S08-SD-026 and S08-SD-068 at 11,000 mg/kg and 7,600 mg/kg, respectively. Both samples were silty, fine sand, in close proximity to the historical sediment samples collected in 2004, and within the boundaries of the decision units.

In 2016 DRO exceeded the soil SSCL in S08-SS-013 and S08-SS-030 at 19,000 mg/kg and 14,000 mg/kg, respectively. While a notable fuel odor was present during the collection of both samples, a visible sheen was observed on water that accumulated within the sample boring during the collection of S08-SS-013. Location S08-SS-013 was slightly outside of eastern extent of the LDU and approximately 20 feet downgradient of the 2004 DRO exceedance of 19,500 mg/kg. Composite samples were collected in 2010 and 2012 nearby S08-SS-013. Location S08-SS-030 was east of the LDU extent along the toe of Cargo Beach Road and upgradient of a 2004 DRO exceedance of 6,700 mg/kg. ADEC-Accepted August 24, 2017

### Table 6-1

### 2016 SSCL Exceedances in Sediment and Soil at Site 8

Sample Location	Matrix	DRO (mg/kg)	2-Methylnaphthalene (mg/kg)	
Sediment S	SCL	3,500	0.6	
S08-SD-026	Sediment	11,000	ND [0.2]	
S08-SD-068	Seament	7,600	6.8	
Soil SSC	Ľ	9,200		
S08-SS-013		19,000	7.5 QH,QN	
S08-SS-0139*	Soil	17,000	3.8 QH,QN	
S08-SS-030		14,000	14	

Notes:

-- = not specified * = field duplicate sample Bold = exceeded SSCL ND = not detected No RRO exceedances are presented in Table 6-1. For definitions, refer to the Acronyms and Abbreviations section.

### ADEC-Accepted August 24, 2017

## Section 6.3

A total of five surface water and 11 sediment samples collected from the Suqi River and estuary in 2016 did not exceed SSCLs (Figure A-5). For analytes with surface water SSCLs, surface water concentrations of total aromatic hydrocarbons (TAH) were 0.0007 mg/L and TAqHs ranged from 0.000807 mg/L to 0.000823 mg/L (see Table B-1-5 in Appendix B). For analytes with sediment SSCLs, sample concentrations of DRO ranged from 110 mg/kg QL,QN to 670 mg/kg QL,QN, RRO ranged from 930 mg/kg to 5,700 mg/kg, 2-methylnaphthalene ranged from not detected to 0.71 mg/kg J,QL,QN, arsenic ranged from 1.27 mg/kg to 5.82 mg/kg, chromium ranged from 3.42 mg/kg to 22.7 mg/kg, lead ranged from 3.95 mg/kg to 15.3 mg/kg, and zinc ranged from 14.4 mg/kg to 42.2 mg/kg; PCBs,

Page 35 of 38 August 4, 2017

benzo(g,h,i)perylene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, and phenanthrene were not detected (see Table B-1-4 in Appendix B). Although RRO exceeded the sediment SSCL of 3,500 mg/kg at three sample locations collected from the Suqi River estuary in 2016, RRO is likely attributed to biogenic interference (see Section 1.2.9 in Appendix B). Evaluation of chromatograms from samples collected in 2016 to calibration chromatograms did not indicate patterns typical of middle distillate or residual range fuel products.

Sediment sampling results from 2016 did not confirm remaining historical contamination. Historical sampling of the Suqi River was performed before SSCLs were documented in the 2009 DD (USACE 2009). However, when comparing historical sediment and surface water results to SSCLs, one sediment sample collected in 1996 exceeded the DRO SSCL of 3,500 mg/kg at 25,000 mg/kg. Subsequent sampling efforts in 1998 and 2001 near the DRO exceedance were unable to replicate the high DRO concentration (USACE 2009).

While isolated pools of surface water sheen were observed at S29-002 and S29-003 (Photo 6-5) prior to disturbance or sample collection, the source and whether or not the sheen was biogenic or petrogenic were unknown; results from the 2016 sampling effort for TAHs and TAqHs in surface water do not support an anthropogenic source for sheen. Surface water TAH and TAqH results were below SSCLs. Sheens have been observed during past sampling efforts as a result of sediment or streambank material disturbance. Although remedial action efforts from 2010 through 2013 at the Site 28 drainage basin and current remaining sources of contaminant migration via the surface water pathway at the time of sampling, remaining MOC and Site 28 contamination are potential ongoing sources of contaminant migration to downgradient areas including the Suqi River or its estuary. ADEC-Accepted August 24, 2017

## Section 6.4, 1st, 2nd, 5th and 7th paragraphs

Flow measurements were collected from the Suqi River to compare to measurements collected in 2001 and 2002 prior to the 2010 through 2013 remedial actions at the Site 28 drainage basin (Figure A-6.1). Measurements were collected immediately upstream and downstream of the drainage basin confluence from 21 through 22 August 2001 and on 14 August 2002. Additional measurements were collected upstream from the Suqi River culvert near the airstrip in 2002; no measurements were collected downstream of the Suqi River culvert near the airstrip in 2002 because no active flow was recorded. The Phase II RI noted the difference in the Suqi River water level between 2001, a year of high Suqi River water level, and 2002, a year of low Suqi River water level (USACE 2003). In 2016, flow measurements were recorded on 16 August 2016 from approximately 100 feet upstream and downstream from the drainage basin confluence (Cross Sections S29-001 and S29-002 as shown on Figure A-6.2), and upstream and downstream from the Suqi River culvert near the airstrip (Cross Sections S29-003 and S29-004 as shown on Figure A-6.3), respectively. Photographs taken at the time of the 2016 flow measurement collection (see Photos No. 20 through 23 in Appendix E) indicate that the Suqi River water level was below the ordinary high water level.

Mean flow velocity and discharge were calculated for each cross section. Mean flow velocity was calculated using the "0.2, 0.4, 0.8 Method" published in the *Open Channel Profiling Handbook* (Marsh-McBirney 2001). The velocities recorded at 20 and 80 percent of the total depth at the channel midpoint were averaged together; the resulting average velocity was calculated with the velocity recorded at 40 percent of the total depth to result in the mean velocity at the midpoint of the Suqi River. Total discharge was calculated using mean velocity and total area of each cross section.

Cross Section S29-002 was a smooth gravel and silt streambed, located in the Suqi River approximately 100 feet downstream of the confluence of the Site 28 Drainage Basin with the Suqi River. This cross section was the narrowest and deepest channel measured, at 8 feet across and a maximum depth of 3.4 feet (Appendix C). Noting an eddy in the midpoint of the channel, field personnel measured velocity and discharge 1 foot from the midpoint closer to the right edge of the water (Section 4.0). This point had the greatest mean velocity at 1.31 feet per second (ft/sec) and discharge at 21.9 ft³/sec. Although the instantaneous velocities were measured 1 foot from the midpoint closer to the right edge of the water, the eddy may have affected the velocity measurements.

Page 36 of 38 August 4, 2017

Cross Section S29-004, located approximately 100 feet downstream from the Suqi River culvert near the airstrip, was a shallow, boulder-lined streambed measuring 22 feet across (Appendix C). The mean velocity was 0.37 ft/sec, and the discharge was 10.17 ft³/sec. While the Suqi River was observed to be flowing past the Cross Section S29-004, the sand berm at the terminus of the Suqi River estuary may have affected the velocity measurements. ADEC-Accepted August 24, 2017

Table 6-2
-----------

Cross Section	Location	Width (feet)	Midpoint (feet)	Depth at Midpoint (feet)	Mean Velocity (ft/sec)	Discharge (ft ³ /s)	Bed Characteristics
S29- 001	100-feet upstream of the Site 28 drainage basin confluence	8.5	4.25	3.2	0.43	7.00	Rocky bed; sides silty with organics
S29- 002	100-feet downstream of the Site 28 drainage basin confluence	8	4	3.2	1.31 ¹	21.88	Smooth gravel and silt bed
S29- 003	100-feet upstream of the culvert on the Suqi River near the airstrip	10.5	5.25	1.2	0.99	12.80	Boulder bed
S29- 004	100-feet downstream of the culvert on the Suqi River near the airstrip	22	11	1.2	0.37	10.17	Boulder bed

#### ADEC-Accepted August 24, 2017

## DQA Section 1.2.1, Biogenic Interference

Naturally occurring organic compounds in soil and sediment have been reported in previous sampling efforts at NEC. The naturally occurring organics add to high levels of DRO and RRO and are likely to bias the results. This biogenic interference was likely observed in Site 8 soil and sediment samples and Suqi River sediment samples. For 2016 Site 8 and Suqi River samples, the chromatograms for the AK102/103 analysis were visually evaluated and compared to calibration chromatograms to determine if biogenic interference was significantly contributing to reported concentrations. All RRO results appear to be significantly affected by biogenic interference and no distinguishable residual-range distillate product (i.e., motor oil) fingerprint was observed. For the DRO range, a discernable middle distillate product (i.e., diesel fuel) was observed in some Site 8 and Suqi River samples. If the chromatogram contained a flat baseline with occasional peaks

Page 37 of 38 August 4, 2017

inconsistent with the DRO pattern observed in higher concentration samples, the primary contribution of the DRO results was identified as biogenic interference. Table B-2 lists samples where the DRO result was attributed to the biogenic interference. It is recommended future sampling efforts at Site 8 and Suqi River utilize the silica gel cleanup procedure for the evaluation of biogenic interferences and their contribution to the Method AK102 and Method AK103 sample results.

#### ADEC-Accepted August 24, 2017

#### DQA Section 1.2.12, Equipment Blank

A Site 8 equipment blank was not collected and submitted for laboratory analysis. The 2016 WP required one equipment blank sample be collected following the decontamination of hand tools used to collect soil samples at Site 8. Decontamination procedures were followed using laboratory-grade detergent, potable water, and deionized water rinses; however, these procedures were not verified with an equipment blank sample. The data quality is affected since the decontamination procedures for Site 8 were not verified. ADEC-Accepted August 24, 2017

Comments of Alaska Community Action on Toxics on the 2016 Monitored Natural Attenuation Groundwater Sampling Report at the Main Operations Complex and 2) Site 8 and Suqi River Surface Water and Sediment Sampling Report

### Prepared by Vi Waghiyi, Environmental Health and Justice Program Director and Tribal Member, Native Village of Savoonga; and Pamela Miller, Executive Director

Submitted June 7, 2017

### 1) 2016 Monitored Natural Attenuation Groundwater Sampling Report at the Main Operations Complex

#### Executive Summary (ES)

The document states that the results are compared to clean-up levels established through the 2009 decision document. It should be noted that the tribe does not necessarily concur that these clean-up levels are health protective and that they should have been an official party to the record of decision on a government-to-government basis.

- page ES-1: Question—are there any monitoring wells still in place in addition to the fifteen from which samples were collected during this RAO? No
- The ES indicates that natural attenuation is occurring at the MOC. How is this measured? How is this more than a subjective, qualitative judgement? Please quantify and provide justification.

Please refer to the detailed discussion in Section 6.0. Multiple chemical parameters were measured and analyzed to support the conclusion natural attenuation is occurring in groundwater at the site.

• The document indicates that contaminant concentrations have "generally" decreased over time. Please provide a summary here of the specific wells where concentrations have declined and to what extent. Saying that concentrations have "generally" decreased is too subjective.

Please refer to the detailed discussion in Section 6.0. The executive summary is meant to be an overview of sampling and conclusions.

• The statement that "attenuation of DRO is predicted to be complete in 2035" is not verified. What is this prediction based on? Even if this were true (and we believe that 2035 is an underestimate of the length of time to completion), this length of time for completion of MNA is unacceptable because it allows for continuing and harmful exposures to fish, wildlife, and people. Furthermore, it is likely that the fuel-related compounds are serving as a "vehicle" for the mobilization and transport of substances such as PCBs.

Verification of the predicated attenuation of DRO date can only occur closer to the time (2035) of predicted attenuation. Estimates of the rate of natural attenuation are based on modeling and analysis of trends over time (Appendix C-3). PCBs analyzed by SW8082 were part of the 2016 test methods, and PCBs (as Aroclors) were not detected in any of MOC groundwater wells sampled in 2016. The protectiveness of the remedy will be evaluated in the next Five Year Review.

#### Introduction

- Indicate if and how the tribe was consulted on the 2016 Work Plan. All USACE documents are made available for review and comment at the Information Repositories. Notices were sent to stakeholders on 13 June 2016.
- The decision document does not represent the interest of the tribes or the people of St. Lawrence Island. We do not agree that clean-up levels defined in the decision document are protective of the environment or human health. USACE appreciates the difference in perspective as shared by ACAT and the people of St. Lawrence Island and will continue to work cooperatively with all stakeholders to implement the requirements of the Decision Document in accordance with the CERCLA requirements.
- We have concern about at least one photo (Appendix E) that shows a visible sheen. Results from the 2016 sampling effort for DRO and RRO in sediment and total aromatic hydrocarbons and TAqHs in surface water do not support an anthropogenic source for the sheen shown in Photo 6-5 on page 6-6 of the draft report.

#### Site Description and History

• Need to describe the profound influence of climate warming which is likely affecting mobilization and transport of contaminants in and around St. Lawrence Island.

The next Five Year Review may consider the effects of climate change on potential mobilization and transport of contaminants.

- Break up is often occurring earlier than June now. Noted.
- Page 2-3: The document states that contractors have observed significant changes in surface water characteristics at multiple locations across the site. What are the changes that contractors are observing? How does this affect fate and transport of contaminants?

The complete text from the Bristol report will be added to Page 2-3 as follows: "Bristol observed significant changes in surface water characteristics at multiple locations across the site, most notably at a location directly south (uphill) from Site 26 where surface water runs through a culvert underneath the road that runs from the MOC to the borrow source. This drainage originated in the Kinipaghulghat Mountain valley and exhibited variable flow in late spring/early summer. The drainage would flow for days at a time but would run dry later into the summer during drier periods." The effects of variable surface water would not have a direct effect on MOC sample results. However, the precipitation variability that manifests as surface water variability would affect groundwater elevations.

• Under the Land and Resource Use section, page 2-4: As we have said repeatedly in prior comments, it is important to indicate that the military displaced a permanent village at NE Cape. NE Cape was and is more than a place "seasonally occupied." It is considered a village site. By describing it as merely a place that is seasonally occupied, the Corps and their contractors diminish the historical and continuing importance of the site from the cultural, and spiritual perspective of the people of the Island. By diminishing the importance of NEC, the Corps mispresents and potentially underestimates the hazards, risks and exposure pathways of contaminants associated

with the area. Surface waters and springs in the area are currently used and traditional drinking water sources. Salvaged materials that are likely contaminated with lead, PCBs, asbestos and other harmful substances continue to be used for building material for homes not only at NE Cape, but throughout the Island. The significant quantities of hazardous waste on the Island were left without the free, prior and informed consent of the people of St. Lawrence Island, in violation of the 1952 agreement with the Tribe and in violation of international law.

A draft Health Consultation prepared by the Agency for Toxic Substances and Disease Registry (ATSDR) dated July 2017 concluded there is no apparent health hazard associated with the Northeast Cape site. ATSDR's assessment contained the following findings: 1) eating fish from Northeast Cape in the summer (3 months) is not expected to harm people's health; 2) eating greens and berries from Northeast Cape year-round is not expected to harm people's health; 3) accidentally ingesting soil and drinking Sugitughneq (Sugi) River surface water are not expected to harm people's health; and 4) there is not enough contact with site contaminants to suggest that exposures are contributing to cancer and birth defects. The following statements in the report are accurate: "Local subsistence hunting camp structures are located adjacent to Site 3 and are seasonally occupied", and "Currently, there are no permanent NEC residents; however, representatives of Savoonga have indicated a desire to re-establish a permanent residential community at the site in the future." Remedial actions have removed contaminated soil containing contaminants above levels identified in the 2009 Decision Document for the Northeast Cape FUDS. Groundwater sampling at the MOC has indicated natural attenuation of residual petroleum constituents is occurring in site groundwater. Surface water samples collected from the Site 28 Drainage and Sugi River have not contained contaminants above levels identified in the 2009 Decision Document. Data collected to date indicate residual contaminants in sediment at Site 28 are not migrating. Remedial actions conducted under the NALEMP have removed contaminated building materials from structures at the NVNC.

In addition to the endangered species mentioned, bowhead whale should be included. Bowhead whale (endangered) will be added to the endangered/threatened species list on page 2-4 of the report.

• In addition to berries and reindeer as important subsistence foods, please include the fact that NE Cape is also used for other food and medicinal plants, including such plants as roseroot, coltsfoot, and willow.

Roseroot, coltsfoot, and willow will be added to section 2.1.4 of the report.

• It is important to indicate that the habitat and subsistence resources in and around NE Cape are significantly and adversely affected by the military contamination and perturbations. Resident and anadromous fish populations and their habitats are not recovering. The people of St. Lawrence Island can no longer fish for the once abundant tomcod or salmon there, for example. The seal haul out was disturbed and has not recovered.

The USEPA conducted an evaluation of the USACE cleanup efforts at Northeast Cape and concluded in February 2013 the cleanup is consistent with CERCLA and the National Contingency Plan. The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The sand berm that naturally, periodically develops at the mouth of the Suqi River creates a barrier to fish that would otherwise migrate from the ocean and into the river. The significant and adverse effects described above are noted as a continuing concern of the tribe and community.

- The document states that materials were initially abandoned in place due to the high cost of off-island transport. It should be noted that significant quantities of equipment and hazardous materials remain at the site in the shallow subsurface, thus providing continuing sources of contaminants that affect the environment and health. From the perspective of the people of St. Lawrence Island, this contamination has contributed significantly to health disparities, including a cancer crisis. The high cost to the health and well-being of the people of St. Lawrence Island must be considered in decisions about clean up decisions as primary prevention and protective measures. The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.
- Page 2-6: the document indicates that remedial actions occurred through 2014. It should be noted that the tribe and ACAT assert that the cleanup is far from complete. The site is being closed prematurely without adequate characterization and clean up. The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.
- Page 2-6: The document indicates that the primary sources of contamination are spills and leaks of fuel products. It should also include PCBs from transformers and electrical equipment, pesticides, heavy metals, solvents.
   PCBs from transformers and electrical equipment, and vehicle maintenance fluids, such as glycol and solvent will be added to the second paragraph on Page 2-6.
- Page 2-6 bottom of para 3: although the document indicates that the northern edge of the MOC has petroleum in subsurface soils at levels below the risk-based levels identified in the decision document, we do not agree that these levels are health protective and it is incumbent upon the Corps to remove this contamination per the 1952 agreement.

The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

• Page 2-7: this document misrepresents the ISCO by deeming it as not an effective means of remediation. As stated previously by the TAPP advisor and ACAT, the remediation was conducted improperly and against the scientific and technical methods and protocol recommended by Dr. Scrudato. It cannot be claimed in this document that the ISCO method is ineffective when it was improperly implemented. In fact, the characterization in the document of the ISCO pilot test is an outright misrepresentation!

In situ chemical oxidation was deemed ineffective at the MOC during the 2009 pilotscale test as a result of the presence of peat and highly organic peat soil, presence of permafrost or semi-permafrost zones, and observed preferential flow pathways.

• Page 2-7: Para 2 indicates up-, cross-, and source area monitoring wells. Several

downgradient monitoring wells should be added in order to provide a more complete picture of the fate and transport of contaminants in the groundwater. Permanent monitoring wells cannot be constructed in the tundra downgradient of the MOC because the freeze/thaw cycle will destroy the wells. No contaminants have been detected in surface water samples collected from the Site 28 Drainage and Sugi River. This has provided evidence contaminated groundwater is not migrating into surface water downgradient of the MOC.

Page 2-8: Monitoring wells 88-4 and 88-5 should be re-instated and included in the • monitoring of groundwater at the MOC. The document acknowledges that they "provide valuable information regarding historical downgradient contamination." Given this, it is likely that they would continue to provide valuable information. Monitoring wells 14MW02, -04, and -05 were installed slightly downgradient of the locations of former monitoring wells MW88-4 and 88-5. Monitoring wells 14MW02, -04, and -05 are considered suitable replacements for former monitoring wells MW88-4 and 88-5.

Page 3-1: Key Field Personnel The table should indicate qualifications of the key personnel, particularly of the Project Chemist and Analytical Laboratory PM. What laboratory was used for analyses? Qualifications of key personnel were included in Table 4-3 on page 4-7 of the Field Sampling Plan, which was part of the Final Work Plan dated August 2016. Analytical laboratory information was included in the Work Plan and in Table 3-1 on Page 3-1 of the draft reports.

#### Page 4-1: Work Plan Deviations

The document should include justification for each of the deviations and how they affected data quality rather than simply claiming that they did not affect data "usability." The second sentence of Section 4-1 will be revised as follows: "None of the deviations significantly affected data usability or data quality."

#### Page 5-1: Mobilization and Demobilization

Page 5-1: Mobilization and Demobilization The document should disclose the total costs including transportation, charter flights, lodging etc. Given all of the days when inclement weather prohibited travel to NE Cape, is this method of mobilization cost effective compared with establishing a temporary base of operations at NEC? What are the cost comparisons used to justify this method of mobilization? By doing it this way, the Corps and their contractors bypass the Native Village of Savoonga and/or Gambell and thus not making it possible to include community oversight/community monitor(s) who are present at the NE Cape site when the sampling is occurring. In the future, community oversight/monitors should be included in all sampling programs at NE Cape.

Costs for the method of mobilization utilized during 2016 fieldwork were less than if a temporary camp had been mobilized, setup, operated, and demobilized from Northeast Cape. During the Long Term Management Plan public presentation in Savoonga on 26 July 2016, a request was made by a community member for the USACE to bring community members on a site visit during the 2016 sampling event. This request was seriously evaluated, but the USACE was unable to accommodate it for the 2016 event which occurred during August 2016. Mobilizing to Northeast Cape requires a sufficient lead time to plan for transportation needs and safety considerations. In the case of the 2016 event, there was limited ground transportation available. The Contractor had only two ATV's. Visitors would have been forced to walk from the runway to the sites of interest. No USACE representatives would have been on site to lead the site visit. Our contractor did not have a camp on site, so there were no facilities available to site visitors in case of bad weather. Given the unpredictable weather and the fact daily charter flights were being used, an emergency shelter was required. Because there was insufficient time

to plan for additional site visitors, adequate emergency shelter was not available. The safety of our contractors and site visitors is a high priority for the USACE, and therefore we were not able to accommodate the request for a site visit during 2016. This request will be integrated into the planning phase for 2018 activities.

#### Page 5-5: Sampling Activities

Additional contaminants should have been included in the sampling program and should be analyzed in future sampling programs, including TCE (and other solvents), mercury, pesticides, and PCBs.

Contaminants identified during multiple remedial investigations and subsequent sampling and remedial actions were included in the sampling program.

#### Page 5-6: Waste Management

The document should indicate where solid wastes were disposed. The document indicates that wastewater and sanitary waste were disposed on site according to 2016 WP. Did the Corps receive permission for this from the landowner and tribe? If not, this is a violation of the 1952 agreement, requirements for government-government consultation, and possibly other laws that would prohibit the dumping of waste on private lands.

All solid waste was removed from the site and disposed of at the Nome Landfill. The following will be added to as the last sentence of section 5.3: "Solid wastes were disposed at the Nome Municipal Landfill located in Nome, Alaska."

Table 5-1—define the constituents of general refuse.

The following footnote will be added to Table 5-1; "General refuse included spent personal protective equipment, sanitary waste, sampling materials, and empty food containers." Page 6-5, Table 6-4. It is incorrect to label this table "Analytical Natural Attenuation Results from 2016" because there are no comparative data included in the table from prior years

with which to assess the differences in values for these parameters and the effectiveness of natural attenuation. It would be more accurate to simply title the table "Analytical results from 2016."

The title of Table 6-4 will be revised to "2016 Analytical Natural Attenuation Parameter Results" as these results are specific to the 2016 samples. Please note that the historic results and 2016 results for these parameters can be found in Appendix C-2.1

Page 6-6 para 2: The first sentence states that "groundwater quality in samples...indicate natural attenuation is occurring. Although the parameters measured seem to indicate anaerobic petroleum degradation is occurring, there is no quantification of the direct measures of petroleum degradation in the wells that is necessary in order to substantiate this claim. These data (actual values of petroleum concentrations over time) should be presented in a succinct and clear manner in this section rather than in various, poorly designed tables and graphs in the Appendices. A quantification such as percentage of degradation and/or statistical analysis with representation of actual values/concentrations over time should be indicated for each well.

As noted in the comment evidence of natural attenuation is present based on the groundwater parameters measured in 2016. The analytical parameters selected for testing were defined in the work plan without deviation. Presentation of the time series DRO plots presented in Appendix C-3.2 will be simplified in the final report.

Page 6-6, Section 6.3: Contamination of Groundwater

The document does not demonstrate that concentrations have decreased over time with any kind of statistical analysis, so this is an unsubstantiated claim.

Section 6 of the report will be revised to separate the comparisons to SSCLs, ADEC Cleanup

Levels, and analyte trends into separate subsections. Additionally, the statement about decreasing trends will be revised to be specific to DRO as follows: "The DRO concentration in two (14MW04, and 14MW05) of the three monitoring wells (14MW02, 14MW04, and 14MW05) with 2016 SSCL exceedances have generally decreased over time since monitoring began in 2014. The DRO concentrations in monitoring well 14MW02 have slightly increased since monitoring began in 2014." Please note this statement for 14MW04 and 14MW05 is based on the geometric regressions found in Appendix C-4.1 and C-4.2. Additionally, a Man-Kendal analysis for DRO trends will be added for 14MW02, 14MW03, and 14MW05.

The fact that there are so many exceedances of SSCLs in groundwater confirm our previous assertion that monitored natural attenuation is not an adequate method to address the contamination and prevent further harm. Additional removal of contamination sources and active remediation of groundwater is necessary in order to adequately protect environmental and human health.

The USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

#### 6.3.1—Current Contaminant Exceedances in Groundwater

Sentence 2: DRO, naphthalenes, total and dissolved arsenic, chromium, and lead exceeded 2016 ADEC levels—this does not indicate the well(s) in which these exceedances were found. Section 6.3.1 will be revised to separate out the comparative discussion of SSCLs versus 2016 ADEC Cleanup Levels. The wells which generated the exceedances will be identified in the text.

#### Table 6.5

This represents a significant number of exceedances and indicates the need for active remediation rather than passive natural attenuation to reduce levels of these contamination to safe levels.

The USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

Values should be presented as ppb.

Disagree. The sample results, SSCLs, and 2016 ADEC cleanup levels were shown in milligrams per liter to make comparison of sample results with SSCLs and 2016 ADEC cleanup levels an easy task. If a result exceeded the SSCL, then the result was shown in bold text and gray highlight so it was visually apparent.

Page 6-10, para 1: we are concerned that poor QA/QC may have resulted in the low biased reporting.

The revised text in Section 6 will include a revised discussion of the QL qualified DRO results as follows:

"Samples from wells 14MW06, 14MW03, and 14MW01 were also qualified OL as the extracts were analyzed past 40 days from extraction. The QL qualifier did not affect data usability in this case since analysis within hold time produced lower results than those obtained from the out of hold time analysis which occurred 2 days past the extract hold time."

Page 6-10, para 2: the document indicates that there is no known anthropogenic source of lead at the MOC. What about lead acid batteries, ammunition, leaded gas or aviation fuel? Lead is a potent neurotoxic chemical and it has been established that there is no safe level of exposure.

This is concerning from a public health perspective since this is a potential source of drinking water.

It is unknown whether lead-acid batteries, ammunition, leaded gas and aviation fuel were present at the MOC. As a result, the source of lead is likely not anthropogenic, but instead likely a result of local geology. As stated in the Northeast Cape Long Term Management Plan, groundwater at the MOC should not be used as a drinking water source until RAOs (i.e., SSCLs) are met.

Page 6-10, para 3: the document indicates that there is no anthropogenic source of arsenic and the levels should be attributed to background concentrations. No background or control samples were taken to substantiate this assertion. There could be anthropogenic sources at the MOC such as arsenic-based pesticides, pyrotechnics, or metallurgical applications. The document also does not substantiate the assertion that chromium levels should be attributed to background levels.

Possible sources could include electroplating, metallurgical applications. There is no indication arsenic-based pesticides, pyrotechnics, or metallurgical applications were present at the MOC. As a result, the source of arsenic is likely not anthropogenic, but instead likely a result of local geology.

Page 6-12: Data indicate that levels of such substances as DRO in some wells are not declining and in fact show highest concentrations in 2015 and 2016. Also MW88-4 should not have been removed after the 2012 sampling program—it is necessary to evaluate the effectiveness of the POL-excavation and the well should be re-installed and sampled in future monitoring.

Only one well of the three wells with 2016 DRO SSCL exceedances, 14MW02, contained DRO levels which were higher than previous DRO results. At 14MW02, three monitoring events have occurred. The 2014 result of 1.3 mg/L obtained during the first year the well was installed is slightly lower than the 2015 result (1.6 mg/L) and 2016 result (1.6 mg/L). Monitoring well MW88-4 was removed during the course of contaminated soil excavation. It was not feasible to preserve the well because the contaminated soil surrounding the well was removed and disposed off site. Monitoring wells 14MW04 and 14MW05 were installed as replacement wells downgradient of the former location of monitoring well MW88-4.

Page 6-13: Identify possible sources/source areas for naphthalene.

Although naphthalene in 14MW01 and 14MW02 exceeded the recently lowered ADEC Groundwater Cleanup levels, the assessment of potential sources is beyond the scope of this report.

Page 6.4: The document indicates that natural attenuation is occurring based on measured groundwater parameters. However, there is no statistical substantiation of this for the actual contaminant levels.

The Section titled "Natural Attenuation of DRO" will be revised in the final report to clarify only the geometric regression plots for 14MW04 and 14MW05 and the measured geochemical parameters in the area are the basis of the statement natural attenuation is occurring.

14MW02 indicates that exceedances of DRO SSCLs are occurring, yet this well is deemed not suitable to be analyzed for natural attenuation. This is not logical. It is important to continue to monitor trends in this well.

The discussion of 14MW02 results will be added to Section 6.4 in the final report.

We do not agree that adequate justification has been provided for the prediction that attainment for SSCLs will occur with natural attenuation by 2035. This is highly speculative. And it is not acceptable that these levels will persist far into the future, posing a continuing threat to human health and the environment.

Groundwater monitoring data for most of the existing in-plume MOC wells is limited to the last three years. This will be clarified in Section 6.5 as follows:

"The three years of monitoring results for these wells were assessed for statistical trends using both the Mann-Kendal trend test and geometric regression plots. However, the low number of measurements can only provide a coarse assessment of this primary line of evidence." As stated in the Northeast Cape Long Term Management Plan, groundwater at the MOC should not be used as a drinking water source until RAOs (i.e., SSCLs) are met.

Page 7-1, Conclusions: the assertion in para 2 that natural attenuation is occurring in some wells is more accurate that what is stated in the executive summary. However, the document does not provide convincing information or statistical analysis of the trends over time that are necessary to substantiate claims that MNA is an effective method. We are not convinced that monitored natural attenuation is adequately effective. We also find it unacceptable that attenuation will not be complete at least until 2035, a speculative date at best. Groundwater monitoring data for most of the existing in-plume MOC wells is limited to the last three years. This will be clarified in Section 6.5 as follows:

"The three years of monitoring results for these wells were assessed for statistical trends using both the Mann-Kendal trend test and geometric regression plots. However, the low number of measurements can only provide a coarse assessment of this primary line of evidence." Additionally, the following will be added to Section 6.4: "Based on both the geometric regression plots from monitoring wells 14MW04 and 14MW05 and the results of the geochemical parameters in the area, natural attenuation is occurring."

### 2) 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report Executive Summary

ES-1: more extensive sampling is needed to define the edge of the area contaminated with elevated DRO levels.

Sampling performed during 2016 at Site 8 defined the western boundary of soil containing elevated levels of DRO. The airstrip access road exists along the eastern boundary of Site 8 and acts as a cover for soil containing elevated DRO levels. There is no pathway for the petroleum constituents to adversely affect human health or the environment, so defining the eastern boundary is not necessary.

It is possible to separate biogenic from anthropogenic sources of DRO/RRO. The problem of interference indicates an inferior laboratory and/or analytical method.

Interferences observed in the soil results from Northeast Cape do not indicate laboratory inferiority in this case. Samples were processed using accepted DRO/RRO test procedures,

AK102 and AK103, developed by the State of Alaska, and adopted into regulation by 18 AAC 78. The text below is the entire paragraph from Section 4.1 of the AK102 method: "Other organic compounds including, but not limited to, animal and vegetable oil and grease, chlorinated hydrocarbons, phenols, phthalate esters and biogenic terpenes are measurable under the conditions of this method."

ES-2: cannot assume that RR levels can be attributed to biogenic sources-this is not

justified.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

Page 2-4, Section 2.1.5 Land and Resource Use

Please see our comments provided for this section in the previously reviewed document above. These also apply to this corresponding section.

Please see our response above.

Page 2-5, Section 2.2.1, Site 8.

We think that Eugene Toolie knows the specific location of the break.

Mr. Eugene Toolie is welcome to provide the USACE with a different location for the pipeline break. The exact location may never be known. The location of the pipeline break near Site 8 can be inferred from site data and will remain approximate.

Page 2-6. The fact that TAqH levels exceed SSCL indicates that there are continuing sources that prevent the restoration and recovery of these surface waters and biota. These source areas must be fully removed.

The TAqH levels in the surface water sample closest to the Suqi River did not exceed the SSCL. This indicted petroleum constituents were not migrating offsite. The USACE has followed and will continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Regarding the "DD-selected remedy," the tribe was not properly consulted on a governmentgovernment basis as a full party to the Record of Decision. We believe the selected remedy to be inadequate.

As the USACE has stated in the past, the USACE cannot seek tribal signatures on Records of Decision (also known as Decision Documents [DDs]) because the tribe does not have jurisdiction over the land itself. CERCLA of 1980 regulations (see 40 Code of Federal Regulations [CFR] 300.515) require Indian tribes have jurisdiction over a site in order to be afforded substantially the same treatment as states. However, the State of Alaska maintains jurisdictional authority over territory other than Native allotments or other lands set aside under the superintendence of the federal government. Therefore, it would not have been appropriate to have requested Tribal signatures on the DDs.

Page 2-7: these past exceedances are unacceptably high. It appears that no sampling was done of this area in 2016. Why was this not done?

The objective of sample collection during 2016 was to delineate the extent and magnitude of

petroleum contaminated sediment at Site 8 in support of recommendations contained in the First Five-Year Review Report. These data will be used to ensure the most heavily impacted area(s) are included within Decision Unit boundaries during future incremental sampling events likely to occur during the next Five-Year Review.

The sampling effort for surface waters and sediments is far from adequate for Site 8 and the Suqi River. Additional analytes must be included as stated in our comments on the previous document: TCE (and other solvents), PCBs, mercury, pesticides.

The objective of sampling sediment at Site 8 was to delineate the extent and magnitude of petroleum contaminated sediment at Site 8 in support of recommendations contained in the First Five-Year Review Report. These data will be used to ensure the most heavily impacted area(s) are included within Decision Unit boundaries during future incremental sampling events likely to occur during the next Five-Year Review. The objective of sampling surface water and sediment from select locations along the Suqi River was to verify Site 28 remedial actions did not affect the river. As a result, analytes were selected based on results for confirmation samples collected from Site 28 following remedial actions within Site 28.

Page 2-9. Evaluation by ATSDR was grossly insufficient and inconclusive. Noted. USACE does not have purview over ATSDR reports.

Page 4-1, Work Plan Deviations.

Deviations are not adequately justified and we think they compromise the results and conclusions.

The second sentence of Section 4-1 will be revised as follows: "None of the deviations significantly affected data usability or data quality. Data qualifiers were assigned to the data based on the rules established in the work plan. Under those work plan rules, none of the conditions identified with the 2016 data required results to be rejected.

Page 6-3: these sediment and soil level exceedances associated with Site 8 are disturbing and indicate that further characterization and active removal is needed.

The USACE has followed and will continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

The claim that RRO detections/exceedances can be attributed to biogenic sources is unjustified and indicates poor analysis.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an observation. The chromatographic interpretation is reasonable when a comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

Page 6-5. It is necessary to properly characterize the eastern extent of contamination and excavate to remove contaminated soil/sediment.

Sampling performed during 2016 at Site 8 defined the western boundary of soil containing elevated levels of DRO. The airstrip access road exists along the eastern boundary of Site 8 and acts as a cover for soil containing elevated DRO levels. The USACE has followed and will

continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Page 6-5, Section 6.3. Extent and Magnitude of Contamination at Suqi River Five surface water and 11 sediment samples is not adequate to assess the extent of contamination in the Suqi River and estuary. Conclusions about effectiveness of prior remedies cannot be made. More comprehensive sampling is needed that includes analytes listed above. The objective of sampling surface water and sediment from select locations along the Suqi River was to verify Site 28 remedial actions did not affect the river. As a result, analytes were selected based on results for confirmation samples collected from Site 28 following remedial actions within Site 28. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Page 6-10. Biogenic interference can be attributed to poor laboratory and/or analytical procedures. This is unacceptable and compromises the integrity of this report. Interferences observed in the soil results from Northeast Cape do not indicate laboratory inferiority in this case. Samples were processed using accepted DRO/RRO test procedures, AK102 and AK103, developed by the State of Alaska, and adopted into regulation by 18 AAC 78. The text below is the entire paragraph from Section 4.1 of the AK102 method: "Other organic compounds including, but not limited to, animal and vegetable oil and grease, chlorinated hydrocarbons, phenols, phthalate esters and biogenic terpenes are measurable under the conditions of this method."

#### Page 6-1—Conclusions

Cannot attribute RRO to biogenic sources-unjustified.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

We concur that further removal actions are necessary. Better analytical methods are needed to discern anthropogenic sources and to remove interferences.

Although removing impacted sediment and soil at Site 8 may be an alternate remedy, the USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Samples were processed using accepted DRO/RRO test procedures, AK102 and AK103 in this case, developed by the State of Alaska and adopted into regulation by 18 AAC 78. Results from samples using the silica gel cleanup procedures typically indicated a significant reduction in DRO and RRO concentrations.

In the Suqi River, we do not believe that RRO can be attributed to biogenic interference. Similarly to the soil samples, the report assertion biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

End of comments and responses.