U.S. Army Corps of Engineers Alaska District

2016 MONITORED NATURAL ATTENUATION GROUNDWATER ANNUAL SAMPLING REPORT AT THE MAIN OPERATIONS COMPLEX AT NORTHEAST CAPE

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03 FINAL AUGUST 2017

> F10AK096903_07.11_0509_a 1200C-PERM

U.S. Army Corps of Engineers Alaska District

2016 MONITORED NATURAL ATTENUATION GROUNDWATER ANNUAL SAMPLING REPORT AT THE MAIN OPERATIONS COMPLEX AT NORTHEAST CAPE

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03 FINAL AUGUST 2017

> F10AK096903_07.11_0509_a 1200C-PERM

<u>SEC</u>	TIO	<u>N</u>	<u>1</u>	PAGE
ACF	RONY	MS AND	OABBREVIATIONS	v
EXE	CUT	IVE SUM	IMARY	ES-1
1.0	INT	RODUCT	TION	1-1
	1.1	PROJEC	CT GOALS AND OBJECTIVES	1-1
	1.2	REPOR	T ORGANIZATION	1-1
2.0	SIT	E DESCR	IPTION AND HISTORY	2-1
	2.1	SITE DI	ESCRIPTION	2-1
		2.1.1	Climate	2-1
		2.1.2	Geology	2-2
		2.1.3	Hydrogeology	2-2
		2.1.4	Vegetation	2-4
		2.1.5	Land and Resource Use	2-4
	2.2	SITE HI	ISTORY	2-5
		2.2.1	Main Operations Complex	2-6
3.0	KEY	(FIELD I	PERSONNEL	3-1
4.0	WO	RK PLAN	N DEVIATIONS	4-1
5.0	FIEI	LD INVE	STIGATION ACTIVITIES	5-1
	5.1	MOBIL	IZATION AND DEMOBILIZATION	5-1
	5.2	SAMPL	ING ACTIVITIES	5-3
	5.3	WASTE	E MANAGEMENT	5-6
6.0	INV	ESTIGA	ΓΙΟΝ RESULTS AND DISCUSSION	6-1
	6.1	DATA (QUALITY EVALUATION	6-1
	6.2	GROUN	IDWATER ELEVATION	6-1
	6.3	NATUR	AL ATTENUATION IN GROUNDWATER	6-3
	6.4	CONTA	MINANTS IN GROUNDWATER	6-6
		6.4.1	Comparison of 2016 MOC Monitoring Well Data to DD-Specified Groundwater SSCLs	6-7
		6.4.2	Comparison of 2016 MOC Monitoring Well Data to 2016 ADEC Evaluation Criteria	6-10
		6.4.3	Analyte Concentration Trends in Groundwater	6-11

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

<u>SEC</u>	CTIO	<u>N</u>	PAGE
	6.5	NATURAL ATTENUATION OF DRO	6-15
7.0	COI	NCLUSIONS	7-1
	7.1	CONCLUSIONS FOR 2016 DATA EVALUATION	7-1
	7.2	CONCLUSIONS FOR COMPARISON OF 2016 DATA WITH HISTORICAL DATA	7-1
8.0	REF	FERENCES	8-1

TABLES

Table 2-1	Historical Results Above Site-Specific Cleanup Levels	.2-9
Table 3-1	Key Personnel and Responsibilities	.3-1
Table 5-1	MOC Project-Specific Waste Quantities	.5-7
Table 6-1	2016 Depth to Groundwater and Groundwater Elevation Measurements from Currently Installed and Serviceable Monitoring Wells at the MOC	.6-2
Table 6-2	Historical Groundwater Elevation Measurements from Select MOC Monitoring Wells	.6-3
Table 6-3	2016 Groundwater Field Parameters Prior to Sampling	.6-4
Table 6-4	2016 Analytical Natural Attenuation Parameter Results	.6-5
Table 6-5	2016 MOC Groundwater Sample Results Compared To Historically Exceeded Site-Specific Cleanup Levels	.6-9
Table 6-6	2016 MOC Groundwater Sample Results Compared To Select 2016 ADEC Evaluation Criteria	5-11

PHOTOGRAPHS (IN-TEXT)

Photo 5-1	Field gear unloaded from the Bering Air CASA. View facing north	5-1
Photo 5-2	Emergency weatherport shelter, weather station, and ATV. View facing northeast.	5-2
Photo 5-3	Emergency and field gear stored inside weatherport shelter. Inside	5-2
Photo 5-4	Typical collection of groundwater depth at a monitoring well; well 14MW04. View facing down	5-3
Photo 5-5	Purging groundwater at Monitoring Well 14MW01. View facing southeast	5-5

TABLE OF CONTENTS (Continued)

SECTION

PAGE

APPENDICES

- Appendix A Figures
- Appendix B Data Quality Assessment
- Appendix C Summarized Analytical Results and Trend Plots
- Appendix D Field Documentation
- Appendix E Photograph Log
- Appendix F Responses to Comments

(intentionally blank)

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
°F	degrees Fahrenheit
μS/cm	micro Siemens per centimeter
AAC	Alaska Administrative Code
AC&WS	Aircraft Control and Warning Station
ADEC	Alaska Department of Environmental Conservation
ALS	ALS Environmental
AMSL	above mean sea level
ATV	all-terrain vehicle
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
cm	centimeter
COC	contaminant of concern
DD	decision document
DO	dissolved oxygen
DoD	U.S. Department of Defense
DQA	data quality assessment
DRO	diesel-range organics
DTW	depth to water
ECC	Environmental Compliance Consultants
EM	Engineering Manual
EPA	U.S. Environmental Protection Agency
ft	feet
FUDS	Formerly Used Defense Site
GAC	granulated activated carbon
GRO	gasoline-range organics
GWE	groundwater elevation
HTRW	hazardous, toxic, and radiological waste
IDW	investigation-derived waste
ISCO	in situ chemical oxidation
Jacobs	Jacobs Engineering Group Inc.
kg	kilogram
L	liter
mg/L	milligrams per liter
MNA	monitored natural attenuation

ACRONYMS AND ABBREVIATIONS (Continued)

MOC	main operations complex
mV	millivolt
ND	not detected
NEC	Northeast Cape
NTU	nephelometric turbidity units
ORP	oxidation-reduction potential
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PID	photoionization detector
PM	project manager
QA	quality assurance
QC	quality control
RAO	remedial action operation
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
RPM	remedial program manager
RRO	residual-range organics
SOP	standard operating procedure
SOW	scope of work
SSCL	site-specific cleanup level
SSHO	Site Safety and Health Officer
Suqi River	Suqitughneq River
TOC	total organic carbon
USACE	U.S. Army Corps of Engineers
UVOST	Ultraviolet Optical Screening Tool
VOC	volatile organic compound
WACS	White Alice Communications System
WP	work plan

EXECUTIVE SUMMARY

This report summarizes the continuing remedial action operations (RAO) at the main operations complex (MOC) at Northeast Cape on St. Lawrence Island, Alaska conducted during August 2016. Environmental Compliance Consultants (ECC) and Jacobs Engineering Group (Jacobs) performed the fieldwork and prepared this report for the U.S. Army Corps of Engineers (USACE) under Hazardous, Toxic, and Radiological Wastes, Contract No. W911KB-16-D-0002. This work was performed under the authority of the Defense Environmental Restoration Program and the Comprehensive Environmental Response, Compensation, and Liability Act. Activities completed during 2016 fieldwork included monitored natural attenuation sampling of groundwater at the MOC. The 2016 activities were completed according to the 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan (2016 work plan [WP]) (USACE 2016b). Following an initial site visit to locate monitoring wells, groundwater depth measurements and low-flow groundwater samples were collected from 15 monitoring wells.

All analytical results were compared to site-specific cleanup levels (SSCLs) established by the 2009 decision document (DD) (USACE 2009) and evaluation criteria established by Alaska Department of Environmental Conservation (ADEC) Alaska Administrative Code Title 18, Chapter 75, Table C (ADEC 2016b).

The findings of the 2016 RAOs include:

- The elevation of the water table at the MOC varies across the site and seasonally. In 2016, the groundwater flow direction at the MOC was predominantly northwest.
- Current groundwater conditions in wells 14MW04 and 14MW05 indicate natural attenuation is occurring at the MOC.
- Diesel-range organics (DRO) and lead exceeded groundwater SSCLs and DRO, naphthalene, arsenic, and lead exceeded 2016 ADEC evaluation criteria.
- Attenuation of DRO is predicted to be complete in 2047.

(intentionally blank)

1.0 INTRODUCTION

This report presents the August 2016 sample results and interpretations for main operations complex (MOC) groundwater at Northeast Cape (NEC) Formerly Used Defense Site (FUDS) on St. Lawrence Island, Alaska. Environmental Compliance Consultants (ECC) and Jacobs Engineering Group Inc. (Jacobs) performed the fieldwork and Jacobs prepared this report for the U.S. Army Corps of Engineers (USACE) under Hazardous, Toxic, and Radiological Waste (HTRW) Contract No. W911KB-16-D-0002, Task Order No. 0002. This work was performed under the authority of the Defense Environmental Restoration Program and the Comprehensive Environmental Response, Compensation, and Liability Act.

Field activities were performed in accordance with the 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan (2016 work plan [WP]) (USACE 2016b), with the exception of deviations noted in Section 4.0.

1.1 PROJECT GOALS AND OBJECTIVES

The project goal defined in the WP for the MOC is to perform monitored natural attenuation (MNA) sampling of groundwater and to assess trends, if any, for contaminants of concern defined in the decision document (DD). Following an initial site visit to locate monitoring wells, groundwater depth measurements and low-flow samples were collected from 15 currently installed and serviceable monitoring wells.

1.2 REPORT ORGANIZATION

This report is organized as follows:

- Section 1.0 introduces the project, describes the project goals, and outlines the report organization.
- Section 2.0 describes the site and its history.
- Section 3.0 presents field personnel key to successful project completion.
- Section 4.0 details deviations from the 2016 WP (USACE 2016b).

- Section 5.0 describes project mobilization, sampling activities, waste management, and demobilization.
- Section 6.0 discusses investigation results.
- Section 7.0 presents conclusions derived from the field investigation and analytical data review.
- Section 8.0 lists the references cited in this document.

In addition to the main report, the following appendices provide further information:

- Appendix A contains figures of the site and sampling locations.
- Appendix B contains the data quality assessment (DQA), including the sample summary, analytical results, qualified data tables, and the laboratory deliverables (provided as electronic files on the accompanying CD).
- Appendix C contains summarized historical analytical results tables and plots displaying trends over time.
- Appendix D contains field documentation, including field logbooks and groundwater sampling data sheets.
- Appendix E contains the photograph log for 2016 field activities described here.
- Appendix F presents comments on the draft version of the document and responses to the comments.

2.0 SITE DESCRIPTION AND HISTORY

The following sections present the NEC location, information about the physical and ecological setting, site history, and previous investigations at the MOC.

2.1 SITE DESCRIPTION

The NEC FUDS is located on St. Lawrence Island, Alaska, in the western portion of the Bering Sea, approximately 135 air miles southwest of Nome. It is 9 miles west of the northeastern cape of St. Lawrence Island at 63°19'N, 168°58'W. The NEC FUDS property originally encompassed approximately 4,800 acres (7.5 square miles) and is bordered by Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south (USACE 2015a).

NEC consists mainly of rolling tundra, which rises from the Bering Sea toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level roughly 3 miles from the coastline. The NEC FUDS is not connected to other permanent communities on the island by road and is only accessible by air, water, or all-terrain vehicle (ATV) trails. The Native Village of Savoonga, the closest community, is located approximately 60 miles to the northwest (Figure A-1). Savoonga has a subarctic maritime climate with some continental influences during the winter.

2.1.1 Climate

St. Lawrence Island has a cool, moist, subarctic maritime climate, with some continental influences during winter when much of the Bering Sea is capped with pack ice. Winds and fog are common, and precipitation occurs approximately 300 days per year as light rain, mist, or snow. Annual snowfall is approximately 80 inches per year. Total annual precipitation is about 16 inches per year and more than half falls as light rain between June and September. Summer temperatures average between 34 degrees Fahrenheit (°F) and 48°F, with a record high of 65°F. Winter temperatures range from -2°F to 10°F, with an extreme low of -30°F.

Freeze-up on the island normally occurs in October or November, and breakup normally occurs in June (USACE 2015b).

2.1.2 Geology

As specified in the DD (USACE 2009), St. Lawrence Island consists of isolated bedrock highlands of igneous, metamorphic, and older sedimentary rocks surrounded by unconsolidated surficial deposits overlying a relatively shallow erosional bedrock surface. The MOC is located at approximately 100 feet above sea level. In the area of the MOC, shallow unconsolidated surficial materials overlie quartz monzonitic rocks of the Kinipaghulghat Pluton (Patton and Csejtey 1980). The pluton forms the mountainous area south of the NEC sites, which includes Kangukhsam Mountain. The Suqitughneq River (Suqi River) drainage has created an erosional valley in the Kinipaghulghat Pluton and deposited an alluvial fan of unconsolidated sediments. NEC is located on this alluvial fan, which protrudes north from the mountain front toward the Bering Sea. Granitic bedrock is exposed at the coast, north of the site at Kitnagak Bay, which suggests that the quartz monzonitic bedrock underlies the unconsolidated materials at a relatively shallow depth on a wave-cut erosional platform.

In general, the native soil stratigraphy at NEC is characterized by silt near the surface, overlying more sand-dominated soils at depth. The dark brown (in outcrops) to dark green (aqua-green or blue in some areas) and sometimes molted silt contains varying quantities of clay/sand/gravel, and varies from 0 to 10 feet in thickness. The sand at depth contains varying degrees of silt/gravel/cobbles and ranges from 2 feet to greater than 20 feet in thickness. These deeper, coarse-grained materials are generally unsorted and likely to be of glaciofluvial origin. The depth to bedrock at the NEC FUDS is unknown (USACE 2009).

2.1.3 Hydrogeology

The aquifer at the NEC FUDS is associated with the unconsolidated alluvial material that underlies the area. Select regions, consisting of those areas where blocks of bedrock are breaking off to form talus fields flanking the Kinipaghulghat Mountains, are likely capable of transmitting large volumes of groundwater. The mountainous area to the south of the former installation provides an ideal recharge area for these unconsolidated materials, providing runoff from rain and snowmelt during the summer that permeates the broken bedrock, alluvial, and glacial deposits. Based on the topography and geology of the site, the regional groundwater flow direction is expected to flow north from the mountainous recharge area south of the site toward the Bering Sea (USACE 2015b).

Groundwater elevations recorded in 2016 at the MOC sampling area wells range from approximately 60 to 74 feet above mean sea level (amsl) and exhibited depths from approximately 2 to 35 feet below ground surface (bgs). Groundwater flow appears to travel north-northwest. Water depths bgs at the MOC are greatest to the south and become shallower progressing north to the drainage basin that runs through Site 28 (USACE 2015b).

Key factors influencing the flow of groundwater at the site are permafrost and frozen soils, which render the unconsolidated materials effectively impermeable in some areas. The U.S. Geological Survey has classified St. Lawrence Island as an area of moderately thick to thin permafrost. Although the depth of permafrost at St. Lawrence Island is unknown, the base of permafrost on the mainland at Nome (135 air miles to the northeast) is estimated to be 120 feet deep. The deeper, unconsolidated deposits at the site are likely permafrost, and the shallow soils represent the active layer where soils are frozen and thawed seasonally. Frozen soils have a profound effect in retarding groundwater flow during most of the year (USACE 2015b).

In addition to the Bering Sea that borders the NEC FUDS to the north, area surface water consists of small streams, small- to moderate-sized lakes, and marshy areas. Surface water generally flows northward from highland areas to the south. Small surface waterbodies are common throughout the area. The primary stream drainage in the area, the Suqi River, is fed by runoff from the prominent drainage of the Kinipaghulghat Mountain valley in the lower mountain area south of the former installation. Several smaller tributaries, originating from two small, unnamed lakes, feed the Suqi River as it flows north into Kitnagak Bay. Surface water flow in the area is highly dynamic, changing significantly over time. Contractors undertaking remedial and removal actions at the FUDS have observed significant changes in surface water characteristics at multiple locations across the site, most notably at a location directly south (uphill) from Site 26 where surface water runs through a culvert underneath the road that connects the MOC and Site 31 (USACE 2015b). Bristol observed significant changes in surface water characteristics at multiple locations across the site, most notably at a location directly south (uphill) from Site 26 where surface water runs through a culvert underneath the road that connects the MOC to the borrow source. This drainage originated in the Kinipaghulghat Mountains and exhibited variable flow in late spring/early summer. The drainage would flow for days at a time but would run dry later into the summer during drier periods. Water was encountered during excavations within the MOC ranging from 7 feet bgs in 2010 to approximately 12 feet bgs in 2012 (USACE 2015b). The variability of depth to groundwater at the MOC appears to be heavily influenced by proximity to wetlands near Site 28, the seasonal spring thaw, and high levels of precipitation during the summer field season. This drainage, originating in the Kinipaghulghat Mountain Valley, exhibited high water in late spring/early summer that lasted for days at a time but would exhibit little or no flow later into the summer during drier periods (USACE 2015b).

2.1.4 Vegetation

The NEC area has several major habitat types, including moist tundra dominated by heaths, grasses, sedges, mosses, and lichens, with shrubs that include bearberry, dwarf birch, narrow-leaf Labrador tea, roseroot, coltsfoot, and willow. These plants typically grow in 1 to 3 feet of undecayed organic mat over saturated and frozen soil. Alpine tundra plants (dwarf, prostrate plants that include heaths and tundra species adapted to dry, thin soil conditions) grow on the slopes and exposed ridges of the nearby mountains. The NEC area has many low-lying areas with lakes, bogs, and poorly-drained soils (USACE 2015b).

2.1.5 Land and Resource Use

St. Lawrence Island residents from the villages of Gambell and Savoonga engage in yearround subsistence fishing, hunting, and gathering in the NEC area. Local subsistence hunting camp structures are located adjacent to Site 3 and are seasonally occupied (USACE 2009). Currently, there are no permanent residents in the NEC area; however, representatives of the Native Village of Savoonga have indicated a desire to re-establish a permanent residential community at the site in the future (USACE 2015a).

St. Lawrence Island supports habitats for the following endangered or threatened species: bowhead whale (endangered), polar bear (threatened), spectacled eider (endangered), Steller's eider (threatened), and the western distinct population segment of Steller sea lion (endangered). Walrus are protected under the Marine Mammal Protection Act. The NEC vicinity is used for berry collection and reindeer subsistence hunting. The Suqi River, located within the NEC FUDS, is used for subsistence fishing. The ocean surrounding NEC is used extensively for subsistence activities including hunting of whales, walrus, seals, and sea birds; and fishing (USACE 2015a).

2.2 SITE HISTORY

NEC was constructed as an Aircraft Control and Warning Station (AC&WS) during 1950 and 1951 to provide radar coverage and surveillance for the Alaskan Air Command, and later for the North American Air Defense Command, as part of the Alaska Early Warning System. The site was activated in 1952 and a White Alice Communications System (WACS) station was added to the site in 1954. The AC&WS and WACS operations were supported by 212 personnel and were terminated in 1969 and 1972, respectively. The majority of military personnel were removed from the site by the end of 1969 (USACE 2015a).

NEC included areas for housing site personnel, power plant facilities, fuel storage tanks, distribution lines, maintenance shops, wastewater treatment facilities, and landfills. The buildings and majority of furnishings and equipment related to the AC&WS were initially abandoned in place due to the high cost of off-island transport (USACE 2015a).

In 1971, the villages of Gambell and Savoonga opted out of the Alaska Native Claims Settlement Act, which allowed for title to 1.136 million acres of land in the former St. Lawrence Island Reindeer Reserve, established in 1903. The Gambell Native Corporation and Savoonga Native Corporation (now known as Sivuqaq, Inc. and Kukulget, Inc., respectively) received titles to all of St. Lawrence Island (except U.S. Surveys 4235, 4237, 4340, 4369, and 3728) by Interim Conveyance No. 203 dated 21 June 1979 and finalized 2 December 1980. In 1982, the Navy obtained approximately 26 acres of land containing the former WACS. The land transfer was later deemed invalid and property ownership reverted to Sivuqaq, Inc. and Kukulget, Inc.

Demolition and removal of the buildings and the majority of other structures from 1990 through 2014 were completed under multiple USACE contracts (USACE 2016a). The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact. Four remedial investigations (RI) were conducted at the NEC FUDS between 1994 and 2004, during which environmental concerns were grouped into 34 individual sites (USACE 2015a). Following the Feasibility Study in 2007 and completion of the DD in September of 2009 (USACE 2007, 2009), remedial actions occurred through 2014 (USACE 2015b).

2.2.1 Main Operations Complex

The MOC at the NEC installation (Figure A-2) historically included the majority of site infrastructure such as buildings, heat and power supply, fuel storage tanks, maintenance, and housing quarters. All of the standing MOC structures have been demolished. Inert concrete foundations, pads, and backfilled utilidors remain. Fuel tanks and fuel distribution piping have been removed.

The primary sources of contamination at NEC are spills and leaks of fuel products associated with aboveground storage tanks, underground storage tanks, and associated piping. Other sources include polychlorinated biphenyls (PCBs) from transformers and electrical equipment, and vehicle maintenance fluids, such as glycol and solvent. Individual sites within the MOC were grouped together to evaluate an overall response action for the known contamination (USACE 2015a). These sites are located on the northeast portion of the main complex gravel pad and include Sites 10, 11, 13, 15, 19, and 27 (Figure A-2).

The largest known spill at NEC occurred in March 1968 when a dozer operator struck a 400,000-gallon diesel storage tank at Site 11 while plowing snow, resulting in a release of an estimated 180,000 gallons of fuel. Another significant spill occurred in 1967 when a plow truck hit petroleum, oil, and lubricant Tank No. 2, resulting in the release of approximately 30,000 gallons of fuel. As noted in the *First Five-Year Review Report, Northeast Cape FUDS* (USACE 2015a), interviews with former installation personnel suggest there were several undocumented incidents of much larger spills from the large aboveground storage tanks (USACE 2015a). Based on the results of the excavation and removal activities, the northernmost edge of the areas excavated at the MOC contains petroleum in subsurface soils at concentrations that are below the risk-based site-specific cleanup levels (SSCLs) specified in the 2009 DD. Additional excavation further northward was not performed due to the likelihood that excavation would have resulted in greater damage to the downgradient wetland area known as the Site 28 Drainage Basin. Residual contamination exceeding the soil SSCLs remains within the Site 28 Drainage Basin downgradient of the MOC.

Shallow groundwater is contaminated throughout the northern portion of the MOC. The DD-specified contaminants of concern (COCs) in groundwater are gasoline-range organics (GRO), diesel-range organics (DRO), residual-range organics (RRO), benzene, ethylbenzene, lead, and arsenic (USACE 2009).

RIs were conducted in 1994, 1996, 1998, 2001, 2002, and 2004. The sampling results indicated soils and groundwater contained petroleum compounds at elevated levels. An in situ chemical oxidation (ISCO) pilot test was completed at the MOC in 2009. Results indicated that ISCO was not an effective means of remediating the petroleum-contaminated soil present at the MOC due to the peat and organic silts in the soil, the presence of permafrost and/or frozen zones, and the observation of preferential flow zones (USACE 2015a). As a result, the alternate remedy of excavation and removal was implemented. In 2010, data collected using Ultraviolet Optical Screening Tool (UVOST) technology combined with a Geoprobe direct-push drill rig were used to plan petroleum-contaminated soil excavation. These UVOST data were used from 2011 through 2014 to guide excavation of soil with DRO concentrations above the SSCL of 9,200 milligrams per kilogram. In 2014, field-screening soil samples were

collected and analyzed by an Environmental Laboratory Accreditation Program-certified and Alaska Department of Environmental Conservation (ADEC)-approved onsite field laboratory to further guide excavation. Confirmation samples were collected upon completion of excavation activities and submitted to a fixed base laboratory for analysis. Excavation and removal activities conducted from 2011 through 2013 also addressed concrete and soils contaminated with polychlorinated biphenyls (USACE 2015a).

Several monitoring wells have been installed and removed over time at the MOC. Monitoring well installation at the MOC began during RIs and continued through 2014 (USACE 2015b). Previous groundwater sampling events from 2002 through 2015 collected groundwater from various combinations of monitoring wells (USACE 2016a). Currently installed and serviceable monitoring wells at the MOC (installed between 2002 and 2014), are 17MW-1, 20MW-1, 22MW2, 26MW1, MW10-1, MW88-1, MW88-3, MW88-10, 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, 14MW06, and 14MW07 (Figures A-5.2 and A-6.2).

The MOC groundwater monitoring well network that is currently installed and serviceable includes upgradient wells 26MW1, 22MW2, 20MW-1, and 14MW07, which are located upgradient of all known petroleum sources at the MOC. Monitoring wells 17MW1 and MW10-1 are crossgradient to known petroleum sources at the MOC. Monitoring wells MW88-1, MW88-3, MW88-10, 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, and 14MW06 are source area monitoring wells. Soil samples collected during the installation of currently installed and serviceable monitoring wells were analyzed for a variable analytical suite including GRO, DRO, RRO, BTEX, polycyclic aromatic hydrocarbons (PAH), PCBs, metals, and total organic carbon (TOC). None of the soil samples exceeded SSCLs (USACE 2002, 2003, 2005, 2015b).

Groundwater at the MOC exhibited evidence of contamination prior to the 2009 DD (USACE 2009) promulgation, COC identification, and SSCL listings. Groundwater samples collected in 2002 were analyzed for GRO, DRO, RRO, BTEX, alkalinity, sulfate, methane, ethane, and ethene (USACE 2003) while in 2004 groundwater samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, TOC, and metals (USACE 2005). Groundwater samples

collected in 2002 and 2004 exceeded what would be the future SSCL for GRO, DRO, RRO, benzene, and total lead in wells MW88-3, MW88-4, MW88-5, MW88-10, and 20MW-1 (Table 2-1). After implementation of the 2009 DD (USACE 2009), DRO, RRO, benzene, arsenic, and lead exceeded the SSCL. From 2010 through 2011, groundwater samples collected from monitoring wells at the MOC were analyzed for GRO, DRO, BTEX, PAHs, PCBs, methane, metals, and natural attenuation parameters including ferrous iron, manganese, sulfate, nitrate, alkalinity, conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) (USACE 2011, 2012). Beginning in 2012, the analyte list was expanded to include RRO (USACE 2013, 2014a). In 2014 and 2015, volatile organic compounds (VOCs) and glycols were added to the analytical suite for well 10MW-1 (USACE 2015b, 2016a). Monitoring wells MW88-4 and MW88-5 served as source area wells from 2002 through 2012, however these wells were removed due to soil excavation at the MOC. Prior to demolishing the wells during removal actions in 2013, the wells were sampled for the last time; the analytical results of which indicated no exceedance of SSCLs. Historical data from these wells provide valuable information regarding historical downgradient contamination.

Well ID	Year	Contaminant Exceeding SSCL	SSCL (mg/L)	Result (mg/L)
14MW02	2015	DRO	1.5	1.6
	2014	DRO	1.5	2.4
14MW03	2014	Total Lead	0.015	0.062
	2015	Total Lead	0.015	0.015
4 41 41 41 0 4	2014	DRO	1.5	2.5
14MW04	2015	DRO	1.5	2.8 QN
4 41 41 41 0 5	2014	DRO	1.5	4.9
14MW05	2015	DRO	1.5	12
4.41.41.41.000	2014	DRO	1.5	5.2 QL
14MW06	2015	DRO	1.5	2.3
17MW1	2014	Total Lead	0.015	0.13
20MW1	W1 2004 Total Lead		0.015	0.0517
MW88-1	2012	DRO	1.5	1.9
MW88-3	2002	DRO	1.5	34
		DRO	1.5	72
		DRO	1.5	56*
MW88-4	2002	RRO	1.1	1.9
	2002		1.1	1.3*
		Benzene	0.005	0.03
		Donizonio	0.000	0.03*

 Table 2-1

 Historical Results Above Site-Specific Cleanup Levels

Contaminant Exceeding Well ID Year SSCL (mg/L) Result (mg/L) SSCL 3.89 DRO 1.5 3.82 J* 3.49* 1.46 B 2004 RRO 1.1 1.11 B* 0.033 Benzene 0.005 0.0337* 0.0276* 3.3 DRO 2010 1.5 3.2* DRO 1.5 2.3 2011 0.005 0.0094 Benzene **Dissolved Arsenic** 0.01 0.011 2.0 DRO 1.5 1.8* 0.011 2012 **Total Arsenic** 0.01 0.011* **Dissolved Arsenic** 0.01 0.011 DRO 1.5 9.5 2002 RRO 1.1 2.3 Benzene 0.005 0.019 GRO 1.3 1.5 J DRO 1.5 11.3 2004 RRO 1.1 2.28 B 0.005 0.0297 Benzene DRO 1.5 12 2010 RRO 1.1 1.6 MW88-5 Benzene 0.005 0.0093 7.5 DRO 1.5 7.2* 2 2011 RRO 1.1 1.8* 0.016 Benzene 0.005 0.02* DRO 1.5 4.6 2012 Benzene 0.005 0.0064 DRO 55 1.5 2002 RRO 1.1 1.3 MW88-10 2004 **Total Lead** 0.015 0.0376 2010 DRO 1.5 1.6

Table 2-1 (Continued) **Historical Results Above Site-Specific Cleanup Levels**

Notes: * = field duplicate sample

For definitions, refer to the Acronyms and Abbreviations section.

For data qualifiers, refer to the DQA in Appendix B.

3.0 KEY FIELD PERSONNEL

The following table (Table 3-1) lists key project field personnel and their responsibilities.

Title	Organizational Affiliation	Name	Responsibilities	
Site Manager	Prime Contractor (ECC)	Kris Reidt	Implemented, oversaw, and coordinated project activities and ensured objectives were met. Supported PM as needed.	
SSHO	Prime Contractor (ECC)	Stanley Seegars	Developed, implemented, and oversaw all safety and health-related project aspects.	
Technical Lead/Lead Field Sampler	Subcontractor (Jacobs)	Hollee McLean	Collected field screening and analytical samples and managed and shipped analytical samples.	
Project Chemist	Subcontractor (Jacobs)	Candace Ede Angela DiBerardino	Coordinated with the laboratory, reviewed data, and ensured data quality objectives were met.	
Analytical Laboratory PM	Laboratory Subcontractor (ALS Environmental)	Greg Salata	Analyzed the samples in accordance with contract and QC requirements.	
Emergency Medical Professional	Medical Subcontractor (Total Safety)	Christopher Carson	Provided medical services in accordance with contract.	

Table 3-1Key Personnel and Responsibilities

Note:

For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

4.0 WORK PLAN DEVIATIONS

Deviations from the 2016 WP (USACE 2016b) occurred during the execution of fieldwork. None of the deviations significantly affected data usability or data quality. The WP deviations include the following:

- Analytical results from samples collected in 2016 were screened against SSCLs and Table C cleanup levels provided in Title 18 of the Alaska Administrative Code (AAC), Section 75 (18 AAC 75) promulgated in November 2016 (ADEC 2016b). Although the approved 2016 WP referenced Table C cleanup levels provided in the 18 AAC 75 promulgated in 2009, the USACE requested that the most recent ADEC levels be used for comparison purposes in this report.
- Monitoring wells at the MOC were purged according to the field SOP (which was consistent with ADEC sampling guidance), provided in the 2016 WP (USACE 2016b) with the exception of well MW10-1. A maximum drawdown of 0.6 feet was reached while purging well MW10-1, which is greater than the 0.3-foot target level. The purge flowrate was reduced to between 0.1 and 0.15 liters per minute according to the operating procedure, but the drawdown level remained at 0.50 feet.
- A project-specific matrix spike and matrix spike duplicate frequency was not analyzed with every analytical batch, as stated in the work plan. One matrix spike/matrix spike duplicate pair was submitted for the 15 groundwater samples.

(intentionally blank)

5.0 FIELD INVESTIGATION ACTIVITIES

Field activities at NEC took place from 4 through 23 August 2016.

5.1 MOBILIZATION AND DEMOBILIZATION

Mobilization and demobilization occurred during August 2016. Jacobs personnel traveled from Anchorage to Nome via commercial airline on 4 August 2016; ECC and Total Safety traveled from Anchorage to Nome via commercial airline on 5 August 2016. Most of the field gear was transported to NEC on 8 August 2016 and from NEC on 23 August 2016 via Bering Air charter in a CASA 212-200 Aviocar aircraft (Photo 5-1).

Personnel commuted from Nome to NEC via Bering Air charter in a Piper RA31-350 Navajo aircraft daily when weather permitted. At all times, the charter Navajo aircraft remained on standby at NEC while personnel were performing field activities. Travel while onsite at NEC was performed using ATVs.

Photo 5-1: Field gear unloaded from the Bering Air CASA. View facing north.

A 12-foot by 20-foot weatherport shelter was erected on 8 August 2016 to serve as an emergency shelter and to stage emergency supplies and field equipment (Photos 5-2 and 5-3) in accordance with EM 385-1-1 (USACE 2014b). Emergency supplies included food and water, bedding, utilities, and fuel. Fire safety and first aid supplies and two satellite phones were present at NEC at all times. The shelter was also used for onsite sample management activities. A Davis Weather Wizard III weather station was erected to monitor NEC weather conditions. The shelter was dismantled on 23 August 2016 after fieldwork was complete.

Photo 5-2: Emergency weatherport shelter, weather station, and ATV. View facing northeast.

Photo 5-3: Emergency and field gear stored inside weatherport shelter. View from inside.

Due to inclement weather that reduced visibility, there was no travel from Nome to NEC on 6, 7, 9, 19, and 21 August 2016. On 12 August 2016, personnel flew toward NEC via Bering Air charter Beechcraft King Air 200 but were unable to land due to low ground fog at NEC FUDS and returned to Nome.

5.2 SAMPLING ACTIVITIES

NEC sampling occurred from 10 through 22 August 2016. Groundwater sampling activities at the MOC occurred from 10 through 16 August 2016. Soil, sediment, and surface water sampling activities occurred from 13 through 22 August 2016 and are presented under separate cover (USACE 2017). Copies of the field logbooks are provided in Appendix D.

Depth to water and photoionization detector (PID) headspace readings were measured in all 15 monitoring wells prior to purging within a one-hour period between 1140 and 1235 on 10 August 2016 (Photo 5-4) (refer to Section 6.1, Table 6-1, and Appendix D). The oil-water interface probe used to collect depth measurements was decontaminated before use at each monitoring well.

Photo 5-4: Typical collection of groundwater depth at a monitoring well; well 14MW04. View facing down.

The calibration of equipment used to measure field parameters was verified daily before use or recalibrated. The MiniRae 2000 PID, YSI 556 meter, and turbidimeter were calibrated using appropriate solutions and techniques, as needed. Equipment calibration verification and/or calibration information was recorded in the field logbooks (Appendix D).

Low-flow techniques were used for purging and MNA groundwater sampling of the monitoring wells at the MOC in accordance with the SOPs included in the 2016 WP (USACE 2016b). Wells were purged at rates between 0.1 and 0.5 liters per minute using a variable speed submersible pump. Water levels within the wells were monitored to ensure minimal drawdown of the water column. A drawdown of less than 0.3 feet was maintained during purging for all monitoring wells, except for MW10-1. A maximum drawdown of 0.6 feet was reached while purging MW10-1; the flow rate was reduced to between 0.1 and 0.15 liters per minute but the drawdown remained at 0.5 feet (see Section 4.0).

Field stability parameters were measured and recorded during purging using a YSI water quality meter with flow through cell and a micro turbidimeter (Photo 5-5). These included pH, temperature, conductivity, turbidity, DO, and ORP. Readings were collected at approximately 3- to 5-minute intervals and recorded on Groundwater Sampling Data Sheets (Appendix D).

Photo 5-5: Purging groundwater at Monitoring Well 14MW01. View facing southeast.

Purge water was collected and treated onsite using a granulated activated carbon (GAC) filter drum prior to discharge onsite (see Section 5.3).

Immediately following the completion of well purging, the inlet line was removed from the flow-thru cell, and groundwater was transferred directly into the pre-preserved ALS Environmental (ALS) supplied containers. Samples were collected, in order of volatility from most volatile to least volatile.

For consistency with historical sampling events, 2016 samples from all wells were analyzed for GRO by Alaska Method 101 (AK101), DRO by AK102, RRO by AK103, PAHs by U.S. Environmental Protection Agency (EPA) Method SW8270D-SIM, PCBs by SW8082A, benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method SW8260C, methane by RSK 175, sulfate by EPA Method 300.0, alkalinity by SM 2320B, and total Resources Conservation and Recovery Act (RCRA) metals plus nickel, vanadium, and zinc by EPA

Method SW6020A/SW7470A. Samples from wells MW10-1 and 14MW06 associated with Site 10 within the MOC were also analyzed for VOCs by SW8260C and glycols by EPA Method SW8015C. Additionally, filtered water samples were collected from all wells for analysis of dissolved metals (RCRA metals plus manganese, nickel, vanadium, and zinc) by EPA Method SW6020A/SW7470A using a disposable 0.45-micron in-line water filter following collection for the other parameters listed above.

Field test kits were used to measure nitrate and ferrous iron per SOP K-6904 and SOP K-6010 (Attachment A-3 of the 2016 WP [USACE 2016]).

Sample collection data, including sample identification, collection start and end times, collection date, sample containers, analyses, and qualitative water quality, were recorded on Groundwater Sampling Data Sheets. Additional monitoring well information was recorded in the field logbooks shared between the two 2016 sample collection efforts (groundwater sampling at Site 8 and Suqi River [Appendix D]).

Samples were immediately placed into a chilled cooler and maintained at 0 to 6 degrees Celsius (°C) during storage and transportation to ALS. Samples were retained in the custody of ECC and Jacobs prior to shipment. All groundwater samples were shipped via Alaska Airlines Goldstreak priority cargo to ALS of Kelso, Washington (chain-of-custody documents are provided electronically in Appendix B, Attachment B-4) within two days of sample collection.

5.3 WASTE MANAGEMENT

Investigation-derived waste (IDW) was transported and disposed of in accordance with all applicable local, state, and federal regulations. IDW included used personal protective equipment, sample tubing, decontamination water, and general refuse. Solid wastes were stored in contractor bags and five bags of approximately 5 cubic feet each were disposed of by ECC in accordance with the Resource Conservation and Recovery Act and state waste regulations. Wastewater generated during decontamination was collected in a 5-gallon bucket.

The liquid waste was transferred to a GAC filter drum and gravity-fed through the filter prior to discharge onsite. Discharge was performed near the group of wells presented in Table 5-1. After use, the GAC filter drum was transported to Anchorage via Northern Air Cargo and returned to ECC for reuse. Sanitary waste collected from the portable toilet system was collected and disposed of by ECC (USACE 2016b). All solid waste was disposed of at the Nome Municipal Landfill located in Nome, Alaska.

Waste Type	Well ID or Source	Date	Approximate Disposal Quantity
	14MW01, 14MW02	18 August 2016	6.9 gallons
Nonhazardous	14MW06, 14MW07, MW10-1, MW88-1 MW88-10, decontamination water	13 August 2016	17.6 gallons
Purge and Decontamination	17MW-1, 20MW-1, 22MW2, 26MW1, 14MW03, 14MW04, 14MW05	14 August 2016	16.1 gallons
Wastewater	MW88-3	16 August 2016	4.4 gallons
	Decontamination water and used calibration solutions	17 August 2016	2.4 gallons
IDW	Monitoring Wells 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, 14MW06, 14MW07, 17MW-1, 20MW-1, 22MW2, 26MW1, MW88-1, MW88-3, MW88-10	15 August 2016	10 cubic feet
Concerct refuse?	Comp office	23 August 2016	5 cubic feet
General refuse ²	Camp refuse	24 August 2016	10 cubic feet

 Table 5-1

 MOC Project-Specific Waste Quantities¹

Notes:

Although general refuse was collected together from concurrent projects (groundwater sampling at the MOC and soil, sediment, and surface water sampling at Site 8 and the Suqi River), waste quantities presented in Table 5-1 are project specific.

²General refuse included spent personal protective equipment, sanitary waste, sampling materials, and empty food containers. For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

6.0 INVESTIGATION RESULTS AND DISCUSSION

The primary focus of this section is to summarize and interpret the 2016 field measurements and analytical results collected at the MOC. Some information from prior data collection efforts at the MOC is also included in Table 6-2 and Appendix C when needed for comparison purposes. The sample summary table, complete analytical results, and DQA for the 2016 data are included in Appendix B.

6.1 DATA QUALITY EVALUATION

Data quality was assessed by reviewing the laboratory case narrative, laboratory data deliverables, and completing ADEC checklists. A review of the analytical results and associated quality control samples was performed by the Jacobs Project Chemist, as per the 2016 WP (USACE 2016b).

Data quality was evaluated against the following requirements: *Quality Systems Manual for Environmental Laboratories*, version 5.0 (DoD 2013); ADEC analytical methods (ADEC 2009); and laboratory limits. Qualifiers were applied to sample results that did not meet the project data quality objective. Qualified results are considered estimated and, whenever possible, indicated as biased high or low. For data qualifier definitions, refer to Section 1.1 of the DQA (Appendix B).

The DQA found the overall quality of the project data to be acceptable, and no results were rejected. DRO results were reported from an analytical run outside of the 40-day extract hold time. The sample results run within extract hold time indicated an instrument bias that would have underrepresented sample concentrations. The complete data set, in addition to data validation details, is provided in the DQA (Appendix B).

6.2 GROUNDWATER ELEVATION

Water level measurements collected from each of the 15 currently installed and serviceable MOC monitoring wells are provided in Table 6-1. A comparison of the 2016 groundwater elevations to previous measurements is provided in Table 6-2.

The maximum water table elevation at the MOC in 2016 was 74.87 feet above mean sea level (AMSL) at well 26MW1. Generally, groundwater elevation was highest in monitoring wells located along the eastern perimeter of the MOC. Wells along the eastern perimeter of the MOC also demonstrated the greatest differences in groundwater elevation between 2015 and 2016 (Tables 6-1 and 6-2; Plot C-1.1 in Appendix C) with the maximum change in elevation of 3.45 feet observed at well 26MW01. Based on data collected during the 2016 sampling event, groundwater flow at the MOC was predominantly northwest (Figure A-3.1).

The MOC plan and section view diagrams were created along the general south to north and west to east transects (Figure A-3.2). Both the west to east and south to north section views (Figures A-3.3 and A-3.4, respectively) in Appendix A indicate that water levels were above the screened interval for several wells.

 Table 6-1

 2016 Depth to Groundwater and Groundwater Elevation Measurements from Currently

 Installed and Serviceable Monitoring Wells at the MOC

Well ID	Time	Stick-Up (feet)	DTW (feet btoc)	DTW (feet bgs)	GWE ¹ (feet AMSL)	Change in GWE ² (feet)
14MW01	1230	-0.15	15.65	15.80	59.54	0.79
14MW02	1227	-0.30	10.50	10.80	60.08	0.92
14MW03	1222	-0.20	12.05	12.25	62.09	1.36
14MW04	1219	-0.48	3.22	3.70	63.86	1.44
14MW05	1215	-0.52	3.10	3.62	63.53	1.02
14MW06	1144	-0.50	3.47	3.97	67.45	1.03
14MW07	1156	-0.25	25.63	25.88	69.36	2.28
17MW-1	1234	-0.15	12.15	12.30	61.32	0.91
20MW-1	1202	-0.15	22.60	22.75	68.86	2.22
22MW2	1205	-0.45	27.57	28.02	68.37	2.35
26MW1	1210	-0.40	34.96	35.36	74.87	3.45
MW10-1	1140	2.20	5.18	2.98	68.52	1.67
MW88-1	1153	-0.15	16.94	17.09	67.56	2.03
MW88-10	1200	-0.35	20.69	21.04	68.10	2.13
MW88-3	1149	-0.20	12.32	12.52	67.38	1.9

Notes:

¹Groundwater elevation calculated from top of casing elevation measurement presented in Figure 5 (USACE 2015b) and depth to water from top of casing measured in 2016.

² Difference in groundwater elevation from 2015 (USACE 2016a) to 2016.

btoc = below top of casing

For additional definitions, refer to the Acronyms and Abbreviations section.

 Table 6-2

 Historical Groundwater Elevation Measurements from Select MOC Monitoring Wells

Well ID	2016 GWE ¹ (ft AMSL)	2015 GWE ² (ft AMSL)	2014 GWE ³ (ft AMSL)	2013 GWE⁴ (ft AMSL)	2012 GWE ⁵ (ft AMSL)	2011 GWE ⁶ (ft AMSL)	2010 GWE ⁷ (ft AMSL)	GWE	2002 GWE ⁹ (ft AMSL)
14MW01	59.54	58.75	59.03						
14MW02	60.08	59.16	59.32						
14MW03	62.09	60.73	60.74						
14MW04	63.86	62.42	62.66						
14MW05	63.53	62.51	61.82						
14MW06	67.45	66.42	65.27						
14MW07	69.36	67.08	67.47						
17MW-1	61.32	60.41	60.88	60.44	62.22	64.19	64.11	61.39	61.57
20MW-1	68.86	66.64	67.04	66.44	69.27	71.24	67.68	66.30	66.48
22MW2	68.37	66.02	66.46	65.92	69.14	65.69	67.27	65.51	65.9
26MW1	74.87	71.42	72.98	71.14	74.38	76.88	68.97	70.53	70.63
MW10-1	68.52	66.85	66.55	66.25	69.25	70.32	68.63	66.15	66.53
MW88-1	67.56	65.53	65.858	64.92	67.38	69.22	65.84	65.63	66.04
MW88-10	68.10	65.97	66.28	65.51	67.96	70.58	67.20	65.98	66.17
MW88-3	67.38	65.48	65.74					65.5	65.86
MW88-4 ¹⁰					62.41	63.06	62.11	60.53	60.62
MW88-5 ¹⁰					60.19	61.48	60.5	60.34	60.55

Notes:

Groundwater elevation calculated from top of casing elevation measurement presented in Figure 5 (USACE 2015b) and depth to water from top of casing measured in 2016.

² Groundwater elevation presented in 2015 Annual Groundwater Sampling Report (USACE 2016a).

³ Groundwater elevation presented in 2014 Northeast Cape HTRW Remedial Actions, Revision 1 (USACE 2015b).

⁴Groundwater elevation presented in Northeast Cape HTRW Remedial Actions (USACE 2014).

⁵ Groundwater elevation presented in Northeast Cape HTRW Remedial Actions (USACE 2013).

⁶ Groundwater elevation presented in Northeast Cape HTRW Remedial Actions (USACE 2012).

⁷ Groundwater elevation presented in Northeast Cape HTRW Remedial Actions (USACE 2011a).

⁸ Groundwater elevation presented in Phase IV Remedial Investigation (USACE 2005).

⁹ Groundwater elevation presented in Site Characterization Technical Memorandum 2002 Phase III Remedial Investigation Sites 13, 15, 19, 27, and 22(USACE 2002).

¹⁰ Wells not measured from 2013 through 2016 were removed before 2013 sampling as a result of soil excavation at the MOC.

For definitions, refer to the Acronyms and Abbreviations section.

6.3 NATURAL ATTENUATION IN GROUNDWATER

The physical chemistry parameters of pH, temperature, conductivity, turbidity, DO, and ORP measurements recorded during the 2016 field effort are summarized in Table 6-3. Temperature ranged from 3.25 to 10.03°C and was inversely related to groundwater depth from the surface; as the depth to water increased the temperature decreased.

Conductivity ranged between 50 and 235 micro Siemens per centimeter (μ S/cm) and was highest in downgradient source area wells. Turbidity was measured below 30 nephlometric turbidity units (NTU) in samples collected from all wells except in 14MW04; while measuring turbidity in the visually turbid water from 14MW04, the meter displayed a code indicating that turbidity was too high to measure. Measurements for pH were slightly acidic and ranged between 5.00 and 6.57. Positive ORP was measured in all groundwater monitoring wells and ranged from 0.60 millivolts (mV) to 231.40 mV. Values for DO ranged from 0.45 to 12.98 milligrams per liter (mg/L); higher DO values were typically measured in wells with high ORP.

Well ID	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	рН (pH units)	ORP (mV)	Turbidity (NTU)
14MW01	4.37	94	0.53	6.02	0.6	20.40
14MW02	6.84	123	0.51	5.88	11.6	4.60
14MW03	4.14	93	0.60	5.99	26.7	26.10
14MW04	7.66	203	0.62	6.05	91.4	-
14MW05	6.82	127	0.46	5.87	71.6	8.45
14MW06	9.33	235	0.45	6.57	47.2	2.29
14MW07	3.74	52	10.09	5.42	187.7	3.35
17MW-1	3.94	56	10.31	5.45	223.4	2.84
20MW-1	4.63	73	11.65	5.60	222.5	6.05
22MW2	4.50	55	12.15	5.52	230.6	2.95
26MW1	4.54	50	12.98	5.48	231.4	3.98
MW10-1	10.03	69	4.75	5.25	225.1	11.10
MW88-1	6.15	58	4.09	5.23	183.7	2.19
MW88-10	4.50	62	1.06	5.54	184.6	8.50
MW88-3	3.25	57	4.70	5.00	218.1	7.98

Table 6-32016 Groundwater Field Parameters Prior to Sampling

Notes:

- = Turbidimeter displayed code indicating turbidity may be too high to read.

For definitions, refer to the Acronyms and Abbreviations section.

Table 6-4 presents natural attenuation analytical results from 2016 samples. Wells with the highest concentrations of ferrous iron also exhibited the highest dissolved manganese concentrations and were all source area wells. Typically, low nitrate was found in source area wells. Alkalinity was highest in the primary and field duplicate samples collected from

14MW06 at 140 and 138 mg/L, respectively. High sulfate was found in samples collected from source area wells 14MW04 and 14MW05; the highest methane concentrations were found in the same wells.

Well ID	Ferrous Iron (mg/L)	Dissolved Manganese (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Alkalinity (mg/L)	Methane (mg/L)
14MW01	10	0.916	17.7	0	18.7	0.024
4.41.41.400	10	1.86	14.7	0	40	0.023
14MW02	10	1.84	14.6	0	40	0.025
14MW03	10	1.36	16.9	0	28	0.0082
14MW04	3.5	1.71	31.2	0	91	0.02
14MW05	10	2.71	23.1	0	47	0.01
4.41.41.400	2	1.28	15.3	0.2	140	0.0083
14MW06	2	1.26	15.2	0.2	138	0.0093
14MW07	<0.03	0.0359	12.7	0.1	11.7	ND (0.00063)
17MW-1	<0.03	0.00156	16.9	0.2	10	ND (0.00063)
20MW-1	<0.03	0.00321	19.6	0.1	21	ND (0.00063)
22MW2	<0.03	0.000535	15.4	0.1	7	ND (0.00063)
26MW1	<0.03	0.000754	13.6	0	6.3	ND (0.00063)
MW10-1	<0.03	0.00344	7.37	0.2	17	ND (0.00063)
MW88-1	0.1	0.291	14.1	0.2	13	0.00043 J
MW88-10	0.2	0.203	17.8	0.1	17.7	0.0036
MW88-3	<0.03	0.364	14.8	0	16	ND (0.00063)

 Table 6-4

 2016 Analytical Natural Attenuation Parameter Results

Notes:

ND = not detected

For data qualifiers, refer to the DQA in Appendix B.

For definitions, refer to the Acronyms and Abbreviations section.

Appendix C presents summaries of groundwater data from historical monitoring events. For a select list of field parameters and analytical natural attenuation parameters from samples collected since 2010 see Table C-2.1 in Appendix C. Graphs of select field and MNA parameters for monitoring wells with three or more sampling events are presented in Plots C-2.2.1 through C-2.2.11.2 (Appendix C). Figures A-4.1 through A-4.8 display select natural attenuation parameters over time. Figures A-5.1 through A-5.4 present historical data from 2002 through 2016 while A-6.1 through A-6.4 present historical data from 2014 through 2016.

Parameters used to measure water quality can also be used to interpret the likelihood and degree of natural attenuation. Natural attenuation involves natural processes to decrease concentrations of contaminants. These processes are chiefly dilution, dispersion, and biological degradation by bacteria in groundwater.

Monitoring wells 26MW1, 22MW2, 20MW-1, and 14MW07 are located upgradient of all known petroleum sources at the MOC. Groundwater quality in samples collected from these upgradient wells was typical of water not impacted by petroleum and contained high ORP and DO, low levels of ferrous iron, dissolved manganese and alkalinity, variable nitrate concentrations, and no detectable methane. Monitoring wells 17MW1 and MW10-1 are crossgradient to known petroleum sources at the MOC. Groundwater from crossgradient wells was similar to groundwater quality in samples collected from upgradient monitoring wells.

Groundwater quality in samples collected from monitoring wells in former source areas indicate natural attenuation of petroleum is occurring. Monitoring wells MW88-1, MW88-3, MW88-10, 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, and 14MW06 were considered former source area monitoring wells. Several monitoring wells within this group (wells 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, and 14MW06) have the lowest ORP and DO, the highest levels of ferrous iron and dissolved manganese, high alkalinity, low nitrate, and the highest methane; these conditions indicate that anaerobic petroleum degradation activities are occurring in groundwater. Ferrous iron concentrations in groundwater are likely related to reducing conditions in groundwater, not subsurface ferrous metal waste left in soil. To a lesser extent, wells MW88-1, MW88-3, and MW88-10 displayed similar conditions to the other source area wells.

6.4 CONTAMINANTS IN GROUNDWATER

This section provides two assessments of the 2016 MOC groundwater samples. The first assessment compares the 2016 MOC monitoring well data with the DD-established SSCLs. The second assessment compares the 2016 MOC monitoring well data with the 2016 promulgated ADEC evaluation criteria for informational purposes. The 2016 ADEC evaluation criteria were promulgated after the DD-specified SSCLs were determined and

approved in the 2009 DD. Although more stringent cleanup levels for some MOC COCs have been promulgated by the State in 2016, the DD-specified SSCLs will remain unchanged until the next five-year review evaluates the protectiveness of the SSCLs. No assessment of the differences between the DD-specified SSCLs and the 2016 ADEC evaluation criteria is made in this report. The next five-year review of the MOC, scheduled for 2020, will assess the differences in DD-specified SSCLs and the recently promulgated ADEC groundwater evaluation criteria.

Filtered and unfiltered groundwater sample results are presented in this report as distinct results in an effort to distinguish if soil particles in unfiltered groundwater are contributing to metals levels. There are no distinct SSCLs or 2016 ADEC evaluation criteria associated with filtered or unfiltered samples. The 2016 ADEC evaluation criteria are typically calculated considering only the water soluble fraction. Therefore, metals results from unfiltered samples overestimate metals levels.

The currently installed and serviceable monitoring well network at the MOC consists of 15 monitoring wells. Figure A-3.2 in Appendix A shows the locations of the 15 wells available for sampling and the locations of 16 abandoned wells that are no longer available for sample collection.

6.4.1 Comparison of 2016 MOC Monitoring Well Data to DD-Specified Groundwater SSCLs

2016 Groundwater results from some monitoring wells at the MOC exceeded the DDspecified SSCLs. All of the wells with SSCL exceedances are found on the northern (downgradient) edge of the MOC. None of the monitoring wells located upgradient of known soil contamination at the MOC contained exceedances of the SSCLs or other notable detections.

DRO exceeded the DD-specified SSCL in three wells (wells 14MW02, 14MW04, and 14MW05) of the 15 wells. Lead also exceeded the DD-specified SSCL in one (well 14MW04) of the 15 wells for both filtered and unfiltered samples. No other analytes

exceeded the DD-specified SSCLs in 2016 groundwater samples. Table 6-5 shows 2016 analytical results for compounds that historically have exceeded the DD-specified SSCLs in at least one well. The full list of 2016 analytical results can be found in the Table B-1-2 located in Appendix B.

DRO exceeded the SSCL of 1.5 mg/L in samples collected from wells 14MW02, 14MW04, and 14MW05. The DRO concentration was the highest, 3.2 mg/L, in the sample collected from well 14MW05. Samples collected from wells 14MW02 and 14MW04 had DRO concentrations of 1.6 mg/L (1.5 mg/L in the field duplicate sample) and 2.2 mg/L, respectively, and were qualified QL as the extracts were analyzed past 40 days from extraction. Other notable DRO detections of 1.4, 0.99, and 0.92 mg/L were reported in samples collected from wells 14MW06, 14MW03, and 14MW01, respectively, and were below the SSCL for DRO. Wells 14MW06, 14MW03, and 14MW01 are found adjacent to other MOC wells with DRO exceedances and they appear to define the east and western edges of the MOC DRO plume. Samples from wells 14MW06, 14MW03, and 14MW01 were also qualified QL as the extracts were analyzed past 40 days from extraction. The QL qualifier did not affect data usability in this case since analysis within hold time produced lower results than those obtained from the out of hold time analysis which occurred two days past the extract hold time. DRO results are discussed in the DQA in Appendix B.

Lead was the only metal to exceed SSCLs in 2016 groundwater samples (well 14MW04). Filtered and unfiltered groundwater samples were submitted for analysis to determine if small soil particles in groundwater were contributing to sample results. Both filtered and unfiltered results from well 14MW04 exceeded the 0.015 mg/L lead SSCL. Lead results from the unfiltered sample were 0.0582 mg/L and lead results from the filtered sample were 0.0349 mg/L. Although field observations noted that well 14MW04 had visually turbid water, turbidity did not account for the results reported in the filtered sample. Lead present in the groundwater in the vicinity of 14MW04 is likely due to the reducing conditions in groundwater at well 14MW04 that allow lead to leach from surrounding soil. The natural attenuation of DRO is the cause of the reducing conditions in groundwater near well 14MW04 (refer to Section 6.5).

	GRO ¹ (mg/L)	DRO ² (mg/L)	RRO ³ (mg/L)	Benzene⁴ (mg/L)	Arsenic- Total⁵ (mg/L)	Arsenic- Dissolved⁵ (mg/L)	Lead- Total⁵ (mg/L)	Lead- Dissolved ⁵ (mg/L)
SSCL	1.3	1.5	1.1	0.005	0.01	0.01	0.015	0.015
14MW01	0.065 J	0.92	0.12 J,B	ND (0.0001)	0.0046 QL	0.00439	0.00153 QL	0.000159
14MW02	0.14	1.6	0.18 J,B	ND (0.0001)	0.00244	0.00241	0.000496	0.000054 B, QN
14002	0.14	1.5	0.17 J,B	ND (0.0001)	0.00235	0.00237 QN	0.00045	0.000083 B, QN
14MW03	0.075 J	0.99 QL	0.16 J,B,QL	ND (0.0001)	0.00194	0.00186	0.00318	0.00126
14MW04	0.011 J	2.2 QL	0.61 B,QL	0.00013 J,QH	0.00524	0.00387	0.0582	0.0349
14MW05	0.072 J	3.2 QL	0.61 B,QL	ND (0.0001)	0.00207	0.00194	0.00165	0.000252
14MW06	0.011 J	1.4 QL	0.55 B,QL	ND (0.0001)	0.00203	0.00203	0.000861	0.000649 QN
14101000	0.011 J	1.4 QL	0.47 B,QL	ND (0.0001)	0.00197	0.00197	0.000817	0.000208 B,QN
14MW07	ND (0.025)	0.12 J,B,QL	0.093 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000338	0.000052 B
17MW1	ND (0.025)	0.092 J,B,QL	0.13 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.00025	0.000045 B
20MW1	ND (0.025)	0.09 J,B,QL	0.13 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000866	0.000248
22MW2	ND (0.025)	0.1 J,B,QL	0.36 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000085 B	0.000026 B
26MW1	ND (0.025)	0.11 J,B,QL	0.79 B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000474	0.000025 B
MW10-1	ND (0.025)	0.49 J,B,QL	0.32 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000558	0.000042 B
MW88-1	ND (0.025)	0.52 J,B,QL	0.23 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000301	0.000075 B
MW88-10	ND (0.025)	0.3 J,B,QL	0.16 J,B,QL	ND (0.0001)	0.00022 J	0.00023 J	0.00143	0.000227
MW88-3	ND (0.025)	0.49 J,B,QL	0.15 J,B,QL	ND (0.0001)	ND (0.00025)	ND (0.00025)	0.000383	0.000158 B

Table 6-5 2016 MOC Groundwater Sample Results Compared To Historically Exceeded Site-Specific Cleanup Levels

Notes: ¹ Analyzed by Method AK101 ² Analyzed by Method AK102

³ Analyzed by Method AK102
 ⁴ Analyzed by Method SW8260C
 ⁵ Analyzed by Method SW6020
 Bold and highlighted text indicates result exceeding the SSCL (USACE 2009).

ND = not detected

For definitions, refer to the Acronyms and Abbreviations section.

For data qualifiers, refer to the DQA in Appendix B.

6.4.2 Comparison of 2016 MOC Monitoring Well Data to 2016 ADEC Evaluation Criteria

2016 Groundwater results from some monitoring wells at the MOC exceeded the 2016 ADEC evaluation criteria Table 6-6 shows analytical results for compounds that exceeded the ADEC evaluation criteria in at least one well. The full list of 2016 analytical results can be found in Table B-1-2 (Appendix B).

DRO exceeded the 2016 ADEC evaluation criteria in three wells (wells 14MW02, 14MW04, and 14MW05) of the 15 currently installed and serviceable MOC wells. Naphthalene exceeded ADEC evaluation criteria in two wells (wells 14MW01 and 14MW02) of the 15 currently installed and serviceable MOC wells. Metal exceedances for lead (well 14MW04) and arsenic (wells 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, and 14MW06) were also present in the monitoring well samples.

While no evidence of chromium speciation in groundwater exists at NEC, no known anthropogenic source for chromium in groundwater exists (USACE 2009). In accordance with state regulations and the 2016 ADEC evaluation criteria, analytical results reported for total chromium are considered background chromium(III) in the absence of an anthropogenic source (ADEC 2016b). Therefore, chromium concentrations did not exceed 2016 ADEC evaluation criteria of 22 mg/L for chromium(III).

	DRO ¹ (mg/L)	Naphthalene ² (mg/L)	Arsenic- Total ³ (mg/L)	Arsenic- Dissolved ³ (mg/L)	Lead-Total ³ (mg/L)	Lead- Dissolved ³ (mg/L)
2016 ADEC Criteria	1.5	0.0017	0.00052	0.00052	0.015	0.015
14MW01	0.92	0.0075	0.0046 QL	0.00439	0.00153 QL	0.000159
4 41 41 42 40	1.6	0.0037	0.00244	0.00241	0.000496	0.000054 B, QN
14MW02	1.5	0.0038	0.00235	0.00237 QN	0.00045	0.000083 B, QN
14MW03	0.99 QL	0.00072	0.00194	0.00186	0.00318	0.00126
14MW04	2.2 QL	0.000022	0.00524	0.00387	0.0582	0.0349
14MW05	3.2 QL	0.00072	0.00207	0.00194	0.00165	0.000252
	1.4 QL	0.00006 B,QN	0.00203	0.00203	0.000861	0.000649 QN
14MW06	1.4 QL	0.000033 B,QN	0.00197	0.00197	0.000817	0.000208 B,QN
14MW07	0.12 J,B,QL	0.0000061 J,B	ND (0.00025)	ND (0.00025)	0.000338	0.000052 B
17MW1	0.092 J,B,QL	0.0000076 J,B	ND (0.00025)	ND (0.00025)	0.00025	0.000045 B
20MW1	0.09 J,B,QL	0.0000054 J,B	ND (0.00025)	ND (0.00025)	0.000866	0.000248
22MW2	0.1 J,B,QL	ND (0.0000051)	ND (0.00025)	ND (0.00025)	0.000085 B	0.000026 B
26MW1	0.11 J,B,QL	0.0000045 J,B	ND (0.00025)	ND (0.00025)	0.000474	0.000025 B
MW10-1	0.49 J,B,QL	0.0000046 J,B	ND (0.00025)	ND (0.00025)	0.000558	0.000042 B
MW88-1	0.52 J,B,QL	0.0000071 J,B	ND (0.00025)	ND (0.00025)	0.000301	0.000075 B
MW88-10	0.3 J,B,QL	0.0000088 J,B	0.00022 J	0.00023 J	0.00143	0.000227
MW88-3	0.49 J,B,QL	0.000035 B	ND (0.00025)	ND (0.00025)	0.000383	0.000158 B

Table 6-62016 MOC Groundwater Sample Results Compared ToSelect 2016 ADEC Evaluation Criteria

Notes:

¹ Analyzed by Method AK102

² Analyzed by Method SW8270SIM

³ Analyzed by Method SW6020

Bold and highlighted text indicates result exceeding 2016 ADEC evaluation criteria (ADEC 2016b).

ND = not detected

For definitions, refer to the Acronyms and Abbreviations section.

For data qualifiers, refer to the DQA in Appendix B.

6.4.3 Analyte Concentration Trends in Groundwater

Historically, GRO, DRO, RRO, benzene, arsenic, and lead have exceeded groundwater SSCLs. In 2016 only DRO and lead exceeded the SSCLs. The DRO concentration in two wells (14MW04, and 14MW05) of the three wells (14MW02, 14MW04, and 14MW05) with 2016 SSCL exceedances have generally decreased over time since monitoring began in 2014. The DRO concentration in well 14MW02 have slightly increased since monitoring began in

2014. A table with historical results and charts displaying time series trends for each contaminant at select wells are presented in Table C-3.1 (Appendix C).

GRO historically exceeded screening levels in only one monitoring well (MW88-5). This well was located in the northern portion of the MOC in an area of soil contamination removed during 2012 MOC soil excavation activities. GRO exceedances in well MW88-5 occurred in 2002 (year of installation) and again in 2004 with concentrations of 1.3 and 1.5 mg/L, respectively. Monitoring did not occur again at well MW88-5 until 2010 and a GRO concentration of 0.19 mg/L was reported at that time. Monitoring continued at well MW88-5 in 2011 and 2012 with reported GRO concentrations of 0.25 and 0.16 mg/L, respectively. The MW88-5 well time series plot for GRO (Plot C-3.2.7 in Appendix C) shows concentration levels for the most recent sampling events (2010, 2011, and 2012) are significantly lower than those seen in 2002 and 2004 and less than 50 percent of the SSCL. Due to the lack of monitoring data between 2004 and 2010, the trend line assumes that a gradual decrease occurred. However, there is no information to confirm or disprove this assumption. Similar fluctuations in GRO levels were observed at well MW88-4 (Plots C-3.2.6.1 and C-3.2.6.2 in Appendix C) located approximately 200 feet east (crossgradient) of well MW88-5 suggesting similar factors were affecting both wells at the times of sample collection. Although more data points would be helpful to put the older results in perspective, both wells MW88-4 and MW88-5 were removed in 2012 and are no longer available for sampling.

DRO has historically exceeded the SSCL of 1.5 mg/L in 10 monitoring wells (Table C-3.1 and Plots C-3.2.1 through C-3.2.9 in Appendix C). The highest DRO concentrations for wells MW88-4, MW88 10, and MW88-3 were in 2002 at 72 mg/L (56 mg/L duplicate sample), 55 mg/L, and 34 mg/L, respectively. Samples collected from these wells in 2004 were much lower; only the sample collected from well MW88-4 exceeded the SSCL at 3.89 mg/L. In well MW88-5, the highest DRO concentration of 12 mg/L was found in a sample collected in 2010. Samples collected from wells MW88-4 and MW88-5 exceeded the SSCL for DRO through 2012 after which both wells were decommissioned and removed as a result of POL-contaminated soil excavation. In 2012, a sample collected from well MW88-1 contained a DRO exceedance of the SSCL at a concentration of 1.9 mg/L. In 2014, samples collected

from 14MW03 and 14MW06 had their highest DRO concentrations at 2.4 and 5.2 mg/L, respectively; the result from well 14MW06 was qualified QL. While DRO concentrations in samples collected from well 14MW06 remained above the SSCL in 2015, samples from well 14MW03 exceeded the DRO SSCL in 2014 only. Monitoring wells 14MW04 and 14MW05 contained their highest DRO concentrations at 2.8 mg/L, qualified QN (1.68 mg/L, qualified QL, QN duplicate sample) and 12 mg/L (11 mg/L duplicate sample), respectively, in samples collected in 2015. Samples from wells 14MW04 and 14MW05 have exceeded the SSCL for DRO during every sampling event (2014, 2015, and 2016). DRO had its highest concentration in a sample collected from 14MW02 at 1.6 mg/L in both 2015 and 2016, slightly greater than the 1.3 mg/L found in its first year of monitoring (2014). As of 2016, only samples collected from wells 14MW04, and 14MW05 exceeded the DRO SSCL.

Samples collected from three monitoring wells have exceeded the RRO SSCL of 1.1 mg/L (Table C-3.1 and Plots C-3.2.1 through C-3.2.9 in Appendix C). At 1.3 mg/L, a sample collected from well MW88-10 exceeded the RRO SSCL in only 2002. In 2002 and 2004, RRO in samples collected from well MW88-4 exceeded the SSCL; RRO was at its highest, 1.9 mg/L, in well MW88-4 in 2002. RRO was also at its highest in a sample collected from well MW88-5 in 2002, at 2.3 mg/L and continued to exceed the SSCL in 2004, 2010, and 2011. No groundwater sample results have exceeded the RRO SSCL since 2011.

Benzene exceeded the SSCL of 0.005 mg/L in every year well MW88-5 was sampled and three of five years well MW88-4 was sampled (Table C-3.1 and Plots C-3.2.1 through C-3.2.9 in Appendix C). Samples collected from both wells had their highest benzene concentration in 2004. In samples collected in 2004, benzene was 0.0337 mg/L in well MW88-4 and 0.0297 mg/L in well MW88-5. Between 2004 and 2012, benzene concentrations decreased in samples collected from both wells. Prior to the removal of well MW88-4 after 2012 sampling, benzene in samples collected from well MW88-4 was below the SSCL of 0.005 mg/L while in samples collected from well MW88-5, benzene was 0.0064 mg/L. No groundwater samples have exceeded the benzene SSCL since 2012. In addition to historical exceedances of the SSCL for benzene, a sample collected from well MW88-4 in 2012 exceeded the 2016 ADEC evaluation criteria of 0.0046 mg/L at 0.0048 mg/L.

Monitoring well MW88-4 is the only well where sample results exceeded the SSCL of 0.1 mg/L for total and dissolved arsenic (Table C-3.1 and Plot C-3.2.6 in Appendix C). Total arsenic was 0.011 mg/L in 2012. Dissolved arsenic was 0.011 mg/L in both 2011 and 2012. Arsenic has never been detected in samples collected from wells 17MW-1, 22MW2, 26MW1, MW88-1, and MW88-3. Only samples collected from wells 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, 14MW06, 14MW07, MW88-4, and MW88-5 have had detectable levels of arsenic above the 2016 ADEC evaluation criteria. The 2016 ADEC evaluation criteria of 0.00052 mg/L was nearly 20 times lower than the SSCL. Due to analytical limits of detection nearly an order of magnitude greater than the 2016 ADEC evaluation criteria, all currently sampled monitoring wells, well MW88-4, and well MW88-5 may have exceeded the 2016 ADEC evaluation criteria for arsenic. Since no anthropogenic source for arsenic in MOC groundwater exists, arsenic levels in MOC groundwater are not likely the result of military impacts at NEC (USACE 2009). Elevated arsenic concentrations in groundwater should be attributed to background concentrations (ADEC 2016b).

Historically, total and dissolved lead levels have exceeded the SSCL of 0.015 mg/L once in samples collected from five monitoring wells (Table C-3.1 and Plots C-3.2.1 through C-3.2.9 in Appendix C). In 2004, total lead was 0.0517 and 0.0376 mg/L in samples collected from wells 20MW1 and MW88-10, respectively; samples collected in 2004 were not analyzed for dissolved lead. In 2014, total lead was 0.13 and 0.052 mg/L in samples collected from wells 17MW1 and 14MW03, respectively; dissolved lead was not detected. A sample from well 14MW03 contained total lead equal to the SSCL at 0.015 mg/L in 2015. In 2016, the sample collected from well 14MW04 was the only sample to have concentrations of total and dissolved lead above the SSCL at 0.0582 and 0.0349 mg/L, respectively.

While the 2016 ADEC evaluation criteria for DRO, RRO, and lead equal the SSCL and the 2016 evaluation criteria for benzene and arsenic are lower than SSCLs, the 2016 evaluation criterion for GRO is higher than the GRO SSCL of 1.3 mg/L. The 2016 ADEC evaluation criteria of 2.2 mg/L for GRO has not been exceeded in any groundwater samples collected from the currently installed and serviceable wells at the MOC.

At the time of the 2009 DD, naphthalene was not assigned an SSCL in groundwater. In 2016, naphthalene exceeded 2016 ADEC evaluation criteria in samples collected from wells 14MW01 and 14MW02. Since naphthalene exceeded the 2016 ADEC evaluation criteria, the applicability of a future SSCL for naphthalene will be addressed during the next five-year review. Plots C-3.3.1 through C-3.3.9 (Appendix C) presents naphthalene concentrations in samples collected from select wells over time. Naphthalene concentrations have decreased over time in all well samples except samples collected from well 14MW01.

6.5 NATURAL ATTENUATION OF DRO

MNA is the selected remedy for MOC groundwater. Natural attenuation relies on in situ biological, physical, and chemical processes to reduce contaminant concentrations over time. Typically, the primary line of evidence of natural attenuation is a steady decreasing trend of analyte levels over time. Geochemical parameters provide a secondary line of evidence that biological or chemical processes are occurring and help identify what type of biological processes are taking place. Tracking geochemical conditions with COC concentrations over time will assist in the ongoing evaluation of remedy performance. Analyte levels over time and geochemical groundwater parameters were evaluated at all 15 of the currently installed and serviceable MOC monitoring wells through field measurements and laboratory analysis.

The current DRO plume at the MOC is located at the northern portion of the site in the area of wells 14MW02, 14MW04, 14MW05, and MW88-4. Although historically DRO exceedances in groundwater were found in the central portion of the site near wells 14MW03 and 14MW06, removal of contaminated soil appears to have contributed to reductions in DRO groundwater concentrations in this area indicating the area was likely contributing to DRO levels observed in MOC groundwater.

Three monitoring wells were selected for additional statistical trend analysis based on DRO concentrations remaining above the SSCL in 2016 samples. DRO levels in samples collected from the existing in-plume wells 14MW02, 14MW04 and 14MW05 continue to exceed the SSCL for DRO of 1.5 mg/L and ranged from 1.6 to 3.2 mg/L. The three years of monitoring results for these wells were assessed for statistical trends using both the Mann-Kendall trend

test and geometric regression plots. However, the low number of measurements can only provide a coarse assessment of this primary line of evidence.

The Mann-Kendall trend test identifies whether a trend exists and, if a trend is present, it identifies the trend as increasing or decreasing. The Mann-Kendall test did not identify any significant trends in samples collected from wells 14MW02, 14MW04 and 14MW05. The Mann-Kendall trend test analysis input and results are provided in Tables C-4.3.1 through C-4.3.4 (Appendix C).

At well 14MW02, DRO had its highest concentration in a sample collected from well 14MW02 at 1.6 mg/L in both 2015 and 2016, slightly greater than the 1.3 mg/L found in its first year of monitoring (2014). No geometric regression was prepared for 14MW02 since the 2016 result was not lower than the 2015 result.

At wells 14MW04 and 14MW05, DRO levels have demonstrated some fluctuation with results from 2015 being the highest of the three years and results from 2016 being the lowest, however the slope of the regression line for 14MW04 and 14MW05 is negative. A degradation rate was estimated using a geometric first-order regression, expressed as a half-life, to time-series data for wells 14MW04 and 14MW05. The intersection of the 95-percent upper confidence limit (UCL95) of the regression line with the SSCL provides an estimate of the cleanup date accounting for data scatter. This geometric regression approach is consistent with EPA guidance (EPA 2014). Following the aforementioned process of geometric regression, DRO in well 14MW04 had a half-life of 10.6 years, DRO SSCL attainment was expected to start in 2023, and attenuation is predicted to be complete in 2037 (Plot C-4.1.1 and Tables C-4.1.1 and C-4.1.2 in Appendix C). In well 14MW05, DRO had a half-life of 3.2 years, attainment of the SSCL for DRO is expected to begin in 2021, and attenuation is predicted to be complete in 2047 (Plot C-4.2.1 and Tables C-4.2.1 and C-4.2.2 in Appendix C). Additional monitoring events in the future will be needed to fully assess trends and provide higher confidence in half-life values.

The groundwater geochemical parameters measured in the field included ferrous iron, nitrate, conductivity, DO, and ORP. The groundwater geochemical parameters tested at the analytical laboratory included methane, manganese, sulfate, and alkalinity. Isopleth figures of selected geochemical parameters can be found in Appendix A (Figures A-4.1 through A-4.8).

The geochemical parameter results indicate that anaerobic biological processes are currently dominant at the core of the DRO plume along the north portion of the MOC. This is evident from the elevated levels of methane, ferrous iron, and manganese coupled with reduced levels of sulfate, nitrate, DO, and ORP in the area. Aerobic processes will be dominant at the exterior margins of the plume where higher DO levels and higher ORP values are observed.

Based on both the geometric regression plots from wells 14MW04 and 14MW05 and the results of the geochemical parameters in the area, natural attenuation is occurring.

(intentionally blank)

7.0 CONCLUSIONS

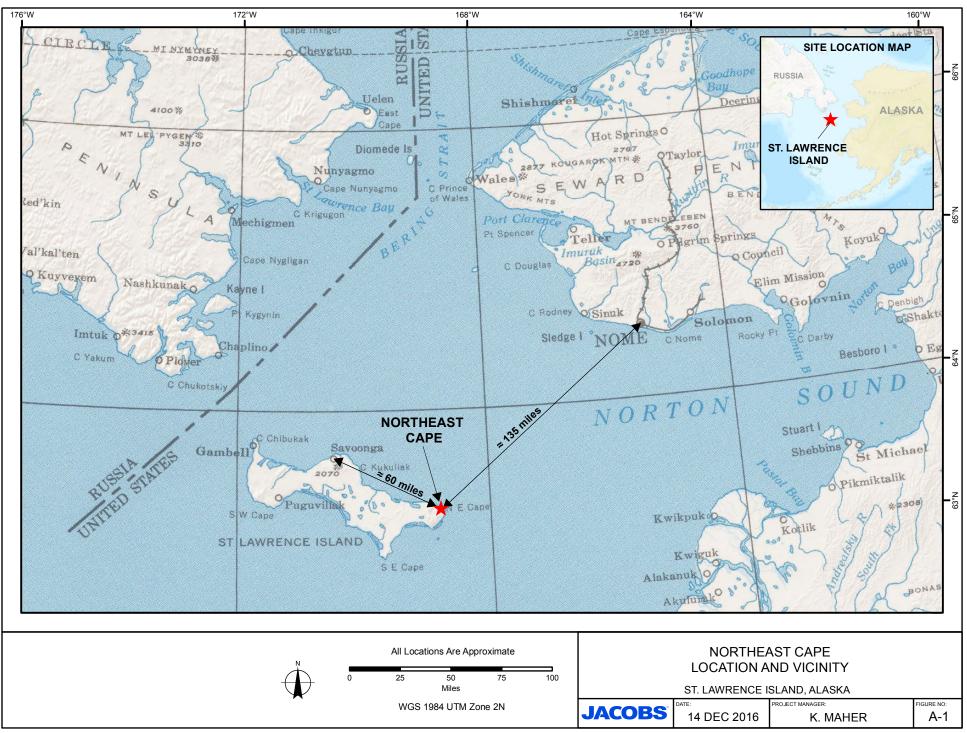
The following conclusions are separated into two groups: conclusions based on the evaluation of 2016 MOC groundwater sampling data and conclusions based on the comparison of 2016 data to the historical data set.

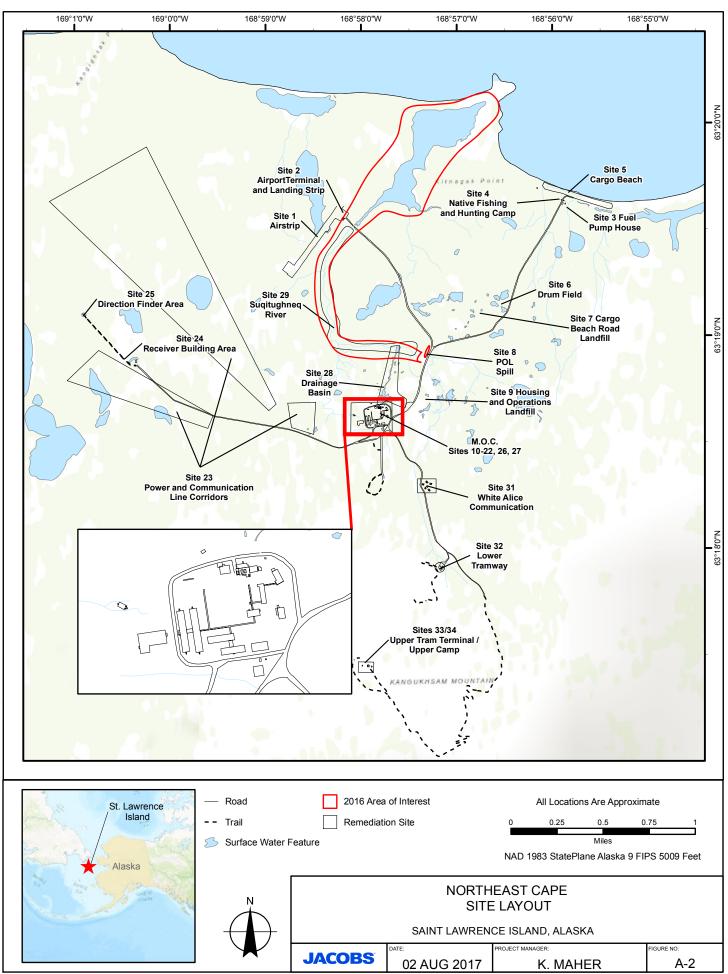
7.1 CONCLUSIONS FOR 2016 DATA EVALUATION

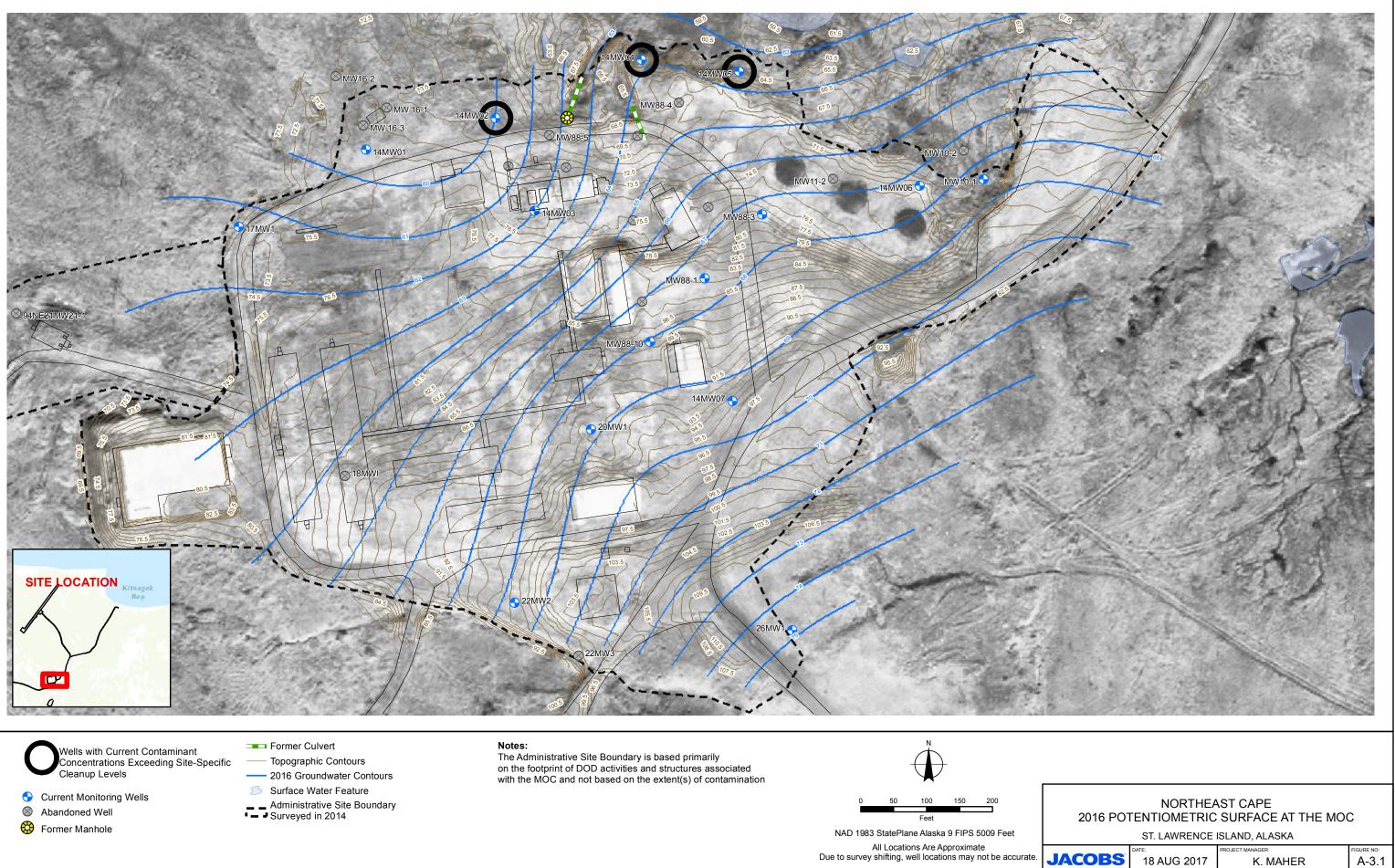
- The 2016 groundwater flow direction at the MOC is predominantly northwest. The 2016 MOC water table elevation resulted in some of the well screened intervals to be submerged at the time of sampling.
- The DRO plume is located along the northern margin of the MOC. Groundwater from wells located in the central portion of the MOC did not exceed the DRO SSCL.
- DRO and lead exceeded groundwater SSCLs in 2016. DRO in samples collected from wells 14MW02, 14MW04, and 14MW05 exceeded the DRO SSCL of 1.5 mg/L at 1.6, 2.2, and 3.2 mg/L, respectively. The lead results for both filtered and unfiltered samples collected from well 14MW04 exceeded the lead SSCL of 0.015 mg/L at 0.0582 and 0.0349 mg/L, respectively.
- Comparisons of 2016 MOC groundwater results for analytes without a SSCL to 2016 ADEC evaluation criteria identified that naphthalene was present above the ADEC evaluation criteria in samples collected from wells 14MW01 and 14MW02.
- In general, dissolved metals concentrations obtained from field-filtered samples were less than the metals concentrations reported in corresponding unfiltered samples.
- Groundwater geochemical parameters measured in 2016 at the 15 currently installed and serviceable MOC monitoring wells indicated that natural attenuation of petroleum is occurring. Anaerobic processes are dominant for in-plume wells and aerobic processes are dominant at the margins of the plume.

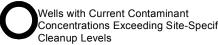
7.2 CONCLUSIONS FOR COMPARISON OF 2016 DATA WITH HISTORICAL DATA

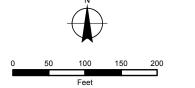
- DRO levels at in-plume MOC monitoring wells is predicted to reach the SSCL by 2023 with attenuation complete by 2047. The cleanup dates are based on a small data set comprised of 2014, 2015, and 2016 results. Additional monitoring data are needed to provide higher confidence in the predicted cleanup dates.
- Groundwater elevation in 2016 was higher than the elevations observed in the previous two monitoring events at the MOC.

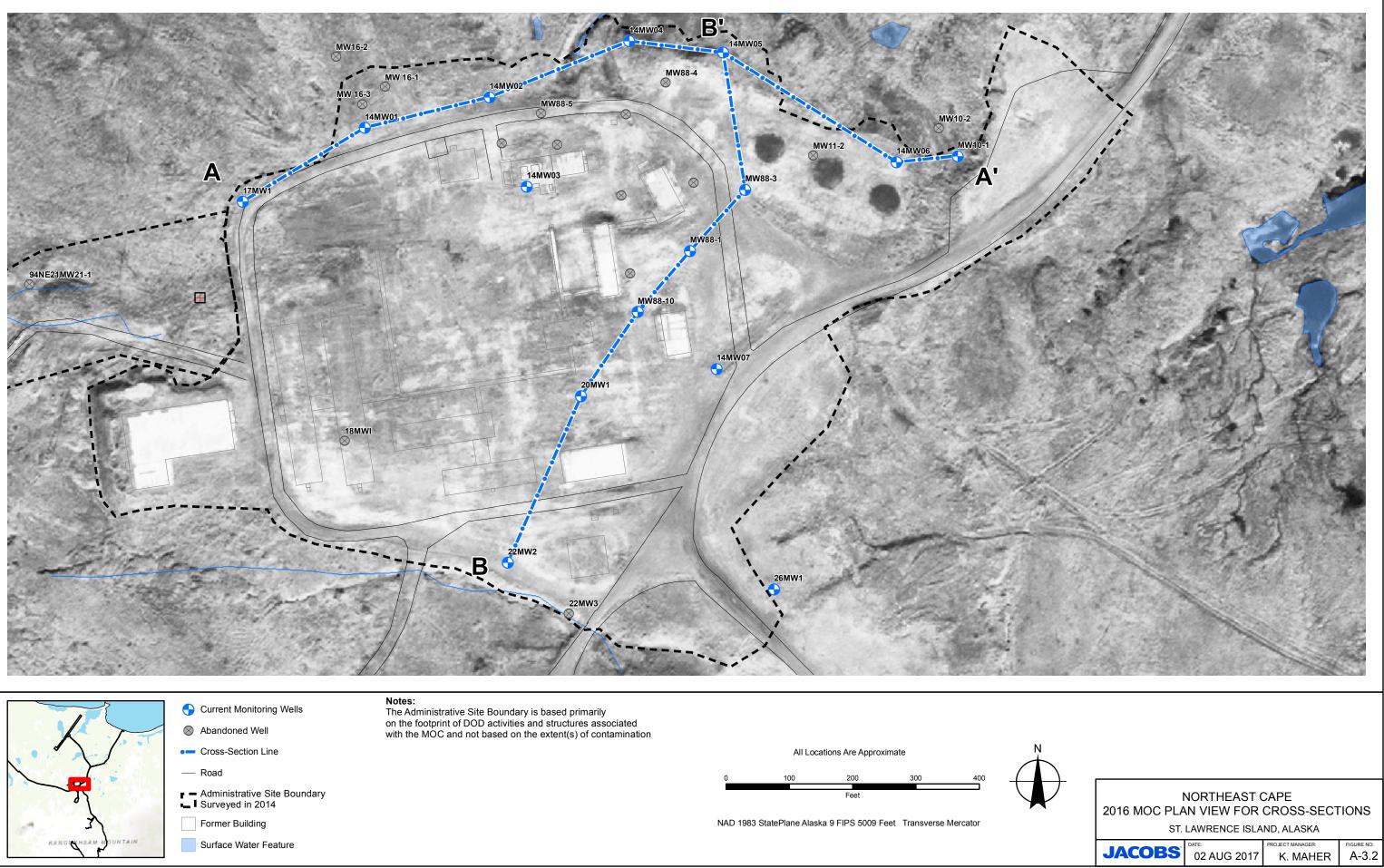

(intentionally blank)

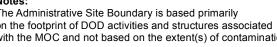

8.0 **REFERENCES**

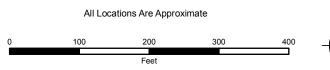

- ADEC (Alaska Department of Environmental Conservation). 2009 (March). *Environmental Laboratory Data and Quality Assurance Requirements; Technical Memorandum*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2016a (March). *Field Sampling Guidance*. Division of Spill Prevention and Response Contaminated Sites Program.
- ADEC. 2016b (November). Oil and Other Hazardous Pollution Control Regulations. Discharge Reporting, Cleanup, and Disposal of Oil and Other Hazardous Substances. 18 AAC 75.
- DoD (U.S. Department of Defense). 2013 (July). *Quality Systems Manual for Environmental Laboratories*. DoD Environmental Quality Workgroup, Department of the Navy, Lead Service. Version 5.0, Final.
- EPA (U.S. Environmental Protection Agency). 2014 (August). Recommended Approach for Evaluating Completion of Groundwater Restoration Remedial Actions at a Groundwater Monitoring Well. OSWER 9283.1-44.
- Patton, W. and B. Csejtey. 1980. Geologic map of St. Lawrence Island, Alaska: U.S. Geological Survey Miscellaneous Investigation Series. Map I-1203. 1 sheet, scale 1:250,000. RAB (Restoration Advisory Board). 2012a (5 December). St. Lawrence Island Restoration Advisory Board and Public Meeting, Meeting Minutes. City Hall, Savoonga, Alaska. F10AK096904_08.10_0019_p.
- USACE (U.S. Army Corps of Engineers). 2002 (October). Site Characterization Technical memorandum 2002 Phase III Remedial Investigation Sites 13, 15, 19, 27 and 22, Northeast Cape, St. Lawrence Island, Alaska. Prepared by Montgomery Watson Harza. F10AK096903_03.10_0006_a.
- USACE (U.S. Army Corps of Engineers). 2003 (March). *Phase III Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.* Final. Prepared by Montgomery Watson Harza. F10AK096903_03.10_0007_a.
- USACE. 2005 (June). *Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.* Prepared by Shannon & Wilson, Inc. F10AK096903_03.10_0020_a_200-1e.
- USACE. 2007 (March). *Feasibility Study, Northeast Cape FUDS, St. Lawrence Island, Alaska.* Prepared by Jacobs Engineering Group Inc. F10AK096904_04.09_0500_a and F10AK096905_0500_a.

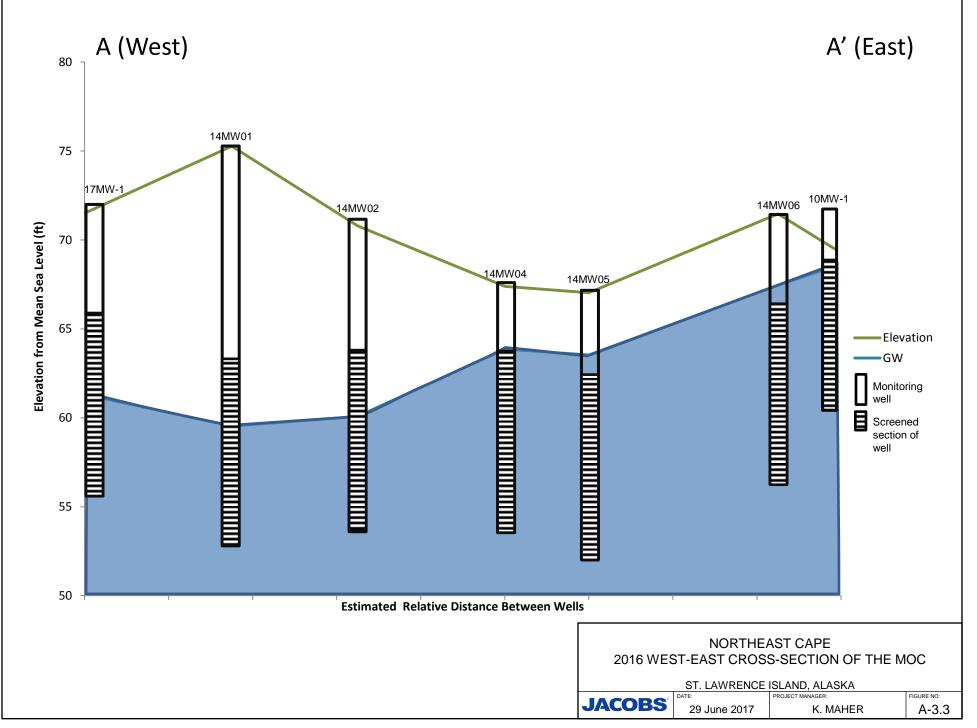

- USACE. 2009 (30 September). Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009. F10AK09603_05.09_0500_a_200-1e.
- USACE. 2011a (July). *Northeast Cape HTRW Remedial Actions*, Northeast Cape, St. Lawrence Island, Alaska. F10AK09603_07.08_0502_a_200-1e.
- USACE. 2011b (October). Manual for Electronic Deliverables, Requirements for Submittals of Documents, Laboratory, Data, and Other Items. Prepared by USACE-Alaska District.
- USACE. 2012 (June). Northeast Cape HTRW Remedial Actions, Final Removal Action Report, Northeast Cape, St. Lawrence Island, Alaska. F10AK09603_07.08_0503_a_200-1e.
- USACE. 2013 (May). Northeast Cape HTRW Remedial Action Report, Revision 1 Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. F10AK09603_07.08_0505_a_200-1e.
- USACE. 2014a (January). Northeast Cape HTRW Remedial Actions, Northeast Cape, St. Lawrence Island, Alaska, Remedial Action Report. Prepared by Bristol Environmental Remediation Services, LLC. F10AK096903_xx.xx_xxxx_x.
- USACE. 2014b (30 November). *Safety and Health Requirements Manual*. EM 385-1-1. Note: This Manual supersedes EM 385-1-1, dated 15 September 2008. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_385-1-1.pdf.
- USACE. 2015a (February). *First Five-Year Review Report, Northeast Cape FUDS*. Final. St. Lawrence Island, Alaska. Prepared by Jacobs Engineering Group Inc. F10AK096903_07.11_0507_p.
- USACE. 2015b (April). 2014 Northeast Cape HTRW Remedial Actions Report, Revision 1. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services. LLC. F10AK096903_xx.xx_yyyy_a and F10AK096905_xx.xx_yyyy_p.
- USACE. 2016a (April). 2015 Annual Groundwater Sampling Report. Prepared by Bristol Environmental Remediation Services. LLC. F10AK0969-03_07.08_0508_p.
- USACE. 2016b (August). 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan. Prepared by Jacobs Engineering Group Inc. F10AK0969-03_07.04_0513_a.
- USACE. 2017 (April). 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report, Northeast Cape St. Lawrence Island, Alaska. Draft. Prepared by Jacobs Engineering Group Inc. F10AK096903_07.11_0510_a.

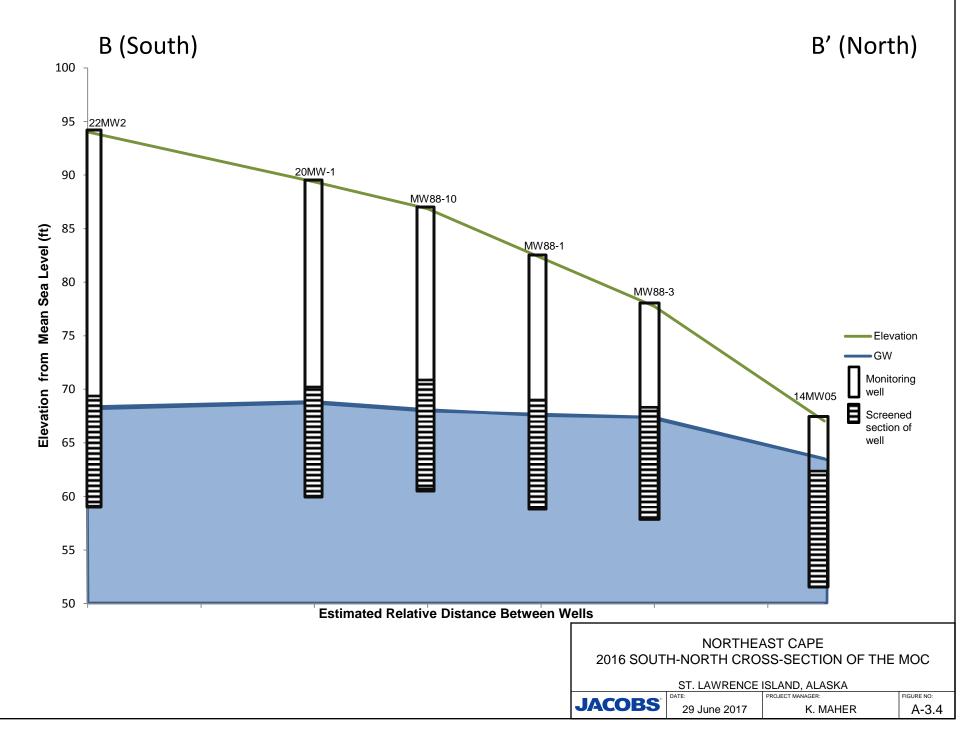

APPENDIX A Figures

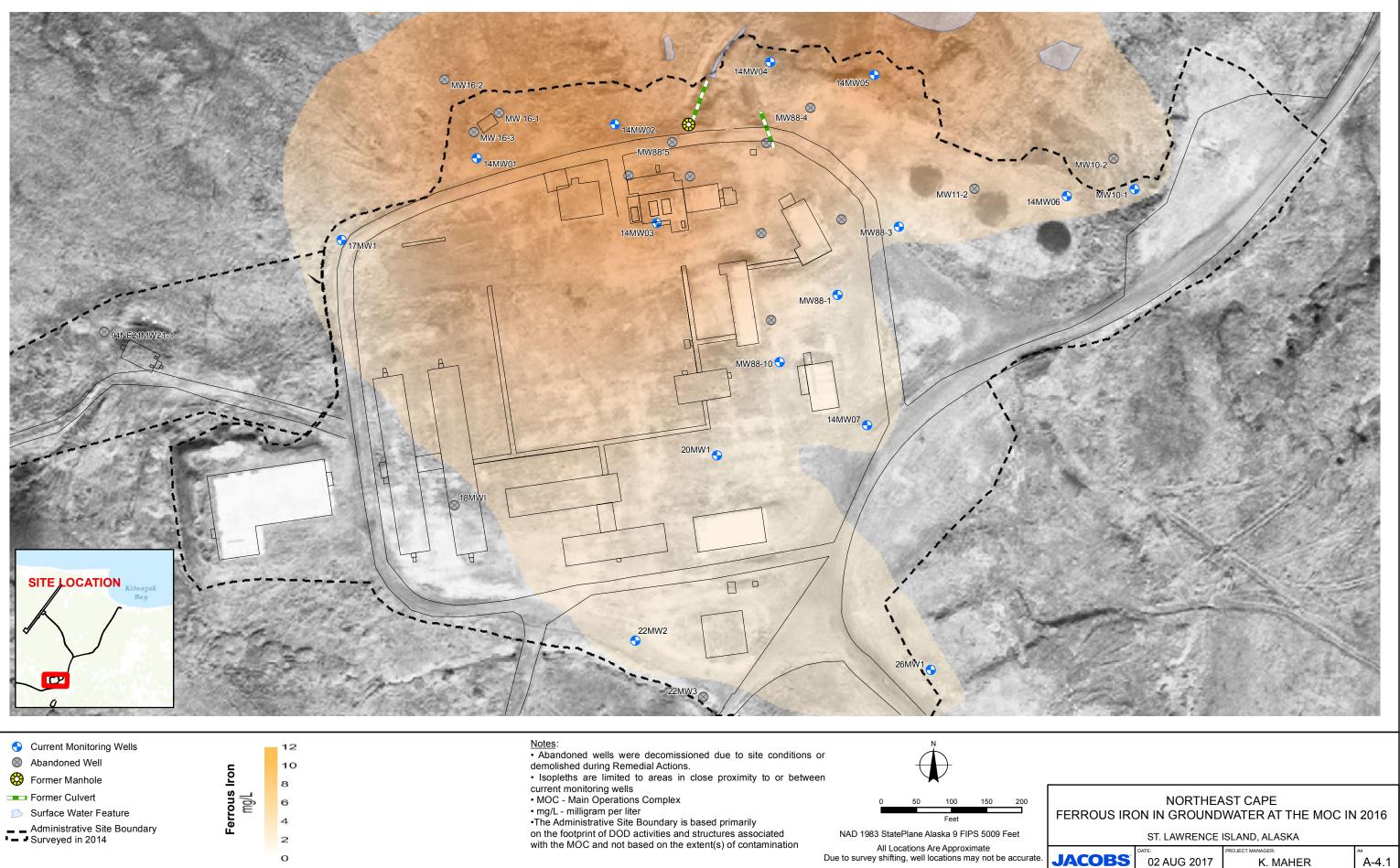






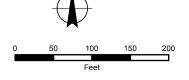








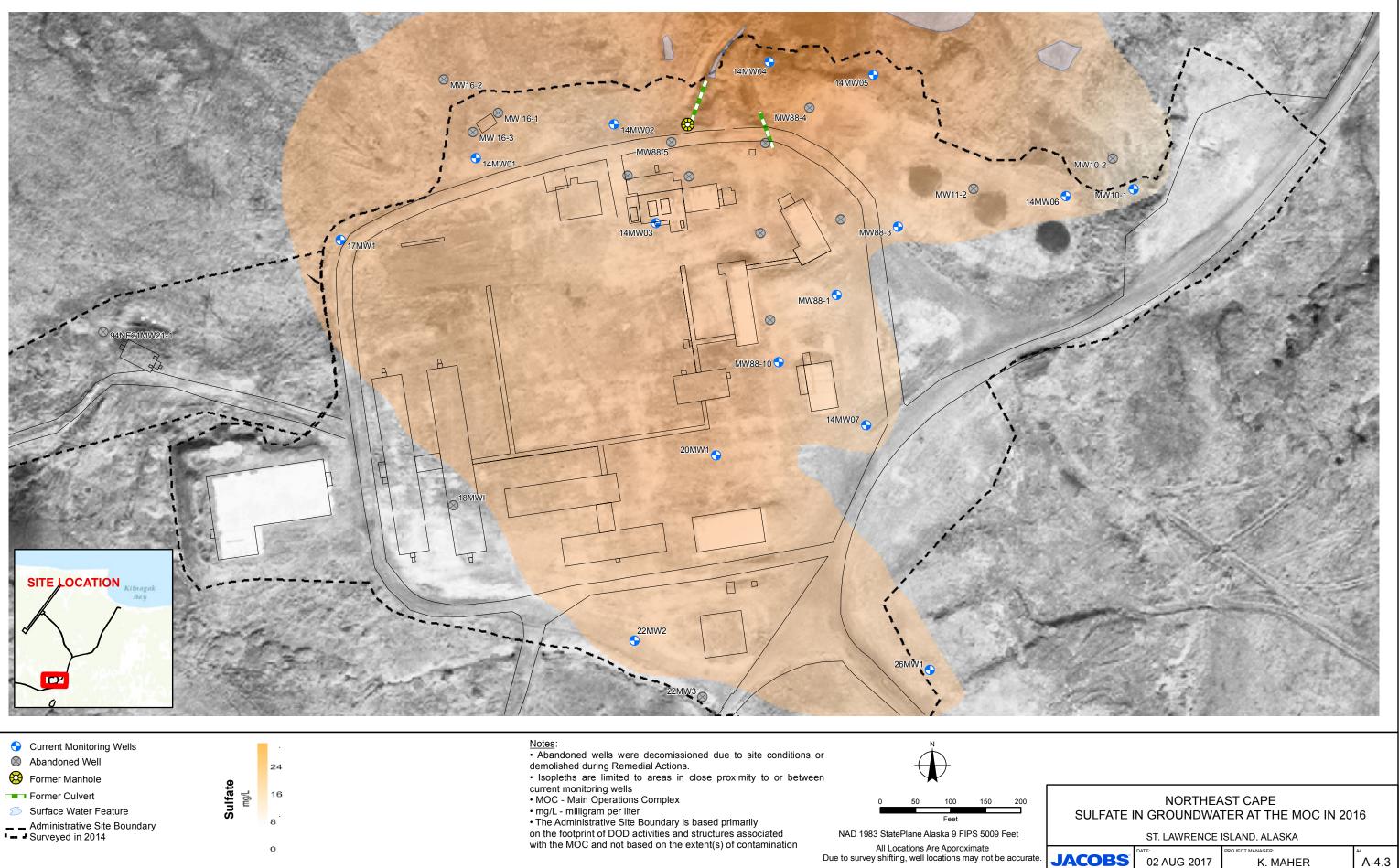




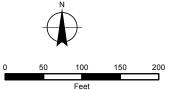
Notes: • Abandoned wells were decomissioned due to site conditions or demolished during Remedial Actions.Isopleths are limited to areas in close proximity to or between

current monitoring wells • MOC - Main Operations Complex

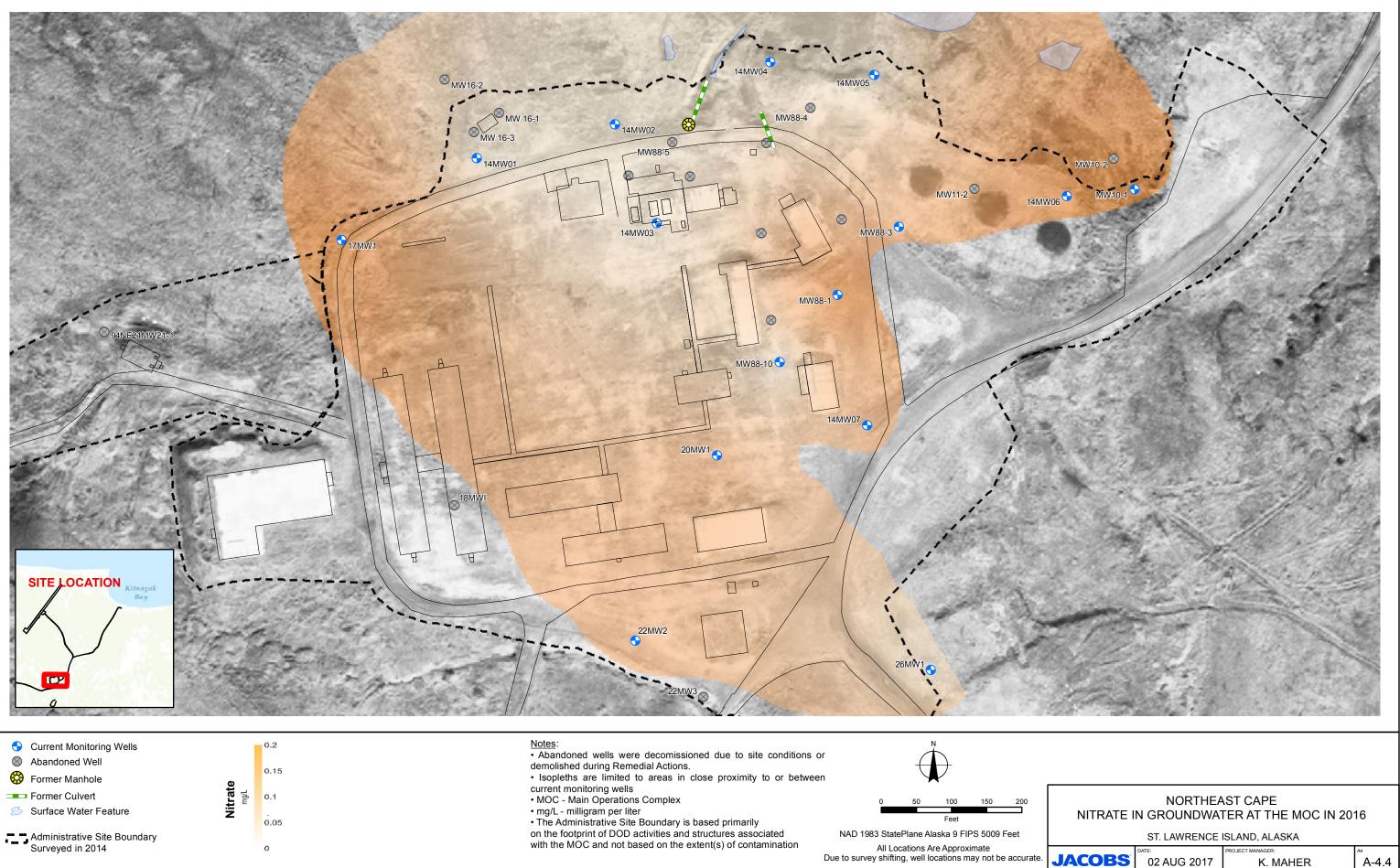
mg/L - milligram per liter
The Administrative Site Boundary is based primarily on the footprint of DOD activities and structures associated with the MOC and not based on the extent(s) of contamination

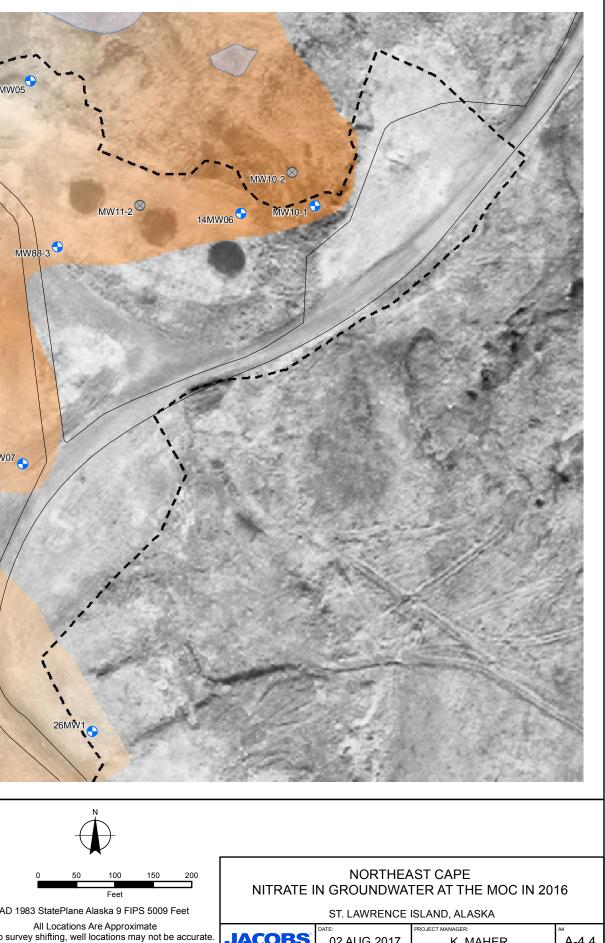


NAD 1983 StatePlane Alaska 9 FIPS 5009 Feet All Locations Are Approximate Due to survey shifting, well locations may not be accurate.


NORTHEAST CAPE MANGANESE IN GROUNDWATER AT THE MOC IN 2016

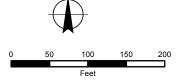
ST. LAWRENCE ISLAND, ALASKA

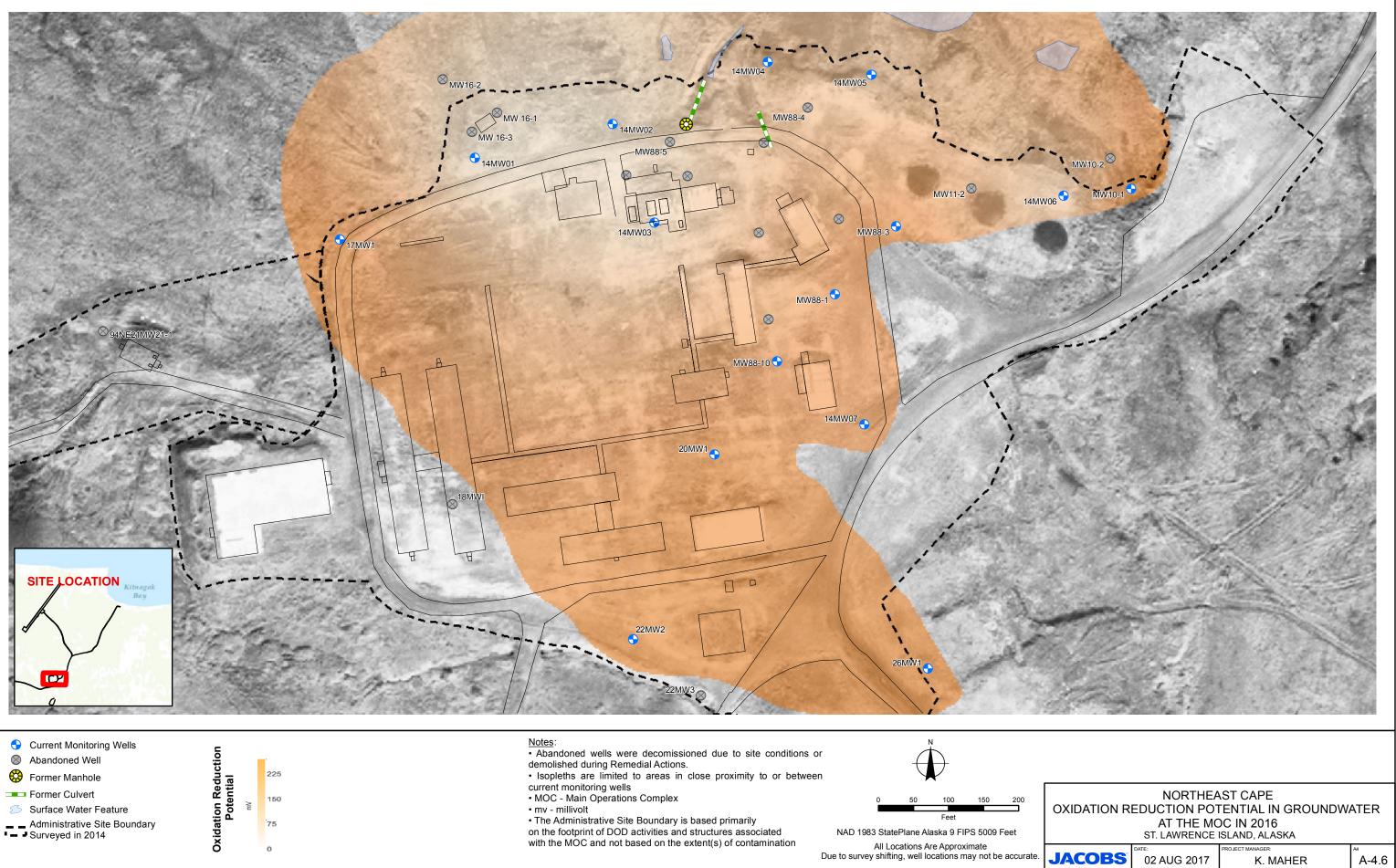

	DATE:	PROJECT MANAGER:	A4
JACOBS	02 AUG 2017	K. MAHER	A-4.2

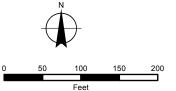


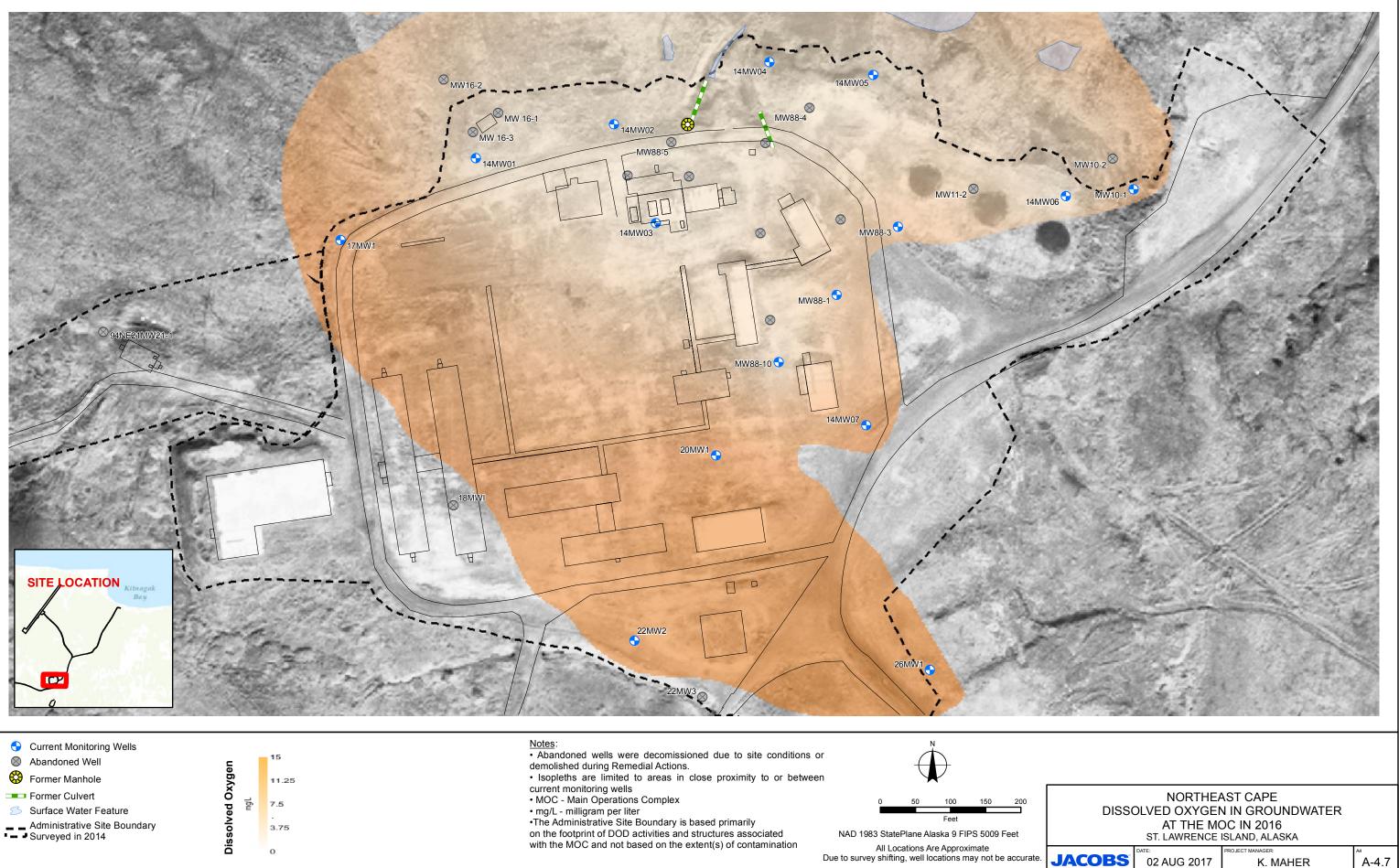


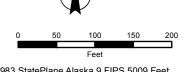
Due to survey shifting, well locations may not be accurate.

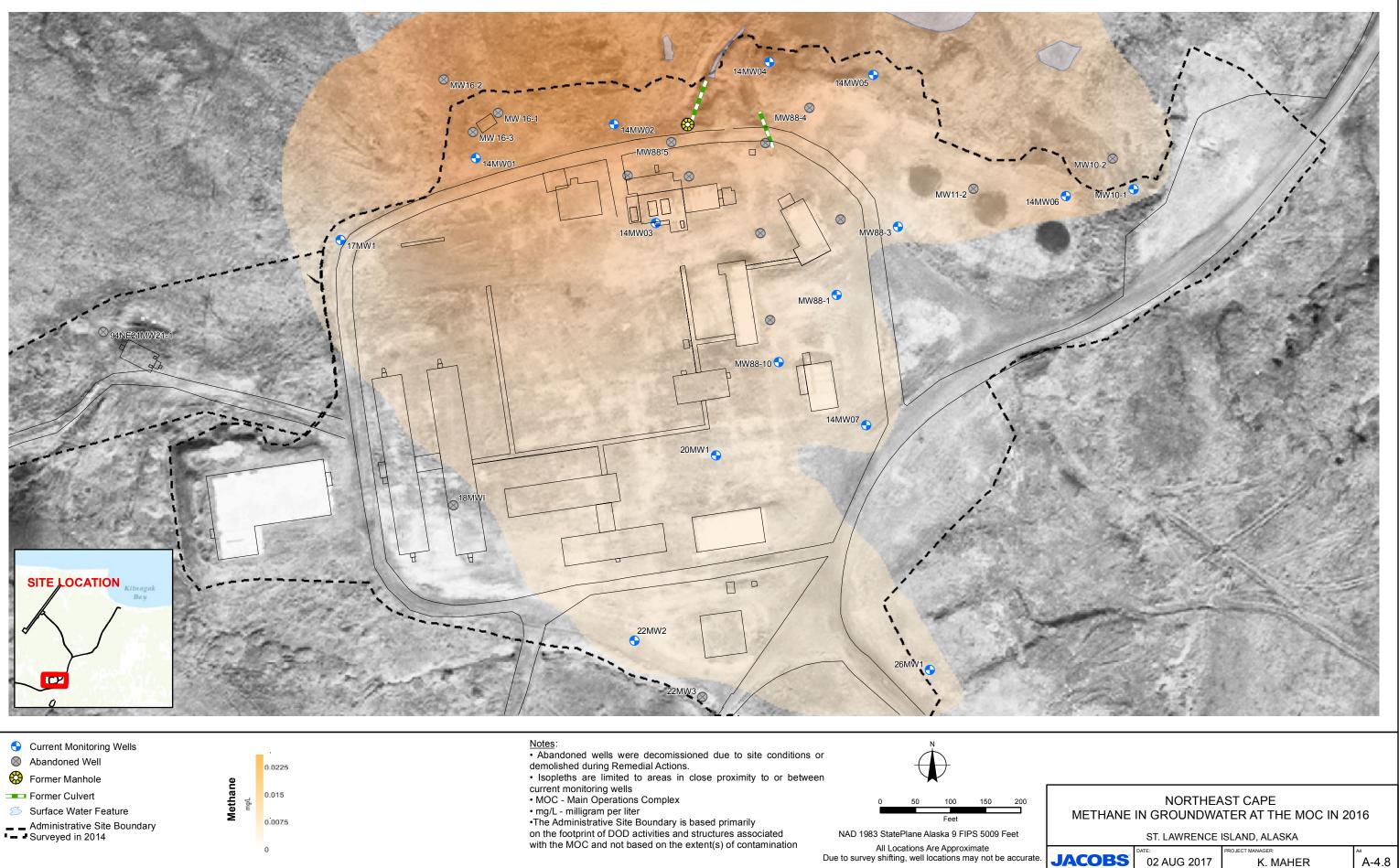


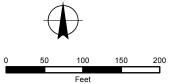


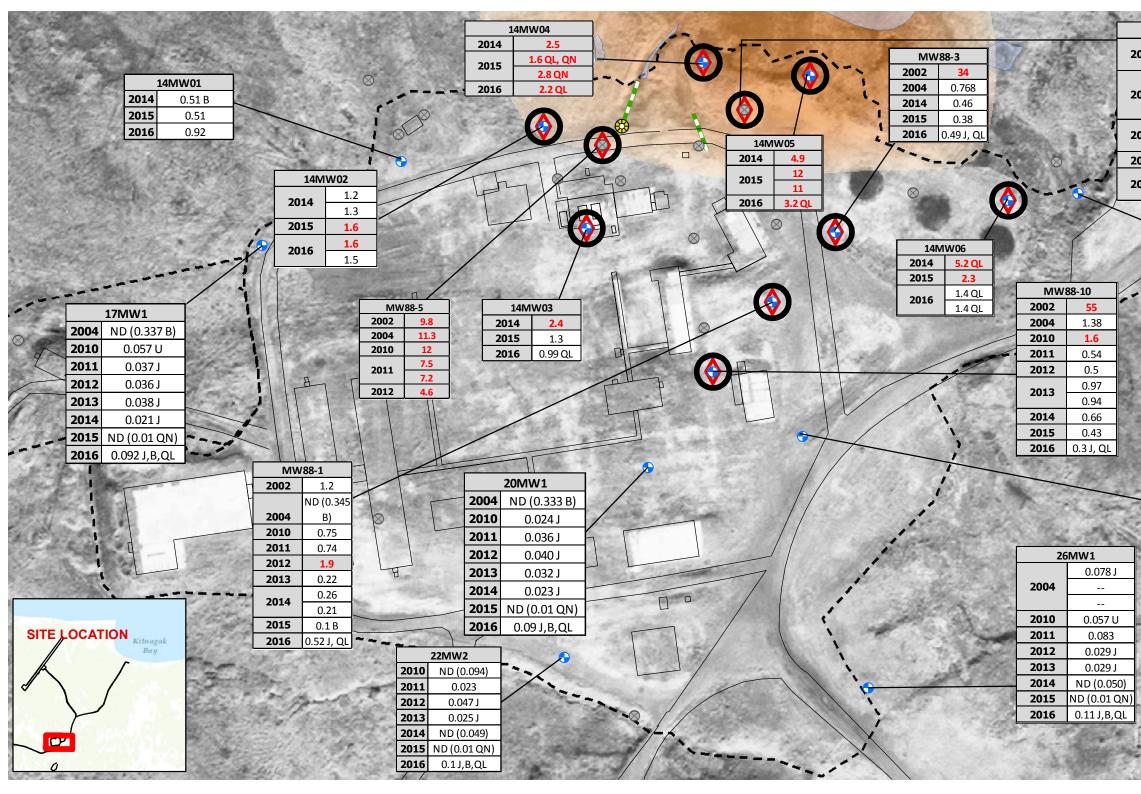


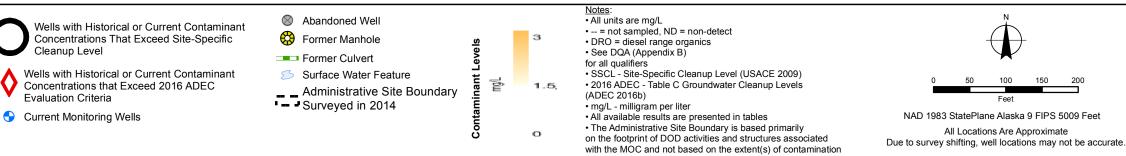












Due to survey shifting, well locations may not be accurate.

a Martin	- Painty-	126.0	
MW	88-4	St. St.	
2002	72	A second	
2002	56	1-5-4	
	3.82 J		
2004	3.49	2.4.1	
	3.89	1-2	1 1 5
	3.2	1	
2010	3.3		
2011	2.3		
	2	1	COR SER
2012		11	
	1.8	100	× 10000
-		184	
	1!	M	W10-1
100	Th		VV 10-1
/	1	2004	ND (0.333 B)
1:	Provide State	2010	0.68

2011

2012

2013

2014

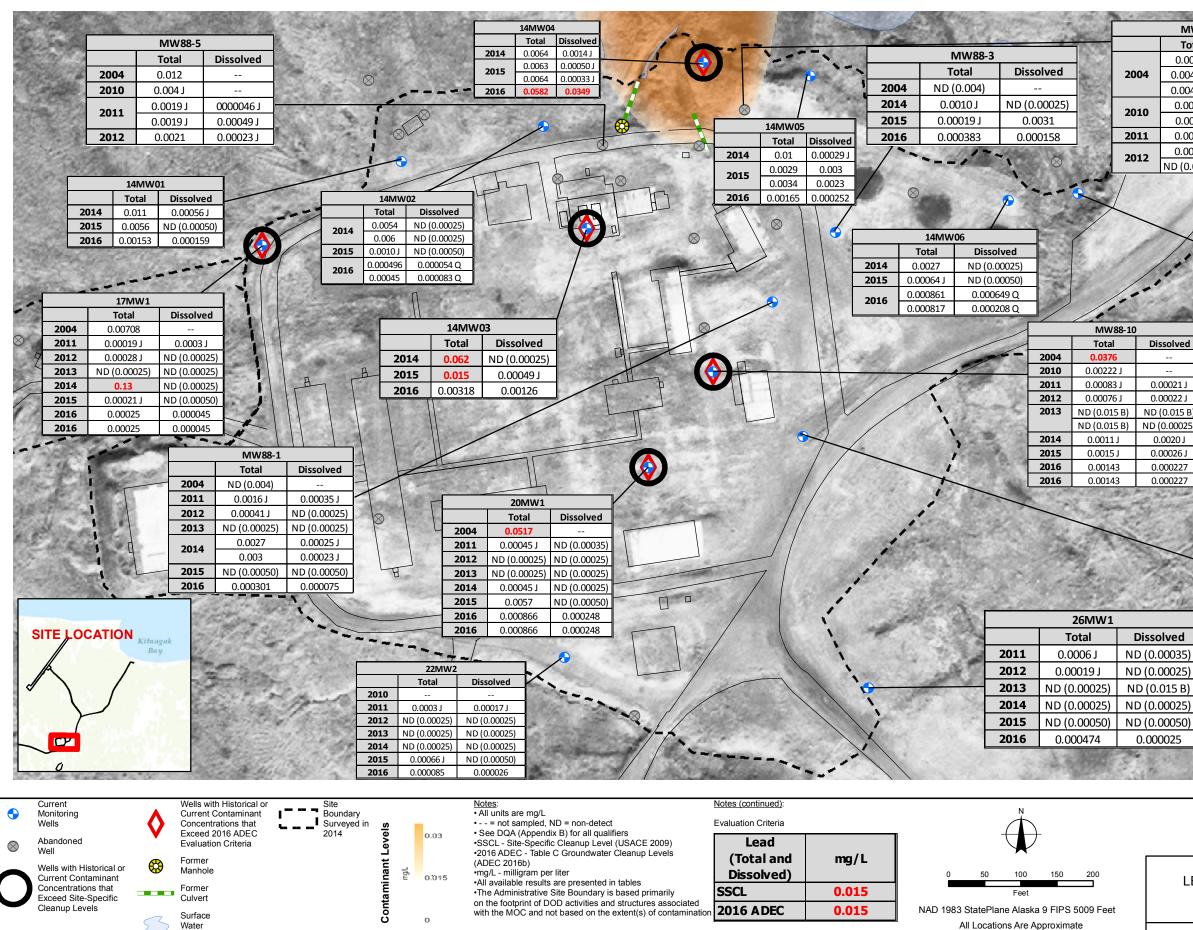
2015

2016

0.46

0.64

0.4


0.8

0.39

0.49 J, QL

上町四日	157	8. F
	14	MW07
1	2014	0.15 B
2	2015	ND (0.01 QN)
15	2016	0 12 I B OI

Notes (continued):	DRO	mg/L						
	SSCL	1.5						
Evaluation Criteria	2016 A DEC	1.5						
	NORTHEAST CAPE							
DRO RE	SULTS IN GROU	NDWATER AT	THE MO	C I				
	FROM 2002 TH	ROUGH 2016						
ST. LAWRENCE ISLAND, ALASKA								
		ROJECT MANAGER:		FIGURE NO:				
JACOBS	24 AUG 2017	K. MAHER	२	A-5.1				

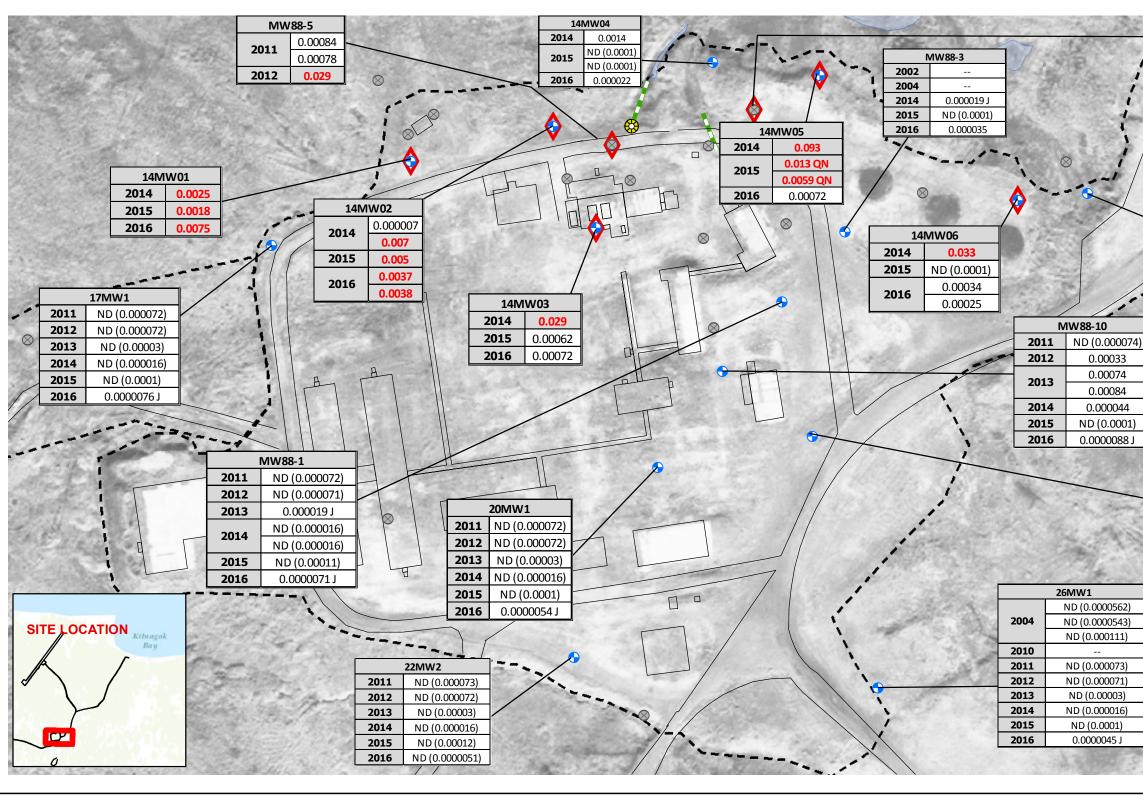
Due to survey shifting, well locations may not be accurate.

Feature

1		A STATE AND A				
	MW88-4					
	Total	Dissolved				
	0.00502					
4	0.00409 B					
	0.00423 B					
D	0.0025 J					
J	0.00266					
1	0.0013 J	0.00032 J				
2	0.0019 J	ND (0.00025)				
2	ND (0.00025)	0.0019 J				

</th <th></th> <th colspan="4">MW10-1</th>		MW10-1			
1	1	Dissolved			
11	2004	0.00457			
1.	2011	0.00086 J	0.00038 J		
1 AR	2012	ND (0.00025)	ND (0.00025)		
44 12	2013	ND (0.015 B)	ND (0.015 B)		
S. S. Salar	2014	0.0011 J	ND (0.00025)		
	2015	0.004	0.00028 J		
Dissolved	2016	0.000558	0.000042		
	COLUMN AND	CONTRACTOR	State of the		

	100
	100
0.00021 J	10
0.00022 J	1
ND (0.015 B)	
ND (0.00025)	đ
0.0020 J	1
0.00026 J	Į,
0.000227	
0.000227	-

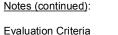

	E. C. C. C. S. C.	1 the the second		
	-	14MW07		
C.P. Andrew	1. Car	Total	Dissolved	
1 por the section of the	2014	ND (0.00025)	0.0015 J	
Same and the second	2015	0.00069 J	0.00069 J	
ssolved	2016	0.000338	0.000052	
(0.00035)	The William	and the second		
(0.00025)		COLUMN AND AND	A STALL AND AND	

NORTHEAST CAPE
I EAD DESLIETS IN COOLINDWATED AT THE MOO

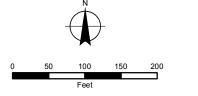
LEAD RESULTS IN GROUNDWATER AT THE MOC FROM 2004 THROUGH 2016

ST. LAWRENCE ISLAND, ALASKA	

	DATE:	PROJECT MANAGER:	FIGURE NO:
JACOBS	24 AUG 2017	K. MAHER	A-5.2

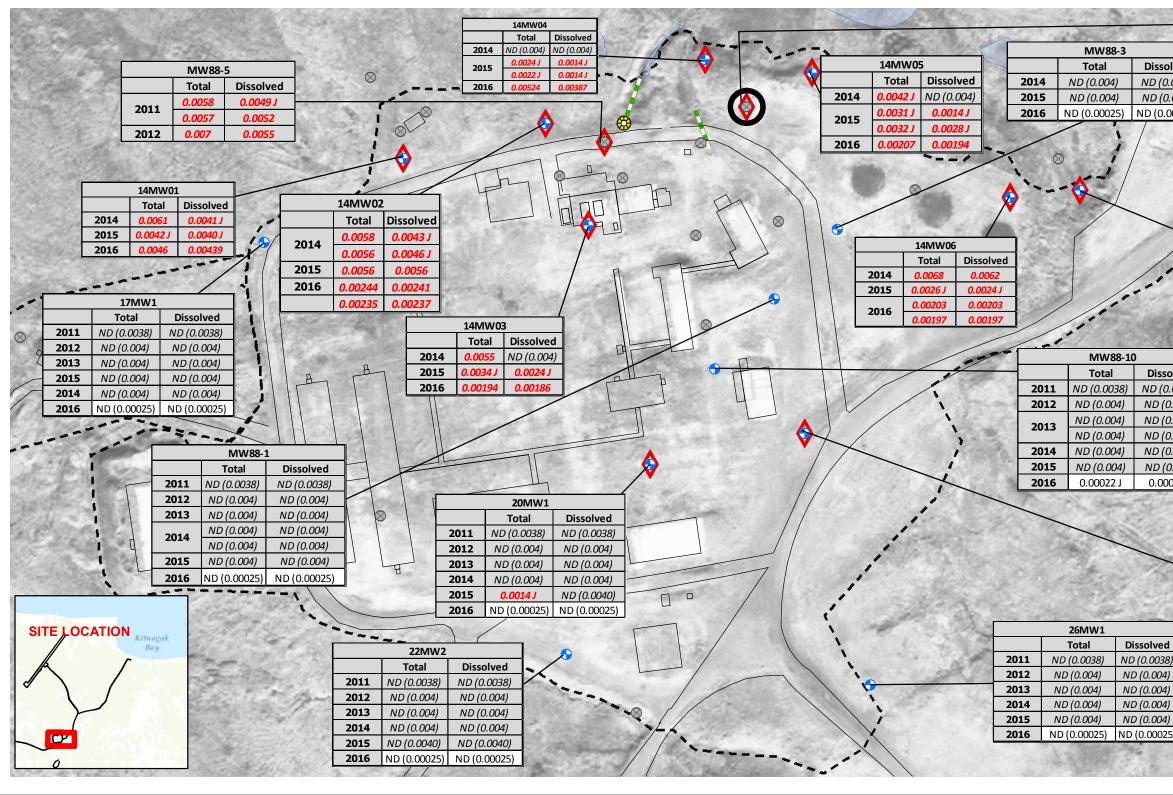


- Current Monitoring Wells
- Abandoned Well


Wells with Historical or Current Contaminant Concentrations that Exceed 2016 ADEC Evaluation Criteria

- Former Manhole
- Former Culvert
- Surface Water Feature
- Site Boundaries Surveyed in 2014

- Notes:
- All units are mg/L
- - = not sampled, ND = non-detect
- See DQA (Appendix B) for all qualifiers
 SSCL Site-Specific Cleanup Level (USACE 2009)
- 2016 ADEC Table C Groundwater Cleanup Levels
- (ADEC 2016b)
- mg/L milligram per liter
- All available results are presented in tables
- •The Administrative Site Boundary is based primarily
- on the footprint of DOD activities and structures associated
- with the MOC and not based on the extent(s) of contamination



Naphthalene	mg/L
2016 ADEC	0.0017

NAD 1983 StatePlane Alaska 9 FIPS 5009 Feet All Locations Are Approximate Due to survey shifting, well locations may not be accurate.

The second		M	W88-4
- VA	Carl Carl	2011	0.075
1 2 2	a the		0.089 D
1		2012	0.085 D
1.			Ers Mr
	1/1	122.55	1000
	1	1. 200	1. 1. 1.
	1:	the set	and the second
	1:	the second	1.1.1
1		72313	Silver Day
1	1 15 10	Contra la	
1	MW10-1	100	and the second
20:		0071)	All the second
20:	· ·		
20:		a second s	
20:		and the second se	
20:	· ·		
20:	16 0.0000	046	Section and
2.3	S. A. A.	Erster.	CARE)
100	the sta	State 2	Sec. 1
	12 CB	200 6	2 1
5.1.	S. Carro	1 AM	2011
C. C. C.	and and		51
S. P.F.	Mark!		1. A. S. C. P
	STATES C.	江 岩	Th
1927	12/17		Sel 1
-	18 379	1 - 1 all	
5-11		2014	4MW07 0.000011 J
16	State Sal	2014	ND (0.00011)
L'éfet	States	2016	0.0000061 J
A Same	Che and	1 stig	17 19
K ME	Strange -	En C	es alla
and the	2.2.5	2020	THE PARTY IS
No. Ch	A. CA	25-3	2 4 300
1200	a ser a	Call State	
1. 1.	1.5.2	and and a second	201240
2652			
15.30		200	
125	Trans.		and the
	and the		
		THEAST C	
HALENF			AFE JNDWATER
	FROM 200		
	ST. LAWRE	NCE ISLAND	
	25 AUG 20	PROJECT M	ANAGER: K. MAHFR
		117 1	

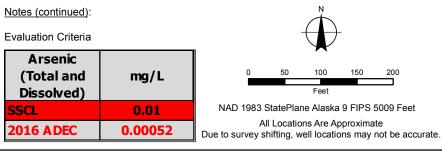
Wells with Historical or Current Contaminant Concentrations That Exceed Site-Specific Cleanup Level

- Wells with Historical or Current Contaminant Concentrations that Exceed 2016 ADEC Evaluation Criteria
- Current Monitoring Wells
- Abandoned Well

- Former Manhole
- Former Culvert
- Surface Water Feature
- Site Boundaries Surveyed in
 Site Boundaries Surveyed in
 Site Surveyed in

greater than SSCL and/or 2016 ADEC

- SSCL Site-Specific Cleanup Level (USACE 2009)
 2016 ADEC Table C Groundwater Cleanup Levels
- 2016 ADEC Table C Groundwater Cleanu (ADEC 2016b)


Italicized only text indicates ND result with LOD

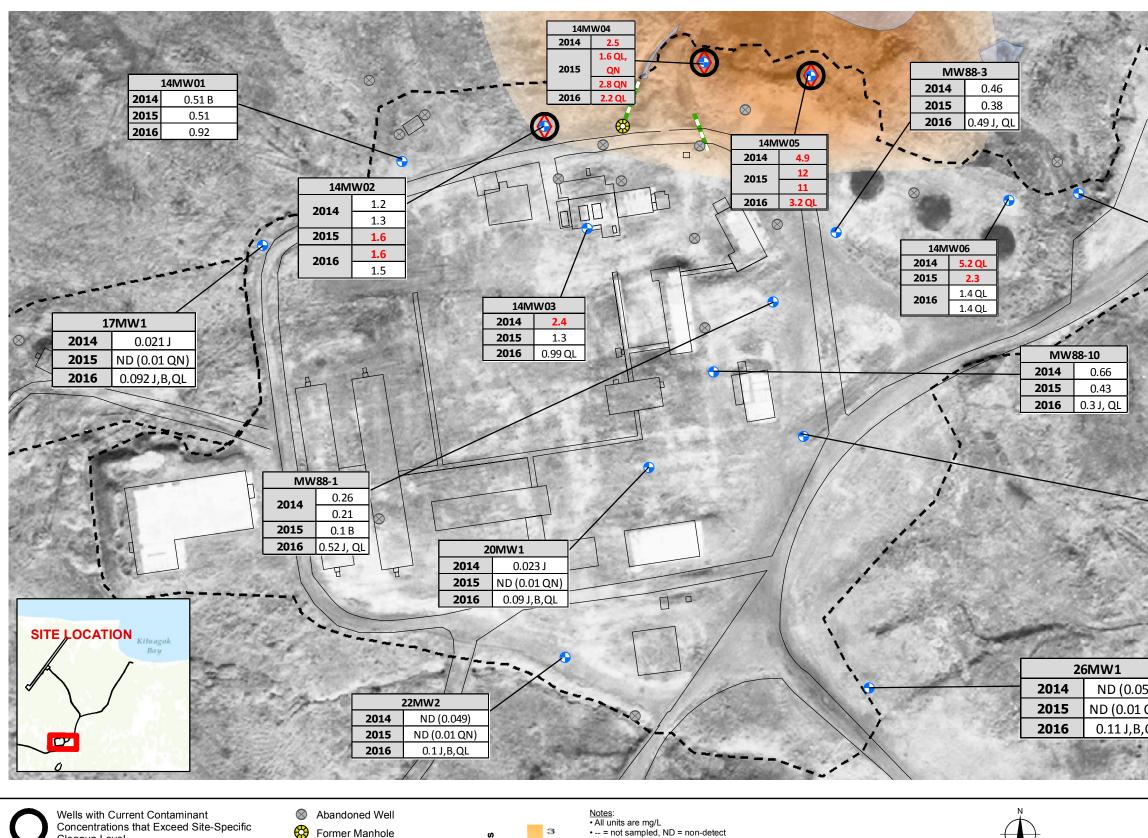
• mg/L - milligram per lite

Evaluation Criteria

Notes: • All units are mg/L

- All available results are presented in tables
- •The Administrative Site Boundary is based primarily on the footprint of DOD activities and structures associated
- with the MOC and not based on the extent(s) of contamination

Yor State	10.00	C. River		
and the second	2	MW88-4		
	Total Dissolved			
Dissolved	2011	0.01	0.011	
ND (0.004)	2012	0.011	0.0038 J	
ND (0.004)	2012	0.011	0.011	
ID (0.00025)			1.23	
	1000	~/	Contraction in	


	- P 1	/ *	1 States	
27	MW10-1			
-		Total	Dissolved	
1	2011	ND (0.0038)	ND (0.0038)	
/	2012	ND (0.004)	ND (0.004)	
/.	2013	ND (0.004)	ND (0.004)	
1	2014	ND (0.004)	ND (0.004)	
1724	2015	0.0014 J	ND (0.0040)	
Sec.	2016	ND (0.00025)	ND (0.00025)	

Dissolved
ND (0.0038)
ND (0.004)
0.00023 J

	14MW07				
	Total Dissolved				
2014	2014 0.0092 ND (0.004)				
2015	ND (0.0040)	ND (0.0040)			
2016	ND (0.00025)	ND (0.00025)			

NORTHEAST CAPE ARSENIC RESULTS IN GROUNDWATER AT THE MOC FROM 2011 THROUGH 2016 ST. LAWRENCE ISLAND, ALASKA

	DATE:	PROJECT MANAGER:	FIGURE NO:				
JACOBS	25 AUG 2017	K. MAHER	A-5.4				

Concentrations that Exceed Site-Sp Cleanup Level

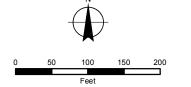
Wells with Current Contaminant Concentrations that Exceed 2016 ADEC Evaluation Criteria

Current Monitoring Wells

- Former Culvert
- Surface Water Feature

Administrative Site Boundary
 Surveyed in 2014

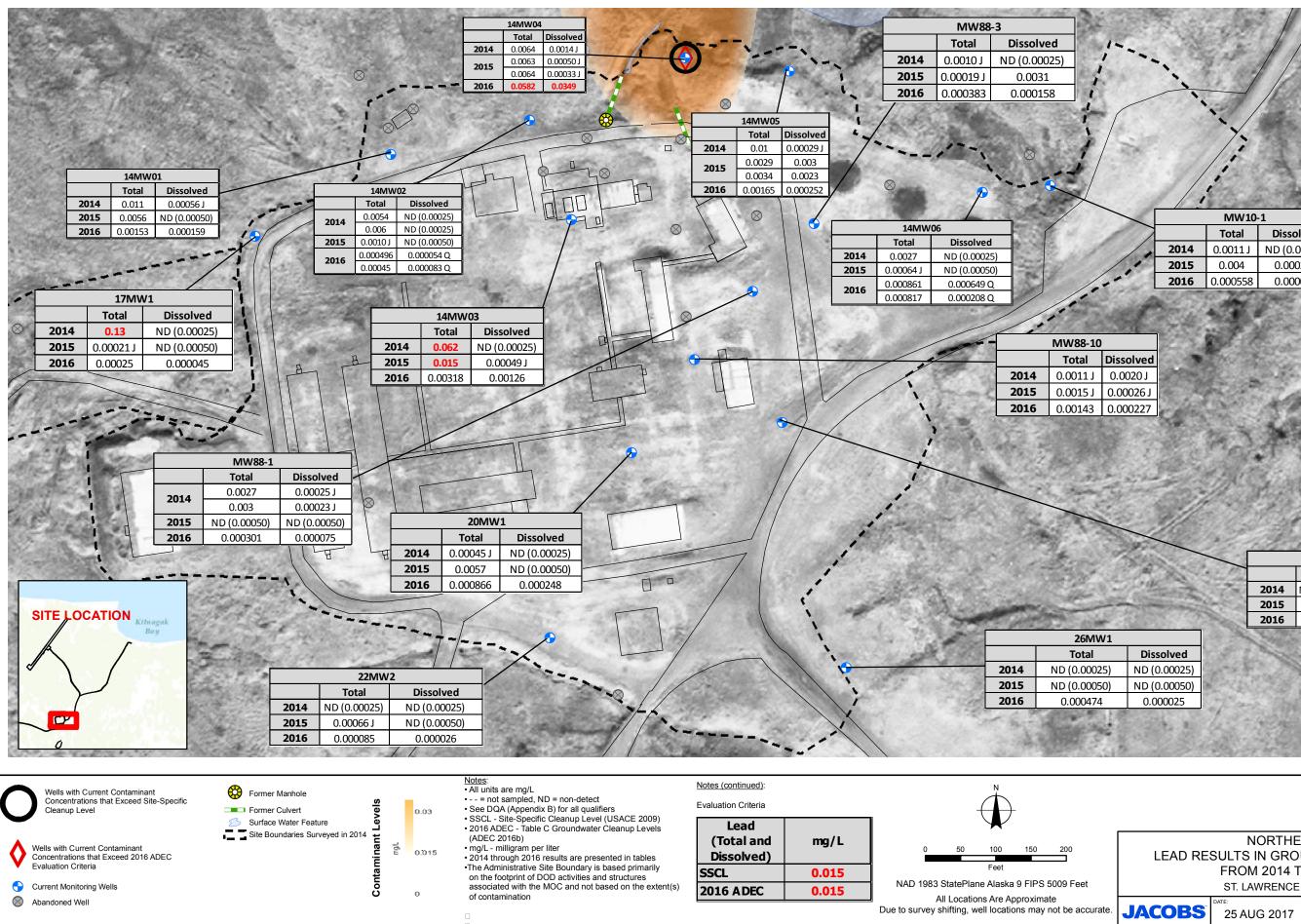
ninant

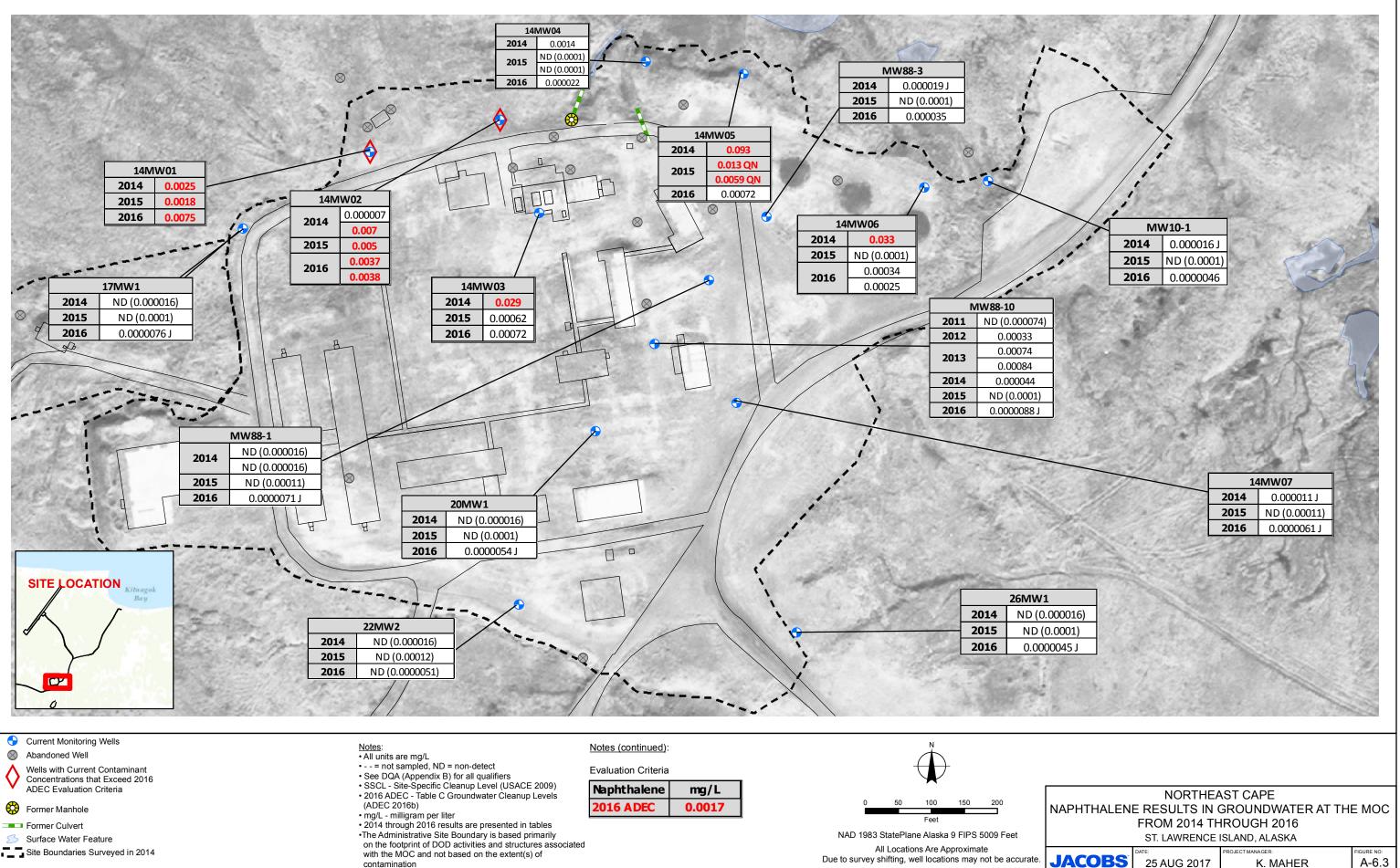

ŏ

Ъ

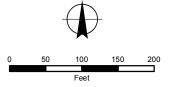
 Notes:

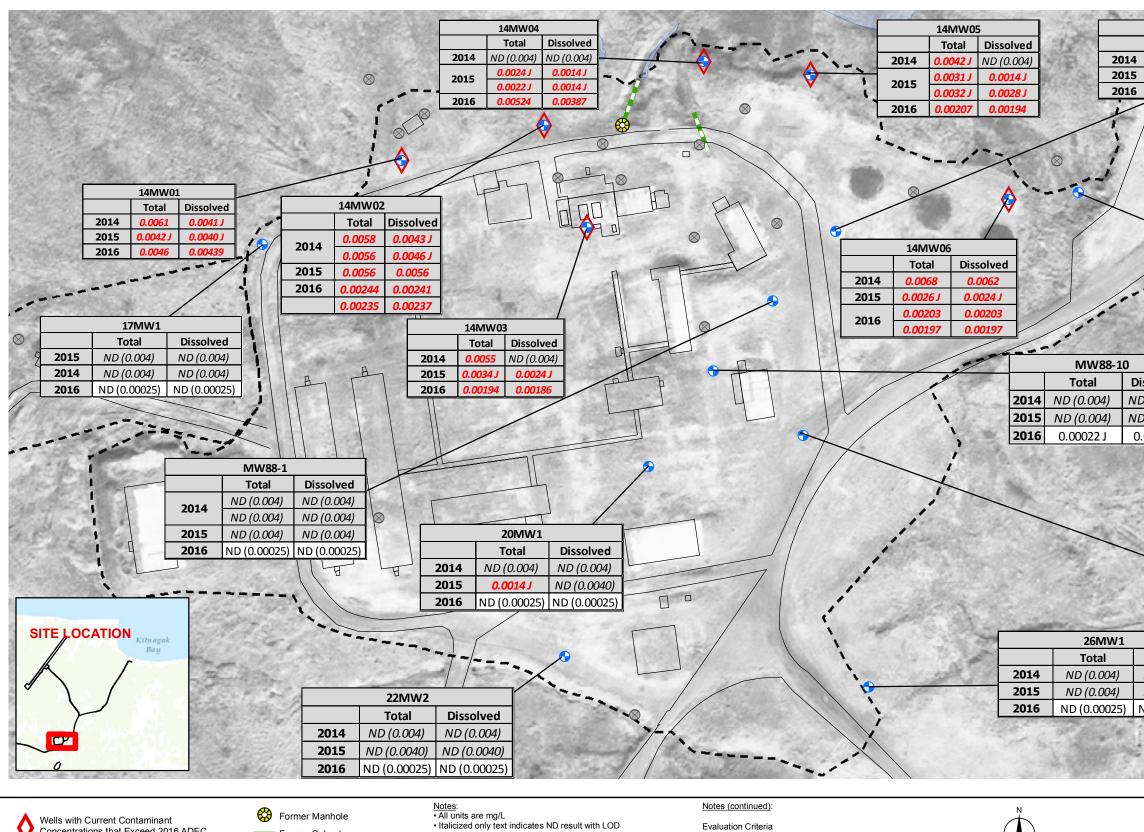
 All units are mg/L
 - = not sampled, ND = non-detect
 DRO = diesel range organics
 See DQA (Appendix B) for all qualifiers
 SSCL - Site-Specific Cleanup Level (USACE 2009)

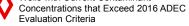

 1.5. • SOLG ADEC - Table C Groundwater Cleanup Levels (ADEC 2016b)
 mg/L - milligram per liter
 2014 through 2016 results are presented in tables
 The Administrative Site Boundary is based primarily on the footprint of DOD activities and structures associated with the MOC and not based on the extent(s) of contamination


NAD 1983 StatePlane Alaska 9 FIPS 5009 Feet All Locations Are Approximate Due to survey shifting, well locations may not be accurate.

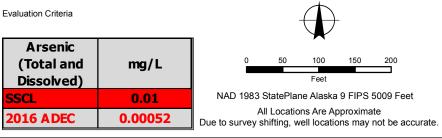
and the second second				the state
and the states		and 1	AL.	- Ale
			25.00	
and the second second		eru er	N. H. H.	
A DECEMBER OF	1 1	and the second		The state
1		E.		E Later
(51.10	BAR TO	LAC.
· · · · · · · · · · · · · · · · · · ·		1.1		2.20
		2007	- TARK	and the second
1.	S.F.	A HE		and an
1:	and the	Barry	and the	
1:0	at the second	ALC .	635.2	and the second
MW:	10-1	2 gr	Contraction of the	12
2014	0.8	A CONT	Set jud	A-P
2014	0.39	The second	age -	\geq
	0.49 J, QL	1 2 m		1
2010		ter and		1
and the second	10 - Ar	RING B		CAN.
The The second	all the second	No.	4.2	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Constr.		Mar	
The second second	and the second	100	130	
	and the state	Sec. 1	A Long	he
A PARTY AND	CALL CONT	- of	123	
and a second	203-4	500	A.	
a with the Art of	1.4	12.682	PX 2	1
S. S. S. S. S. S. S.			6 2	A.S.
C. P. C. S. D. P. P.		al.	100	
and a start of the	Sec. Ash	57.24		a production
1 Alter			FINE	1
Star Maria	20220 20	14MW0 014 0	0.15 B	Re- al
and the second			0.01 QN)	32.3
the second the second			2 J,B,QL	
C. A. S. M.	and the second	137 21	Star All	See the
- And the state	Carl Male	No.	CO.	ALC: NO
To and the second	1 1 2 2	50	122	the faith
Barren and	A Martin	a p	Contraction of the second	R. S.
and and the second		15 18 19	the has	12.
50)	A MARCE	24/3	Ser Martin	- 36-
	No. Contraction	See.	Bate Me	N. Sugar
50) QN) ,QL	又高地	The second	83.93	1
<u>,ul</u>	201312	Sal Ar	1985	E ANT
Real States	Section of			and the
D. 205125	y be the	Carl L	2199	and the second second


Notes (continued): DRO SSCL		mg/L 1.5		
Evaluation Criteria	2016 A DEC	1.5		
NORTHEAST CAPE DRO RESULTS IN GROUNDWATER AT THE MOC FROM 2014 THROUGH 2016 ST. LAWRENCE ISLAND, ALASKA				
JACOBS DATE	25 AUG 2017	K. MAHE	ર	FIGURE NO: A-6.1




MW10-1 Total Dissolved 2014 0.0011 J ND (0.00025) 2015 0.004 0.00028 J 2016 0.000558 0.000042	5
issolved 0.0020 J 0.0026 J 0.00227	
14MW07 Total Dissolved 2014 ND (0.00025) 0.0015 J 2015 0.00069 J 0.00069 J 2016 0.000338 0.000053	10 M
2016 0.000338 0.000052 Dissolved ND (0.00025) ND (0.000025) ND (0.00025) 0.000025	and the second second
NORTHEAST CAPE LEAD RESULTS IN GROUNDWATER AT THE MOD	c
FROM 2014 THROUGH 2016 ST. LAWRENCE ISLAND, ALASKA	FIGURE NO:

Evaluation Criteria			
Naphthalene	mg/L		
2016 ADEC	0.0017		



- Current Monitoring Wells
- Abandoned Well

- Surface Water Feature Site Boundaries Surveyed in
 2014
- evaluation criteria • -- = not sampled, ND = non-detect
- See DQA (Appendix B) for all qualifiers • SSCL - Site-Specific Cleanup Level (USACE 2009)

greater than SSCL and/or 2016 ADEC

- · 2016 ADEC Table C Groundwater Cleanup Levels
- (ADEC 2016b)
- mg/L milligram per lite
- 2014 through 2016 results are presented in tables •The Administrative Site Boundary is based primarily on the footprint of DOD activities and structures associated
- with the MOC and not based on the extent(s) of contamination

MW	88-3		Rotes	/		188		C. C. C.
Total		Disso	olved	/			1	
ND (0.00		ND (0		/ /	2.70	Sec. Ch	2.43	
ND (0.00		ND (0			AM ST	(Barriel	2.17	1
ND (0.000	025)	ND (0.0			68			0.022
		100	/					98.9R.
/			. /		53			
2-100			Y	1	A STATE	2200		
and the second		/	1			130	LLP?	Series.
		1.	之下的	- Par				5.50
	/	i		S.S.A.	PAG	2.20	20.44	and the second
. 1	/	196			1224	NO.		6.252
\searrow	1		М	W10-1			1.43	- Als
1.			То	otal	Disso	olved	1	
1.	20	014	ND (0).004)	ND (0).004)	Y	5 1
1	20	015	0.00)14 J	ND (0	.0040)		1
P.M.	20	016		00025)		00025)		2
1000	Par 1	120	1		「雪田市」「	15.34		P. P.A.
	28	Par.		Bac		al .	43	T
1000000	23	1.89	$f_{\rm eff}$	Selection of	2.00	12.19	Mar	1
a a b va d				S.C.F.	3.4		1	
solved	129				100	1	and and	46
(0.004)		1975		2 A	100	6.1	1233	3.9 8
(0.004)	Aller	and the second		56	PESS		A.C.	
00023 J		- Arro		365	12.10	6.826	150	21.20
12.73		1.107	10 M	400	and the second		5 J	
6.24		2683		Real	BR.F.	18	12	1922
a sa pine	E.M.	1	XL .	1230	1.17	26	1.02	
	32	1	32,60	1 Aller	1	G in	FIL	The second
1911	1	CT .	CP 1	63.4		der p	1	and the second
S. It	G.	She ?		THE.	299	2 k		123.34
1			Sec. B.	12.11		251	CERC	
Par an	3.44	-		1	MW07			875 F. M.
- selle	1	6			otal	Disso		
ed Comin	1.2		2014	0.0	092	ND (C	.004)	1 - 15- 13
Contraction of the		1	2015	ND (C	.0040)	ND (0.	0040)	and the
Dissolved	12	2	2016	ND (0	.00025)	ND (0.	00025)	100
ND (0.004)	a.t	200	8		3420	1712	and the	122
ND (0.004)	100	List	240		and and	a portion		1. 24
ID (0.00025		1863	200			27.5		- Total
Sterio	<u></u>	15-7	San ?		1.20	and in the		A.
Sec.		21.	2-4			1000		
	300		Re-		Ser la		-	and the second
DR	12	2.00	198	AP	12.	224	1.2	Trans The
			NOF	RTHEA	ST CA	PE		
ARSE	ENIC		JLTS I	N GRC	DUNDW	/ATER		E MOC
		FR	OM 20	014 TH	IROUG	H 2016	6	

FROM 2014 THROUGH 2016 ST. LAWRENCE ISLAND, ALASKA

GURE NO **JACOBS** 25 AUG 2017 K. MAHER A-6.4 APPENDIX B Data Quality Assessment

2016 MONITORED NATURAL ATTENUATION GROUNDWATER ANNUAL SAMPLING REPORT AT THE MAIN OPERATIONS COMPLEX AT NORTHEAST CAPE

APPENDIX B: DATA QUALITY ASSESSMENT

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-03

FINAL AUGUST 2017

<u>SEC</u>	TIO	N	PAC	GE
ACF	RONY	MS ANI	O ABBREVIATIONSB	-iii
1.0	INT	RODUCT	ГІОЛВ-1	1-1
	1.1	QUALI	TY CONTROL CRITERIAB-1	1-3
	1.2	DATA	QUALITY SUMMARYB-1	1-4
		1.2.1	Sample Handling/PreservationB-1	1-5
		1.2.2	Holding Time ExceedanceB-1	1-5
		1.2.3	Method Blank and Trip Blank ContaminationB-1	1-6
		1.2.4	Matrix Spike AccuracyB-1	1-6
		1.2.5	Surrogate Spike AccuracyB-1	1-7
		1.2.6	Continuing Calibration AccuracyB-1	1-7
		1.2.7	Field Duplicate PrecisionB-1	1-8
		1.2.8	Reporting Limit AssessmentB-1	1-8
		1.2.9	Confirmation Column PrecisionB-1	1-9
		1.2.10	Equipment BlanksB-1	1-9
	1.3	CONCL	USIONB-1-	-10
2.0	REF	ERENCE	ESB-2	2-1

TABLE OF CONTENTS

TABLE

Table B-1	Field Quality Control S	ample Quantities	B-1-2
-----------	-------------------------	------------------	-------

ATTACHMENTS

- Attachment B-1 Sample Summary Table and Analytical Data Tables
- Attachment B-2 Qualified Sample Results Tables
- Attachment B-3 ADEC Laboratory Data Review Checklists
- Attachment B-4 Laboratory Deliverables

(intentionally blank)

ACRONYMS AND ABBREVIATIONS

ADECAlaska Department of Environmental ConservationALSALS EnvironmentalBTEXbenzene, toluene, ethylbenzene, and xylenesCCVcontinuing calibration verificationDLdetection limitDoDU.S. Department of DefenseDQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychorinated biphenylQAPPquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup levelTBtest blank	°C	degrees Celsius
BTEXbenzene, toluene, ethylbenzene, and xylenesCCVcontinuing calibration verificationDLdetection limitDoDU.S. Department of DefenseDQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	ADEC	Alaska Department of Environmental Conservation
CCVcontinuing calibration verificationDLdetection limitDoDU.S. Department of DefenseDQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDnondetectNDnondetectNDpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	ALS	ALS Environmental
DLdetection limitDoDU.S. Department of DefenseDQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	BTEX	benzene, toluene, ethylbenzene, and xylenes
DoDU.S. Department of DefenseDQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	CCV	continuing calibration verification
DQAdata quality assessmentDQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	DL	detection limit
DQOdata quality objectiveDROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	DoD	U.S. Department of Defense
DROdiesel-range organicsEPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDnondetectNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	DQA	data quality assessment
EPAU.S. Environmental Protection AgencyFDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMDnondetectNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality ssurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	DQO	data quality objective
FDfield duplicateGROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMDnondetectNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality ssurance project planQCquality Systems ManualRPDrelative percent differenceRROsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	DRO	diesel-range organics
GROgasoline-range organicsJacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMDnondetectNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	EPA	U.S. Environmental Protection Agency
JacobsJacobs Engineering Group Inc.LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDnondetectNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	FD	field duplicate
LCLlower control limitLCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	GRO	gasoline-range organics
LCSlaboratory control sampleLCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	Jacobs	Jacobs Engineering Group Inc.
LCSDlaboratory control sample duplicateLODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	LCL	lower control limit
LODlimit of detectionLOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	LCS	laboratory control sample
LOQlimit of quantitationMBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	LCSD	laboratory control sample duplicate
MBmethod blankmg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	LOD	limit of detection
mg/Lmilligrams per literMSmatrix spikeMSDmatrix spike duplicateMDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	LOQ	limit of quantitation
MSmatrix spikeMSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	MB	method blank
MSDmatrix spike duplicateNDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	mg/L	milligrams per liter
NDnondetectNECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	MS	matrix spike
NECNortheast CapePAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	MSD	matrix spike duplicate
PAHpolycyclic aromatic hydrocarbonPCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	ND	nondetect
PCBpolychlorinated biphenylQAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	NEC	Northeast Cape
QAPPquality assurance project planQCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	PAH	polycyclic aromatic hydrocarbon
QCquality controlQSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	PCB	polychlorinated biphenyl
QSMQuality Systems ManualRPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	QAPP	quality assurance project plan
RPDrelative percent differenceRROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	QC	quality control
RROresidual-range organicsSDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	QSM	Quality Systems Manual
SDGsample data groupSIMselective ion monitoringSSCLsite-specific cleanup level	RPD	relative percent difference
SIMselective ion monitoringSSCLsite-specific cleanup level	RRO	residual-range organics
SSCL site-specific cleanup level	SDG	sample data group
1 1	SIM	selective ion monitoring
TB test blank	SSCL	site-specific cleanup level
	TB	test blank

ACRONYMS AND ABBREVIATIONS (Continued)

UCL	upper control limit

- VOC volatile organic compound
- USACE U.S. Army Corps of Engineers

1.0 INTRODUCTION

The following data quality assessment (DQA) and accompanying Alaska Department of Environmental Conservation (ADEC) Laboratory Data Review Checklists (Attachment B-3) assess the overall quality and usability of data from the 2016 groundwater monitoring activities at Northeast Cape (NEC) on St. Lawrence Island, Alaska.

The 2016 fieldwork at NEC was conducted in August 2016. ALS Environmental (ALS) of Kelso, Washington, provided analytical services for the test methods, sample types, and matrices summarized in Table B-1. ALS subcontracted analysis of RSK 175 to ALS of Simi Valley, California. The laboratories delivered the results in electronic formats.

The attachments to this DQA contain the following: sample summary and analytical data tables (Attachment B-1), tables of sample results that did not meet the project data quality objectives (DQOs) (Attachment B-2), ADEC Laboratory Data Review Checklists (Attachment B-3), and laboratory deliverables (Attachment B-4).

Method	Analyte	Primary	Duplicate	MS/MSD	Equipment Blank	Trip Blank
SW6020A/7470	Total Metals	15	2	1	-	-
SW6020A/7470	Dissolved Metals	15	2	1	1	-
SW8082A	РСВ	15	2	1	1	-
SW8260B	BTEX/VOC ¹	15	2	1	1	5
SW8270DSIM	РАН	15	2	1	1	-
AK101	GRO	15	2	1	1	5
AK102/103	DRO/RRO	15	2	1	1	-
2320B	Alkalinity, Total	15	2	1	-	-
EPA 300.0	Sulfate	15	2	1	-	-
RSK 175	Methane, Ethane, Ethene	15	2	1	-	5
SW8015C	Glycol	2	1	1	1	-

Table B-1 **Field Quality Control Sample Quantities**

<u>Notes:</u> ¹Full list VOC was analyzed and reported for two of the 15 primary samples and one of the two duplicate.

- = not-applicable

For definitions, refer to the Acronyms and Abbreviations section.

1.1 QUALITY CONTROL CRITERIA

Jacobs Engineering Group Inc. (Jacobs) performed this DQA and completed ADEC laboratory data review checklists for records associated with the analytical data, as per the 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan (U.S. Army Corps of Engineers [USACE] 2016). Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) quality systems manual (QSM), version 5.0 (DoD 2013); ADEC and U.S. Environmental Protection Agency (EPA) analytical methods (ADEC 2009, 2014; EPA 2014); and laboratory limits.

The Jacobs project chemist performed a completeness check of the electronic data to verify that data packages and electronic files included all of the requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation (LOQs), limits of detection (LODs), detection limits (DL), surrogate recoveries, laboratory control sample (LCS) and LCS duplicate (LCSD) recoveries, matrix spike (MS) and MS duplicate (MSD) recoveries, and precision. Other quality control (QC) parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative. These QC parameters met acceptance criteria; any sample results outside QC parameters are listed in Section 1.2 and in the associated ADEC laboratory data review checklist (Attachment B-3). Analytical DQOs were considered met when the quality of the sample data met precision, accuracy, representativeness, completeness, comparability, and sensitivity requirements. The overall quality of the data was acceptable as qualified. Flagged data are considered usable but estimated.

The following data qualifiers are applicable to the 2016 NEC analytical data:

- J Analyte result was considered an estimated value because the level was below the laboratory LOQ but above the DL.
- B Analyte result was considered a high estimated value due to contamination present in the method or trip blank.
- QH Analyte result was considered an estimated value (biased high) due to a QC failure.
- QL Analyte result was considered an estimated value (biased low) due to a QC failure.
- QN Analyte result was considered an estimated value (unknown bias) due to a QC failure.

Qualification was not required in the following circumstances:

- Surrogate or MS/MSD recoveries were outside QC limits, and the sample was diluted by a factor of 5 or greater.
- MS/MSD recoveries were outside QC limits, and the spiked concentration was less than that of the parent sample.
- An analyte was detected in the method blank, but there was no detection in the sample.
- MS or LCS recoveries exceeded UCLs, and there was no detection in the sample(s).

1.2 DATA QUALITY SUMMARY

In general, the overall quality of project data was acceptable. All analytical results were 100 percent complete (no results were rejected), and for all parameters the completeness goal of 95 percent was met. Complete details of the evaluation and associated samples are provided in the ADEC laboratory review checklists (Attachment B-3). The tables in Attachment B-2 include analytical results that did not meet project DQOs and required qualification.

The following anomalies were identified during the data review process as follows:

- Sample handling/preservation
- Holding time exceedance
- Method blank and trip blank contamination
- MS accuracy

- Surrogate spike accuracy
- Continuing calibration accuracy
- Field duplicate (FD) precision
- Reporting limit assessment
- Confirmation column precision
- Equipment blanks

The following sections 1.2.1 through 1.2.10 describe anomalies and their effects on data quality and usability.

1.2.1 Sample Handling/Preservation

A total of 13 coolers (chilled) were shipped to ALS over the course of the 2016 NEC groundwater sampling events. Sample temperatures of 4 ± 2 degrees Celsius (°C) were considered acceptable for the chilled coolers. Several coolers were received at the laboratory with a sample temperature below 2°C. The laboratory did not identify any frozen samples in any of the coolers received below the acceptable temperature range and no results were qualified.

Three samplers were utilized to collect groundwater samples. The daily sampling teams each consisted of two or three samplers. Because more than one field staff member was involved with the collection, packaging, and transporting of samples, multiple initials appear on the sample tracking form in the sampler column and on groundwater sampling forms.

1.2.2 Holding Time Exceedance

Groundwater samples were re-analyzed out of the method AK102 and AK103 specified hold time by 2 days. The laboratory needed to re-analyze due to an instrument malfunction on the first analysis. Sample results were qualified QL indicating a low bias. The samples and results are presented in Table B-2-1 (Attachment B-2). Data quality is minimally affected since results were either significantly greater than or less than the site-specific cleanup level (SSCL) with the exception of two samples, 16NEC-14MW06-WG and 16NEC-14MW06-WG-9, that

had detections for diesel-range organics (DRO) at 1.4 mg/L which is just less than the SSCL of 1.5 mg/L.

1.2.3 Method Blank and Trip Blank Contamination

All method blanks and trip blanks were evaluated to the DL. Sample results that were within 10 times of the concentration detected in the method blank and/or trip blank were flagged B. Results that were qualified B may be false positives or biased high.

The following analytes were detected above the DL in method blanks or trip blanks that resulted in the qualification of sample results:

- SW6020: chromium (total and dissolved) and vanadium (total and dissolved)
- SW8260B: methylene chloride, carbon disulfide, chloroform
- SW8082: PCB-1260
- AK102/AK103: DRO and RRO
- A2320B: total alkalinity

Data usability was minimally affected. All results that were qualified B were less than the 2016 ADEC evaluation criteria.

Table B-2-2 (Attachment B-2) summarizes the sample results that were qualified due to method blank or trip blank contamination. The table also provides concentrations that were detected in the associated blanks.

1.2.4 Matrix Spike Accuracy

MS/MSDs were collected to evaluate the accuracy and precision of matrix and/or laboratory procedures. Table B-1 provides a summary of the MS/MSD quantities, summarized by analytical method and matrix. The MS/MSD recoveries and relative percent differences (RPDs) for several analytes and analyses were outside of the QC criteria. Sample results with MS/MSD recoveries that were outside of QC criteria were flagged as estimated except in the following cases: nondetect samples with high recoveries, samples with concentrations greater

than the spike amount, or samples with a dilution factor of 5 or greater. All MS/MSD recoveries were within required QC limits except for VOCs and metals, but no qualification was necessary due to the exceptions listed above.

1.2.5 Surrogate Spike Accuracy

Sample results with surrogates outside of QC criteria were flagged as estimated except in the following cases: nondetect samples with high surrogate recoveries or samples with a dilution factor of 5 or greater. Sample results with low surrogate recoveries were qualified QL, and may be biased low. Sample results with high surrogate recoveries were qualified QH, and may be biased high.

The result for Sample 16NEC-14MW04-WG was qualified QL for PCBs. The water sample contained significant amount of particulates, which required the sample to be extracted by 3520C. The low surrogate suggests there was matrix interference. Five sample results, 16NEC-14MW06-WG, 16NEC-14MW03-WG, 16NEC-14MW04-WG, 16NEC-14MW05-WG, and 16NEC-MW88-3-WG, qualified QH from the SW8260 method. The effect of using the higher of the results between the primary and field duplicate sample for trend analysis and reporting was minimal since all the QN-qualified results were less than the 2016 ADEC evaluation criteria.

Table B-2-3 (Attachment B-2) provides a summary of the surrogate recovery outliers and the affected sample results.

1.2.6 Continuing Calibration Accuracy

The following opening continuing calibration verification (CCV) recoveries for method SW8260 analytes were greater than ± 20 percent of the true value; dichlorodifluoromethane, chloromethane, and carbon disulfide. The associated sample results were qualified QL and were considered estimated and biased low. The effect was minimal since the results and reporting limits are significantly less than the 2016 ADEC evaluation criteria.

Table B-2-4 (Attachment B-2) provides a summary of the CCV recovery outliers and the affected sample results.

1.2.7 Field Duplicate Precision

FDs were collected to evaluate the precision of matrix and/or laboratory procedures. Table B-1 provides a summary of the FD quantities, summarized by analytical method and matrix. The frequency criterion of at least one FD per 10 primary samples was met for the project.

FD precision was evaluated against the recommended RPD limit of 30 percent for water, as stated in the ADEC laboratory data review checklists (ADEC 2009). RPD values for sample pair results, where one was nondetect and the other was detected, were calculated using the LOD value for the nondetect result. Results were qualified as estimated (QN) in several samples, due to high FD RPD values. The high RPD values can likely be attributed to the sample matrix or non-homogeneity. The higher value between the sample and the FD will be used for reporting. The effect of using the higher of the results between the primary and field duplicate sample for trend analysis and reporting was minimal since all the QN-qualified results were less than the 2016 ADEC evaluation criteria.

Table B-2-5 (Attachment B-2) provides a summary of sample results that were qualified QN, due to high FD RPD values.

1.2.8 Reporting Limit Assessment

Laboratory LODs for nondetect sample results were evaluated against the corresponding ADEC 18 AAC 75 Table C. Groundwater Cleanup Levels for Human Health (ADEC 2016) and the SSCL (USACE 2009). The confidence level at the LOD was 99 percent (1 percent false negative rate) as per the DoD QSM definition. This level of uncertainty was deemed acceptable for the purpose of the report.

Laboratory LODs were greater than the 2016 ADEC evaluation criteria due to limitation of the methodology for method SW8260. LODs for 1,2-dibromoethane and

1,2,3-trichloropropane did not meet the 2016 ADEC evaluation criteria. The data quality was affected since it may lead to the reporting of false negative results (in relation to an analyte's respective 2016 ADEC evaluation criteria). Nondetect sample results that had LODs exceeding the 2016 ADEC evaluation criteria were shown in italics and highlighted in Table B-1-2 (Attachment B-1) and Tables B-2-6 (Attachment B-2).

1.2.9 Confirmation Column Precision

PCB results were confirmed on dual columns as per method SW8082. If the RPD between the results on the primary and confirmation columns was greater than 40 percent, the reported result was qualified as estimated (QN). The effect was minimal since all qualified results were less than the 2016 ADEC evaluation criteria.

Table B-2-7 (Attachment B-2) summarizes results with high RPD confirmation values that were qualified QN.

1.2.10 Equipment Blanks

An equipment blank, 16NEC-MW10-1-DVW (16NEC-MW10-1-DVWF for dissolved metals), was collected from decontaminated reusable water sampling equipment to verify that decontamination procedures were effective. The following analytes were detected above the DL in the equipment blank:

- SW6020: nickel, barium, manganese, lead, vanadium, zinc, and chromium
- SW8270SIM: naphthalene and 2-methylnaphthalene
- SW8260: ethylbenzene, PCE, chloroform, xylene, isomers m & p, toluene, o-xylene
- AK102/AK103: DRO and RRO

Sample results that were within 10 times of the concentration detected in the equipment blank were flagged B. Results that were qualified B may be false positives or biased high. Data usability was minimally affected. All results that were qualified B were less than the 2016 ADEC evaluation criteria.

Table B-2-8 (Attachment B-2) summarizes the sample results that were qualified due to equipment blank detections.

1.3 CONCLUSION

In general, the overall quality of project data was acceptable. The completeness goal of 100 percent for all parameters was met and exceeded the work plan completeness goal of 95 percent; no sample results were rejected. All reported data were considered usable for the 2016 Groundwater Monitoring at NEC on St. Lawrence Island, Alaska; limitations are discussed in this DQA and ADEC laboratory data review checklists (Attachment B-3). The qualifications applied during data validation did not adversely affect data usability. Several samples were qualified low due to DRO re-analysis outside of the hold time. Samples 16NEC-14MW06-WG and 16NEC-14MW06-WG-9 were affected by this low bias and had DRO results just below the 2016 ADEC evaluation criteria and SSCL.

2.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2009 (March). *Environmental Laboratory Data and Quality Assurance Requirements; Technical Memorandum*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2014 (August). *Underground Storage Tanks Procedures Manual*. Division of Spill Prevention and Response. Contaminated Sites Program.
- ADEC. 2016 (November). Oil and Other Hazardous Substances Pollution Control. 18 AAC 75.
- DoD (U.S. Department of Defense). 2013 (July). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.0.
- EPA (U.S. Environmental Protection Agency) 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.
- USACE (U.S. Army Corps of Engineers). 2009 (September). *Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903*. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009. F10AK09603_05.09_0500_a.
- USACE. 2016 (August). 2016 Groundwater Monitoring at the Main Operations Complex and Other Field Activities Work Plan, Northeast Cape, St. Lawrence Island, Alaska. Final. Prepared by Jacobs Engineering Group Inc.

(intentionally blank)

ATTACHMENT B-1

Sample Summary Table and Analytical Data Tables

Northeast Cape FUDS 2016 Main Operations Complex Table B-1-1 Sample Summary Table

Location ID	COC Sample ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vol	Preservativ e	Matrix	Analytical Method Requested	QC Type	ТАТ	Notes	CoC Number	Cooler Name	Cooler Date	Lab	SDG Number
TBW01	16NEC-TBW01	10-Aug-16	1030	НМ	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	ТВ	30	BTEX, GRO, Methane	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WGF	10-Aug-16	1625	HM	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WG	10-Aug-16	1625	HM	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WG	10-Aug-16	1625	HM	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WG	10-Aug-16	1625	HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	_	30	BTEX, GRO, Methane	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WG 16NEC-14MW01-WG	10-Aug-16	1625	HM HM	3	glass amber	1 L 250 mL	4°C	WG	SW8270DSIM, SW8082		30 30	PAHs, PCBs	2016NEC02	Mounds	11-Aug-16	ALS	K1609317
14MW01	16NEC-14MW01-WG	10-Aug-16	1625		1	HDPE	250 ML	4°C	WG	EPA 300.0, SM2320	-	30	Sulfate, Alkalinity	2016NEC02	Mounds	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WGF	10-Aug-16	1817	HM	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Primary	30	N , , , , , ,	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW02 14MW02	16NEC-14MW02-WG 16NEC-14MW02-WG	10-Aug-16	1817 1817	HM HM	2	glass amber HDPE	250 mL 250 mL	4°C, HCI 4°C, HNO3	WG WG	AK102/AK103 SW6020/7470	Primary	30 30	DRO/RRO	2016NEC01 2016NEC01	Almond Joy	11-Aug-16	ALS ALS	K1609317 K1609317
14MW02 14MW02	16NEC-14MW02-WG	10-Aug-16 10-Aug-16	1817	HM	8	VOA vial	250 mL 40 mL	4°C, HNU3 4°C, HCI	WG	SW6020/7470 SW8260B, AK101, RSK 175	Primary Primary	30	Total RCRA Metals (plus Ni, Zn, V) BTEX, GRO, Methane	2016NEC01	Almond Joy Almond Joy	11-Aug-16 11-Aug-16	ALS	K1609317 K1609317
14MW02	16NEC-14MW02-WG	10-Aug-16	1817	HM	3	glass amber	40 IIIL 1 L	4°C	WG	SW8270DSIM, SW8082	Primary	30	PAHs. PCBs	2016NEC02	Mounds	11-Aug-16	ALS	K1609317 K1609317
14MW02	16NEC-14MW02-WG	10-Aug-16	1817	HM	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	Primary	30	Sulfate, Alkalinity	2016NEC02	Mounds	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9F	10-Aug-16	1817	НМ	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Dup	30	(May not be pH<2) Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9	10-Aug-16	1817	НМ	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	Dup	30	DRO/RRO	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9	10-Aug-16	1817	HM	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Dup	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9	10-Aug-16	1817	HM	7	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	Dup	30	(Limited Volume) BTEX, GRO, Methane	2016NEC01	Almond Joy	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9	10-Aug-16	1817	HM	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	Dup	30	PAHs, PCBs	2016NEC02	Mounds	11-Aug-16	ALS	K1609317
14MW02	16NEC-14MW02-WG-9	10-Aug-16	1817	HM	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	Dup	30	Sulfate, Alkalinity	2016NEC02	Mounds	11-Aug-16	ALS	K1609317
TB02	16NEC-TB02	13-Aug-16	0930	HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	ТВ	30	VOCs, GRO, Methane	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	9	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	MS/MSD	30	PAHs, PCBs	2016NEC03	Milky Way	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	3	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	MS/MSD	30	Sulfate, Alkalinity	2016NEC03	Milky Way	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WGF	13-Aug-16	1254	HM	3	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	MS/MSD	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	3	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	MS/MSD	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	6	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	MS/MSD	30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	23	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	MS/MSD	30	(Limited Volume) OCs, GRO, Methane	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW10-1	16NEC-MW10-1-WG	13-Aug-16	1254	HM	6	VOA vial	40 mL	4°C	WG	SW8015	MS/MSD	30	Glycols	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	Primary	30	PAHs, PCBs	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WGF	13-Aug-16	1310	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Primary	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	Primary	30	Sulfate, Alkalinity	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Primary	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	Primary	30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	2	VOA vial	40 mL	4°C	WG	SW8015	Primary	30	Glycols	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG	13-Aug-16	1310	KR	8	VOA vial	40 mL 1 L	4°C, HCI	WG WG	SW8260B, AK101, RSK 175 SW8270DSIM, SW8082	Primary	30	VOCs, GRO, Methane PAHs. PCBs	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434 K1609434
14MW06 14MW06	16NEC-14MW06-WG-9 16NEC-14MW06-WG-9F	13-Aug-16 13-Aug-16	1310 1310	KR KR	3	glass amber HDPE	250 mL	4°C 4°C, HNO3	WG	SW6020/7470	Dup Dup	30 30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC04 2016NEC04	100 Grand 100 Grand	15-Aug-16 15-Aug-16	ALS ALS	K1609434
4404/00		10 Aug 10	1010	KD	4	LIDDE	050 ml	480	14/0	EDA 200 0. CM2220	Dur	20	Cultata Albaliaitu		100 Orand	45 Aug 40	AL C	1/1000404
14MW06 14MW06	16NEC-14MW06-WG-9 16NEC-14MW06-WG-9	13-Aug-16 13-Aug-16	1310 1310	KR KR	1	HDPE HDPE	250 mL 250 mL	4°C 4°C, HNO3	WG WG	EPA 300.0, SM2320 SW6020/7470	Dup Dup	30 30	Sulfate, Alkalinity Total RCRA Metals (plus Ni, Zn, V)	2016NEC04 2016NEC04	100 Grand 100 Grand	15-Aug-16 15-Aug-16	ALS ALS	K1609434 K1609434
14MW06	16NEC-14MW06-WG-9	13-Aug-16	1310	KR	2	glass amber	250 mL	4°C, HN03 4°C, HCI	WG	AK102/AK103	Dup	30	DRO/RRO	2016NEC04	Caramello	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG-9	13-Aug-16	1310	KR	7	VOA vial	40 mL	4°C, HCI 4°C, HCI	WG	SW8260B, AK101, RSK 175	Dup	30		2016NEC00	Butterfinger	15-Aug-16	ALS	K1609434
14MW06	16NEC-14MW06-WG-9	13-Aug-16	1310	KR	2	VOA vial	40 mL	4°C	WG	SW8015	Dup	30	Glycols	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW10-1-DVW	16NEC-MW10-1-DVW	13-Aug-16	1421	НМ	2	glass amber	1L	4°C	WG	SW8270DSIM, SW8082	EB	30	(Limited Volume) PAHs, PCBs	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW10-1-DVW	16NEC-MW10-1-DVWF	13-Aug-16	1421	НМ	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	EB		Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW10-1-DVW	16NEC-MW10-1-DVW	13-Aug-16	1421	НМ	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	EB	30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
MW10-1-DVW	16NEC-MW10-1-DVW	13-Aug-16	1421	HM	2	VOA vial	40 mL	4°C	WG	SW8015	EB	30	Glycols	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW10-1-DVW	16NEC-MW10-1-DVW	13-Aug-16	1421	HM	6	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101	EB	30	VOCS, GRO	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WG	13-Aug-16	1628	HM	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WG	13-Aug-16	1628	HM	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC03	Milky Way	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WGF	13-Aug-16	1628	НМ	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WG	13-Aug-16	1628	НМ	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WG	13-Aug-16	1628	НМ	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW88-1	16NEC-MW88-1-WG	13-Aug-16	1628	HM	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
14MW03	16NEC-14MW03-WG	13-Aug-16	1644	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	Not Tested	30	PAHs, PCBs Cancelled due to improper sample collection. Will be re-collected.	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434
14MW03	16NEC-14MW03-WG	13-Aug-16	1644	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	Not Tested	30	Sulfate, Alkalinity Cancelled due to improper sample collection. Will be re-collected.	2016NEC04	100 Grand	15-Aug-16	ALS	K1609434

Northeast Cape FUDS 2016 Main Operations Complex Table B-1-1 Sample Summary Table

Location ID	COC Sample ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vol	Preservativ e	Matrix	Analytical Method Requested	QC Type	TAT	Notes	CoC Number	Cooler Name	Cooler Date	Lab	SDG Number
14MW03	16NEC-14MW03-WGF	13-Aug-16	1644	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Not Tested	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn) Cancelled due to improper sample collection. Will be re-collected.	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
14MW03	16NEC-14MW03-WG	13-Aug-16	1644	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	Not Tested	30	Total RCRA Metals (plus Ni, Zn, V) Cancelled due to improper sample collection. Will be re- collected.	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
14MW03	16NEC-14MW03-WG	13-Aug-16	1644	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	Not Tested	30	DRO/RRO Cancelled due to improper sample collection. Will be re-collected.	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
14MW03	16NEC-14MW03-WG	13-Aug-16	1644	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	Not Tested	30	BTEX, GRO, Methane Cancelled due to improper sample collection. Will be re- collected.	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WG	13-Aug-16	1815	HM	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC03	Milky Way	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WG	13-Aug-16	1815	HM	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WGF	13-Aug-16	1815	НМ	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WG	13-Aug-16	1815	HM	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WG	13-Aug-16	1815	HM	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
14MW07	16NEC-14MW07-WG	13-Aug-16	1815	HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WG	13-Aug-16	1829	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC06	Caramello	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WG	13-Aug-16	1829	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC03	Milky Way	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WGF	13-Aug-16	1829	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WG	13-Aug-16	1829	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WG	13-Aug-16	1829	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC07	Butterfinger	15-Aug-16	ALS	K1609434
MW88-10	16NEC-MW88-10-WG	13-Aug-16	1829	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC05	Snickers	15-Aug-16	ALS	K1609434
TB03	16NEC-TB03	14-Aug-16	0945	HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	ТВ	30	BTEX, GRO, Methane	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WG	14-Aug-16	1422	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC08	Twix	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WGF	14-Aug-16	1422	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WG	14-Aug-16	1422	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC08	Twix	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WG	14-Aug-16	1422	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WG	14-Aug-16	1422	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
17MW1	16NEC-17MW1-WG	14-Aug-16	1422	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WG	14-Aug-16	1542	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC08	Twix	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WGF	14-Aug-16	1542	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WG	14-Aug-16	1542	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC08	Twix	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WG	14-Aug-16	1542	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WG	14-Aug-16	1542	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
22MW2	16NEC-22MW2-WG	14-Aug-16	1542	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WGF	14-Aug-16	1737	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WG	14-Aug-16	1737	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320		30	Sulfate, Alkalinity	2016NEC08	Twix	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WG	14-Aug-16	1737	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470		30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WG	14-Aug-16	1737	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082		30	PAHs, PCBs	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WG	14-Aug-16	1737	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103		30	DRO/RRO	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
26MW1	16NEC-26MW1-WG	14-Aug-16	1737	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175		30	BTEX, GRO, Methane	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
20MW-1 20MW-1	16NEC-20MW-1-WG 16NEC-20MW-1-WGF	14-Aug-16 14-Aug-16	1858 1858	KR KR	3	glass amber HDPE	1 L 250 mL	4°C 4°C, HNO3	WG WG	SW8270DSIM, SW8082 SW6020/7470		30 30	PAHs, PCBs Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC08 2016NEC08	Twix Twix	15-Aug-16 15-Aug-16	ALS ALS	K1609434 K1609434
		-									1		, , , , , , , , , , , , , , , , , , ,			Ŭ		
20MW-1	16NEC-20MW-1-WG	14-Aug-16	1858	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	 	30	Sulfate, Alkalinity	2016NEC08	Twix	15-Aug-16	ALS	K1609434
20MW-1	16NEC-20MW-1-WG	14-Aug-16	1858	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	+	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC08	Twix	15-Aug-16	ALS	K1609434
20MW-1	16NEC-20MW-1-WG	14-Aug-16	1858	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	+	30	DRO/RRO	2016NEC09	Kit Kat	15-Aug-16	ALS	K1609434
20MW-1	16NEC-20MW-1-WG	14-Aug-16	1858	KR HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	ТР	30	BTEX, GRO, Methane	2016NEC09	Kit Kat Whatchamacallit	15-Aug-16	ALS	K1609434
TB04 14MW03	16NEC-TB04 16NEC-14MW03-WG	15-Aug-16 15-Aug-16	0900 1354	KR	8 9	VOA vial VOA vial	40 mL 40 mL	4°C, HCI 4°C, HCI	WG WG	SW8260B, AK101, RSK 175 SW8260B, AK101, RSK 175	TB	30 30	BTEX, GRO, Methane BTEX, GRO, Methane	2016NEC10 2016NEC10	Whatchamacallit Whatchamacallit	17-Aug-16 17-Aug-16	ALS ALS	K1609581 K1609581
14MW03	16NEC-14MW03-WG	15-Aug-16 15-Aug-16	1354	KR	9 1	HDPE	250 mL	4°C, HO 4°C, HNO3	WG	SW8260B, AKT01, RSK 175 SW6020/7470		30	,,	2016NEC10 2016NEC11	PayDay	17-Aug-16 17-Aug-16	ALS	K1609581 K1609581
1414/02	16NEC 14MM/03 M/C	15 Aura 16	1254	KD.	4		250 ~	100	W/C	EDA 200.0. SM2220		20	Sulfato Alkolisity	201615014	BoyDay	17 10 - 16	ALC	K1600594
14MW03 14MW03	16NEC-14MW03-WG 16NEC-14MW03-WG	15-Aug-16 15-Aug-16	1354 1354	KR KR	1	HDPE HDPE	250 mL 250 mL	4°C 4°C, HNO3	WG WG	EPA 300.0, SM2320 SW6020/7470	<u> </u>	30 30	Sulfate, Alkalinity Total RCRA Metals (plus Ni, Zn, V)	2016NEC11 2016NEC11	PayDay	17-Aug-16	ALS	K1609581 K1609581
14MW03	16NEC-14MW03-WG	15-Aug-16	1354	KR	3	glass amber	250 IIIL 1 L	4°C	WG	SW8020/7470 SW8270DSIM, SW8082	+	30	PAHs, PCBs	2016NEC11 2016NEC12	PayDay O'Henry	17-Aug-16 17-Aug-16	ALS ALS	K1609581
14MW03	16NEC-14MW03-WG	15-Aug-16	1354	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	1	30	DRO/RRO	2016NEC12 2016NEC13	3 Musketeers	17-Aug-16	ALS	K1609581
14MW05	16NEC-14MW05-WG	15-Aug-16	1553	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	1	30	BTEX, GRO, Methane	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581
14MW05	16NEC-14MW05-WG	15-Aug-16	1553	KR	3	glass amber	1L	4°C	WG	SW8270DSIM, SW8082	1	30	PAHs, PCBs	2016NEC11	PayDay	17-Aug-16	ALS	K1609581
14MW05	16NEC-14MW05-WG	15-Aug-16	1553	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	1	30	Sulfate, Alkalinity	2016NEC11	PayDay	17-Aug-16	ALS	K1609581

Northeast Cape FUDS 2016 Main Operations Complex Table B-1-1 Sample Summary Table

Location ID	COC Sample ID	Collection Date	Collection Time	Sampler	Qty	Container Type	Container Vo	Preservativ e	Matrix	Analytical Method Requested	QC Type TAT	Notes	CoC Number	Cooler Name	Cooler Date	Lab	SDG Number
14MW05	16NEC-14MW05-WGF	15-Aug-16	1553	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
14MW05	16NEC-14MW05-WG	15-Aug-16	1553	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
14MW05	16NEC-14MW05-WG	15-Aug-16	1553	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	30	DRO/RRO	2016NEC13	3 Musketeers	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WG	15-Aug-16	1840	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	30	BTEX, GRO, Methane	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WG	15-Aug-16	1840	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	30	PAHs, PCBs	2016NEC11	PayDay	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WG	15-Aug-16	1840	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	30	Sulfate, Alkalinity	2016NEC11	PayDay	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WGF	15-Aug-16	1840	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WG	15-Aug-16	1840	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
14MW04	16NEC-14MW04-WG	15-Aug-16	1840	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	30	DRO/RRO	2016NEC13	3 Musketeers	17-Aug-16	ALS	K1609581
TB05	16NEC-TB05	16-Aug-16	0905	HM	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	TB 30	BTEX, GRO, Methane	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WG	16-Aug-16	1330	KR	8	VOA vial	40 mL	4°C, HCI	WG	SW8260B, AK101, RSK 175	30	BTEX, GRO, Methane	2016NEC10	Whatchamacallit	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WG	16-Aug-16	1330	KR	3	glass amber	1 L	4°C	WG	SW8270DSIM, SW8082	30	PAHs, PCBs	2016NEC11	PayDay	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WG	16-Aug-16	1330	KR	1	HDPE	250 mL	4°C	WG	EPA 300.0, SM2320	30	Sulfate, Alkalinity	2016NEC11	PayDay	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WGF	16-Aug-16	1330	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Dissolved RCRA Metals (plus Mn, Ni, V, Zn)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WG	16-Aug-16	1330	KR	1	HDPE	250 mL	4°C, HNO3	WG	SW6020/7470	30	Total RCRA Metals (plus Ni, Zn, V)	2016NEC12	O'Henry	17-Aug-16	ALS	K1609581
MW88-3	16NEC-MW88-3-WG	16-Aug-16	1330	KR	2	glass amber	250 mL	4°C, HCI	WG	AK102/AK103	30	DRO/RRO	2016NEC13	3 Musketeers	17-Aug-16	ALS	K1609581

				Location ID	14MW01	14MW01	14MW02	14MW02	14MW02	14MW02	14MW03
				Sample ID	16NEC-14MW01-WG	16NEC-14MW01-WGF	16NEC-14MW02-WG	16NEC-14MW02-WGF	14WW02 16NEC-14MW02-WG-9	16NEC-14MW02-WG-9F	16NEC-14MW03-WG
				Lab Sample ID	K160931701	K160931701F ³	K160931702	K160931702F ³	K160931703	K160931703F ³	K160958101
				SDG	K1609317	K1609317	K1609317	K1609317	K1609317	K1609317	K1609581
				Sample Date	8/10/16	8/10/16	8/10/16	8/10/16	8/10/16	8/10/16	8/15/16
				Matrix	WG	WG	WG	WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
				QA/QC	Primary	Primary	Primary	Primary	Duplicate	Duplicate	Primary
			2016 ADEC								
Method	Analyte	Units	Evaluation	SSCL ²							
8270SIM	4. Mathedram the land		Criteria ¹		0.0000 [0.000005]		0.0035 [0.000005]		0.0036 [0.000005]		
	1-Methylnaphthalene 2-Methylnaphthalene	mg/L mg/L	0.011 0.036	-	0.0083 [0.00005]	-	0.00035 [0.000005]	-	0.00075 [0.000005]	-	0.000056 [0.000056] 0.000015 [0.000056] J. B
	Acenaphthene	mg/L	0.53	-	0.00037 [0.000005]	-	0.00026 [0.000005]	-	0.00027 [0.000005]		0.00023 [0.0000056]
	Acenaphthylene	mg/L	0.26		0.00011 [0.000005]	-	0.000048 [0.000005]	-	0.000045 [0.000005]	-	0.000012 [0.0000056] J
	Anthracene	mg/L	0.043	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.0000056]
	Benzo(a)anthracene	mg/L	0.00012	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	0.0000033 [0.0000056] J
	Benzo(a)pyrene	mg/L	0.000034	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
	Benzo(b)fluoranthene	mg/L	0.00034	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
	Benzo(g,h,i)perylene	mg/L	0.00026	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
8270SIM	Benzo(k)fluoranthene	mg/L	0.0008	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
	Chrysene	mg/L	0.002		ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
	Dibenzo(a,h)anthracene	mg/L	0.000034	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
8270SIM	Fluoranthene	mg/L	0.26	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	_	ND [0.000023]
8270SIM	Fluorene	mg/L	0.29	-	0.00088 [0.000005]	-	0.00053 [0.000005]	-	0.00051 [0.000005]	-	0.00033 [0.0000056]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000056]
	Naphthalene	mg/L	0.0017	-	0.0075 [0.000005]	-	0.0037 [0.000005]	-	0.0038 [0.000005]	-	0.00072 [0.0000056]
8270SIM	Phenanthrene	mg/L	0.17	-	0.000091 [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.0000056]
	Pyrene	mg/L	0.12	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.000012]
	Alkalinity, Total	mg/L	-	-	18.7 [2]	=	40 [6] B	-	40 [6] B	-	28 [6] B
	Gasoline Range Organics	mg/L	2.2	1.3	0.065 [0.025] J	-	0.14 [0.025]	-	0.14 [0.025]	-	0.075 [0.025] J
	Diesel Range Organics	mg/L	1.5	1.5	0.92 [0.021]	-	1.6 [0.022]	-	1.5 [0.022]	-	0.99 [0.021] QL
	Residual Range Organics	mg/L	1.1	1.1	0.12 [0.051] J, B	-	0.18 [0.053] J, B	-	0.17 [0.053] J, B	-	0.16 [0.053] J, B, QL
	Sulfate	mg/L	-	-	17.7 [0.04]	-	14.7 [0.04]	-	14.6 [0.04]	-	16.9 [0.04]
RSK175 RSK175	Ethane Ethene	mg/L	-	-	-	=	-	-	-	-	-
RSK175 RSK175	Methane	mg/L mg/L	-	-	0.024 [0.00063]	-	0.023 [0.00063]	-	0.025 [0.00063]	-	0.0082 [0.00063]
SW6020A	Arsenic	mg/L	0.00052	0.01	0.024 [0.00003]	0.00439 [0.00025]	0.00244 [0.00025]	0.00241 [0.00025]	0.00235 [0.00003]	0.00237 [0.00025] QN	0.00194 [0.00025]
SW6020A SW6020A	Barium	mg/L	3.8	0.01	0.0201 [0.00025]	0.0174 [0.000025]	0.0233 [0.000025]	0.0229 [0.000025]	0.0227 [0.00025]	0.0228 [0.00025] QN	0.0155 [0.00025]
	Cadmium	mg/L	0.0092	-	0.000018 [0.00002] J	ND [0.00002]	0.000066 [0.00002]	0.000018 [0.00002] J, QN	0.000059 [0.00002]	0.000029 [0.000023] QN	0.000066 [0.00002]
	Chromium ⁴	mg/L	22		0.00078 [0.00005] B		0.00053 [0.0005] B	0.00034 [0.00005] B	0.00051 [0.00005] B	0.00035 [0.00005] B, QN	0.00176 [0.00005]
	Lead	mg/L	0.015	0.015	0.00153 [0.00001]	0.000159 [0.00001] B	0.000496 [0.00001]	0.000054 [0.00001] B, QN	0.00045 [0.00001]	0.000083 [0.00001] B, QN	0.00318 [0.00001]
	Manganese	mg/L	-	-	-	0.916 [0.000013]	-	1.86 [0.000013]	-	1.84 [0.000013] QN	-
	Nickel	mg/L	0.392	-	0.00105 [0.00005] B	0.00124 [0.00005] B	0.00111 [0.00005] B	0.00094 [0.00005] B	0.00106 [0.00005] B	0.00105 [0.00005] B, QN	0.00289 [0.00005] B
	Selenium	mg/L	0.1	-	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001] QN	ND [0.001]
	Silver	mg/L	0.094	-	0.000007 [0.00001] J	0.000004 [0.00001] J	0.00001 [0.00001] J, QN	ND [0.00001]	0.000005 [0.00001] J, QN	ND [0.00001] QN	0.000008 [0.00001] J
SW6020A	Vanadium	mg/L	0.0864	-	0.0009 [0.00005]	0.00034 [0.00005] B	0.00056 [0.00005]	0.00042 [0.00005]	0.00052 [0.00005]	0.00043 [0.00005] QN	0.00095 [0.00005]
SW6020A	Zinc	mg/L	6	-	0.00322 [0.0005] B	0.00313 [0.0005] B	0.00254 [0.0005] B	0.00259 [0.0005] B	0.00237 [0.0005] B	0.0034 [0.0005] B, QN	0.00587 [0.0005] B
	Mercury	mg/L	0.00052	-	ND [0.00005]	ND [0.00005]	ND [0.00005] QL	ND [0.00005]	ND [0.00005]	ND [0.00005] QN	ND [0.00005]
	Ethylene glycol	mg/L	40	-	-	-	-	-	-	-	-
	Propylene glycol	mg/L	-	-	-	-	-	-	-	-	-
	PCB-1016 (Aroclor 1016)	mg/L	0.0005		ND [0.00002]	-	ND [0.000002]	-	ND [0.000004]	-	ND [0.000021]
	PCB-1221 (Aroclor 1221)	mg/L	0.0005	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.000011]	-	ND [0.000011]
	PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.0000048]	-	ND [0.0000053]	-	ND [0.0000021]
	PCB-1242 (Aroclor 1242)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.0000029]	-	ND [0.000063]	-	ND [0.0000021]
	PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.0000025]	-	ND [0.0000046]	-	ND [0.0000021]
	PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.000059]	-	ND [0.000021]	-	ND [0.000028]
	PCB-1260 (Aroclor 1260)	mg/L	0.0005	-	ND [0.00002]	-	0.0000028 [0.000002] J	-	0.0000032 [0.000002] J	-	0.0000029 [0.0000021] J, B, QN
	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	-	-
SW8082A SW8260C	PCB-1268 (Aroclor 1268) 1,1,1,2-Tetrachloroethane	mg/L	0.0005 0.0057	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.00002]	-	
SW8260C SW8260C	1,1,1-Trichloroethane	mg/L mg/L	0.0057	-	-	-	-	-		-	
51102000		mg/∟	υ	-	=	=	-	-	-	-	-

			2016 ADEC	Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	14MW01 16NEC-14MW01-WG K160931701 K1609317 8/10/16 WG ALGK Primary	14MW01 16NEC-14MW01-WGF K160931701F ³ K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WG K160931702 K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WGF K160931702F ³ K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WG-9 K160931703 K1609317 8/10/16 WG ALGK Duplicate	14MW02 16NEC-14MW02-WG-9F K160931703F ³ K1609317 8/10/16 WG ALGK Duplicate	14MW03 16NEC-14MW03-WG K160958101 K1609581 8/15/16 WG ALGK Primary
Method	Analyte		Evaluation Criteria ¹	SSCL ²							
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	-	-	-	-	-	-	_
SW8260C	1,1,2-Trichloroethane	mg/L	0.00041	-	-	-	-	-	-	-	-
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	-	-	-	-	-	-	-
	1,1-Dichloroethene	mg/L	0.28	-	-	-	-	-	-	-	-
SW8260C SW8260C	1,1-Dichloropropene 1,2,3-Trichlorobenzene	mg/L mg/L	-	-	-	-	-	-	-	-	-
SW8260C SW8260C	1,2,3-Trichloropropane	mg/L	- 0.0000075	-	-	-	-	-	-	-	
	1,2,4-Trichlorobenzene	mg/L	0.004	-	-	-	-	-			_
	1,2,4-Trimethylbenzene	mg/L	0.015	-	-	-	-	-	-	-	-
	1,2-Dibromo-3-chloropropane	mg/L	-	-	-	-	-	-	-	-	-
	1,2-Dibromoethane	mg/L	0.000075	-	-	-	-	-	-	-	-
SW8260C	1,2-Dichlorobenzene	mg/L	0.3	-	-	-	-	-	-	-	-
	1,2-Dichloroethane	mg/L	0.0017	-	-	-	-	-	-	-	-
	1,2-Dichloropropane	mg/L	0.0044	-	-	-	-	-	-	-	-
	1,3,5-Trimethylbenzene	mg/L	0.12	-	-	-	-	-	-	-	-
	1,3-Dichlorobenzene	mg/L	0.3	-	-	-	-	-	-	-	-
	1,3-Dichloropropane 1,4-Dichlorobenzene	mg/L	-	-	-	-	-	-	-	-	-
	2,2-Dichloropropane	mg/L mg/L	0.0048	-	-	-	-	-	-	-	
	2-Butanone	mg/L	- 5.6	-	-	-	-	-		-	
	2-Chlorotoluene	mg/L	-	-	-	-	-				
	2-Hexanone	mg/L	0.038	-	-	-	-	-	-		_
	4-Chlorotoluene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	4-Isopropyltoluene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	4-Methyl-2-pentanone	mg/L	6.3	-	-	-	-	-	-	-	-
	Acetone	mg/L	14	-	-	-	-	-	-	-	-
	Benzene	mg/L	0.0046	0.005	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]
	Bromobenzene	mg/L	0.062	-	-	-	-	-	-	-	-
	Bromochloromethane	mg/L	-	-	-	-	-	-	-	-	-
	Bromodichloromethane	mg/L	0.0013	-	-	-	-	-	-	-	-
	Bromoform Bromomethane	mg/L	0.033	-	-	-	-	-	-	-	-
	Bromometnane Carbon disulfide	mg/L mg/L	0.0075 0.81	-	-	-	-	-	-	-	-
	Carbon tetrachloride	mg/L	0.0046	-	-	-	-	-	-	-	-
	Chlorobenzene	mg/L	0.0040	-	-	-	-	-	-	-	<u> </u>
	Chloroethane	mg/L	21	-	-	-	-	-	-	-	-
	Chloroform	mg/L	0.0022	-	-	-	-	-	-	-	-
SW8260C	Chloromethane	mg/L	0.19	-	-	-	-	-	-	-	-
	cis-1,2-Dichloroethene	mg/L	0.036	-	-	-	-	-	-	-	-
	cis-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	-	_
	Dibromochloromethane	mg/L	0.0087	-	-	-	-	-	-	-	-
	Dibromomethane	mg/L	0.0083	-	-	-	-	-	-	-	-
	Dichlorodifluoromethane	mg/L	0.2	-	-	-	-	-	-	-	-
	Ethylbenzene	mg/L	0.015	0.7	0.0005 [0.0001] B	-	0.00071 [0.0001]	-	0.0007 [0.0001]	-	0.00025 [0.0001] J, B, QH
	Hexachlorobutadiene	mg/L	0.0014	-	-	-	-	-	-	-	-
	Isopropylbenzene	mg/L	0.45	-	-	-	-	-	-	-	-
	Methylene chloride Methyl-tert-butyl ether (MTBE)	mg/L mg/L	0.11 0.14	-	-	-	-	-	-	-	-
	Naphthalene	mg/L	0.14	-	-	-	-	-	-	-	-
	n-Butylbenzene	mg/L	1	-	-	-	-	-	-	-	-
	n-Propylbenzene	mg/L	0.66	<u> </u>	-	-	-	-	-		_

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC		14MW01 16NEC-14MW01-WGF K160931701F ³ K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WG K160931702 K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WGF K160931702F ³ K1609317 8/10/16 WG ALGK Primary	14MW02 16NEC-14MW02-WG-9 K160931703 K1609317 8/10/16 WG ALGK Duplicate	14MW02 16NEC-14MW02-WG-9F K160931703F ³ K1609317 8/10/16 WG ALGK Duplicate	14MW03 16NEC-14MW03-WG K160958101 K1609581 8/15/16 WG ALGK Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
SW8260C	o-Xylene	mg/L	0.193	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]
SW8260C	sec-Butylbenzene	mg/L	2	-	-	-	-	-	-	-	-
SW8260C	Styrene	mg/L	1.2	-	-	-	-	-	-	-	-
SW8260C	tert-Butylbenzene	mg/L	0.69	-	-	-	-	-	-	-	-
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	-	-	-	-	-	-	-
SW8260C	Toluene	mg/L	1.1	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]
SW8260C	trans-1,2-Dichloroethene	mg/L	0.36	-	-	-	-	-	-	-	-
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	-	-
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	-	-	-	-	-	-	-
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	-	-	-	-	-	-	-
SW8260C	Vinyl chloride	mg/L	0.00019	-	-	-	-	-	-	-	-
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	0.00038 [0.0002] J, B	-	0.0006 [0.0002] B	-	0.00055 [0.0002] B	-	ND [0.0002]

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

 $^{\rm 4}\,$ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

chromium are considered background chromium(III) in the absence of an

bold = Analytical results exceed the 2016 ADEC evaluation criteria. Analytical results exceed the SSCL.

Italics Nondetect results with LODs exceeding 2016 ADEC evaluation criteria; nondetect result LODs did not exceed SSCLs

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group

SSCL - site-specific cleanup level

WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

				Lesstian ID	14MW03	4 400000 4	14MW04	4 41111/05	14MW05	4.48834000	14MW06
				Location ID Sample ID	16NEC-14MW03-WGF	14MW04 16NEC-14MW04-WG	16NEC-14MW04-WGF	14MW05 16NEC-14MW05-WG	16NEC-14MW05-WGF	14MW06 16NEC-14MW06-WG	16NEC-14MW06-WGF
				Lab Sample ID	K160958101F ³	K160958102	K160958102F ³	K160958103	K160958103F ³	K160943404	K160943404F ³
				SDG	K1609581	K1609581	K1609581	K1609581	K1609581	K1609434	K1609434
				Sample Date	8/15/16	8/15/16	8/15/16	8/15/16	8/15/16	8/13/16	8/13/16
				Matrix	WG	WG	WG	WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
		-		QA/QC	Primary	Primary	Primary	Primary	Primary	Primary	Primary
			2016 ADEC								
Method	Analyte	Units	Evaluation	SSCL ²							
00700114	1-Methylnaphthalene		Criteria ¹			0.00003 [0.000005]		0.00012 [0.000005]		ND [0.000005]	
8270SIM 8270SIM	2-Methylnaphthalene	mg/L mg/L	0.011 0.036	-	-	ND [0.00005]	-	0.00002 [0.000005] B	-	ND [0.000005]	
8270SIM	Acenaphthene	mg/L	0.53	-	-	ND [0.000005]	-	0.0002 [0.000005]	-	0.000017 [0.000005] J, QN	-
8270SIM	Acenaphthylene	mg/L	0.26	-	-	0.0000052 [0.000005] J	-	0.00067 [0.000005]	<u> </u>	0.0000097 [0.000005] J	-
8270SIM	Anthracene	mg/L	0.043	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	
	Benzo(a)anthracene	mg/L	0.00012	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Benzo(a)pyrene	mg/L	0.000034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Benzo(b)fluoranthene	mg/L	0.00034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(g,h,i)perylene	mg/L	0.00026	-	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.00005]	-
	Benzo(k)fluoranthene	mg/L	0.0008	-	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.00005]	-
8270SIM	Chrysene	mg/L	0.002	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.00005]	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	0.000034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Fluoranthene	mg/L	0.26	-	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	-
8270SIM	Fluorene	mg/L	0.29	-	-	0.000022 [0.000005]	-	0.00024 [0.000005]	-	ND [0.000005]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Naphthalene	mg/L	0.0017	-	-	0.000022 [0.000005] B	-	0.00072 [0.000005]	-	0.00006 [0.000005] B, QN	-
8270SIM	Phenanthrene	mg/L	0.17	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Pyrene	mg/L	0.12	-	-	ND [0.00001]	-	0.000012 [0.00001] J	-	ND [0.00001]	-
A2320B	Alkalinity, Total	mg/L	-	-	-	91 [6]	-	47 [6]	-	140 [6]	-
AK101 AK102	Gasoline Range Organics	mg/L	2.2 1.5	1.3	-	0.011 [0.025] J 2.2 [0.021] QL	-	0.072 [0.025] J	-	0.011 [0.025] J	-
AK102 AK103	Diesel Range Organics Residual Range Organics	mg/L mg/L		1.5 1.1	-	0.61 [0.052] B, QL	-	3.2 [0.021] QL 0.61 [0.052] B, QL	-	1.4 [0.021] QL 0.55 [0.051] B, QL	
E300.0	Sulfate	mg/L	1.1	- -	-	31.2 [0.2]	-	23.1 [0.2]	-	0.55 [0.051] B, QL 15.3 [0.04]	
RSK175	Ethane	mg/L	-			-	_		-	ND [0.00024]	-
RSK175	Ethene	mg/L	-	-	-		-	-	-	ND [0.00022]	-
RSK175	Methane	mg/L	-		-	0.02 [0.00063]	-	0.01 [0.00063]	_	0.0083 [0.00063]	-
SW6020A	Arsenic	mg/L	0.00052	0.01	0.00186 [0.00025]	0.00524 [0.00025]	0.00387 [0.00025]	0.00207 [0.00025]	0.00194 [0.00025]	0.00203 [0.00025]	0.00203 [0.00025]
SW6020A	Barium	mg/L	3.8	-	0.0131 [0.000025]	0.884 [0.0005]	0.484 [0.0005]	0.0338 [0.000025]	0.0318 [0.000025]	0.0587 [0.000025]	0.0659 [0.000025]
SW6020A	Cadmium	mg/L	0.0092	-	0.000055 [0.00002]	0.000617 [0.00002]	0.000428 [0.00002]	0.000113 [0.00002]	0.000063 [0.00002]	0.000195 [0.00002]	0.00008 [0.00002] QN
SW6020A	Chromium⁴	mg/L	22	-	0.00065 [0.00005] B	0.0104 [0.00005]	0.00622 [0.00005]	0.001 [0.00005] B	0.00046 [0.00005] B	0.0002 [0.00005] B	0.00034 [0.00005] B, QN
SW6020A	Lead	mg/L	0.015	0.015	0.00126 [0.00001]	0.0582 [0.00001]	0.0349 [0.00001]	0.00165 [0.00001]	0.000252 [0.00001]	0.000861 [0.00001]	0.000649 [0.00001] QN
SW6020A	Manganese	mg/L	-	-	1.36 [0.000013]	-	1.71 [0.000013]	-	2.71 [0.0013]	-	1.28 [0.000013]
SW6020A	Nickel	mg/L	0.392	-	0.00332 [0.00005] B	0.0119 [0.00005]	0.00919 [0.00005]	0.00662 [0.00005]	0.00696 [0.00005]	0.00175 [0.00005] B	0.00201 [0.00005] B
SW6020A	Selenium	mg/L	0.1	-	ND [0.001]	0.0008 [0.001] J	0.0006 [0.001] J	ND [0.001]	ND [0.001]	0.0005 [0.001] J	ND [0.001] QN
SW6020A	Silver	mg/L	0.094	-	ND [0.00001]	0.000234 [0.00001]	0.000159 [0.00001]	0.000049 [0.00001]	0.00001 [0.00001] J	0.000014 [0.00001] J	0.00001 [0.00001] J, QN
SW6020A	Vanadium	mg/L	0.0864	-	0.00034 [0.00005] B	0.0157 [0.00005]	0.00978 [0.00005]	0.0008 [0.00005]	0.00052 [0.00005]	0.00039 [0.00005] B	0.00054 [0.00005] QN
SW6020A	Zinc	mg/L	6	-	0.00516 [0.0005] B	0.201 [0.0005]	0.141 [0.0005]	0.00989 [0.0005]	0.01 [0.0005]	0.00331 [0.0005] B	0.00734 [0.0005] QN
SW7470A	Mercury	mg/L	0.00052	-	ND [0.00005]	0.00005 [0.00005] J	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]
SW8015C	Ethylene glycol	mg/L	40	-	-	-	-	-	-	ND [2]	-
SW8015C	Propylene glycol	mg/L	-	-	-		-	- ID [0,00000]	-	ND [2]	-
	PCB-1016 (Aroclor 1016)	mg/L	0.0005	-	-	ND [0.0002] QL	-	ND [0.00002]	-	ND [0.00002]	-
	PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	-	ND [0.0004] QL ND [0.0002] QL	-	ND [0.00001]	-	ND [0.00001] ND [0.000002]	-
	PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242)	mg/L mg/L	0.0005	-	-	ND [0.0002] QL	-	ND [0.00002] ND [0.00002]	-	ND [0.000002]	
	PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	-	ND [0.0002] QL	-	ND [0.000002]	-	ND [0.000002]	-
	PCB-1254 (Aroclor 1254)	mg/L	0.0005		-	ND [0.0002] QL	-	0.0000094 [0.000002] J	-	0.0000045 [0.00002] J	<u> </u>
	PCB-1260 (Aroclor 1260)	mg/L	0.0005		-	ND [0.0002] QL	-	ND [0.000002]	-	0.0000015 [0.000002] J, QN	-
	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	-	-	-	-	-	-	-
	PCB-1268 (Aroclor 1268)	mg/L	0.0005	-	-	-	-	-	-	-	-
	1,1,1,2-Tetrachloroethane	mg/L	0.0057	-	-	-	-	-	-	ND [0.0002]	-
	1,1,1-Trichloroethane	mg/L	8	- 1	-	-	-	-	-	ND [0.0002]	-
<u>. </u>	, ,		-				μ	μ	P	- []	

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	14MW03 16NEC-14MW03-WGF K160958101F ³ K1609581 8/15/16 WG ALGK Primary	14MW04 16NEC-14MW04-WG K160958102 K1609581 8/15/16 WG ALGK Primary	14MW04 16NEC-14MW04-WGF K160958102F ³ K1609581 8/15/16 WG ALGK Primary	14MW05 16NEC-14MW05-WG K160958103 K1609581 8/15/16 WG ALGK Primary	14MW05 16NEC-14MW05-WGF K160958103F ³ K1609581 8/15/16 WG ALGK Primary	14MW06 16NEC-14MW06-WG K160943404 K1609434 8/13/16 WG ALGK Primary	14MW06 16NEC-14MW06-WGF K160943404F ³ K1609434 8/13/16 WG ALGK Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,1,2-Trichloroethane	mg/L	0.00041	-	-	-	-	-	-	ND [0.0004]	-
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,1-Dichloroethene	mg/L	0.28	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,1-Dichloropropene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-
SW8260C SW8260C	1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	mg/L	- 0.0000075	-	-	-	-	-	-	ND [0.0004] ND [0.0005]	-
SW8260C SW8260C	1,2,4-Trichlorobenzene	mg/L mg/L	0.000075	-	-	-	-	-		ND [0.0003]	-
SW8260C	1,2,4-Trimethylbenzene	mg/L	0.004	-	-	-	-	-	-	ND [0.0003]	-
SW8260C	1,2-Dibromo-3-chloropropane	mg/L	-	-	-	-	-	-	-	ND [0.0008]	-
SW8260C	1,2-Dibromoethane	mg/L	0.000075	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,2-Dichlorobenzene	mg/L	0.3	-	-	-	-	-	-	ND [0.0002]	
SW8260C	1,2-Dichloroethane	mg/L	0.0017	-	-	-	-	-	-	ND [0.00015]	-
SW8260C	1,2-Dichloropropane	mg/L	0.0044	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,3,5-Trimethylbenzene	mg/L	0.12	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,3-Dichlorobenzene	mg/L	0.3	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	1,3-Dichloropropane	mg/L	-	-	-	-	-	-	-	ND [0.0003]	-
SW8260C	1,4-Dichlorobenzene	mg/L	0.0048	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	2,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	2-Butanone	mg/L	5.6	-	-	-	-	-	-	ND [0.004]	-
SW8260C	2-Chlorotoluene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	2-Hexanone	mg/L	0.038	-	-	-	-	-	-	ND [0.01]	-
SW8260C SW8260C	4-Chlorotoluene	mg/L	-	-	-	-	-	-	-	ND [0.0002] ND [0.0002]	-
SW8260C SW8260C	4-Isopropyltoluene 4-Methyl-2-pentanone	mg/L mg/L	- 6.3	-	-			-		ND [0.002] ND [0.01]	-
SW8260C	Acetone	mg/L	14	-	-	-		-	-	ND [0.01]	-
SW8260C	Benzene	mg/L	0.0046	0.005	-	0.00013 [0.0001] J, QH	-	ND [0.0001]	-	ND [0.001]	-
SW8260C	Bromobenzene	mg/L	0.062	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Bromochloromethane	mg/L	-	-	-	-	-	-	-	ND [0.0002]	
SW8260C	Bromodichloromethane	mg/L	0.0013	-	-	-	-	-	-	ND [0.0003]	-
SW8260C	Bromoform	mg/L	0.033	-	-	-	-	-	-	ND [0.0005]	-
SW8260C	Bromomethane	mg/L	0.0075	-	-	-	-	-	-	ND [0.0003]	-
SW8260C	Carbon disulfide	mg/L	0.81	-	-	-	-	-	-	0.00007 [0.0002] J, B, QH, QL	-
SW8260C	Carbon tetrachloride	mg/L	0.0046	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Chlorobenzene	mg/L	0.078	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Chloroethane	mg/L	21	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Chloroform	mg/L	0.0022	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Chloromethane	mg/L	0.19	-	-	-	-	-	-	ND [0.0002] QL	-
	cis-1,2-Dichloroethene	mg/L	0.036	-	-	-	-	-	-	ND [0.0002]	-
	cis-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	ND [0.0002]	-
	Dibromochloromethane Dibromomethane	mg/L mg/L	0.0087 0.0083	-	-	-	-	-	-	ND [0.0005] ND [0.0005]	-
SW8260C SW8260C	Dichlorodifluoromethane	mg/L	0.0083	-	-	-	-	-	-	ND [0.0003] ND [0.0002] QL	-
SW8260C SW8260C	Ethylbenzene	mg/L	0.2	0.7	-	ND [0.0001]	-	0.00021 [0.0001] J, B, QH	-	ND [0.0002] QL ND [0.0001]	
SW8260C	Hexachlorobutadiene	mg/L	0.0013	-	-	-	-	-	-	ND [0.0003]	
SW8260C	Isopropylbenzene	mg/L	0.45	-	-	-	-	-	-	ND [0.0002]	_
SW8260C	Methylene chloride	mg/L	0.11	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Methyl-tert-butyl ether (MTBE)	mg/L	0.14	-	-	-	-	-	-	ND [0.0003]	-
SW8260C	Naphthalene	mg/L	0.0017	-	-	-	-	-	-	0.00034 [0.0003] J, QH, QN	-
SW8260C	n-Butylbenzene	mg/L	1	-	-	-	-	-	-	ND [0.0001]	-
	n-Propylbenzene	mg/L	0.66	-	-	-	-	-	-	ND [0.0002]	-
<u></u>			0.00							[0.0002]	

		_		Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	14MW03 16NEC-14MW03-WGF K160958101F ³ K1609581 8/15/16 WG ALGK Primary	14MW04 16NEC-14MW04-WG K160958102 K1609581 8/15/16 WG ALGK Primary	14MW04 16NEC-14MW04-WGF K160958102F ³ K1609581 8/15/16 WG ALGK Primary	14MW05 16NEC-14MW05-WG K160958103 K1609581 8/15/16 WG ALGK Primary	14MW05 16NEC-14MW05-WGF K160958103F ³ K1609581 8/15/16 WG ALGK Primary	14MW06 16NEC-14MW06-WG K160943404 K1609434 8/13/16 WG ALGK Primary	14MW06 16NEC-14MW06-WGF K160943404F ³ K1609434 8/13/16 WG ALGK Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
SW8260C	o-Xylene	mg/L	0.193	-	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-
SW8260C	sec-Butylbenzene	mg/L	2	-	-	-	-	-	-	ND [0.0001]	-
SW8260C	Styrene	mg/L	1.2	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	tert-Butylbenzene	mg/L	0.69	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Toluene	mg/L	1.1	-	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-
SW8260C	trans-1,2-Dichloroethene	mg/L	0.36	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	-	-	-	-	-	ND [0.0001]	-
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	-	-	-	-	-	ND [0.0002]	-
SW8260C	Vinyl chloride	mg/L	0.00019	-	-	-	-	-	-	ND [0.0001]	-
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	-	ND [0.0002]	-	0.00018 [0.0002] J, B, QH	-	ND [0.0002]	-

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

⁴ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

chromium are considered background chromium(III) in the absence of an

bold = Analytical results exceed the 2016 ADEC evaluation criteria. Analytical results exceed the SSCL.

Italics Nondetect results with LODs exceeding 2016 ADEC evaluation

criteria; nondetect result LODs did not exceed SSCLs

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group SSCL - site-specific cleanup level

WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

						14MW06		14MW07		17MW1	
				Location ID	14MW06	16NEC-14MW06-WG-9F	14MW07 16NEC-14MW07-WG	16NEC-14MW07-WGF	17MW1 16NEC-17MW1-WG	16NEC-17MW1-WGF	20MW-1
				Sample ID Lab Sample ID	16NEC-14MW06-WG-9 K160943405	K160943405F ³	K160943409	K160943409F ³	K160943412	K160943412F ³	16NEC-20MW-1-WG K160943413
				SDG	K1609434	K1609434	K1609434	K1609434	K1609434	K1609434	K1609434
				Sample Date	8/13/16	8/13/16	8/13/16	8/13/16	8/14/16	8/14/16	8/14/16
				Matrix	WG	WG	WG	WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
				QA/QC	Duplicate	Duplicate	Primary	Primary	Primary	Primary	Primary
			2016 ADEC		•	·	-	,	-		-
Method	Analyte	Units	Evaluation	SSCL ²							
	-		Criteria ¹								
8270SIM	1-Methylnaphthalene	mg/L	0.011	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	2-Methylnaphthalene	mg/L	0.036	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Acenaphthene	mg/L	0.53	-	ND [0.00005] QN	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Acenaphthylene	mg/L	0.26	-	0.000013 [0.000005] J	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Anthracene	mg/L	0.043	-	ND [0.00005]	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Benzo(a)anthracene	mg/L	0.00012	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.000005]	-	0.000003 [0.000005] J
8270SIM	Benzo(a)pyrene	mg/L	0.000034	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Benzo(b)fluoranthene	mg/L	0.00034	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Benzo(g,h,i)perylene	mg/L	0.00026	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Benzo(k)fluoranthene	mg/L	0.0008	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
	Chrysene	mg/L	0.002	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Dibenzo(a,h)anthracene	mg/L	0.000034	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Fluoranthene	mg/L	0.26	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]
8270SIM	Fluorene	mg/L	0.29	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	ND [0.000005]	-	ND [0.00005]	-	ND [0.00005]	-	ND [0.000005]
8270SIM 8270SIM	Naphthalene	mg/L	0.0017 0.17	-	0.000033 [0.000005] B, QN ND [0.000005]	-	0.0000061 [0.000005] J, B	-	0.0000076 [0.00005] J, B ND [0.00005]	-	0.0000054 [0.00005] J, B ND [0.00005]
8270SIM 8270SIM	Phenanthrene	mg/L	0.17	-	ND [0.00005]	-	ND [0.00005]	-		-	ND [0.00005] ND [0.00001]
A2320B	Pyrene Alkalinity, Total	mg/L mg/L	0.12	-	138 [6]	-	ND [0.00001] 11.7 [2]	-	ND [0.00001] 10 [2]	-	21 [6] B
AZ3200 AK101	Gasoline Range Organics	mg/L	2.2	1.3	0.011 [0.025] J	-	ND [0.025]	-	ND [0.025]	-	ND [0.025]
AK101 AK102	Diesel Range Organics	mg/L	1.5	1.5	1.4 [0.02] QL	-	0.12 [0.021] J, B, QL	-	0.092 [0.021] J, B, QL	-	0.09 [0.021] J, B, QL
AK102 AK103	Residual Range Organics	mg/L	1.0	1.1	0.47 [0.05] B, QL	-	0.093 [0.052] J, B, QL	-	0.13 [0.052] J, B, QL	-	0.13 [0.052] J, B, QL
E300.0	Sulfate	mg/L	-	-	15.2 [0.04]	-	12.7 [0.04]	-	16.9 [0.04]	-	19.6 [0.04]
RSK175	Ethane	mg/L	-	-	ND [0.00024]	-	ND [0.00024]	<u> </u>	ND [0.00024]	-	ND [0.00024]
RSK175	Ethene	mg/L	-	-	ND [0.00022]	-	ND [0.00022]	-	ND [0.00022]	-	ND [0.00022]
RSK175	Methane	mg/L	-	-	0.0093 [0.00063]	<u>-</u>	ND [0.00063]	-	ND [0.00063]	-	ND [0.00063]
SW6020A	Arsenic	mg/L	0.00052	0.01	0.00197 [0.00025]	0.00197 [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]
SW6020A	Barium	mg/L	3.8	-	0.0562 [0.000025]	0.0566 [0.000025]	0.00711 [0.000025]	0.00661 [0.000025]	0.0124 [0.000025]	0.0116 [0.000025]	0.0163 [0.000025]
SW6020A	Cadmium	mg/L	0.0092	-	0.000183 [0.00002]	0.000049 [0.00002] QN	0.000046 [0.00002]	0.00004 [0.00002]	0.000061 [0.00002]	0.000067 [0.00002]	0.000241 [0.00002]
SW6020A	Chromium⁴	mg/L	22	-	0.00016 [0.00005] J, B	0.00017 [0.00005] J, B, QN	0.00045 [0.00005] B	0.00024 [0.00005] B	0.00025 [0.00005] B	0.00021 [0.00005] B	0.00053 [0.00005] B
	Lead	mg/L	0.015	0.015	0.000817 [0.00001]	0.000208 [0.00001] B, QN	0.000338 [0.00001]	0.000052 [0.00001] B	0.00025 [0.00001]	0.000045 [0.00001] B	0.000866 [0.00001]
SW6020A	Manganese	mg/L	-	-	-	1.26 [0.000013]	-	0.0359 [0.000013]	-	0.00156 [0.000013] B	-
SW6020A	Nickel	mg/L	0.392	-	0.00166 [0.00005] B	0.0018 [0.00005] B	0.0181 [0.00005]	0.0182 [0.00005]	0.0008 [0.00005] B	0.0023 [0.00005] B	0.00114 [0.00005] B
SW6020A	Selenium	mg/L	0.1	-	0.0005 [0.001] J	0.0005 [0.001] J, QN	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]
SW6020A	Silver	mg/L	0.094	-	0.000014 [0.00001] J	0.000004 [0.00001] J, QN	ND [0.00001]	ND [0.00001]	ND [0.00001]	ND [0.00001]	0.000003 [0.00001] J
SW6020A	Vanadium	mg/L	0.0864	-	0.00037 [0.00005] B	0.00035 [0.00005] B, QN	0.00016 [0.00005] J, B	0.00003 [0.00005] J, B	0.00017 [0.00005] J, B	0.00005 [0.00005] J, B	0.00037 [0.00005] B
SW6020A	Zinc	mg/L	6	-	0.00301 [0.0005] B	0.00412 [0.0005] B, QN	0.00384 [0.0005] B	0.00394 [0.0005] B	0.0135 [0.0005]	0.014 [0.0005]	0.0187 [0.0005]
SW7470A	Mercury	mg/L	0.00052	-	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]
SW8015C	Ethylene glycol	mg/L	40	-	ND [2]	-	-	-	-	-	-
SW8015C	Propylene glycol	mg/L	-	-	ND [2]	-	-	-		-	-
	PCB-1016 (Aroclor 1016)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.000021]	-	ND [0.000021]
	PCB-1221 (Aroclor 1221)	mg/L	0.0005	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.000011]	-	ND [0.000011]
SW8082A	PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.000021]	-	ND [0.000021]
SW8082A	PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.000021]	-	ND [0.000021]
SW8082A SW8082A	PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	ND [0.00002] 0.0000059 [0.00002] J	-	ND [0.00002] ND [0.00002]	-	ND [0.000021] ND [0.000021]	-	ND [0.000021] ND [0.000021]
	PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	mg/L mg/L	0.0005	-	0.0000059 [0.000002] J 0.0000026 [0.000002] J, QN	-	ND [0.000002]	-	ND [0.0000021]	-	0.0000023 [0.0000021] J, QN
SW8082A SW8082A	PCB-1260 (Aroclor 1260) PCB-1262 (Aroclor 1262)	mg/L	0.0005	-		-	- U.UUUUU2]	-		-	
SW8082A SW8082A	PCB-1262 (Aroclor 1262) PCB-1268 (Aroclor 1268)	mg/L	0.0005	-		-	-	-	-	-	-
SW8062A SW8260C	1,1,1,2-Tetrachloroethane	mg/L	0.0005	-	ND [0.0002]	-	-	-	-	-	
SW8260C	1,1,1-Trichloroethane	mg/L	8	_	ND [0.0002]		-	-		-	-
	.,.,.		, ,			ļ					

						4.4808/00		4 484/07		4700/0/4	
				Location ID	14MW06	14MW06 16NEC-14MW06-WG-9F	14MW07	14MW07 16NEC-14MW07-WGF	17MW1	17MW1 16NEC-17MW1-WGF	20MW-1
				Sample ID	16NEC-14MW06-WG-9 K160943405	K160943405F ³	16NEC-14MW07-WG K160943409	K160943409F ³	16NEC-17MW1-WG K160943412	K160943412F ³	16NEC-20MW-1-WG K160943413
				Lab Sample ID SDG	K160943405 K1609434	K1609434	K160943409	K1609434	K160943412 K1609434	K1609434	K1609434
				Sample Date	8/13/16	8/13/16	8/13/16	8/13/16	8/14/16	8/14/16	8/14/16
				Matrix	WG	WG	WG	WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
				QA/QC	Duplicate	Duplicate	Primary	Primary	Primary	Primary	Primary
			2016 ADEC								
Method	Analyte	Units	Evaluation	SSCL ²							
			Criteria ¹								
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	ND [0.0002]	-	-	-	-	-	-
	1,1,2-Trichloroethane	mg/L	0.00041	-	ND [0.0004]	-	-	-	-	-	-
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,1-Dichloroethene	mg/L	0.28	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,1-Dichloropropene	mg/L	-	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,2,3-Trichlorobenzene	mg/L	- 0.0000075	-	ND [0.0004]	-	-	-	-	-	-
SW8260C SW8260C	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/L	0.0000075 0.004	-	<u>ND [0.0005]</u> ND [0.0003]	-	-	-	-	- -	-
	1,2,4-Trimethylbenzene	mg/L mg/L	0.004	-	ND [0.0003] ND [0.0002]	-		-	-	-	-
SW8260C SW8260C	1,2-Dibromo-3-chloropropane	mg/L		-	ND [0.0002]	-	-	-	-	-	
	1,2-Dibromoethane	mg/L	0.000075	-	ND [0.0008] ND [0.0002]	-	-	-	-	-	-
	1,2-Dichlorobenzene	mg/L	0.3	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,2-Dichloroethane	mg/L	0.0017	-	ND [0.00015]	-	-	-	-	-	-
SW8260C	1,2-Dichloropropane	mg/L	0.0044	-	ND [0.0002]	-	-	-	-	-	-
	1,3,5-Trimethylbenzene	mg/L	0.12	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,3-Dichlorobenzene	mg/L	0.3	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	1,3-Dichloropropane	mg/L	-	-	ND [0.0003]	-	-	-	-	-	-
	1,4-Dichlorobenzene	mg/L	0.0048	-	ND [0.0002]	-	-	-	-	-	-
	2,2-Dichloropropane	mg/L	-	-	ND [0.0002]	-	-	-	-	-	-
	2-Butanone	mg/L	5.6	-	ND [0.004]	-	-	-	-	-	-
	2-Chlorotoluene	mg/L	-	-	ND [0.0002]	-	-	-	-	-	-
	2-Hexanone	mg/L	0.038	-	ND [0.01]	-	-	-	-	-	-
	4-Chlorotoluene	mg/L	-	-	ND [0.0002]	-	-	-	-	-	-
	4-Isopropyltoluene 4-Methyl-2-pentanone	mg/L mg/L	- 6.3	-	ND [0.0002] ND [0.01]	-	-	-		-	-
	Acetone	mg/L	14	-	ND [0.01]	-	-	-		-	
	Benzene	mg/L	0.0046	0.005	ND [0.0001]	_	ND [0.0001]	_	ND [0.0001]	_	ND [0.0001]
	Bromobenzene	mg/L	0.062	-	ND [0.0002]	-	-	-	-	-	-
	Bromochloromethane	mg/L	-	-	ND [0.0002]	-	-	-	-	-	
SW8260C	Bromodichloromethane	mg/L	0.0013	-	ND [0.0003]	-	_	-	-	-	-
	Bromoform	mg/L	0.033	-	ND [0.0005]	-	-	-	-	-	-
	Bromomethane	mg/L	0.0075	-	ND [0.0003]	-	-	-	-	-	-
	Carbon disulfide	mg/L	0.81	-	0.00007 [0.0002] J, B, QL	-	-	-	-	-	_
	Carbon tetrachloride	mg/L	0.0046	-	ND [0.0002]	-	-	-	-	-	-
	Chlorobenzene	mg/L	0.078	-	ND [0.0002]	-	-	-	-	-	-
	Chloroethane	mg/L	21	-	ND [0.0002]	-	-	-	-	-	-
	Chloroform	mg/L	0.0022	-	ND [0.0002]	-	-	-	-	-	-
	Chloromethane	mg/L	0.19	-	ND [0.0002] QL	-	-	-	-	-	-
	cis-1,2-Dichloroethene cis-1,3-Dichloropropene	mg/L	0.036 0.0047	-	ND [0.0002] ND [0.0002]	-	-	-	-	-	-
	Dibromochloromethane	mg/L mg/L	0.0047	-	ND [0.0002] ND [0.0005]	-		-	-	-	-
	Dibromomethane	mg/L	0.0087	-	ND [0.0005]	-				-	
	Dichlorodifluoromethane	mg/L	0.0003		ND [0.0003] ND [0.0002] QL	-	-	-		-	
	Ethylbenzene	mg/L	0.015	0.7	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]
	Hexachlorobutadiene	mg/L	0.0014	-	ND [0.0003]	-	-	-	-	-	-
	Isopropylbenzene	mg/L	0.45	-	ND [0.0002]	-	-	-	-	-	-
	Methylene chloride	mg/L	0.11	-	ND [0.0002]	-	-	-	-	-	-
	Methyl-tert-butyl ether (MTBE)	mg/L	0.14	-	ND [0.0003]	-	-	-	-	-	-
SW8260C	Naphthalene	mg/L	0.0017	-	0.00025 [0.0003] J, QN	-	-	-	-	-	-
	n-Butylbenzene	mg/L	1	-	ND [0.0001]	-	-	-	-	-	-
SW8260C	n-Propylbenzene	mg/L	0.66	-	ND [0.0002]	-	-	-	-	-	-

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	14MW06 16NEC-14MW06-WG-9 K160943405 K1609434 8/13/16 WG ALGK Duplicate	14MW06 16NEC-14MW06-WG-9F K160943405F ³ K1609434 8/13/16 WG ALGK Duplicate	14MW07 16NEC-14MW07-WG K160943409 K1609434 8/13/16 WG ALGK Primary	14MW07 16NEC-14MW07-WGF K160943409F ³ K1609434 8/13/16 WG ALGK Primary	17MW1 16NEC-17MW1-WG K160943412 K1609434 8/14/16 WG ALGK Primary	17MW1 16NEC-17MW1-WGF K160943412F ³ K1609434 8/14/16 WG ALGK Primary	20MW-1 16NEC-20MW-1-WG K160943413 K1609434 8/14/16 WG ALGK Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
SW8260C	o-Xylene	mg/L	0.193	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]
SW8260C	sec-Butylbenzene	mg/L	2	-	ND [0.0001]	-	-	-	-	-	-
SW8260C	Styrene	mg/L	1.2	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	tert-Butylbenzene	mg/L	0.69	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	Toluene	mg/L	1.1	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]
SW8260C	trans-1,2-Dichloroethene	mg/L	0.36	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	ND [0.0001]	-	-	-	-	-	-
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	ND [0.0002]	-	-	-	-	-	-
SW8260C	Vinyl chloride	mg/L	0.00019	-	ND [0.0001]	-	-	-	-	-	-
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

⁴ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

chromium are considered background chromium(III) in the absence of an

bold = Analytical results exceed the 2016 ADEC evaluation criteria. Analytical results exceed the SSCL.

Italics Nondetect results with LODs exceeding 2016 ADEC evaluation criteria; nondetect result LODs did not exceed SSCLs

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group

SSCL - site-specific cleanup level

WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	20MW-1 16NEC-20MW-1-WGF K160943413F ³ K1609434 8/14/16 WG ALGK	22MW2 16NEC-22MW2-WG K160943414 K1609434 8/14/16 WG ALGK	22MW2 16NEC-22MW2-WGF K160943414F ³ K1609434 8/14/16 WG ALGK	26MW1 16NEC-26MW1-WG K160943411 K1609434 8/14/16 WG ALGK	26MW1 16NEC-26MW1-WGF K160943411F ³ K1609434 8/14/16 WG ALGK	MW10-1 16NEC-MW10-1-WG K160943403 K1609434 8/13/16 WG ALGK	MW10-1 16NEC-MW10-1-WGF K160943403F ³ K1609434 8/13/16 WG ALGK	MW10-1-DVW 16NEC-MW10-1-DVW K160943406 K1609434 8/13/16 WG ALGK
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	QA/QC SSCL ²	Primary	Primary	Primary	Primary	Primary	MS/MSD	MS/MSD	Equipment Blank
8270SIM	1-Methylnaphthalene	mg/L	0.011	-	-	ND [0.000051]	-	ND [0.000005]	-	0.0000048 [0.000005] J	-	ND [0.000005]
8270SIM	2-Methylnaphthalene	mg/L	0.036	-	-	ND [0.000051]	-	ND [0.000005]	-	0.0000049 [0.000005] J, B	-	0.0000042 [0.000005] J
8270SIM	Acenaphthene	mg/L	0.53	-	-	ND [0.000051]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Acenaphthylene	mg/L	0.26	-	-	ND [0.000051]	-	ND [0.000005]	-	0.0000084 [0.000005] J	-	ND [0.00005]
8270SIM	Anthracene	mg/L	0.043	-	-	ND [0.000051]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
	Benzo(a)anthracene	mg/L	0.00012	-	-	ND [0.000051]	-	0.0000028 [0.000005] J	-	ND [0.000005]	-	ND [0.00005]
	Benzo(a)pyrene	mg/L	0.000034	-	-	ND [0.000051]	-	ND [0.000005]	-	ND [0.000005] ND [0.000005]	-	ND [0.00005]
8270SIM 8270SIM	Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/L mg/L	0.00034 0.00026	-	-	ND [0.0000051] ND [0.0000051]	-	ND [0.000005] ND [0.000005]	-	0.0000096 [0.00005] J	- -	ND [0.000005] ND [0.000005]
	Benzo(g,n,)pergiene Benzo(k)fluoranthene	mg/L	0.00020	-		ND [0.0000051]	-	ND [0.000005]		ND [0.000005]	-	ND [0.000005]
8270SIM	Chrysene	mg/L	0.002	-	-	ND [0.0000051]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]
8270SIM	Dibenzo(a,h)anthracene	mg/L	0.000034	-		ND [0.0000051]	-	ND [0.000005]	-	0.000006 [0.000005] J	-	ND [0.000005]
8270SIM	Fluoranthene	mg/L	0.26	-	-	ND [0.000021]	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]
8270SIM	Fluorene	mg/L	0.29	-	-	ND [0.000051]	-	ND [0.000005]	-	0.0000048 [0.000005] J	-	ND [0.000005]
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	-	ND [0.0000051]	-	ND [0.000005]	-	0.0000081 [0.000005] J	-	ND [0.000005]
8270SIM	Naphthalene	mg/L	0.0017	-	-	ND [0.0000051]	-	0.0000045 [0.000005] J, B	-	0.0000046 [0.000005] J, B	-	0.000011 [0.000005] J
8270SIM	Phenanthrene	mg/L	0.17	-	-	ND [0.0000051]	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.00005]
8270SIM	Pyrene	mg/L	0.12	-	-	ND [0.000011]	-	ND [0.00001]	-	0.0000085 [0.00001] J	-	ND [0.00001]
A2320B	Alkalinity, Total	mg/L	-	-	-	7 [2]	-	6.3 [2]	-	17 [2]	-	-
AK101	Gasoline Range Organics	mg/L	2.2	1.3	-	ND [0.025]	-	ND [0.025]	-	ND [0.025]	-	ND [0.025]
	Diesel Range Organics	mg/L	1.5	1.5	-	0.1 [0.021] J, B, QL	-	0.11 [0.022] J, B, QL	-	0.49 [0.021] J, B, QL	-	0.08 [0.021] J, B, QL
AK103	Residual Range Organics	mg/L	1.1	1.1	-	0.36 [0.052] J, B, QL	-	0.79 [0.053] B, QL	-	0.32 [0.053] J, B, QL	-	0.11 [0.051] J, B, QL
E300.0	Sulfate	mg/L	-	-	-	15.4 [0.04]	-	13.6 [0.04]	-	7.37 [0.04]	-	-
	Ethane	mg/L	-	-	-	ND [0.00024]	-	ND [0.00024]	-	ND [0.00024]	-	-
RSK175	Ethene	mg/L	-	-	-	ND [0.00022]	-	ND [0.00022]	-	ND [0.00022]	-	-
RSK175	Methane	mg/L	-	-	-	ND [0.00063]	-	ND [0.00063]	-	ND [0.00063]	-	-
SW6020A	Arsenic	mg/L	0.00052	0.01	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	ND [0.00025]	-
SW6020A	Barium	mg/L	3.8	-	0.0148 [0.000025]	0.00558 [0.000025]	0.00533 [0.000025]	0.00494 [0.000025]	0.00426 [0.000025]	0.0184 [0.000025]	0.0156 [0.000025]	-
	Cadmium Chromium⁴	mg/L	0.0092	-	0.000231 [0.00002]	0.000032 [0.00002]	0.000033 [0.00002]	0.000033 [0.00002]	0.00003 [0.00002]	0.000085 [0.00002]	0.000079 [0.00002] 0.00026 [0.00005] B	-
	Lead	mg/L	22 0.015	- 0.015	0.00033 [0.00005] B 0.000248 [0.00001]	0.00033 [0.00005] B 0.000085 [0.00001] B	0.0003 [0.00005] B 0.000026 [0.00001] B	0.00132 [0.00005] 0.000474 [0.00001]	0.00031 [0.00005] B 0.000025 [0.00001] B	0.0009 [0.00005] B 0.000558 [0.00001]	0.00026 [0.00005] B 0.000042 [0.00001] B	
	Manganese	mg/L mg/L			0.000248 [0.00001]		0.000535 [0.000013] B		0.000754 [0.000013] B	-	0.000042 [0.00001] B 0.00344 [0.000013]	-
	Nickel	mg/L	- 0.392	-	0.00167 [0.000013]	0.00028 [0.00005] B	0.001 [0.00005] B	- 0.00112 [0.00005] B	0.00126 [0.000013] B	0.00135 [0.00005] B	0.00344 [0.000013] 0.00122 [0.00005] B	-
	Selenium	mg/L	0.392		ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	-
	Silver	mg/L	0.094	-	ND [0.00001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	0.000007 [0.00001] J	ND [0.0001]	-
SW6020A	Vanadium	mg/L	0.0864	-		0.00006 [0.00005] J, B		0.00021 [0.00005] B	0.00006 [0.00005] J, B	0.00086 [0.00005]	0.00008 [0.00005] J, B	- 1
SW6020A	Zinc	mg/L	6	-	0.0188 [0.0005]	0.00196 [0.0005] B	0.00343 [0.0005] B	0.00218 [0.0005] B	0.00273 [0.0005] B	0.0112 [0.0005]	0.0117 [0.0005]	-
	Mercury	mg/L	0.00052	-	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	-
	Ethylene glycol	mg/L	40	-	-					ND [2]		ND [2]
SW8015C	Propylene glycol	mg/L	-	-	-	-	-	-	-	ND [2]	-	ND [2]
	PCB-1016 (Aroclor 1016)	mg/L	0.0005	-	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.00002]
SW8082A	PCB-1221 (Aroclor 1221)	mg/L	0.0005	-	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.00001]
	PCB-1232 (Aroclor 1232)	mg/L	0.0005		-	ND [0.00002]	-	ND [0.000002]	-	ND [0.000002]		ND [0.00002]
	PCB-1242 (Aroclor 1242)	mg/L	0.0005	-	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.00002]
	PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.00002]
	PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.00002]
	PCB-1260 (Aroclor 1260)	mg/L	0.0005	-	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.00002]
	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	-	-	-	-	-	-	-	-
	PCB-1268 (Aroclor 1268)	mg/L	0.0005	-	-	-	-	-	-	-	-	-
	1,1,1,2-Tetrachloroethane	mg/L	0.0057	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,1,1-Trichloroethane	mg/L	8	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]

			2016 ADEC	Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	20MW-1 16NEC-20MW-1-WGF K160943413F ³ K1609434 8/14/16 WG ALGK Primary	22MW2 16NEC-22MW2-WG K160943414 K1609434 8/14/16 WG ALGK Primary	22MW2 16NEC-22MW2-WGF K160943414F ³ K1609434 8/14/16 WG ALGK Primary	26MW1 16NEC-26MW1-WG K160943411 K1609434 8/14/16 WG ALGK Primary	26MW1 16NEC-26MW1-WGF K160943411F ³ K1609434 8/14/16 WG ALGK Primary	MW10-1 16NEC-MW10-1-WG K160943403 K1609434 8/13/16 WG ALGK MS/MSD	MW10-1 16NEC-MW10-1-WGF K160943403F ³ K1609434 8/13/16 WG ALGK MS/MSD	MW10-1-DVW 16NEC-MW10-1-DVW K160943406 K1609434 8/13/16 WG ALGK Equipment Blank
Method	Analyte	Units	Evaluation Criteria ¹	SSCL ²								
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,1,2-Trichloroethane	mg/L	0.00041	-	-	-	-	-	-	ND [0.0004]	-	ND [0.0004]
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,1-Dichloroethene	mg/L	0.28	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,1-Dichloropropene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,2,3-Trichlorobenzene	mg/L	-	-	-	-	-	-	-	ND [0.0004]	-	ND [0.0004]
SW8260C	1,2,3-Trichloropropane	mg/L	0.0000075	-	-	-	-	-	-	ND [0.0005]	-	ND [0.0005]
SW8260C	1,2,4-Trichlorobenzene	mg/L	0.004	-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	1,2,4-Trimethylbenzene	mg/L	0.015	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C SW8260C	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	mg/L	- 0.000075	-	-	-	-	-	-	ND [0.0008] ND [0.0002]	-	ND [0.0008] ND [0.0002]
SW8260C SW8260C	1,2-Dichlorobenzene	mg/L mg/L	0.000075	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,2-Dichloroethane	mg/L	0.0017	-	-	-	-	-		ND [0.0002]		ND [0.0002]
SW8260C	1,2-Dichloropropane	mg/L	0.0044			-	-	-		ND [0.0002]		ND [0.0002]
SW8260C	1,3,5-Trimethylbenzene	mg/L	0.12	-	-	-		-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,3-Dichlorobenzene	mg/L	0.3	-	-	-			-	ND [0.0002]	-	ND [0.0002]
SW8260C	1,3-Dichloropropane	mg/L	-	-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	1,4-Dichlorobenzene	mg/L	0.0048	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	2,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	2-Butanone	mg/L	5.6	- 1	-	-	-	-	-	ND [0.004]	-	ND [0.004]
SW8260C	2-Chlorotoluene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	2-Hexanone	mg/L	0.038	-	-	-	-	-	-	ND [0.01]	-	ND [0.01]
SW8260C	4-Chlorotoluene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	4-Isopropyltoluene	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	4-Methyl-2-pentanone	mg/L	6.3	-	-	-	-	-	-	ND [0.01]	-	ND [0.01]
SW8260C	Acetone	mg/L	14	-	-	-	-	-	-	ND [0.01]	-	ND [0.01]
SW8260C	Benzene	mg/L	0.0046	0.005	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]
SW8260C	Bromobenzene	mg/L	0.062	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
	Bromochloromethane	mg/L	-	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
	Bromodichloromethane	mg/L		-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	Bromoform	mg/L	0.033	-	-	-	-	-	-	ND [0.0005]	-	ND [0.0005]
SW8260C	Bromomethane	mg/L	0.0075	-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	Carbon disulfide	mg/L	0.81	-	-	-	-	-	-	ND [0.0002] QL	-	ND [0.0002] QL
SW8260C	Carbon tetrachloride	mg/L	0.0046	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Chlorobenzene	mg/L	0.078	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Chloroethane	mg/L	21	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C SW8260C	Chloroform Chloromethane	mg/L mg/L	0.0022	-	-	-	-	-	-	ND [0.0002] ND [0.0002] QL	-	0.0001 [0.0002] J, B ND [0.0002] QL
	cis-1,2-Dichloroethene	mg/L	0.036	-	-	-	-	-	-	ND [0.0002] QL ND [0.0002]	-	ND [0.0002] QL ND [0.0002]
	cis-1,3-Dichloropropene	mg/L	0.0047	ł ł	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C SW8260C	Dibromochloromethane	mg/L	0.0047	-		-	-	-		ND [0.0002] ND [0.0005]	-	ND [0.0002]
SW8260C	Dibromomethane	mg/L	0.0083	-	-	-	-	-	-	ND [0.0005]	-	ND [0.0005]
SW8260C	Dichlorodifluoromethane	mg/L	0.0003		-	-	-			ND [0.0002] QL	-	ND [0.0002] QL
SW8260C	Ethylbenzene	mg/L	0.015	0.7	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	0.00006 [0.0001] J
SW8260C	Hexachlorobutadiene	mg/L	0.0014	-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	Isopropylbenzene	mg/L	0.45		-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Methylene chloride	mg/L	0.11	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Methyl-tert-butyl ether (MTBE)	mg/L	0.14	- 1	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	Naphthalene	mg/L	0.0017	-	-	-	-	-	-	ND [0.0003]	-	ND [0.0003]
SW8260C	n-Butylbenzene	mg/L	1	-	-	-	-	-	- 1	ND [0.0001]	-	ND [0.0001]
SW8260C	n-Propylbenzene	mg/L	0.66	-		_		_		ND [0.0002]		ND [0.0002]

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	20MW-1 16NEC-20MW-1-WGF K160943413F ³ K1609434 8/14/16 WG ALGK Primary	22MW2 16NEC-22MW2-WG K160943414 K1609434 8/14/16 WG ALGK Primary	22MW2 16NEC-22MW2-WGF K160943414F ³ K1609434 8/14/16 WG ALGK Primary	26MW1 16NEC-26MW1-WG K160943411 K1609434 8/14/16 WG ALGK Primary	26MW1 16NEC-26MW1-WGF K160943411F ³ K1609434 8/14/16 WG ALGK Primary	MW10-1 16NEC-MW10-1-WG K160943403 K1609434 8/13/16 WG ALGK MS/MSD	MW10-1 16NEC-MW10-1-WGF K160943403F ³ K1609434 8/13/16 WG ALGK MS/MSD	MW10-1-DVW 16NEC-MW10-1-DVW K160943406 K1609434 8/13/16 WG ALGK Equipment Blank
Method	Analida	Unito	2016 ADEC Evaluation									
Method	Analyte	Units	Criteria ¹	SSCL ²								
SW8260C	o-Xylene	mg/L	0.193	-	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-	0.00013 [0.0002] J
SW8260C	sec-Butylbenzene	mg/L	2	-	-	-	-	-	-	ND [0.0001]	-	ND [0.0001]
SW8260C	Styrene	mg/L	1.2	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	tert-Butylbenzene	mg/L	0.69	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	-	-	-	-	-	0.0092 [0.0002] B	-	0.0024 [0.0002]
SW8260C	Toluene	mg/L	1.1	-	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-	0.00056 [0.0001]
SW8260C	trans-1,2-Dichloroethene	mg/L	0.36	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	-	-	-	-	-	ND [0.0001]	-	ND [0.0001]
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	-	-	-	-	-	ND [0.0002]	-	ND [0.0002]
SW8260C	Vinyl chloride	mg/L	0.00019	-	-	-	-	-	-	ND [0.0001]	-	ND [0.0001]
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-	0.00028 [0.0002] J

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

 $^{\rm 4}\,$ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

chromium are considered background chromium(III) in the absence of an

bold = Analytical results exceed the 2016 ADEC evaluation criteria. Analytical results exceed the SSCL.

Italics Nondetect results with LODs exceeding 2016 ADEC evaluation

criteria; nondetect result LODs did not exceed SSCLs

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group

SSCL - site-specific cleanup level WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

				Location ID Sample ID	MW10-1-DVW 16NEC-MW10-1-DVWF	MW88-1 16NEC-MW88-1-WG	MW88-1 16NEC-MW88-1-WGF	MW88-10 16NEC-MW88-10-WG	MW88-10 16NEC-MW88-10-WGF	MW88-3 16NEC-MW88-3-WG	MW88-3 16NEC-MW88-3-WGF
				Lab Sample ID	K160943406F ³	K160943407	K160943407F ³	K160943410	K160943410F ³	K160958104	K160958104F ³
				SDG	K1609434	K1609434	K1609434	K1609434	K1609434	K1609581	K1609581
				Sample Date	8/13/16	8/13/16	8/13/16	8/13/16	8/13/16	8/16/16	8/16/16
				Matrix	WG	WG	WG	WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK	ALGK
				QA/QC	Equipment Blank	Primary	Primary	Primary	Primary	Primary	Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
8270SIM	1-Methylnaphthalene	mg/L	0.011	-	-	ND [0.000005]	-	ND [0.00005]	-	0.000012 [0.000005] J	-
8270SIM	2-Methylnaphthalene	mg/L	0.036	-	-	ND [0.000005]	-	ND [0.00005]	-	0.0000058 [0.000005] J, B	-
	Acenaphthene	mg/L	0.53	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Acenaphthylene	mg/L	0.26	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Anthracene	mg/L	0.043	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Benzo(a)anthracene	mg/L	0.00012	-	-	ND [0.000005]	-	0.0000027 [0.000005] J	-	ND [0.000005]	-
	Benzo(a)pyrene	mg/L	0.000034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Benzo(b)fluoranthene	mg/L	0.00034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	
	Benzo(g,h,i)perylene	mg/L	0.00026	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Benzo(k)fluoranthene	mg/L	0.0008	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Chrysene	mg/L	0.002	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Dibenzo(a,h)anthracene	mg/L	0.000034	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Fluoranthene	mg/L	0.26	-	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	
	Fluorene	mg/L	0.29	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Naphthalene	mg/L	0.0017	-	-	0.0000071 [0.000005] J, B	-	0.0000088 [0.000005] J, B	-	0.000035 [0.000005] B	-
8270SIM	Phenanthrene	mg/L	0.17	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
	Pyrene	mg/L	0.12	-	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.00001]	-
	Alkalinity, Total	mg/L	-	-	-	13 [2]	-	17.7 [2]	-	16 [2]	-
	Gasoline Range Organics	mg/L	2.2	1.3	-	ND [0.025]	-	ND [0.025]	-	ND [0.025]	-
	Diesel Range Organics	mg/L	1.5	1.5	-	0.52 [0.021] J, B, QL	-	0.3 [0.021] J, B, QL	-	0.49 [0.021] J, B, QL	-
	Residual Range Organics	mg/L	1.1	1.1	-	0.23 [0.053] J, B, QL	-	0.16 [0.051] J, B, QL	-	0.15 [0.053] J, B, QL	-
	Sulfate	mg/L	-	-	-	14.1 [0.04]	-	17.8 [0.04]	-	14.8 [0.04]	-
	Ethane	mg/L	-	-	-	ND [0.00024]	-	ND [0.00024]	-	-	-
	Ethene	mg/L	-	-	-	ND [0.00022]	-	ND [0.00022]	-	-	-
	Methane	mg/L	-	-	-	0.00043 [0.00063] J	-	0.0036 [0.00063]	-	ND [0.00063]	-
	Arsenic	mg/L	0.00052	0.01	ND [0.00025]	ND [0.00025]	ND [0.00025]	0.00022 [0.00025] J	0.00023 [0.00025] J	ND [0.00025]	ND [0.00025]
	Barium	mg/L	3.8	-	0.000045 [0.000025] J	0.00557 [0.000025]	0.00569 [0.000025]	0.0161 [0.000025]	0.0141 [0.000025]	0.014 [0.000025]	0.013 [0.000025]
	Cadmium	mg/L	0.0092	-	ND [0.00002]	0.000126 [0.00002]	0.000129 [0.00002]	0.000357 [0.00002]	0.000276 [0.00002]	0.000121 [0.00002]	0.000126 [0.00002]
	Chromium ⁴	mg/L	22	-	0.00012 [0.00005] J		0.00018 [0.00005] J, B		0.0002 [0.00005] B	0.00042 [0.00005] B	0.00028 [0.00005] B
	Lead	mg/L	0.015	0.015	0.000021 [0.00001]	0.000301 [0.00001]	0.000075 [0.00001] B	0.00143 [0.00001]	0.000227 [0.00001]	0.000383 [0.00001]	0.000158 [0.00001] B
	Manganese	mg/L	-	-	0.000173 [0.000013]	-	0.291 [0.000013]	-	0.203 [0.000013]	-	0.364 [0.000013]
	Nickel	mg/L	0.392	-	0.00034 [0.00005]	0.00091 [0.00005] B	0.00104 [0.00005] B	0.00242 [0.00005] B	0.00312 [0.00005] B	0.00217 [0.00005] B	0.00246 [0.00005] B
	Selenium	mg/L	0.1	-	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]	ND [0.001]
SW6020A	Silver	mg/L	0.094	-	ND [0.00001]	0.000013 [0.00001] J	0.000005 [0.00001] J	0.000012 [0.00001] J	ND [0.00001]	0.000008 [0.00001] J	ND [0.00001]
SW6020A	Vanadium	mg/L	0.0864	-	0.00004 [0.00005] J	0.00006 [0.00005] J, B	0.00005 [0.00005] J, B	0.00035 [0.00005] B	0.00007 [0.00005] J, B	0.00032 [0.00005] B	0.00012 [0.00005] J, B
	Zinc	mg/L	6	-	0.00063 [0.0005]	0.00962 [0.0005]	0.0124 [0.0005]	0.0159 [0.0005]	0.0164 [0.0005]	0.0179 [0.0005]	0.0185 [0.0005]
	Mercury	mg/L	0.00052	-	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]	ND [0.00005]
	Ethylene glycol	mg/L	40	-	-	-	-	-	-	-	-
	Propylene glycol	mg/L	-	-	-	-	-	-	-	-	-
	PCB-1016 (Aroclor 1016)	mg/L	0.0005	-	-	ND [0.000002]	-	ND [0.00002]	-	ND [0.000021]	-
	PCB-1221 (Aroclor 1221)	mg/L	0.0005	-	-	ND [0.00001]	-	ND [0.00001]	-	ND [0.000011]	-
	PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	-	ND [0.000002]	-	ND [0.000002]	-	ND [0.000021]	-
	PCB-1242 (Aroclor 1242)	mg/L	0.0005	-	-	ND [0.000002]	-	ND [0.00002]	-	ND [0.000021]	-
	PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	-	ND [0.000002]	-	ND [0.00002]	-	ND [0.000021]	-
	PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	-	ND [0.000005]	-	ND [0.000002]	-	ND [0.000027]	-
	PCB-1260 (Aroclor 1260)	mg/L	0.0005	-	-	0.0000023 [0.000002] J	-	0.0000027 [0.000002] J, QN	-	ND [0.000021]	-
	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	-	-	-	-	-	-	-
	PCB-1268 (Aroclor 1268)	mg/L	0.0005	-	-	-	-	-	-	-	-
	1,1,1,2-Tetrachloroethane	mg/L	0.0057	-	-	-	-	-	-	-	-
SW8260C	1,1,1-Trichloroethane	mg/L	8	-	-	-	-	-	-	-	-

			2016 ADEC	Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	MW10-1-DVW 16NEC-MW10-1-DVWF K160943406F ³ K1609434 8/13/16 WG ALGK Equipment Blank	MW88-1 16NEC-MW88-1-WG K160943407 K1609434 8/13/16 WG ALGK Primary	MW88-1 16NEC-MW88-1-WGF K160943407F ³ K1609434 8/13/16 WG ALGK Primary	MW88-10 16NEC-MW88-10-WG K160943410 K1609434 8/13/16 WG ALGK Primary	MW88-10 16NEC-MW88-10-WGF K160943410F ³ K1609434 8/13/16 WG ALGK Primary	MW88-3 16NEC-MW88-3-WG K160958104 K1609581 8/16/16 WG ALGK Primary	MW88-3 16NEC-MW88-3-WGF K160958104F ³ K1609581 8/16/16 WG ALGK Primary
Method	Analyte	Units	Evaluation Criteria ¹	SSCL ²							
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	-	-	-	-	-	-	-
SW8260C	1,1,2-Trichloroethane	mg/L	0.00041	-	-	-	-	-	-	-	-
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	-	-	-	-	-	-	-
SW8260C	1,1-Dichloroethene	mg/L	0.28	-	-	-	-	-	-	-	-
SW8260C	1,1-Dichloropropene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	1,2,3-Trichlorobenzene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	1,2,3-Trichloropropane	mg/L	0.0000075	-	-	-	-	-	-	-	-
SW8260C	1,2,4-Trichlorobenzene	mg/L	0.004	-	-	-	-	-	-	-	-
SW8260C SW8260C	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	mg/L mg/L	0.015	-	-	-	-	-	-	-	-
SW8260C SW8260C	1,2-Dibromoethane	mg/L	- 0.000075				-	-	-	-	-
SW8260C SW8260C	1,2-Dichlorobenzene	mg/L	0.000075	-	-	-	-	-	-	-	-
SW8260C	1,2-Dichloroethane	mg/L	0.0017	-	-	-	-		-	_	-
SW8260C	1,2-Dichloropropane	mg/L	0.0044	-	-	-	-	<u>-</u>	-	-	-
SW8260C	1,3,5-Trimethylbenzene	mg/L	0.12	-	-	-	-	<u> </u>	-	-	-
SW8260C	1,3-Dichlorobenzene	mg/L	0.3	-	-	-	-	-	-	-	-
SW8260C	1,3-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	1,4-Dichlorobenzene	mg/L	0.0048	-	-	-	-	-	-	-	-
SW8260C	2,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	2-Butanone	mg/L	5.6	-	-	-	-	-	-	-	-
SW8260C	2-Chlorotoluene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	2-Hexanone	mg/L	0.038	-	-	-	-	-	-	-	-
SW8260C	4-Chlorotoluene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	4-Isopropyltoluene	mg/L	-	-	-	-	-	-	-	-	-
SW8260C	4-Methyl-2-pentanone	mg/L	6.3	-	-	-	-	-	-	-	-
SW8260C SW8260C	Acetone Benzene	mg/L mg/L	14 0.0046	- 0.005	-	- ND [0.0001]	-	- ND [0.0001]	-	- ND [0.0001]	-
SW8260C SW8260C	Bromobenzene	mg/L	0.0046	0.005	-	ן 100.00 באו -	-		-	ND [0:0001]	-
SW8260C	Bromochloromethane	mg/L	-	-	-	-	-	-	-	_	-
	Bromodichloromethane	mg/L	0.0013	-	-	-	-	-	-	-	-
	Bromoform	mg/L	0.033	-	-	-	-	-	-	-	-
	Bromomethane	mg/L	0.0075	-	-	-	-	-	-	-	-
	Carbon disulfide	mg/L	0.81	-	-	-	-	-	-	-	-
	Carbon tetrachloride	mg/L	0.0046	-	-	-	-	-	-	-	-
SW8260C	Chlorobenzene	mg/L	0.078	-	-	-	-	-	-	-	-
	Chloroethane	mg/L	21	-	-	-	-	-	-	-	-
	Chloroform	mg/L	0.0022	-	-	-	-	-	-	-	-
SW8260C	Chloromethane	mg/L	0.19	-	-	-	-	-	-	-	-
	cis-1,2-Dichloroethene	mg/L	0.036	-	-	-	-	-	-	-	-
	cis-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	-	-
	Dibromochloromethane	mg/L	0.0087	-	-	-	-	-	-	-	-
SW8260C SW8260C	Dibromomethane Dichlorodifluoromethane	mg/L	0.0083	-	-	-	-	-	-	-	-
SW8260C SW8260C	Ethylbenzene	mg/L	0.2	- 0.7	-	- ND [0.0001]	-	- ND [0.0001]	-	- 0.00005 [0.0001] J, B, QH	-
SW8260C SW8260C	Hexachlorobutadiene	mg/L mg/L	0.015	-	-	ן ו טטטן שא -	-	ט.000 [] -	-		-
SW8260C SW8260C	Isopropylbenzene	mg/L	0.0014	-	-	-	-	-	-	-	-
SW8260C	Methylene chloride	mg/L	0.43		-	-	-		-	-	-
	Methyl-tert-butyl ether (MTBE)	mg/L	0.14	-	-	-	-	-	-	-	-
SW8260C	Naphthalene	mg/L	0.0017	-	-	-	-	-	-	-	-
	n-Butylbenzene	mg/L	1	-	-	-	-	-	-	-	-
	n-Propylbenzene	mg/L	0.66	-	-	-	-	-	-	-	-

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	MW10-1-DVW 16NEC-MW10-1-DVWF K160943406F ³ K1609434 8/13/16 WG ALGK Equipment Blank	MW88-1 16NEC-MW88-1-WG K160943407 K1609434 8/13/16 WG ALGK Primary	MW88-1 16NEC-MW88-1-WGF K160943407F ³ K1609434 8/13/16 WG ALGK Primary	MW88-10 16NEC-MW88-10-WG K160943410 K1609434 8/13/16 WG ALGK Primary	MW88-10 16NEC-MW88-10-WGF K160943410F ³ K1609434 8/13/16 WG ALGK Primary	MW88-3 16NEC-MW88-3-WG K160958104 K1609581 8/16/16 WG ALGK Primary	MW88-3 16NEC-MW88-3-WGF K160958104F ³ K1609581 8/16/16 WG ALGK Primary
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²							
SW8260C	o-Xylene	mg/L	0.193	-	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-
SW8260C	sec-Butylbenzene	mg/L	2	-	-	-	-	-	-	-	-
SW8260C	Styrene	mg/L	1.2	-	-	-	-	-	-	-	-
SW8260C	tert-Butylbenzene	mg/L	0.69	-	-	-	-	-	-	-	-
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	-	-	-	-	-	-	-
	Toluene	mg/L	1.1	-	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-
	trans-1,2-Dichloroethene	mg/L	0.36	-	-	-	-	-	-	-	-
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	-	-	-	-	-	-	-
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	-	-	-	-	-	-	-
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	-	-	-	-	-	-	-
SW8260C	Vinyl chloride	mg/L	0.00019	-	-	-	-	-	-	-	-
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

⁴ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

chromium are considered background chromium(III) in the absence of an

bold = Analytical results exceed the 2016 ADEC evaluation criteria. Analytical results exceed the SSCL.

Italics Nondetect results with LODs exceeding 2016 ADEC evaluation criteria; nondetect result LODs did not exceed SSCLs

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group

SSCL - site-specific cleanup level

WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

· · · · · · · · · · · · · · · · · · ·									
				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	TB02 16NEC-TB02 K160943401 K1609434 8/13/16 WG ALGK	TB03 16NEC-TB03 K160943402 K1609434 8/14/16 WG ALGK	TB04 16NEC-TB04 K160958110 K1609581 8/15/16 WG ALGK	TB05 16NEC-TB05 K160958111 K1609581 8/16/16 WG ALGK	TBW01 16NEC-TBW01 K160931704 K1609317 8/10/16 WG ALGK
				QA/QC	Trip Blank				
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²					
8270SIM	1-Methylnaphthalene	mg/L	0.011	-	-	-	-	-	-
8270SIM	2-Methylnaphthalene	mg/L	0.036	-	-	-	-	-	-
	Acenaphthene	mg/L	0.53	-	-	-	-	-	-
	Acenaphthylene	mg/L	0.26	-	-	-	-	-	-
	Anthracene	mg/L	0.043	-	-	-	-	-	-
	Benzo(a)anthracene	mg/L	0.00012	-	-	-	-	-	-
	Benzo(a)pyrene	mg/L	0.000034	-	-	-	-	-	-
	Benzo(b)fluoranthene	mg/L	0.00034	-	-	-	-	-	-
	Benzo(g,h,i)perylene	mg/L	0.00026	-	-	-	-	-	-
	Benzo(k)fluoranthene	mg/L	0.0008	-	-	-	-	-	-
	Chrysene	mg/L	0.002	-	-	-	-	-	-
	Dibenzo(a,h)anthracene	mg/L	0.000034	-	-	-	-	-	-
	Fluoranthene	mg/L	0.26	-	-	-	-	-	-
	Fluorene	mg/L	0.29	-	-	-	-	-	-
	Indeno(1,2,3-cd)pyrene	mg/L	0.00019	-	-	-	-	-	-
	Naphthalene	mg/L	0.0017	-	-	-	-	-	-
	Phenanthrene	mg/L	0.17	-	-	-	-	-	-
	Pyrene	mg/L	0.12	-	-	-	-	-	-
	Alkalinity, Total	mg/L	-	-	-	-	-	-	-
	Gasoline Range Organics	mg/L	2.2	1.3	ND [0.025]				
	Diesel Range Organics	mg/L	1.5	1.5	-	-	-	-	-
	Residual Range Organics	mg/L	1.1	1.1	-	-	-	-	-
	Sulfate	mg/L	-	-	-	-	-	-	-
	Ethane	mg/L	-	-	ND [0.00024]	ND [0.00024]	-	-	-
	Ethene	mg/L	-	-	ND [0.00022]	ND [0.00022]	-	-	-
	Methane	mg/L	-	-	ND [0.00063]				
	Arsenic	mg/L	0.00052	0.01	-	-	-	-	-
SW6020A	Barium	mg/L	3.8	-	-	-	-	-	-
	Cadmium	mg/L	0.0092	-	-	-	-	-	-
	Chromium⁴	mg/L	22	-	-	-	-	-	-
SW6020A	Lead	mg/L	0.015	0.015	-	-	-	-	-
	Manganese	mg/L	-	-	-	-	-	-	-
	Nickel	mg/L	0.392	-	-	-	-	-	-
	Selenium	mg/L	0.1	-	-	-	-	-	-
	Silver	mg/L	0.094	-	-	-	-	-	-
	Vanadium	mg/L	0.0864	-	-	-	-	-	-
	Zinc	mg/L	6	-	-	-	-	-	-
	Mercury	mg/L	0.00052	-	-	-	-	-	-
	Ethylene glycol	mg/L	40	-	-	-	-	-	-
	Propylene glycol	mg/L	-	-	-	-	-	-	-
	PCB-1016 (Aroclor 1016)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1221 (Aroclor 1221)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1242 (Aroclor 1242)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1260 (Aroclor 1260)	mg/L	0.0005	-	-	-	-	-	-
	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	-	-	-	-	-
SW8082A	PCB-1268 (Aroclor 1268)	mg/L	0.0005	-	-	-	-	-	-
SW8260C	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	mg/L mg/L	0.0057 8	-	ND [0.0002] ND [0.0002]	-	-	-	-

				Location ID	TDOD	TDO2	TD04	TDOS	
				Sample ID	-	TB03 16NEC-TB03	TB04 16NEC-TB04	TB05 16NEC-TB05	TBW01 16NEC-TBW01
				Lab Sample ID		K160943402	K160958110	K160958111	K160931704
				SDG		K1609434	K1609581	K1609581	K1609317
				Sample Date		8/14/16	8/15/16	8/16/16	8/10/16
				Matrix		WG	WG	WG	WG
				Laboratory	ALGK	ALGK	ALGK	ALGK	ALGK
				QA/QC	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
			2016 ADEC		1				
Method	Analyte	Units	Evaluation	SSCL ²					
			Criteria ¹						
SW8260C	1,1,2,2-Tetrachloroethane	mg/L	0.00076	-	ND [0.0002]	-	-	-	-
SW8260C	1,1,2-Trichloroethane	mg/L	0.00041	-	ND [0.0004]	-	-	-	-
SW8260C	1,1-Dichloroethane	mg/L	0.028	-	ND [0.0002]	-	-	-	-
SW8260C	1,1-Dichloroethene	mg/L	0.28	-	ND [0.0002]	-	-	-	-
SW8260C	1,1-Dichloropropene	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	1,2,3-Trichlorobenzene	mg/L	-	-	ND [0.0004]	-	-	-	-
SW8260C	1,2,3-Trichloropropane	mg/L	0.0000075	-	ND [0.0005]	-	-	-	-
SW8260C	1,2,4-Trichlorobenzene	mg/L	0.004	-	ND [0.0003]	-	-	-	-
SW8260C	1,2,4-Trimethylbenzene	mg/L	0.015	-	ND [0.0002]	-	-	-	-
SW8260C SW8260C	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	mg/L	- 0.000075	-	ND [0.0008] ND [0.0002]	-	-	-	-
SW8260C SW8260C	1,2-Dichlorobenzene	mg/L mg/L	0.000075	-	ND [0.0002]	-	-	-	-
SW8260C SW8260C	1,2-Dichloroethane	mg/L	0.0017		ND [0.0002] ND [0.00015]	-	-	-	
SW8260C	1,2-Dichloropropane	mg/L	0.0044	-	ND [0.0002]				
SW8260C	1,3,5-Trimethylbenzene	mg/L	0.12	-	ND [0.0002]				
SW8260C	1,3-Dichlorobenzene	mg/L	0.12	-	ND [0.0002]	_	_	_	_
SW8260C	1,3-Dichloropropane	mg/L	-	-	ND [0.0003]	_	_	_	-
SW8260C	1,4-Dichlorobenzene	mg/L	0.0048	-	ND [0.0002]	-	-	-	-
SW8260C	2,2-Dichloropropane	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	2-Butanone	mg/L	5.6	-	ND [0.004]	-	-	-	-
SW8260C	2-Chlorotoluene	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	2-Hexanone	mg/L	0.038	-	ND [0.01]	-	-	-	-
SW8260C	4-Chlorotoluene	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	4-Isopropyltoluene	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	4-Methyl-2-pentanone	mg/L	6.3	-	ND [0.01]	-	-	-	-
SW8260C	Acetone	mg/L	14	-	ND [0.01]	-	-	-	-
SW8260C	Benzene	mg/L	0.0046	0.005	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]
SW8260C	Bromobenzene	mg/L	0.062	-	ND [0.0002]	-	-	-	-
SW8260C	Bromochloromethane	mg/L	-	-	ND [0.0002]	-	-	-	-
SW8260C	Bromodichloromethane	mg/L	0.0013	-	ND [0.0003]	-	-	-	-
SW8260C	Bromoform	mg/L	0.033	-	ND [0.0005]	-	-	-	-
SW8260C	Bromomethane	mg/L	0.0075	-	ND [0.0003]	-	-	-	-
SW8260C	Carbon disulfide	mg/L	0.81	-	0.00009 [0.0002] J, B, QL	-	-	-	-
SW8260C SW8260C	Carbon tetrachloride Chlorobenzene	mg/L	0.0046 0.078	-	ND [0.0002] ND [0.0002]	-	-	-	-
SW8260C SW8260C	Chloroethane	mg/L mg/L	21	-	ND [0.0002]	-		-	
SW8260C SW8260C	Chloroform	mg/L	0.0022	-	0.00009 [0.0002] J	-	-	-	-
SW8260C	Chloromethane	mg/L	0.19	-	ND [0.0002] QL	-	-	-	-
SW8260C	cis-1,2-Dichloroethene	mg/L	0.036	-	ND [0.0002] QL	-	-	-	
	cis-1,3-Dichloropropene	mg/L	0.0047	-	ND [0.0002]	-	-	-	-
SW8260C	Dibromochloromethane	mg/L	0.0087	-	ND [0.0005]	-	-	-	-
SW8260C	Dibromomethane	mg/L	0.0083	-	ND [0.0005]	-	-	-	-
SW8260C	Dichlorodifluoromethane	mg/L	0.2	-	ND [0.0002] QL	-	-	-	-
SW8260C	Ethylbenzene	mg/L	0.015	0.7	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]	ND [0.0001]
SW8260C	Hexachlorobutadiene	mg/L	0.0014	-	ND [0.0003]		-	-	
SW8260C	Isopropylbenzene	mg/L	0.45	-	ND [0.0002]	-	-	-	-
SW8260C	Methylene chloride	mg/L	0.11	-	0.00014 [0.0002] J, B	-	-	-	-
SW8260C	Methyl-tert-butyl ether (MTBE)	mg/L	0.14	-	ND [0.0003]	-	-	-	-
SW8260C	Naphthalene	mg/L	0.0017	-	ND [0.0003]	-	-	-	-
SW8260C	n-Butylbenzene	mg/L	1	-	ND [0.0001]	-	-	-	-
SW8260C	n-Propylbenzene	mg/L	0.66	-	ND [0.0002]	-	-	-	-

				Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory QA/QC	TB02 16NEC-TB02 K160943401 K1609434 8/13/16 WG ALGK Trip Blank	TB03 16NEC-TB03 K160943402 K1609434 8/14/16 WG ALGK Trip Blank	TB04 16NEC-TB04 K160958110 K1609581 8/15/16 WG ALGK Trip Blank	TB05 16NEC-TB05 K160958111 K1609581 8/16/16 WG ALGK Trip Blank	TBW01 16NEC-TBW01 K160931704 K1609317 8/10/16 WG ALGK Trip Blank
Method	Analyte	Units	2016 ADEC Evaluation Criteria ¹	SSCL ²					
SW8260C	o-Xylene	mg/L	0.193	-	ND [0.0002]				
SW8260C	sec-Butylbenzene	mg/L	2	-	ND [0.0002]	-	-	-	-
SW8260C	Styrene	mg/L	1.2	-	ND [0.0002]	-	-	-	-
SW8260C	tert-Butylbenzene	mg/L	0.69	-	ND [0.0002]	-	-	-	-
SW8260C	Tetrachloroethene (PCE)	mg/L	0.041	-	ND [0.0002]	-	-	-	-
SW8260C	Toluene	mg/L	1.1	-	ND [0.0001]				
SW8260C	trans-1,2-Dichloroethene	mg/L	0.36	-	ND [0.0002]	-	-	-	-
SW8260C	trans-1,3-Dichloropropene	mg/L	0.0047	-	ND [0.0002]	-	-	-	-
SW8260C	Trichloroethene (TCE)	mg/L	0.0028	-	ND [0.0001]	-	-	-	-
SW8260C	Trichlorofluoromethane	mg/L	5.2	-	ND [0.0002]	-	-	-	-
SW8260C	Vinyl chloride	mg/L	0.00019	-	ND [0.0001]	-	-	-	-
SW8260C	Xylene, Isomers m & p	mg/L	0.193	-	ND [0.0002]				

Notes:

¹ 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016)

² Decision Document (USACE 2009)

³ Column with Lab Sample ID ending in "F" contains the filtered metals (dissolved) results

⁴ In accordance 18 AAC 75 ADEC Table C, samples results reported for total

bold = Analytical results exceed the 2016 ADEC evaluation criteria.

Nondetect results with LODs exceeding 2016 ADEC evaluation criteria; nondetect result LODs did not exceed SSCLs Italics

Analytical results exceed the SSCL.

[] - limit of detection

- - not provided or not analyzed

ALGK - ALS Environmental, Kelso, WA.

mg/L - milligram per liter

MS/MSD - matrix spike/ matrix spike duplicate

SDG - Sample Delivery Group

SSCL - site-specific cleanup level

WG - Groundwater

For Data Qualifiers, refer to Section 1.1 of the DQA.

ATTACHMENT B-2 Qualified Sample Results Tables

Sample ID	Lab Sample ID	Method	Analyte	QC Batch	Result (mg/L)	LOD (mg/L)	Qualifier	Sample Date	Extraction Date	Analyzed Date
16NEC-14MW06-WG	K160943404	AK102	DRO	KWG1607446	1.4	0.021	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG-9	K160943405	AK102	DRO	KWG1607446	1.4	0.02	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW07-WG	K160943409	AK102	DRO	KWG1607446	0.12	0.021	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-17MW1-WG	K160943412	AK102	DRO	KWG1607446	0.092	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-20MW-1-WG	K160943413	AK102	DRO	KWG1607446	0.09	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-22MW2-WG	K160943414	AK102	DRO	KWG1607446	0.1	0.021	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-26MW1-WG	K160943411	AK102	DRO	KWG1607446	0.11	0.022	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW10-1-WG	K160943403	AK102	DRO	KWG1607446	0.49	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW10-1-DVW	K160943406	AK102	DRO	KWG1607446	0.08	0.021	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-1-WG	K160943407	AK102	DRO	KWG1607446	0.52	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-10-WG	K160943410	AK102	DRO	KWG1607446	0.3	0.021	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW03-WG	K160958101	AK102	DRO	KWG1607446	0.99	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW04-WG	K160958102	AK102	DRO	KWG1607446	2.2	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW05-WG	K160958103	AK102	DRO	KWG1607446	3.2	0.021	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW88-3-WG	K160958104	AK102	DRO	KWG1607446	0.49	0.021	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG	K160943404	AK103	RRO	KWG1607446	0.55	0.051	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW06-WG-9	K160943405	AK103	RRO	KWG1607446	0.47	0.05	QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW07-WG	K160943409	AK103	RRO	KWG1607446	0.093	0.052	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-17MW1-WG	K160943412	AK103	RRO	KWG1607446	0.13	0.052	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-20MW-1-WG	K160943413	AK103	RRO	KWG1607446	0.13	0.052	J, B, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-22MW2-WG	K160943414	AK103	RRO	KWG1607446	0.36	0.052	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-26MW1-WG	K160943411	AK103	RRO	KWG1607446	0.79	0.053	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW10-1-WG	K160943403	AK103	RRO	KWG1607446	0.32	0.053	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW10-1-DVW	K160943406	AK103	RRO	KWG1607446	0.11	0.051	J, B, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-1-WG	K160943407	AK103	RRO	KWG1607446	0.23	0.053	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-MW88-10-WG	K160943410	AK103	RRO	KWG1607446	0.16	0.051	J, QL	8/13/2016	8/25/2016	10/6/2016
16NEC-14MW03-WG	K160958101	AK103	RRO	KWG1607446	0.16	0.053	J, QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW04-WG	K160958102	AK103	RRO	KWG1607446	0.61	0.052	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-14MW05-WG	K160958103	AK103	RRO	KWG1607446	0.61	0.052	QL	8/14/2016	8/25/2016	10/6/2016
16NEC-MW88-3-WG	K160958104	AK103	RRO	KWG1607446	0.15	0.053	J, QL	8/14/2016	8/25/2016	10/6/2016

Table B-2-1 Sample Results Qualified QL due to Hold Time Exceedance

Table B-2-2Sample Results Qualified due to Method Blank and Trip Blank Contamination

SDG	QC Batch	Method	Analyte	QC sample	MB/TB Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	Qualifier
K1609581	511210	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW03-WG	28	В
K1609434	511209	A2320B	Alkalinity, Total	Method Blank	6	16NEC-20MW-1-WG	21	В
K1609317	510534	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW02-WG	40	В
K1609317	510534	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW02-WG-9	40	В
K1609581	511210	A2320B	Alkalinity, Total	Method Blank	6	16NEC-14MW05-WG	47	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-14MW06-WG	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-14MW06-WG-9	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	Method Blank	0.00011	16NEC-TB02	0.00009	В
K1609434	KWG1607320	SW8260C	Methylene chloride	Method Blank	0.00011	16NEC-TB02	0.00014	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW01-WGF	0.00035	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW01-WG	0.00078	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW02-WGF	0.00034	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW02-WG	0.00053	В
K1609317	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW02-WG-9F	0.00035	В
K1609317	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-14MW02-WG-9	0.00051	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW05-WGF	0.00046	В
K1609434	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-22MW2-WGF	0.0003	В
K1609434	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-22MW2-WG	0.00033	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-MW88-3-WGF	0.00028	В
K1609581	269412	SW6020A	Chromium	Method Blank	0.0001	16NEC-MW88-3-WG	0.00042	В
K1609581	269412	SW6020A	Chromium (Dissolved)	Method Blank	0.0001	16NEC-14MW03-WGF	0.00065	В
K1609434	269412	SW6020A	Vanadium (Dissolved)	Method Blank	0.00003	16NEC-22MW2-WGF	0.00005	В
K1609434	269412	SW6020A	Vanadium	Method Blank	0.00003	16NEC-22MW2-WG	0.00006	В
K1609581	269412	SW6020A	Vanadium (Dissolved)	Method Blank	0.00003	16NEC-MW88-3-WGF	0.00012	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-14MW07-WG	0.12	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-17MW1-WG	0.092	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-20MW-1-WG	0.09	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-22MW2-WG	0.1	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-26MW1-WG	0.11	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-MW10-1-DVW	0.08	В
K1609434	KWG1607446	AK102	DRO	Method Blank	0.043	16NEC-MW88-10-WG	0.3	В
K1609581	KWG1607340	SW8082A	PCB-1260 (Aroclor 1260)	Method Blank	0.000063	16NEC-14MW03-WG	0.0000029	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW01-WG	0.12	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW02-WG	0.18	В
K1609317	KWG1607329	AK103	RRO	Method Blank	0.027	16NEC-14MW02-WG-9	0.17	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-14MW07-WG	0.093	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-17MW1-WG	0.13	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-20MW-1-WG	0.13	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW10-1-DVW	0.11	В

Table B-2-2Sample Results Qualified due to Method Blank and Trip Blank Contamination

SDG	QC Batch	Method	Analyte	QC sample	MB/TB Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	Qualifier
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-1-WG	0.23	В
K1609434	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-10-WG	0.16	В
K1609581	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-14MW03-WG	0.16	В
K1609581	KWG1607446	AK103	RRO	Method Blank	0.027	16NEC-MW88-3-WG	0.15	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	16NEC-TB02	0.00009	16NEC-14MW06-WG-9	0.00007	В
K1609434	KWG1607320	SW8260C	Carbon disulfide	16NEC-TB02	0.00009	16NEC-14MW06-WG	0.00007	В
K1609434	KWG1607320	SW8260C	Chloroform	16NEC-TB02	0.00009	16NEC-MW10-1-DVW	0.0001	В

SDG	Sample ID	Lab Sample ID	QC Batch	Method	Analyte	Percent Recovery	Result (mg/L)	LOD (mg/L)	LCL (%)	UCL (%)	Qualifier
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	1,2-Dichloroethane-d4	119	-	-	81	118	
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Naphthalene	-	0.00034	0.0003	-	-	J, QH
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	-	-	J, B, QH
K1609581	16NEC-14MW03-WG	K160958101	KWG1607370	SW8260C	Toluene-d8	115	-	-	89	112	
K1609581	16NEC-14MW03-WG	K160958101	KWG1607370	SW8260C	Ethylbenzene	-	0.00025	0.0001	-	-	J, QH
K1609581	16NEC-14MW04-WG	K160958102	KWG1607370	SW8260C	Toluene-d8	114	-	-	89	112	
K1609581	16NEC-14MW04-WG	K160958102	KWG1607370	SW8260C	Benzene	-	0.00013	0.0001	-	-	J, QH
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Toluene-d8	116	-	-	89	112	
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Xylene, Isomers m & p	-	0.00018	0.0002	-	-	J, QH
K1609581	16NEC-14MW05-WG	K160958103	KWG1607370	SW8260C	Ethylbenzene	-	0.00021	0.0001	-	-	J, QH
K1609581	16NEC-MW88-3-WG	K160958104	KWG1607370	SW8260C	Toluene-d8	114	-	-	89	112	
K1609581	16NEC-MW88-3-WG	K160958104	KWG1607370	SW8260C	Ethylbenzene	-	0.00005	0.0001	-	-	J, QH
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	Decachlorobiphenyl	22	-	-	40	135	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1260 (Aroclor 1260)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1254 (Aroclor 1254)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1248 (Aroclor 1248)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1242 (Aroclor 1242)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1232 (Aroclor 1232)	-	ND	0.0002	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1221 (Aroclor 1221)	-	ND	0.0004	-	-	QL
K1609581	16NEC-14MW04-WG	K160958102	KWG1607648	SW8082A	PCB-1016 (Aroclor 1016)	-	ND	0.0002	-	-	QL

Table B-2-3Sample Results Qualified due to Surrogate Accuracy

Table B-2-4
CCV Recoveries Less than True Value

SDG	Sample ID	Lab Sample ID	QC Batch	Method	Analyte	% Difference	Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	CCV	-	KWG1607320	SW8260C	Dichlorodifluoromethane	-25	-	-	-
K1609434	CCV	-	KWG1607320	SW8260C	Chloromethane	-22	-	-	-
K1609434	CCV	-	KWG1607320	SW8260C	Carbon disulfide	-23	-	-	-
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-TB02	K160943401	KWG1607320	SW8260C	Carbon disulfide	-	0.00009	0.0002	J, B, QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-WG	K160943403	KWG1607320	SW8260C	Carbon disulfide	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG	K160943404	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	J, B, QH, QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-14MW06-WG-9	K160943405	KWG1607320	SW8260C	Carbon disulfide	-	0.00007	0.0002	J, B, QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Dichlorodifluoromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Chloromethane	-	ND	0.0002	QL
K1609434	16NEC-MW10-1-DVW	K160943406	KWG1607320	SW8260C	Carbon disulfide	-	ND	0.0002	QL

Method	Analyte	Primary Sample ID	Primary Lab Sample ID	Duplicate Sample ID	Duplicate Lab Sample ID	Primary Result (mg/L)	Duplicate Result (mg/L)	RPD (%)	Qualifier
SW6020A	Silver (Total)	16NEC-14MW02-WG	K160931702	16NEC-14MW02-WG-9	K160931703	0.00001	0.000005	67	QN
SW6020A	Cadmium (Dissolved)	16NEC-14MW02-WGF	K160931702F	16NEC-14MW02-WG-9F	K160931703F	0.000018	0.000029	47	QN
SW6020A	Lead (Dissolved)	16NEC-14MW02-WGF	K160931702F	16NEC-14MW02-WG-9F	K160931703F	0.000054	0.000083	42	QN
8270SIM	Acenaphthene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.000017	ND [0.000005]	109	QN
8270SIM	Naphthalene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.00006	0.000033	58	QN
SW8260C	Naphthalene	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.00034	0.00025	31	QN
SW8082A	PCB-1260 (Aroclor 1260)	16NEC-14MW06-WG	K160943404	16NEC-14MW06-WG-9	K160943405	0.0000015	0.0000026	54	QN
SW6020A	Cadmium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00008	0.000049	48	QN
SW6020A	Chromium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00034	0.00017	67	QN
SW6020A	Lead (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.000649	0.000208	103	QN
SW6020A	Selenium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	ND [0.001]	0.0005	67	QN
SW6020A	Silver (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00001	0.000004	86	QN
SW6020A	Vanadium (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00054	0.00035	43	QN
SW6020A	Zinc (Dissolved)	16NEC-14MW06-WGF	K160943404F	16NEC-14MW06-WG-9F	K160943405F	0.00734	0.00412	56	QN

Table B-2-5Sample Results Qualified due to Field Duplicate Precision

[] - limit of detection

 Table B-2-6

 Nondetect Sample Results with LODs Greater than ADEC Criteria

SDG	Sample ID	Location ID	Lab Sample ID	Method	Analyte	2016 ADEC Evaluation Criteria ¹ (mg/L)	Result (mg/L)	LOD (mg/L)	DF
K1609434	16NEC-TB02	TB02	K160943401	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-TB02	TB02	K160943401	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-MW10-1-WG	MW10-1	K160943403	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-MW10-1-WG	MW10-1	K160943403	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-14MW06-WG	14MW06	K160943404	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-14MW06-WG	14MW06	K160943404	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-14MW06-WG-9	14MW06	K160943405	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-14MW06-WG-9	14MW06	K160943405	SW8260C	1,2,3-Trichloropropane	0.0000075	ND	0.0005	1
K1609434	16NEC-MW10-1-DVW	MW10-1-DVW	K160943406	SW8260C	1,2-Dibromoethane	0.000075	ND	0.0002	1
K1609434	16NEC-MW10-1-DVW	MW10-1-DVW	K160943406	SW8260C	1,2,3-Trichloropropane	0.000075	ND	0.0005	1

¹ Groundwater compared to 18 AAC 75 ADEC Table C. Groundwater Human Health Cleanup Level (ADEC 2016).

Table B-2-7Sample Results Qualified due to Dual Column Confirmation

SDG	Sample ID	Lab Sample ID	Method	Analyte	Primary	Confirmation	RPD	Qualifier
K1609434	16NEC-20MW-1-WG	K160943413	8082A	Aroclor 1260	0.0000023	0.0000035	41	QN
K1609434	16NEC-MW88-10-WG	K160943410	8082A	Aroclor 1260	0.0000027	0.0000044	48	QN
K1609581	16NEC-14MW03-WG	K160958101	8082A	Aroclor 1260	0.0000029	0.0000044	41	QN

SDG	Method	Analyte	Equipment Blank Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	8270SIM	2-Methylnaphthalene	0.0000042	16NEC-MW10-1-WG	0.0000049	0.000005	J, B
K1609581	8270SIM	2-Methylnaphthalene	0.0000042	16NEC-14MW03-WG	0.000015	0.0000056	J, B
K1609581	8270SIM	2-Methylnaphthalene	0.0000042	16NEC-14MW05-WG	0.000029	0.000005	В
K1609581	8270SIM	2-Methylnaphthalene	0.0000042	16NEC-MW88-3-WG	0.0000058	0.000005	J, B
K1609434	AK102	DRO	0.08	16NEC-14MW07-WG	0.12	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-17MW1-WG	0.092	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-20MW-1-WG	0.09	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-22MW2-WG	0.1	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-26MW1-WG	0.11	0.022	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-MW10-1-WG	0.49	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-MW88-10-WG	0.3	0.021	J, B, QL
K1609434	AK102	DRO	0.08	16NEC-MW88-1-WG	0.52	0.021	J,B, QL
K1609581	AK102	DRO	0.08	16NEC-MW88-3-WG	0.49	0.021	J, B, QL
K1609317	AK103	RRO	0.11	16NEC-14MW01-WG	0.12	0.051	J, B
K1609317	AK103	RRO	0.11	16NEC-14MW02-WG	0.18	0.053	J, B
K1609317	AK103	RRO	0.11	16NEC-14MW02-WG-9	0.17	0.053	J, B
K1609581	AK103	RRO	0.11	16NEC-14MW03-WG	0.16	0.053	J, B, QL
K1609581	AK103	RRO	0.11	16NEC-14MW04-WG	0.61	0.052	B, QL
K1609581	AK103	RRO	0.11	16NEC-14MW05-WG	0.61	0.052	B, QL
K1609434	AK103	RRO	0.11	16NEC-14MW06-WG	0.55	0.051	B, QL
K1609434	AK103	RRO	0.11	16NEC-14MW06-WG-9	0.47	0.05	B, QL
K1609434	AK103	RRO	0.11	16NEC-14MW07-WG	0.093	0.052	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-17MW1-WG	0.13	0.052	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-20MW-1-WG	0.13	0.052	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-22MW2-WG	0.36	0.052	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-26MW1-WG	0.79	0.053	B, QL
K1609434	AK103	RRO	0.11	16NEC-MW10-1-WG	0.32	0.053	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-MW88-10-WG	0.16	0.051	J, B, QL
K1609434	AK103	RRO	0.11	16NEC-MW88-1-WG	0.23	0.053	J, B, QL
K1609581	AK103	RRO	0.11	16NEC-MW88-3-WG	0.15	0.053	J, B, QL
K1609317	SW8260C	Ethylbenzene	0.00006	16NEC-14MW01-WG	0.0005	0.0001	В
K1609581	SW8260C	Ethylbenzene	0.00006	16NEC-14MW03-WG	0.00025	0.0001	J, B, QH
K1609581	SW8260C	Ethylbenzene	0.00006	16NEC-14MW05-WG	0.00021	0.0001	J,B, QH
K1609581	SW8260C	Ethylbenzene	0.00006	16NEC-MW88-3-WG	0.00005	0.0001	J, B, QH
K1609581	8270SIM	Naphthalene	0.000011	16NEC-14MW04-WG	0.000022	0.000005	В
K1609434	8270SIM	Naphthalene	0.000011	16NEC-14MW06-WG	0.00006	0.000005	B, Q
K1609434	8270SIM	Naphthalene	0.000011	16NEC-14MW06-WG-9	0.000033	0.000005	B, Q
K1609434	8270SIM	Naphthalene	0.000011	16NEC-14MW07-WG	0.0000061	0.000005	J, B
K1609434	8270SIM	Naphthalene	0.000011	16NEC-17MW1-WG	0.0000076	0.000005	J, B
K1609434	8270SIM	Naphthalene	0.000011	16NEC-20MW-1-WG	0.0000054	0.000005	J, B
K1609434	8270SIM	Naphthalene	0.000011	16NEC-26MW1-WG	0.0000045	0.000005	J, B
K1609434	8270SIM	Naphthalene	0.000011	16NEC-MW10-1-WG	0.0000046	0.000005	J, B

Table B-2-8Sample Results Qualified due to Equipment Blank Contamination

SDG	Method	Analyte	Equipment Blank Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	8270SIM	Naphthalene	0.000011	16NEC-MW88-10-WG	0.0000088	0.000005	J, B
K1609434	8270SIM	Naphthalene	0.000011	16NEC-MW88-1-WG	0.0000071	0.000005	J, B
K1609581	8270SIM	Naphthalene	0.000011	16NEC-MW88-3-WG	0.000035	0.000005	В
K1609434	SW8260C	Tetrachloroethene (PCE)	0.0024	16NEC-MW10-1-WG	0.0092	0.0002	В
K1609317	SW8260C	Xylene, Isomers m & p	0.00028	16NEC-14MW01-WG	0.00038	0.0002	J, B
K1609317	SW8260C	Xylene, Isomers m & p	0.00028	16NEC-14MW02-WG	0.0006	0.0002	В
K1609317	SW8260C	Xylene, Isomers m & p	0.00028	16NEC-14MW02-WG-9	0.00055	0.0002	В
K1609581	SW8260C	Xylene, Isomers m & p	0.00028	16NEC-14MW05-WG	0.00018	0.0002	J, B, QH
K1609317	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW01-WGF	0.00035	0.00005	В
K1609317	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW02-WGF	0.00034	0.00005	В
K1609317	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW02-WG-9F	0.00035	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-MW10-1-WGF	0.00026	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW06-WGF	0.00034	0.00005	B, Q
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW06-WG-9	0.00017	0.00005	J, B, Q
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-MW88-1-WGF	0.00018	0.00005	J, B
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW07-WGF	0.00024	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-MW88-10-WGF	0.0002	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-26MW1-WGF	0.00031	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-17MW1-WGF	0.00021	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-20MW-1-WGF	0.00033	0.00005	В
K1609434	SW6020A	Chromium (Dissolved)	0.00012	16NEC-22MW2-WGF	0.0003	0.00005	В
K1609581	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW03-WGF	0.00065	0.00005	В
K1609581	SW6020A	Chromium (Dissolved)	0.00012	16NEC-14MW05-WGF	0.00046	0.00005	В
K1609581	SW6020A	Chromium (Dissolved)	0.00012	16NEC-MW88-3-WGF	0.00028	0.00005	В
K1609317	SW6020A	Chromium (Total)	0.00012	16NEC-14MW01-WG	0.00078	0.00005	В
K1609317	SW6020A	Chromium (Total)	0.00012	16NEC-14MW02-WG	0.00053	0.00005	В
K1609317	SW6020A	Chromium (Total)	0.00012	16NEC-14MW02-WG-9	0.00051	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-MW10-1-WG	0.0009	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-14MW06-WG	0.0002	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-14MW06-WG-9	0.00016	0.00005	J, B
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-MW88-1-WG	0.00016	0.00005	J, B
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-14MW07-WG	0.00045	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-MW88-10-WG	0.00048	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-17MW1-WG	0.00025	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-20MW-1-WG	0.00053	0.00005	В
K1609434	SW6020A	Chromium (Total)	0.00012	16NEC-22MW2-WG	0.00033	0.00005	В
K1609581	SW6020A	Chromium (Total)	0.00012	16NEC-14MW05-WG	0.001	0.00005	В
K1609581	SW6020A	Chromium (Total)	0.00012	16NEC-MW88-3-WG	0.00042	0.00005	В
K1609317	SW6020A	Lead (Dissolved)	0.000021	16NEC-14MW01-WGF	0.000159	0.00001	В
K1609317	SW6020A	Lead (Dissolved)	0.000021	16NEC-14MW02-WGF	0.000054	0.00001	B, Q
K1609317	SW6020A	Lead (Dissolved)	0.000021	16NEC-14MW02-WG-9F	0.000083	0.00001	B, Q
K1609434	SW6020A	Lead (Dissolved)	0.000021	16NEC-14MW06-WG-9	0.000208	0.00001	B, Q

Table B-2-8Sample Results Qualified due to Equipment Blank Contamination

Equipment Blank Associated Result LOD SDG Method Analyte Associated Sample Qualifier Contamination (mg/L) (mg/L)(mg/L)K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-14MW07-WGF 0.000052 0.00001 В K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-17MW1-WGF 0.000045 0.00001 В K1609434 SW6020A Lead (Dissolved) 0 000021 16NEC-22MW2-WGF 0 000026 0 00001 в K1609434 SW6020A 0.000021 16NEC-26MW1-WGF 0.000025 0.00001 В Lead (Dissolved) K1609434 SW6020A 0.000021 0.000042 Lead (Dissolved) 16NEC-MW10-1-WGF 0.00001 В K1609434 SW6020A Lead (Dissolved) 0.000021 16NEC-MW88-1-WGF 0.000075 0.00001 В K1609581 SW6020A Lead (Dissolved) 0.000021 16NEC-MW88-3-WGF 0.000158 0.00001 В K1609434 SW6020A 0.000021 0.000085 0.00001 В Lead (Total) 16NEC-22MW2-WG K1609434 0.00156 SW6020A Manganese (Dissolved) 0.000173 16NEC-17MW1-WGF 0.000013 В K1609434 SW6020A Manganese (Dissolved) 0.000173 16NEC-22MW2-WGF 0.000535 0.000013 В K1609434 SW6020A Manganese (Dissolved) 0.000173 16NEC-26MW1-WGF 0.000754 0 000013 в 0.00034 0.00124 K1609317 SW6020A Nickel (Dissolved) 16NEC-14MW01-WGF 0.00005 В K1609317 SW6020A Nickel (Total) 0.00034 16NEC-14MW01-WG 0.00105 0.00005 В K1609317 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW02-WGF 0.00094 0.00005 В K1609317 SW6020A Nickel (Total) 0.00034 16NEC-14MW02-WG 0.00111 0.00005 В K1609317 SW6020A 0.00034 16NEC-14MW02-WG-9F 0.00005 В Nickel (Dissolved) 0.00105 0.00034 В K1609317 SW6020A Nickel (Total) 16NEC-14MW02-WG-9 0.00106 0.00005 K1609581 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW03-WGF 0.00332 0.00005 В K1609581 SW6020A Nickel (Total) 0.00034 16NEC-14MW03-WG 0.00289 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0 00034 16NEC-14MW06-WGF 0.00201 0.00005 В K1609434 SW6020A 0 00034 0.00175 0.00005 Nickel (Total) 16NEC-14MW06-WG В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-14MW06-WG-9 0.0018 0.00005 В K1609434 0.00166 В SW6020A Nickel (Total) 0.00034 16NEC-14MW06-WG-9 0.00005 0.00034 K1609434 SW6020A Nickel (Dissolved) 16NEC-17MW1-WGF 0.0023 0.00005 в K1609434 SW6020A 0.00034 16NEC-17MW1-WG 0.0008 0.00005 В Nickel (Total) K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-20MW-1-WGF 0.00167 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-20MW-1-WG 0.00114 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-22MW2-WGF 0.001 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-22MW2-WG 0.00028 0.00005 В K1609434 SW6020A 0.00034 16NEC-26MW1-WGF 0.00005 В Nickel (Dissolved) 0.00126 K1609434 SW6020A Nickel (Total) 0.00034 16NEC-26MW1-WG 0.00112 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 0.00122 0.00005 В 16NEC-MW10-1-WGF K1609434 SW6020A 0.00034 0.00135 0.00005 В Nickel (Total) 16NEC-MW10-1-WG В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-MW88-10-WGF 0.00312 0.00005 K1609434 SW6020A Nickel (Total) 0.00034 16NEC-MW88-10-WG 0.00242 0.00005 В K1609434 SW6020A Nickel (Dissolved) 0.00034 16NEC-MW88-1-WGF 0.00104 0.00005 В K1609434 SW6020A Nickel (Total) 0.00034 16NEC-MW88-1-WG 0.00091 0.00005 В K1609581 SW6020A 0.00034 0.00246 0.00005 В Nickel (Dissolved) 16NEC-MW88-3-WGF K1609581 SW6020A Nickel (Total) 0.00034 16NEC-MW88-3-WG 0.00217 0.00005 В 0.00034 K1609317 SW6020A Vanadium (Dissolved) 0.00004 16NEC-14MW01-WGF 0.00005 В K1609581 SW6020A 0.00004 16NEC-14MW03-WGF 0.00034 0.00005 В Vanadium (Dissolved) K1609434 SW6020A 0.00004 16NEC-14MW06-WG 0.00039 0.00005 Vanadium (Total) В

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

SDG	Method	Analyte	Equipment Blank Contamination (mg/L)	Associated Sample	Associated Result (mg/L)	LOD (mg/L)	Qualifier
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-14MW06-WG-9	0.00035	0.00005	B, Q
K1609434	SW6020A	Vanadium (Total)	0.00004 16NEC-14MW06-WG-9		0.00037	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-14MW07-WGF	0.00003	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-14MW07-WG	0.00016	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-17MW1-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-17MW1-WG	0.00017	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-20MW-1-WGF	0.00012	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-20MW-1-WG	0.00037	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-22MW2-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-22MW2-WG	0.00006	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-26MW1-WGF	0.00006	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-26MW1-WG	0.00021	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW10-1-WGF	0.00008	0.00005	J, B
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-10-WGF	0.00007	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-10-WG	0.00035	0.00005	В
K1609434	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-1-WGF	0.00005	0.00005	J, B
K1609434	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-1-WG	0.00006	0.00005	J, B
K1609581	SW6020A	Vanadium (Dissolved)	0.00004	16NEC-MW88-3-WGF	0.00012	0.00005	J, B
K1609581	SW6020A	Vanadium (Total)	0.00004	16NEC-MW88-3-WG	0.00032	0.00005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW01-WGF	0.00313	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW01-WG	0.00322	0.0005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW02-WGF	0.00259	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW02-WG	0.00254	0.0005	В
K1609317	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW02-WG-9F	0.0034	0.0005	В
K1609317	SW6020A	Zinc (Total)	0.00063	16NEC-14MW02-WG-9	0.00237	0.0005	В
K1609581	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW03-WGF	0.00516	0.0005	В
K1609581	SW6020A	Zinc (Total)	0.00063	16NEC-14MW03-WG	0.00587	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW06-WG	0.00331	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW06-WG-9	0.00412	0.0005	B, Q
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW06-WG-9	0.00301	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-14MW07-WGF	0.00394	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-14MW07-WG	0.00384	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-22MW2-WGF	0.00343	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-22MW2-WG	0.00196	0.0005	В
K1609434	SW6020A	Zinc (Dissolved)	0.00063	16NEC-26MW1-WGF	0.00273	0.0005	В
K1609434	SW6020A	Zinc (Total)	0.00063	16NEC-26MW1-WG	0.00218	0.0005	В

 Table B-2-8

 Sample Results Qualified due to Equipment Blank Contamination

ATTACHMENT B-3 ADEC Laboratory Data Review Checklists

Included with document PDF on CD

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino							
Title:	Project Chemist		Date:	12/14/2016				
CS Report Name:	Northeast Cape Groundwate	r Report	Report Date:	March 2017				
Consultant Firm:	Jacobs Engineering Group Inc.							
Laboratory Name:	ALS, Kelso, WA.	Laboratory	v Report Number:	K1609317				
ADEC File Number:	475.38.013 ADEC RecKey Number:			Haz ID: 25681				
	CCS-approved laboratory rece	ive and <u>perfo</u>	orm all of the submit Comments	tted sample analyses?				
Samples were shi	pped to ALS in Kelso, WA.							
laboratory, wa	were transferred to another "tas the laboratory performing the \Box NA (Please explain.)							
ALS Kelso transf	erred samples for method RSI	K175 to ALS	Simi Valley.					
2. <u>Chain of Custody (</u> a. CoC informat	CoC) ion completed, signed, and da	ted (including	g released/received	by)?				
Ves 🗆 N	Io 🗖 NA (Please explain.)		Comments					
b. Correct Analy	/ses requested?							
🗹 Yes 🗆 N	Io 🗖 NA (Please explain.)		Comments					
	e Receipt Documentation							
	r temperature documented and	l within range		C)?				
	Io 🗖 NA (Please explain.)		Comments					
Cooler Almond J Temperature blan Cooler Temperat	ık – 1.5°C							
Cooler Mounds Temperature blan Cooler Temperatu								
Transferred Cool Temperature blar								

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

 \Box Yes \blacksquare No \Box NA (Please explain.)

Comments

The dissolved metals container for sample 16NEC-14MW02-WG-9F required an additional 1mL HNO3
preservative to be added at the laboratory. The dissolved metals results were qualified QN due to
improper preservation.

All dissolved metals results for this field duplicate sample results were comparable to the results in the primary sample with the exception of cadmium and lead (see section 6.e.iii). All metals results for the primary and duplicate sample were less than the ADEC cleanup criteria with the exception of arsenic and chromium which can be considered naturally occurring and not a contaminant of concern at this site.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

✓)	es 🗆 N	lo	🗖 NA (Please explain.)	Comments		
All sam	All samples were received in good condition.					
con		eser	discrepancies, were they documented? For vation, sample temperature outside of acc	1 / 1		
☑ }	es 🗆 N	lo	□ NA (Please explain.)	Comments		
A 40 m	L VOA w	as	unlabeled for sample 16NEC-14MW02-V	VG-9.		
e. Data	quality o	or u	sability affected? (Please explain.)			
				Comments:		
-			t impacted by the anomalies listed above. It no samples were received frozen at the	1 5		
a. Pre		und	erstandable?			
\checkmark	Yes 🗆	NO	🗖 NA (Please explain.)	Comments		

- b. Discrepancies, errors, or QC failures identified by the lab?
- ✓ Yes
 □ No
 □ NA (Please explain.)
 Comments

All discrepancies and anomalies are discussed in the relevant sections below.

c. Were all corrective actions documented?

Ves 🗆 No 🗖 NA (Please explain.)

No corrective actions were necessary for this SDG

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Comments

All data is usable, see the relevant sections for effects on data quality.

4.

5. <u>Samples Results</u>

a <u>sum</u>	. Correct	analyses	performed/reported as requested	on COC?
	Ves Yes	🗆 No	□ NA (Please explain.)	Comments
b			olding times met?	
	✓ Yes	🗖 No	□ NA (Please explain.)	Comments
c	. All soils	s reported	d on a dry weight basis?	
	□ Yes	🗆 No	NA (Please explain.)	Comments
0	Only water	samples	were submitted with this sample	group.
d	I. Are the project?	-	PQLs less than the Cleanup Leve	el or the minimum required detection level for the
	🗹 Yes	🗆 No	□ NA (Please explain.)	Comments
			etect sample results were compar nup Level (ADEC 2016).	ed to 18 AAC 75 ADEC Table C. Groundwater
e	. Data qu	ality or u	sability affected?	
				Comments:
Ι	Data quality	y and usa	bility was not affected.	
QCS	<u>Samples</u>			
а	. Method		11 1 4 1 4 1 1	. 120 1.0
			blank reported per matrix, analys	1
	▼ Y	es 🗆	No 🗖 NA (Please explain.)	Comments
	ii. All	method b	lank results less than PQL?	
	$\Box Y$	es 🔽 🛛	No 🗖 NA (Please explain.)	Comments
(General che	emistry –	The method blank had detection	s for total alkalinity.
			The method blank had detections	
I	DRO/RRO	– The m	ethod blank had detections for D	RO and RRO.

PAH – The method blank had a detection for Acenaphthylene

Comments:

Samples within 10 times the method blank detection were affected.

SM2320B: The following samples had detections for alkalinity within 10 times: 16NEC-14MW02-WG and 16NEC-14MW02-WG-9.

SW6020: The following samples had detections for chromium (total and dissolved) within 10 times, 16NEC-14MW01-WGF, 16NEC-14MW01-WG, 16NEC-14MW02-WGF, 16NEC-14MW02-WG and 16NEC-14MW02-WG-9 and 16NEC-14MW02-WG-9F.

AK103: The following samples had detections for RRO within 10 times: 16NEC-14MW01-WG, 16NEC-14MW02-WG and 16NEC-14MW02-WG-9.

No samples were affected for the other method blank detections listed.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

🔽 Yes 🗆 No 🗖 NA (Please explain.)

Sample results were qualified B

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality is affected since the sample results are biased high and equal the ADEC Cleanup Level.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

A project-specific MS/MSD was not performed in this SDG for organic methods. LCS/LCSDs are available for the organic methods.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

EPA 300.0:

A LCS, MS/MSD and duplicate was performed for sulfate analysis (batch 268950).

SM2320B:

A LCS and duplicate (from a non-client sample) was performed for alkalinity analysis (batch 511167 and 510534). A MS/MSD is not performed for this analysis.

SW6020:

A LCS and MS/MSD were performed for the metals analysis (batch 269412).

SW7470:

A LCS and MS/MSD (from a non-client sample) were performed for mercury analysis (batch 269933).

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Tyes IN No NA (Please explain.)

Comments

i i i i i i i i i i i i i i i i i i i	Comments		
All LCS and LCSD were within required QC limits			
MS/MSD anomalies: Metals – The manganese was outside criteria; however, th sample concentration. DRO/RRO – The MS and MSD for DRO was lower than than the LCL. The parent sample was a non-project sample	the LCL and the MSD for RRO was lower		
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) 			
🔽 Yes 🗖 No 🗖 NA (Please explain.)	Comments		
All LCS/LCSD and MS/MSD are within QC criteria.			
v. If %R or RPD is outside of acceptable limits, what	t samples are affected? Comments:		
No samples were affected.			
vi. Do the affected sample(s) have data flags? If so, as	re the data flags clearly defined?		
Tyes No VA (Please explain.)	Comments		
No samples required qualification.			
vii. Data quality or usability affected? (Use comment l	box to explain.) Comments:		
Data quality and usability were not affected.			
 c. Surrogates – Organics Only i. Are surrogate recoveries reported for organic analy I Yes □ No □ NA (Please explain.) 	yses – field, QC and laboratory samples? Comments		
 ii. Accuracy – All percent recoveries (%R) reported a project specified DQOs, if applicable. (AK Petrole see the laboratory report pages) ✓ Yes □ No □ NA (Please explain.) 			
(····· r ···)			
iii. Do the sample results with failed surrogate recove clearly defined?	ries have data flags? If so, are the data flags		
Tyes No NA (Please explain.)	Comments		
No samples required qualification.			

iv.	Data qu	uality or u	usability	affected? (Use the comment	t box to explain.)

Comments:

Data quality and yeability years not offerted			
Data quality and usability were not affected.			
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and Soil</u> One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 			
Ves 🗆 No 🗖 NA (Please explain.)	Comments		
ii. Is the cooler used to transport the trip blank and (If not, a comment explaining why must be ente			
🔽 Yes 🗖 No 🗖 NA (Please explain.)	Comments		
Trip blank sample ID 16NEC-TBW01			
iii. All results less than PQL?			
Ves No NA (Please explain.)	Comments		
iv. If above PQL, what samples are affected?	Comments:		
NA			
v. Data quality or usability affected? (Please expla	in.) Comments:		
Data quality and usability were not affected.			
e. Field Duplicate i. One field duplicate submitted per matrix, analys	sis and 10 project samples?		
Ves No NA (Please explain.)	Comments		
ii. Submitted blind to lab?			
Ves 🗆 No 🗖 NA (Please explain.)	Comments		
Primary 16NEC-14MW02-WG and 16NEC-14MW02-			
Duplicate 16NEC-14MW02-WG-9 and 16NEC-14MW	/02-WG-9F		

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2)

_____ x 100

 $((R_1+R_2)/2)$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Tyes INN NA (Please explain.)	Comments
The following had RPDs greater than 30% and we	re qualified Q
Total metals – silver	
Dissolved metals – cadmium and lead	
iv. Data quality or usability affected? (Use the	comment box to explain why or why not.)
	Comments:
Data quality is minimally affected since all qualified	ed results are less than ADEC criteria
f. Decontamination or Equipment Blank (If not us	sed explain why).
🗆 Yes 🛛 No 🔽 NA (Please explain.)	Comments
i. All results less than PQL?	
□ Yes □ No	Comments
ii. If above PQL, what samples are affected?	
ii. If above I QL, what samples are affected:	Comments:
NA	
iii. Data quality or usability affected? (Please e	avalain)
In: Data quanty of usability affected? (I lease e	Comments:
NA	
er Data Flags/Qualifiers (ACOE, AFCEE, Lab-	-Specific, etc.)
a. Defined and appropriate?	
Ves 🗆 No 🗖 NA (Please explain.)	Comments
Qualifiers are defined in the DQA	

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino				
Title:	Project Chemist		Date:	12/14/2016	
CS Report Name:	Northeast Cape Groundwater Report		Report Date:	March 2017	
Consultant Firm:	Jacobs Engineering Group Ir	nc.			
Laboratory Name:	ALS, Kelso, WA. Laboratory Report Number:		K1609434		
ADEC File Number:	475.38.013	ADEC Rec	Key Number:	Haz ID: 25681	
 ✓ Yes □ N Samples were shit b. If the samples laboratory, we ves □ N ▲ ALS Kelso transf 2. Chain of Custody (a. CoC information) 	ferred samples for method RSI (CoC) tion completed, signed, and da No \square NA (Please explain.) yses requested?	network" lab ne analyses A K175 to ALS	Comments oratory or sub-contr DEC CS approved Comments Simi Valley.	racted to an alternate	

3. <u>Laboratory Sample Receipt Documentation</u>

 a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?

🗹 Yes 🗖 No	🗖 NA (Please explain.)	Comments
Cooler Caramello Temperature blank Cooler Temperature		
Cooler Butterfinger Temperature blank Cooler Temperature	– 2.9°C	
Cooler Snickers Temperature blank Cooler Temperature		
Cooler Twix Temperature blank Cooler Temperature		
Cooler Kit Kat Temperature blank Cooler Temperature		
Cooler Milky Way Temperature blank Cooler Temperature		
Cooler 100 Grand Temperature blank Cooler Temperature		
Transferred Cooler Temperature blank	5	
	ation acceptable – acidified waters, Methnated Solvents, etc.)?	anol preserved VOC soil (GRO, BTEX,
	□ NA (Please explain.)	Comments
L 1	eccived properly preserved.	nal), zara haadanaaa (VOC viala)?
-	on documented – broken, leaking (Metha	Comments
	eceived in good condition.	
	y discrepancies, were they documented? ervation, sample temperature outside of a	1 / 1
	□ NA (Please explain.)	Comments
No discrepancies w and recollected.	ere noted. Jacobs cancelled sample 16NI	EC-14MW03-WG from this sample group
	D O C O	1/10

e. Data quality or usability affected? (Please expl	laın.)
---	-------	---

Comments:

Data quality and usability was not affected.

4. <u>Case Narrative</u>

- a. Present and understandable?
 - \blacksquare Yes \square No \square NA (Please explain.)

Comments

b. Discrepancies, errors, or QC failures identified by the lab?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

DRO/RRO – The original analysis that was not reported had low LCS/LCSD related to instrument issues. The reanalysis was performed past the analytical hold time. See comment 5.b.

PCB – The ICV for Aroclor 1232 did not meet the primary evaluation criteria. The ICV was reported from the acceptable column. Data was not affected.

The RPD for the confirmation column for results related to Aroclor 1260 were greater than the 40% in samples 16NEC-20MW-1-WG and 16NEC-MW88-10-WG. Results were qualified QN.

VOCs – CCV MS46\0822F027.D was outside control criteria for Dichlorodifluoromethane, Chloromethane, Carbon Disulfide and 2-Butanone (MEK). Associated samples were qualified QL for Dichlorodifluoromethane, Chloromethane, Carbon Disulfide and may be biased low. Associated samples were not qualified for 2-Butanone (MEK) since the CCV was biased high and results were nondetect.

PAH – Acenaphthene result in sample 16NEC-14MW06-WG may contain a slight high bias due to the presence of non-target background. Sample results were not qualified.

All other discrepancies and anomalies are discussed in the relevant sections below.

c. Were all corrective actions documented?

🗹 Yes 🛛 No 🗖 NA (Please explain.)

The lab indicated in the case narrative that the DRO samples needed re-analysis.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Comments

PCB – The effect is minimal since both results were less than ADEC criteria.

VOCs – The affected sample results were qualified QL and are biased low as described above. The data quality is minimally affected since the results and reporting limits are significantly less than the ADEC criteria.

PAH - Results were not affected since the result is significantly less than ADEC criteria.

All data is usable, see the relevant sections for effects on data quality.

5. Samples Results

a.	Correct	analyses	performed/reported as requested on CO	C?
	Ves Yes	🗆 No	□ NA (Please explain.)	Comments
b	All appl	icable ho	olding times met?	
	T Yes	🔽 No	□ NA (Please explain.)	Comments
issu	es. The		1 1 5	low LCS/LCSD related to instrument d time. Sample results were qualified QL
c	All soils	reporte	d on a dry weight basis?	
	T Yes	🗆 No	✓ NA (Please explain.)	Comments
Onl	y water	samples	were submitted with this sample group.	
	Are the project?	-	PQLs less than the Cleanup Level or the	e minimum required detection level for the
	T Yes	🔽 No	□ NA (Please explain.)	Comments
			etect sample results were compared to 18 nup Level (ADEC 2016).	3 AAC 75 ADEC Table C. Groundwater
AD	EC crite	ria in sa	for analytes 1,2-Dibromoethane and 1,2,3 mples 16NEC-TB02, 16NEC-MW10-1- nd 16NEC-MW10-1-DVW.	1 1 0
e.	Data qua	ality or u	sability affected?	Comments:
Dat	a quality	i and use	ability is affected since the reporting limi	
			to be utilized in the future for these analy	-

The DRO results may be biased low. Majority of results are less than ADEC or significantly greater than ADEC criteria. Sample 14MW06 primary and duplicate result for DRO was 1.4 mg/L which is just slightly less than the 1.5 mg/L criteria.

6. **QC Samples**

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

 \checkmark Yes \square No \square NA (Please explain.)Comments

- ii. All method blank results less than PQL?
 - \square Yes \blacksquare No \square NA (Please explain.)

Comments

General chemistry - The method blank had a detection for alkalinity, total.

Dissolved Metals – The method blank had detections for chromium and vanadium.

DRO/RRO – The method blank had detections for DRO and RRO.

VOC - The method blank had detections for carbon disulfide and methylene chloride.

iii. If above PQL, what samples are affected?

Comments:

Samples within 10 times the method blank detection were qualified.

General chemistry: 16NEC-20MW-1-WG

Total/Dissolved chromium and vanadium -16NEC-22MW2-WG, 16NEC-22MW22-WGF

DRO - 16NEC-14MW07-WG, 16NEC-17MW1-WG, 16NEC-20MW-1-WG, 16NEC-22MW2-WG, 16NEC-26MW1-WG, 16NEC-MW88-10-WG and 16NEC-MW10-1-DVW RRO - 16NEC-14MW07-WG, 16NEC-17MW1-WG, 16NEC-20MW-1-WG, 16NEC-MW10-1-DVW, 16NEC-MW88-1-WG and 16NEC-MW88-10-WG

VOC - 16NEC-14MW06-WG, 16NEC-14MW06-WG-9, 16NEC-TB02

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

🗹 Yes 🔲 No 🔲 NA (Please explain.)

Sample results within 10 times the method blank concentration were qualified B.

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality is minimally affected since the sample results are less than ADEC criteria and biased high.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Ves 🗆 No 🗖 NA (Please explain.)

Comments

A LCS/LCSD and MS/MSD was performed for GRO analysis (batch KWG1607254), DRO/RRO analysis (batch KWG1607446).

A LCS and MS/MSD was performed for PCB analysis (batch KWG1607339), VOC analysis (batch KWG1607320), PAH analysis (batch KWG1607213) and methane analysis (batch FD10082416). A LCS, MS and duplicate was performed for glycol analysis (batch KWG1607413).

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Ves 🗆 No 🗖 NA (Please explain.)

Comments

EPA 300.0:

A LCS, MS/MSD and duplicate was performed for sulfate analysis (batch 269075).

SM2320B:

A LCS and duplicate was performed for alkalinity analysis (batch 511862) and two LCSs were performed for alkalinity analysis (batch 511209). A MS/MSD is not performed for this analysis. **SW6020:**

A LCS and MS/MSD were performed for the metals analysis (batch 269411), and a LCS and MS/MSD (from a non-client sample) were performed for the metals analysis (batch 269412). **SW7470:**

A LCS and MS/MSD were performed for mercury analysis (batch 269931) and a LCS and MS/MSD (from a non-client sample) were performed for mercury analysis (batch 269933).

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

🗖 Yes 🛛 No 🗖 NA (Please explain.)

Comments

All LCS and LCSD were within required QC limits

MS/MSD anomalies:

Metals – The manganese was outside criteria; however, the spike amount was less than the parent sample concentration.

VOC – The MS and MSD for the following analytes 2-Hexanone, 1,3-Dichloropropane, 2-Butanone, 4-Methyl-2-pentanone, and 1,1,2-Trichloroethane were greater than the UCL. The parent sample was nondetect and the bias is high.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Ves 🗆 No 🗖 NA (Please explain.)

Comments

All LCS/LCSD and MS/MSD are within QC criteria.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

VOC – Since the parent sample was nondetect and the bias is high the parent sample is not affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Tyes No VA (Please explain.)

Comments

No samples required qualification.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability were not affected.

c	Surrogates -	Organice	Only
U.	Surrogaics –	Organics	Omy

i.	Are surrogate re	5	analyses – field, QC and laboratory samples?
	✓ Yes □ No	\square NA (Please explain.)	Comments
ii.	project specified see the laborator	DQOs, if applicable. (AK P	rted and within method or laboratory limits? And etroleum methods 50-150 %R; all other analyses Comments
VOC-		(I)	16NEC-14MW06-WG was greater than QC
	a at 119%.		
iii.	Do the sample r clearly defined?	6	ecoveries have data flags? If so, are the data flags
	🗹 Yes 🗆 No	□ NA (Please explain.)	Comments
	ied QH for the po		ions in sample 16NEC-14MW06-WG and were alytes were nondetect and no qualification is
iv.	Data quality or	usability affected? (Use the co	omment box to explain.) Comments:
Data c	uality and usabil	ity were minimally affected s	ince the results were less than ADEC criteria.
	<u>ater and Soil</u> One trip blank r		X, Volatile Chlorinated Solvents, etc.): and for each cooler containing volatile samples?
[Ves No	□ NA (Please explain.)	Comments
ii.	(If not, a comme	ed to transport the trip blank a ent explaining why must be en NA (Please explain.)	nd VOA samples clearly indicated on the COC? ntered below) Comments
Trip b		6NEC-TB02 and 16NEC-TB	
i	T		
111.	All results less t	-	Commente
16NE		□ NA (Please explain.)	Comments athylana ablarida and ablaraform
			ethylene chloride and chloroform.
iv.	If above PQL, w	what samples are affected?	Comments:
Sampl Sampl No sai	les 16NEC-14MV le 16NEC-MW10	V06-WG-9 and 16NEC-14M -1-DVW was qualified for C	within 10 times the trip blank contamination. W06-WG were qualified for carbon disulfide.

v. Data quality or usability affected? (Please expl	ain.)
	Comments:
Data quality and usability were minimally affected sin ADEC criteria.	nce the bias is high and results are less than
e. Field Duplicatei. One field duplicate submitted per matrix, analy	ysis and 10 project samples?
✓ Yes □ No □ NA (Please explain.)	Comments
ii. Submitted blind to lab?	
Ves 🗖 No 🗖 NA (Please explain.)	Comments
Primary 16NEC-14MW06-WG and 16NEC-14MW06 Duplicate 16NEC-14MW06-WG -9 and 16NEC-14M	
 iii. Precision – All relative percent differences (RF (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: 	PD) less than specified DQOs? (R_1-R_2) x 100
	$((R_1+R_2)/2)$
Where $R_1 = $ Sample $R_2 =$ Field D	Concentration uplicate Concentration
Tyes Vo No NA (Please explain.)	Comments
The following had RPDs greater than 30% and were q PAH – acenaphthene and naphthalene VOC - naphthalene Dissolved metals – cadmium, chromium, lead, seleniu PCB - PCB-1260 (Aroclor 1260)	
iv. Data quality or usability affected? (Use the cor	nment box to explain why or why not.) Comments:
Data quality is minimally affected since all qualified r	esults are less than ADEC criteria.
f. Decontamination or Equipment Blank (If not used	explain why).
🗹 Yes 🛛 No 🗖 NA (Please explain.)	Comments

Equipment blank sample ID: 16NEC-MW10-1-DVW and 16NEC-MW10-1-DVWF

i. All results less than PQL?

🗖 Yes 🛛 No 🗖 NA (Please explain.)

Comments

There were detections in for the following analytes in equipment blank, 16NEC-MW10-1-DVW and
16NEC-MW10-1-DVWF (dissolved metals):
2-Methylnaphthalene
Barium
Chloroform
Chromium
DRO
Ethylbenzene
Lead
Manganese
Naphthalene
Nickel
o-Xylene
RRO
Tetrachloroethene (PCE)
Toluene
Vanadium
Xylene, Isomers m & p
Zinc

ii. If above PQL, what samples are affected?

Comments:

All results within ten times the equipment blank contamination were qualified B. There were no detections for toluene, chloroform and o-xylene for the associated samples.

iii. Data quality or usability affected? (Please explain.)

Comments:

Result qualified B are estimated and biased high. The data quality is minimally affected since all results are less than the ADEC criteria.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)

- a. Defined and appropriate?
 - ✓ Yes □ No □ NA (Please explain.)

Comments

Qualifiers are defined in the DQA

Laboratory Data Review Checklist

Completed by:	Angela DiBerardino							
Title:	Project Chemist	Date:	12/16/2016					
CS Report Name:	Northeast Cape Groundwate	r Report Date:	March 2017					
Consultant Firm:	Jacobs Engineering Group Ir	1C.						
Laboratory Name:	ALS, Kelso, WA.	Laboratory Report Numbers	K1609581					
ADEC File Number:	475.38.013	ADEC RecKey Number:	Haz ID: 25681					
 ✓ Yes □ N Samples were shi b. If the samples laboratory, wa ✓ Yes □ N ALS Kelso transf 2. Chain of Custody (Io \square NA (Please explain.) pped to ALS in Kelso, WA. were transferred to another "fas the laboratory performing the laboratory performed samples for method RSI CoC (laboratory performance) (laborat	ive and <u>perform</u> all of the subm Comments network" laboratory or sub-cont ne analyses ADEC CS approved Comments X175 to ALS Simi Valley. ted (including released/received Comments Comments	tracted to an alternate					

3. <u>Laboratory Sample Receipt Documentation</u>
 a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)?

	1	\square NA (Please explain.)	Comments
Tem	ler Whatchamac perature blank - ler Temperature	- 0.9°C	
Tem	ler 3 Musketeers perature blank - ler Temperature	- 0.9°C	
Tem	ler Pay Day perature blank - ler Temperature		
Tem	ler O'Henry perature blank - ler Temperature		
	nsferred Cooler t perature blank -		
	1 1	tion acceptable – acidified waters, Metl ated Solvents, etc.)?	hanol preserved VOC soil (GRO, BTEX,
Ŀ	Yes 🗆 No	🗖 NA (Please explain.)	Comments
All s	samples were rec	ceived properly preserved.	
c. S	Sample condition	n documented – broken, leaking (Metha	anol), zero headspace (VOC vials)?
Ŀ	🗹 Yes 🗆 No	🗖 NA (Please explain.)	Comments
		ceived in good condition with the except of 8 40 mL vials for 16NEC-TB05.	ption of headspace in 3 of 8 40 mL vials for
С	•	v discrepancies, were they documented? rvation, sample temperature outside of a	⁹ For example, incorrect sample acceptable range, insufficient or missing
Ŀ	🗹 Yes 🗆 No	□ NA (Please explain.)	Comments
No c	liscrepancies we	ere noted.	
e. I	Data quality or u	sability affected? (Please explain.)	Comments:
Data	quality and usa	bility was not affected.	
4. Cas	se Narrative		
	Present and und	lerstandable?	
	Ves 🗆 No	□ NA (Please explain.)	Comments

		b. Di	screpa	ncies	s, eri	ors, or QC	failures ide	entified by the lab	<u>0</u> ?
		✓	Yes	ΠN	lo	🗆 NA (Plea	ise explain.)	Comments
					•			1	low LCS/LCSD related to instrument d time. See comment 5.b.
		All ot	her dis	crepa	anci	es and anom	alies are d	iscussed in the re	elevant sections below.
		c. W	ere all	corre	ectiv	e actions do	cumented	?	
	-	•	Yes	\Box N	lo	🗆 NA (Plea	ise explain.))	Comments
		The la	b indi	cated	in t	he case narr	ative that t	the DRO samples	needed re-analysis.
		d. W	hat is t	the ef	fect	on data qua	lity/usabil	ity according to t	he case narrative? Comments:
		All da	ta is u	sable	, see	the relevant	t sections	for effects on dat	a quality.
5.	Sa	mples	Result	S					
		a. Co	orrect a	-				requested on CO	C?
		~	Yes	\Box N	0	🗆 NA (Plea	ise explain.)	Comments
						ding times i			
			Yes			🗆 NA (Plea	-		Comments
			. The	reana	alysi	s was perfor			low LCS/LCSD related to instrument d time. Sample results were qualified QL
		c. Al	l soils	repo	rted	on a dry we	ight basis?	2	
			Yes	ΠN	lo	🗹 NA (Plea	ise explain.)	Comments
		Only	water s	samp	les v	vere submit	ted with th	is sample group.	
			the the roject?	eport	ted I	QLs less th	an the Cle	anup Level or the	e minimum required detection level for the
		✓	Yes	ΠN	lo	🗆 NA (Plea	ise explain.)	Comments
						ect sample up Level (A		1	AAC 75 ADEC Table C. Groundwater
		e. Da	ita qua	lity c	or us	ability affec	ted?		
		r							Comments:
						oility is mini antly greate			d low DRO results. All results are below
6.	<u>Q(</u>	C Samp	oles						
			ethod]			lonk romant	d nor	in opolyzia ar 1	20 complex?
		1.				-		rix, analysis and 2	1
	I	r	☑ Ye	58		o 🗆 NA (r lease exp	iaiii.)	Comments

- ii. All method blank results less than PQL?
 - □ Yes I No □ NA (Please explain.)

Comments

General chemistry - The method blank had a detection for alkalinity, total

Total/Dissolved Metals – The method blank had detections for chromium and vanadium.

DRO/RRO – The method blank had detections for DRO and RRO.

PCB - The method blank had detections for aroclor 1016 and aroclor 1260 (batch KWG1607340)

iii. If above PQL, what samples are affected?

Comments:

Samples within 10 times the method blank detection were qualified

General chemistry: 16NEC-14MW03-WG and 16NEC-14MW05-WG

Total/Dissolved chromium and dissolved vanadium –16NEC-14MW05-WGF, 16NEC-MW88-3-WGF, 16NEC-MW88-3-WG and 16NEC-14MW03-WGF

DRO/RRO - 16NEC-14MW03-WG and 16NEC-MW88-3-WG

PCB - 16NEC-14MW03-WG

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

Ves 🗆 No 🗖 NA (Please explain.)

Sample results within 5 times the method blank concentration were qualified B

v. Data quality or usability affected? (please explain)

Comments:

Comments

Data quality is minimally affected since the sample results are less than ADEC criteria and biased high.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Ves 🗆 No 🗖 NA (Please explain.)

Comments

A project specific MS/MSD was not performed in this SDG for organic methods. LCS/LCSDs are available for the organic methods.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \blacksquare Yes \square No \square NA (Please explain.)

Comments

EPA 300.0:

A LCS and a MS/MSD and duplicate (from a non-client sample) were performed for sulfate analysis (batch 269075).

SM2320B:

A LCS and duplicate was performed for alkalinity analysis (batch 511862) and a LCS and duplicate (from a non-client sample) was performed for alkalinity analysis (batch 511210). A MS/MSD is not performed for this analysis.

SW6020:

A LCS and MS/MSD (from a non-client sample) was performed for metals analysis (batch 269412). **SW7470:**

A LCS and MS/MSD (from a non-client sample) was performed for mercury analysis (batch 269933).

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

🗖 Yes 🔽 No 🗖 NA (Please explain.)

All LCS and LCSD were within required QC limits

MS/MSD anomalies:

Metals – The manganese was outside criteria; however, the spike amount was less than the parent sample concentration.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

🔽 Yes 🛛 No 🗖 NA (Please explain.)

Comments

Comments

All LCS/LCSD and MS/MSD are within QC criteria.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

 \Box Yes \Box No \blacksquare NA (Please explain.) Comments

No samples required qualification.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability were not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

🗹 Yes 🛛 No 🗖 NA (Please explain.)

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Tyes Ves No NA (Please explain.)	Comments
PCB – surrogate decachlorobiphenyl for sample 16NEC-14 22%.	MW04-WG was lower than QC criteria at
VOC – Surrogate Toluene-d8 for samples 16NEC-14MW03 14MW05-WG, and 16NEC-MW88-3-WG was greater than	
iii. Do the sample results with failed surrogate recoverie clearly defined?	es have data flags? If so, are the data flags
Ves No NA (Please explain.)	Comments
PCB – 16NEC-14MW04-WG sample results are qualified C	QL
VOC – Samples listed above with detections were qualified	QH
iv. Data quality or usability affected? (Use the commen	t box to explain.) Comments:
PCB - Data quality was slightly affected due to matrix inter significant amount of particulate, which required sample to suggests there was matrix interference.	1
VOC – The effect is minimal since the bias was high and re	sults were less than ADEC criteria.
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volat <u>Water and Soil</u> i. One trip blank reported per matrix, analysis and for on (If not, onten conformation holes) 	
(If not, enter explanation below.) ✓ Yes □ No □ NA (Please explain.)	Commonte
	Comments
ii. Is the cooler used to transport the trip blank and VO. (If not, a comment explaining why must be entered b	1 5
Ves 🗆 No 🗖 NA (Please explain.)	Comments
Trip blank sample ID 16NEC-TB04	
iii. All results less than PQL?	
Ves 🗆 No 🗖 NA (Please explain.)	Comments
iv. If above PQL, what samples are affected?	Comments:
NA	
v. Data quality or usability affected? (Please explain.)	
	Comments:

Data quality and usability were not affected.

e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples?

	I. One n ✓ Yes	1	□ NA (Please explain.)	Comments
				Comments
			1.1.2	
	ii. Submi			
	✓ Yes		□ NA (Please explain.)	Comments
	mary 16NI			
Du	plicate 16N	NEC-829-	w8-0019	
			1	(RPD) less than specified DQOs?
	(Reco		30% water, $50%$ soil) D (%) = Absolute value of	(R_1-R_2)
		KI	D(70) = Absolute value of	x 100
				$((R_1+R_2)/2)$
				ple Concentration d Duplicate Concentration
	✓ Yes	🗆 No	🗖 NA (Please explain.)	Comments
Th	e RPDs we	re all less	than 30%.	
	iv Data o	uality or 1	usability affected? (Use the	comment box to explain why or why not.)
	IV. Dutu g	uunty of t	isubility uncered. (ese inc	Comments:
Da	ta quality a	nd usabili	ty were not affected.	
f.	Decontam	ination or	Equipment Blank (If not u	sed explain why).
	□ Yes		✓ NA (Please explain.)	Comments
No	ot submitted		× 1 /	Comments
110				
		sults less t		
			▼ NA (Please explain.)	Comments
NA	A			
	ii. If abov	ve PQL, w	hat samples are affected?	-
				Comments:
NA	A			
	iii. Data q	uality or u	sability affected? (Please e	1 /
-				Comments:
Da	ta quality a	ind usabili	ty were not affected.	
			ers (ACOE, AFCEE, Lab	-Specific, etc.)
a.	Defined a			
	✓ Yes		□ NA (Please explain.)	Comments
Qu	alifiers are	defined in	n the DQA	

ATTACHMENT B-4 Laboratory Deliverables

Provided electronically on CD

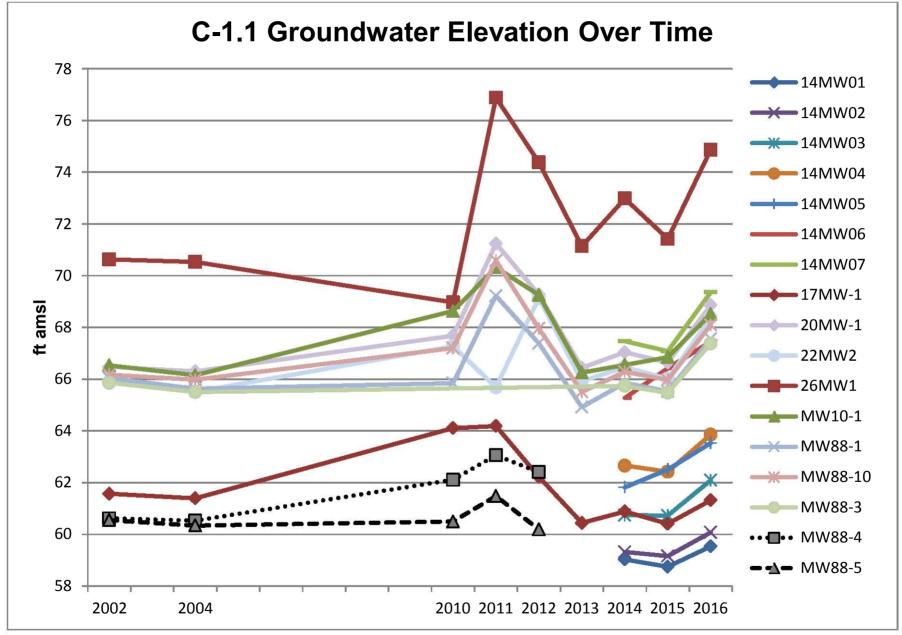
APPENDIX C Summarized Analytical Results and Trend Plots

Northeast Cape FUDS 2016 Main Operations Complex Appendix C Summarized Analytical Results and Trend Plots

This appendix provides tables and plots for groundwater at currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) at the Main Operations Complex. These tables and plots depict groundwater elevation, natural attenuation parameter concentrations, contaminant concentrations as a ratio of the site-specific cleanup level (SSCL) (or 2016 Alaska Department of Environmental Conservation [ADEC] evaluation criteria), and predicted diesel-range organics (DRO) attenuation over time.

Groundwater elevation field measurements were collected from currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) beginning in 2002 and continuing through 2016. Plot C-1.1 displays these groundwater elevation measurements over time.

Natural attenuation parameters were collected from currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) beginning in 2002 and continuing through 2016. Table C-2.1 presents a table of natural attenuation parameters. Plots C-2.2.1 through C-2.2.11 display natural attenuation parameters over time. Natural attenuation parameters were first collected from currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) beginning in 2002, again in 2004, and yearly since 2010. Parameters collected before 2010 are not included.


Contaminant concentrations were collected from currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) beginning in 2002 and continuing through 2016. Table C-3.1 presents a table of historical contaminant concentrations exceeding SSCLs and/or 2016 ADEC evaluation criteria. Plots C-3.2.1 through C-3.2.11 display contaminant concentrations over time as a ratio of the SSCL at select wells. Plots C-3.3.1 through C-3.3.9 display naphthalene concentrations over time as a ratio of the 2016 ADEC evaluation criteria (because there is no Decision Document-specified SSCL for naphthalene) at select wells. Trends are presented for in-plume and crossgradient currently installed and serviceable monitoring wells and select historical monitoring wells (MW88-4 and MW88-5) from 2002 through 2016.

Northeast Cape FUDS 2016 Main Operations Complex Appendix C Summarized Analytical Results and Trend Plots

Statistical trends for the natural attenuation of DRO are presented in Attachment C-4. Predicted DRO attenuation at currently installed and serviceable monitoring wells 14MW04 and 14MW05 is presented in Plot C-4.1.1 and Tables C-4.1.1 and C-4.1.2 and Plot C-4.2.1 and Tables C-4.2.1 and C-4.2.2. Only the in-plume monitoring wells 14MW04 and 14MW05 were selected for geometric regression because these wells are the only currently installed and serviceable monitoring wells that exceed the DRO SSCL and have a negative geometric regression slope. Tables C-4.3.1 through C-4.3.4 present the output of the Mann-Kendall trend test for currently installed and serviceable monitoring wells 14MW04, and 14MW05.

ATTACHMENT C-1

Groundwater Elevation Over Time

ft amsl = feet above mean sea level

ATTACHMENT C-2

MNA Parameters Over Time

Northeast Cape FUDS Table C-2.1 MOC Monitoring Well MNA Parameters Over Time

	[Ferrous Iron mg/L	Manganese mg/L	Sulfate mg/L	Nitrate mg/L	Alkalinity mg/L	Temperature °c	Conductivity µS/cm	pН	ORP mV	DO mg/L	Methane µg/L
14MW01	2014	0.85	0	7	0	80	2.89	μ0/ cm	6.51	-191.9	3.78	83
14MW01	2015	0.09	0.2	8	0.02	0	2.06	135	6.32	32.7	0.77	54
14MW01	2016	10	0.916	17.7	0	18.7	4.37	94	6.02	0.6	0.53	24
14MW02	2014	0.86	0.9	3	0	80	1.38		6.39	-103.8	1.17	200
14MW02	2015	3.3	1.1	7	0.01	40	2.5	164	6.26	-64	0.15	240
14MW02	2016	10	1.86	14.7	0	40	6.84	123	5.88	11.6	0.51	23
14MW03	2014	0.89	0.9	8		180	3.41		6.65	-404.9	8.03	47
14MW03	2015	2.17	0.4	6	<0.4	40	3.89	189	6.63	-193.9	0.37	88
14MW03	2016	10	1.36	16.9	0	28	4.14	93	5.99	26.7	0.6	8.2
14MW04	2014	0.81	0.6	12	0	140	5.9	819	5.92	27.3	0.33	25
14MW04	2015	0.51	0.4	27	0.02	40	5.57	294	5.97	-118.1	1.05	110
14MW04	2016	3.5	1.71	31.2	0	91	7.66	203	6.05	91.4	0.62	20
14MW05	2014	0.95	0.7	6	0		3.61		6.23	-39.3	3.5	33
14MW05	2015	2.8	2.2	10	0.03	40	3.81	138	6.21	31.8	0.32	99
14MW05	2016	10	2.71	23.1	0	47	6.82	127	5.87	74.6	0.46	10
14MW06	2014	1.75	1.6	3	0		2.57		6.21	-68.5	0.32	160
14MW06	2015	0.09	0.5	6	0.02	80	5.95	222	6.61	24.9	0.18	110
14MW06	2016	2	1.28	15.3	0.2	140	9.33	235	6.57	47.2	0.45	8.3
14MW07	2014	0.25	0.3	1	< 0.01	40	6.49		6.9	-385.4	4.52	30
14MW07	2015	0.07	0.4	4	0.09	0	3.4	56	6.36	125.9	8.47	1.6 J
14MW07	2016	< 0.03	0.0359	12.7	0.1	11.7	3.74	52	5.42	187.7	10.09	ND (0.63)
17MW1	2010	0.01	<0.2	16	0.2	0	3.09	68	5.76	160.8	7.32	ND (0.19)
17MW1	2011	0.06	0.1	15	0.7	40	2.73	67	5.78	237.1	4.47	ND (0.29)
17MW1	2012	<0.03	<0.2	16	0.19	40	2.74	108	5.45	205.5	9.22	ND (0.29)
17MW1	2013	0.01	0.3	20	0.11	37	3.45	65	5.45	149.2	9.77	ND (0.37)
17MW1	2014		0	5	0.11	60	2.35		5.65	166.6	11.15	ND (0.37)
17MW1	2015	0.06	0.2	10	0.08	0	2.47	99	5.83	164	10.52	ND (0.80)
17MW1	2016	<0.03	0.00156	16.9	0.2	10	3.94	56	5.45	223.4	10.31	ND (0.63)
20MW1	2010						3.61	63	6.29	101.4	3.96	ND (0.19)
20MW1	2011	<0.01	<0.2	24	1.3	80	2.33	82	5.89	125.8	10.78	ND (0.29)
20MW1	2012	<0.03	0.3	16	0.23	40	3.39	143	5.76	231.5	9.04	ND (0.29)
20MW1	2013	ND	0.2	22	0.26	45	3.58	83	5.65	62.4	10.45	ND (0.37)
20MW1	2014		0	6	0.2	80	2.37		5.68	180	11.85	ND (0.37)
20MW1	2015	0.32	0.3	14	0.22	0	2.11	87	5.93	-155.3	11.2	ND (0.80)
20MW1	2016	<0.03	0.00321	19.6	0.1	21	4.63	73	5.6	222.5	11.65	ND (0.63)
22MW2	2010	<0.01	<0.2	12	0.6	0	3.9	65	6.09	234.2	10.07	0.8
22MW2	2011	<0.01	<0.2	7	1	40	6.4	60	5.63	53.7	10.99	ND (0.29)
22MW2	2012	<0.03	0.1	12	0.34	40	3.54	108	5.79	204.6	12.45	ND (0.29)
22MW2	2013	0.01	0.2	16	0.16	30	5.42	69	5.92	129.5	14.82	ND (0.37)
22MW2	2014	0.02	0	6	0.08	60	2.85		5.75	165.3	13.14	ND (0.37)
22MW2	2015	0.06	0	13	0.06	0	3.29	55	5.89	-73.5	10.78	ND (0.80)
22MW2	2016	<0.03	0.000535	15.4	0.1	7	4.5	55	5.52	230.6	12.15	ND (0.63)
26MW1	2010	<0.01	<0.2	6	0.3	0	3.01	47	6.77	202.1	11.5	0.44
26MW1	2011	0.05	0.2	10	1.3	40	3.47	61	5.74	202.8	12.63	ND (0.29)
26MW1	2012	<0.03	0.2	6	0.26	40	3.22	84	5.79	197.2	12.4	ND (0.29)
26MW1	2013	0.05	0.5	10	0.12	40	4.19	50	5.49	222.7	13.99	ND (0.37)
26MW1	2014	0.02	0.2	6	0.05	80	2.83		5.63	230.1	13.47	ND (0.37)
26MW1	2015	0.05	0.2	9	0.06	0	2.54	75	6.05	160.9	13.67	ND (0.80)
26MW1	2016	<0.03	0.000754	13.6	0	6.3	4.54	50	5.48	231.4	12.98	ND (0.63)
MW10-1	2010	<0.01	<0.2	3	0.3	0	6.59	63	5.63	202.5	5.58	0.48
MW10-1	2011	0.09	0.1	4	0.4	40	6.03	56	5.45	85.5	4.74	0.29 J

Northeast Cape FUDS Table C-2.1 MOC Monitoring Well MNA Parameters Over Time

	ſ	Ferrous Iron	Manganese	Sulfate	Nitrate	Alkalinity	Temperature	Conductivity	pН	ORP	DO	Methane
		mg/L	mg/L	mg/L	mg/L	mg/L	°C	μS/cm	-	mV	mg/L	µg/L
MW10-1	2012	<0.03	<0.2	3	<0.01	40	4.42	0.153	5.37	251.6	2.93	0.85
MW10-1	2013	0.23	0.2	3	0.11	50	3.79	78	5.43	68.9	1.26	26
MW10-1	2014	0	0.1	3	0.07		6.62		5.35	185.1	2.83	1 J
MW10-1	2015	0.09	0.5	5	0.16	0	7.02	99	5.52	-101.1	2.44	ND (0.80)
MW10-1	2016	<0.3	0.00344	7.37	0.2	17	10.03	39	5.25	225.1	4.75	ND (0.63)
MW88-1	2010	<0.01	0.3	7	0.3	40	2.85	68	5.59	190.1	1.26	0.34
MW88-1	2011	0.04	0.3	8	1.5	40	2.3	60	5.75	70.9	2.09	0.44 J
MW88-1	2012	< 0.03	<0.2	8	bc	40	3.27	111	5.52	225.9	1.58	0.37 J
MW88-1	2013	0.03	0.4	9	0.29	40	2.66	68	5.31	114.3	2.23	ND (0.37)
MW88-1	2014	0.03	0	3	0.07	40	2.18		5.38	231.6	6.43	ND (0.37)
MW88-1	2015	0	0	9	0.16	0	2.46	92	5.5	-136	6.49	ND (0.80)
MW88-1	2016	0.1	0.291	14.1	0.2	13	6.15	58	5.23	183.7	4.09	ND (0.63)
MW88-10	2010	<0.01	1	6	0.1	40	2.89	65	7.58	146	0.81	0.4
MW88-10	2011	0.02	0.4	8	0.9	40	4.43	61	5.78	47.7	1.55	1.8
MW88-10	2012	0.49	1	16	0.56	40	1.61	124	5.74	146.6	0.66	32
MW88-10	2013	1.04	2.9	8	0.03	70	3.64	75	5.82	129.6	0.37	54
MW88-10	2014		0.2	5	0.02	40	2.86		5.55	148.7	1.63	14
MW88-10	2015	0.05	0.4	6	0.05	0	3.86	96	5.67	-158.2	1.64	6.2
MW88-10	2016	0.2	0.203	17.8	0.1	17.7	4.5	62	5.54	184.6	1.06	3.6
MW88-3	2014	0.11	0	4	0.03	70	2.89	-	5.36	175.5	4.73	1.8 J
MW88-3	2015	0.06	0.5	8	0.17	0	2.62	53	5.66	155.1	4.43	1.6 J
MW88-3	2016	<0.3	0.364	14.8	0	16	3.25	57	5	218.1	4.7	ND (0.63)
MW88-4	2010	21.4	0.3	4	2	120	3.28	190	6.93	-72.1	0.68	1900
MW88-4	2011	3.3	0.4	1	0.2	180	1.16	173	6.8	-86.2	0.27	2100
MW88-4	2012	12.25	1.1	3	<0.01	80	2.01	230	6.41	-51.7	0.35	2300
MW88-5	2010	45.5	0.2	6	0.3	80	2.21	221	8.25	-69.3	0.81	99
MW88-5	2011	3.3	0.3	46	0.9	180	2.59	241	6.64	-100.3	0.58	630
MW88-5	2012	11.45	1.3	18	0.02	80	2.63	262	6.18	-25.4	0.49	360

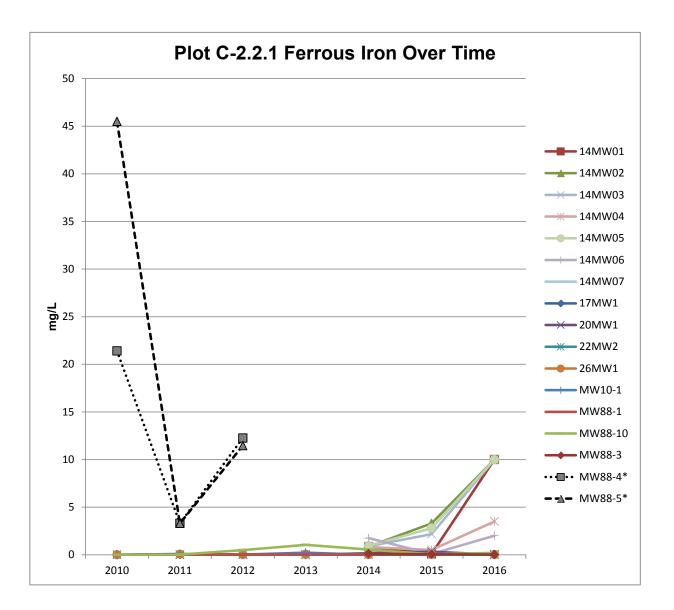
Notes:

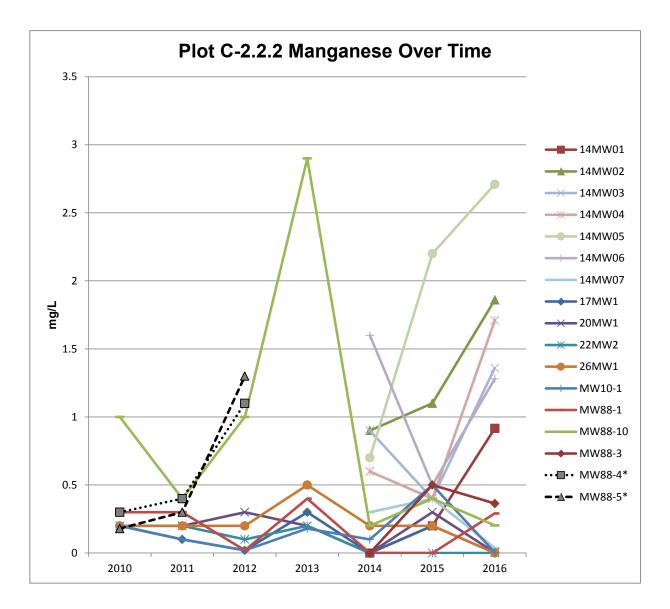
°C = Degrees Celsius

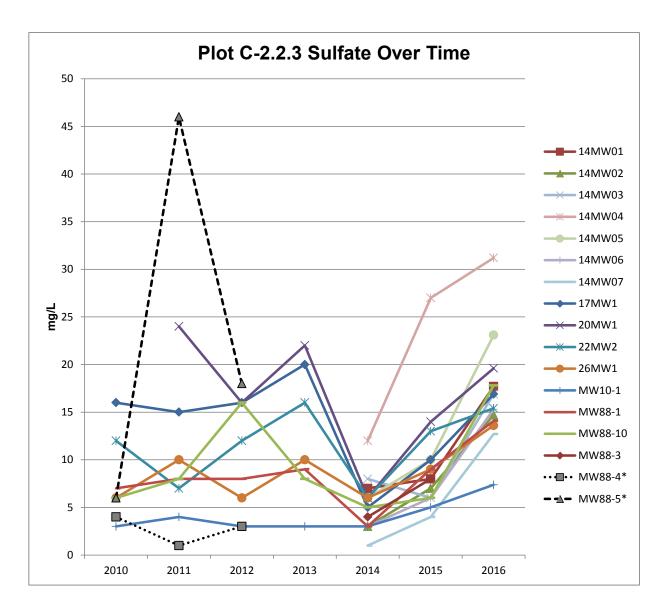
µS/cm = microsiemen per centimeter

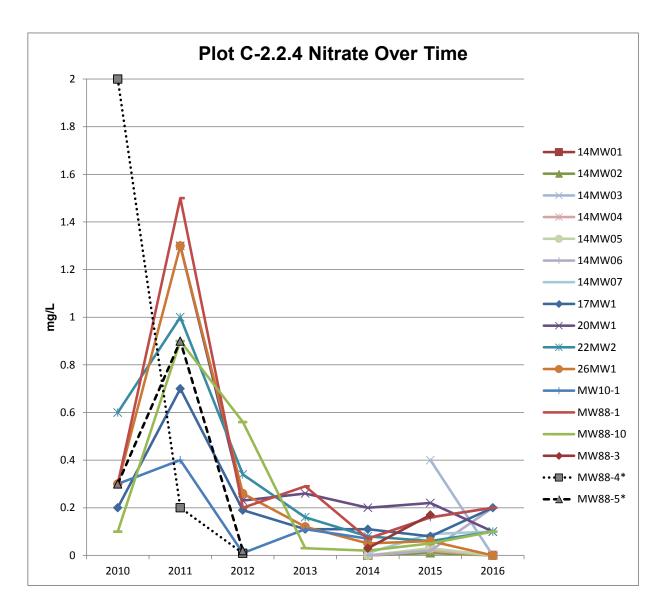
DO = dissolved oxygen

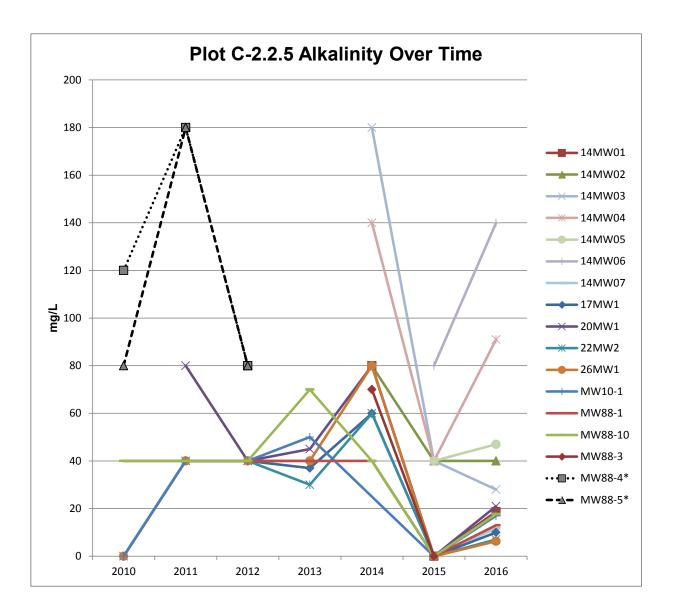
mg/L = milligram per liter

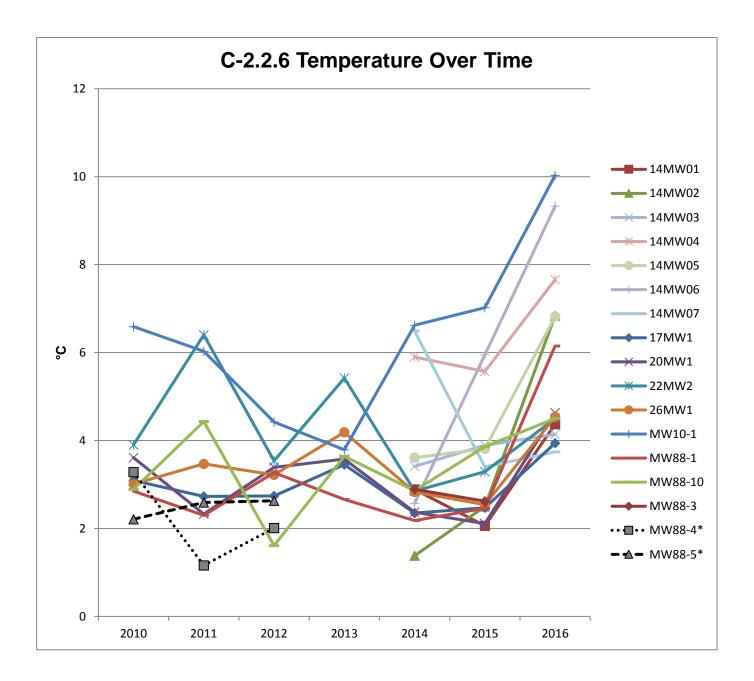

µg/L microgram per liter

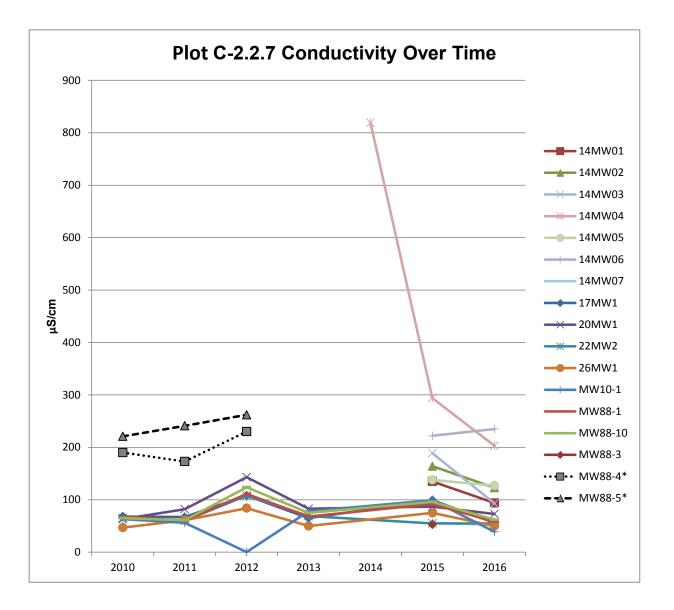

ORP = oxidation-reduction potential

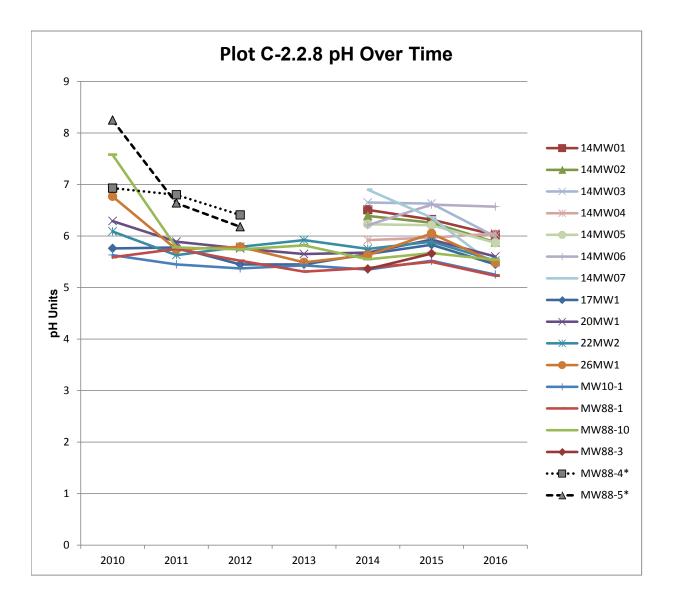

mV = millivolt

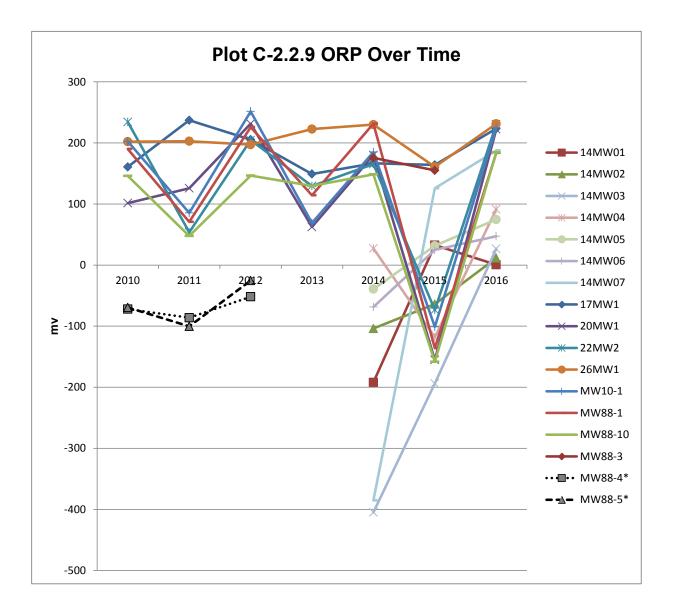

ND = not detected

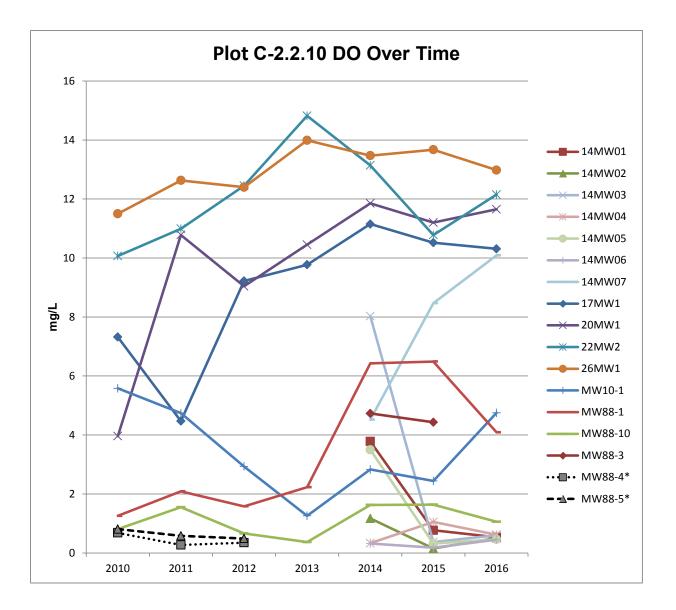

-- Not reported

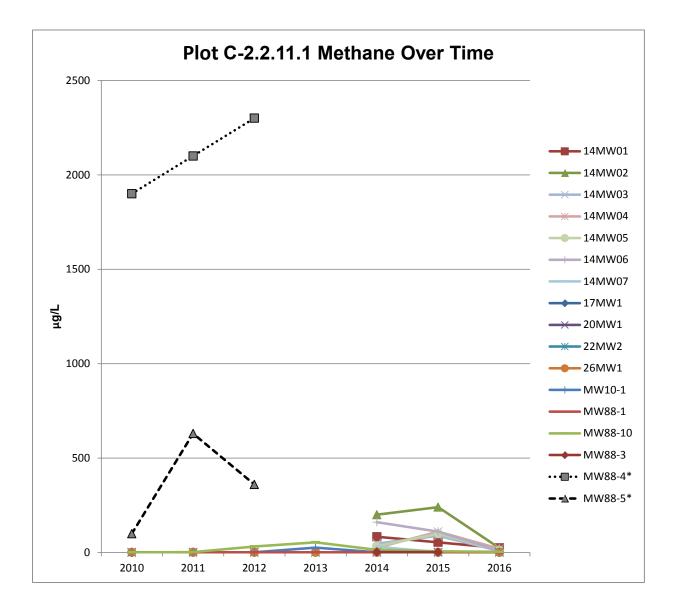


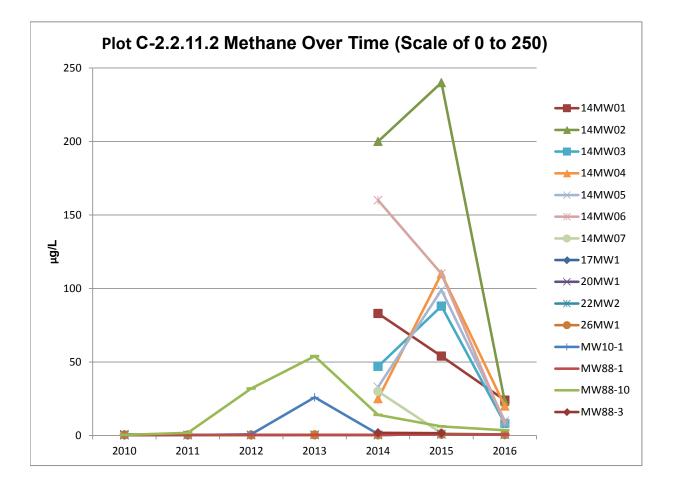












ATTACHMENT C-3

Results Above SSCLs and 2016 ADEC Criteria

Northeast Cape FUDS Table C-3.1 COCs and Analytes in Groundwater Above SSCLs and 2016 ADEC Criteria

		GRO	DRO	RRO	Benzene	Naphthalene	Arsenic-Total	Arsenic- Dissolved	Lead-Total	Lead-Dissolved
	SSCL	1.3 mg/L	1.5 mg/L	1.1 mg/L	0.005 mg/L		0.01 mg/L	0.01 mg/L	0.015 mg/L	0.015 mg/L
	2016 ADEC	2.2 mg/L	1.5 mg/L	1.1 mg/L	0.0046 mg/L	0.0017 mg/L	0.00052 mg/L	0.00052 mg/L	0.015 mg/L	0.015 mg/L
14MW01	2014	0.046 J,B	0.51 B	0.067 J	ND (0.0004)	0.0025	0.0061	0.0041 J	0.011	0.00056 J
14MW01	2015	0.026 J	0.51	ND (0.071)	ND (0.001)	0.0018	0.0042 J	0.0040 J	0.00021 J	ND (0.0005)
14MW01	2016	0.065 J	0.92	0.12 J,B	ND (0.0001)	0.0075	0.0046	0.00439	0.00153	0.000159
14MW02	2014	0.28	1.2	0.092 J	0.00014 J	0.000007	0.0058	0.0043 J	0.0054	ND (0.00025)
14MW02	2014	0.27	1.3	0.094 J	ND (0.0004)	0.007	0.0056	0.0046 J	0.006	ND (0.00025)
14MW02	2015	0.18	1.6	0.13	ND (0.001)	0.005	0.0056	0.0056	0.0010 J	ND (0.00050)
14MW02	2016	0.14	1.6	0.18 J	ND (0.0001)	0.0037	0.00244	0.00241	0.000496	0.000054 QN
14MW02	2016	0.14	1.5	0.17 J	ND (0.0001)	0.0038	0.00235	0.00237	0.00045	0.000083 QN
14MW03	2014	0.19	2.4	0.21	0.001	0.029	0.0055	ND (0.004)	0.062	ND (0.00025)
14MW03	2015	0.12	1.3	0.41 J	ND (0.001)	0.00062	0.0034 J	0.0024 J	0.015	0.00049 J
14MW03	2016	0.075 J	0.99 QL	0.16 J,QL	ND (0.0001)	0.00072	0.00194	0.00186	0.00318	0.00126
14MW04	2014	0.051 B	2.5	0.54	ND (0.0004)	0.0014	ND (0.004)	ND (0.004)	0.0064	0.0014 J
14MW04	2015	ND (0.044)	1.6 QLQN	0.18 QLQN	ND (0.001)	ND (0.00001)	0.0024 J	0.0014 J	0.0063	0.00050 J
14MW04	2015	ND (0.044)	2.8 QN	0.37 QN	ND (0.001)	ND (0.00001)	0.0022 J	0.0014 J	0.0064	0.00033 J
14MW04	2016	0.011 J	2.2 QL	0.61 QL	0.00013 J,QH	0.000022	0.00524	0.00387	0.0582	0.0349
14MW05	2014	0.36	4.9	0.55	ND (0.0004)	0.093	0.0042 J	ND (0.004)	0.01	0.00029 J
14MW05	2015	0.13	12	0.48	ND (0.001)	0.013 QN	0.0031 J	0.0028 J	0.012	0.003
14MW05	2015	0.11	11	0.51	ND (0.001)	0.0059 QN	0.0032 J	0.0026 J	0.013	0.0023
14MW05	2016	0.072 J	3.2 QL	0.61 QL	ND (0.0001)	0.00072	0.00207	0.00194	0.00165	0.000252
14MW06	2014	0.22	5.2 QL	0.28	0.00070 J	0.033	0.0068	0.0062	0.0027	ND (0.00025)
14MW06	2015	0.040 J	2.3	0.27	ND (0.001)	ND (0.00001)	0.0026 J	0.0024 J	0.00064 J	ND (0.00050)
14MW06	2016	0.011 J	1.4 QL	0.55 QL	ND (0.0001)	0.00006 QN	0.00203	0.00203	0.000861	0.000649 QN
14MW06	2016	0.011 J	1.4 QL	0.47 QL	ND (0.0001)	0.000033 QN	0.00197	0.00197	0.000817	0.000208 QN
14MW07	2014	0.026 J,B	0.15 B	0.043 J	0.00072 J	0.000011 J	0.0092	ND (0.004)	ND (0.00025)	0.0015 J
14MW07	2015	ND (0.044)	ND (0.10 QN)	ND (0.073)	ND (0.001)	ND (0.000011)	ND (0.0040)	ND (0.0040)	0.00069 J	0.00069 J
14MW07	2016	ND (0.025)	0.12 J,B,QL	0.093 J,B,QL	ND (0.0001)	0.0000061 J	ND (0.00025)	ND (0.00025)	0.000338	0.000052
17MW1	2004	ND (0.090)	ND (0.337 B)	ND (0.562 B)	ND (0.0004)				0.00708	
17MW1	2010	0.05 U,B	0.057 U	0.057 U	0.00015 U					
17MW1	2011	0.015 J,B	0.037 J	0.056 J	ND (0.00045)	ND (0.000072)	ND (0.0038)	ND (0.0038)	0.00019 J	0.0003 J
17MW1	2012	ND (0.044)	0.036 J	0.039 J	ND (0.00045)	ND (0.000072)	ND (0.004)	ND (0.004)	0.00028 J	ND (0.00025)
17MW1	2013	0.018 J	0.038 J	0.045 J	ND (0.00045)	ND (0.00003)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
17MW1	2014	ND (0.044)	0.021 J	ND (0.049)	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	0.13	ND (0.00025)
17MW1	2015	ND (0.044)	ND (0.10 QN)	ND (0.071)	ND (0.001)	ND (0.00001)	ND (0.0040)	ND (0.0040)	0.00021 J	ND (0.00050)
17MW1	2016	ND (0.025)	0.092 J,B,QL	0.13 J,B,QL	ND (0.0001)	0.0000076 J	ND (0.00025)	ND (0.00025)	0.00025	0.000045
20MW1	2004	0.0194 J	ND (0.333 B)	ND (0.568 B)	ND (0.0004)				0.0517	
20MW1	2010	0.05 U,B	0.024 J	0.03 JM	0.00015 U					
20MW1	2011	0.017 J,B	0.036 J	0.081 J	ND (0.00045)	ND (0.000072)	ND (0.0038)	ND (0.0038)	0.00045 J	ND (0.00035)
20MW1	2012	ND (0.044)	0.040 J	0.046 J	ND (0.00045)	ND (0.000072)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
20MW1	2013	ND (0.044)	0.032 J	ND (0.048)	ND (0.00045)	ND (0.00003)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
20MW1	2014	ND (0.044)	0.023 J	ND (0.052)	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	0.00045 J	ND (0.00025)
20MW1	2015	ND (0.044)	ND (0.10 QN)	ND (0.071)	ND (0.001)	ND (0.00001)	0.0014 J	ND (0.0040)	0.0057	ND (0.00050)

Northeast Cape FUDS Table C-3.1 COCs and Analytes in Groundwater Above SSCLs and 2016 ADEC Criteria

		GRO	DRO	RRO	Benzene	Naphthalene	Arsenic-Total	Arsenic- Dissolved	Lead-Total	Lead-Dissolved
	SSCL	1.3 mg/L	1.5 mg/L	1.1 mg/L	0.005 mg/L		0.01 mg/L	0.01 mg/L	0.015 mg/L	0.015 mg/L
	2016 ADEC	2.2 mg/L	1.5 mg/L	1.1 mg/L	0.0046 mg/L	0.0017 mg/L	0.00052 mg/L	0.00052 mg/L	0.015 mg/L	0.015 mg/L
20MW1	2016	ND (0.025)	0.09 J,B,QL	0.13 J,B,QL	ND (0.0001)	0.0000054 J	ND (0.00025)	ND (0.00025)	0.000866	0.000248
22MW2	2010	0.044 U	ND (0.094)	0.027 J	0.00015 U					
22MW2	2011	0.021	0.023	0.052 J	ND (0.00045)	ND (0.000073)	ND (0.0038)	ND (0.0038)	0.0003 J	0.00017 J
22MW2	2012	ND (0.044)	0.047 J	0.042 J	ND (0.00045)	ND (0.000072)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
22MW2	2013	ND (0.044)	0.025 J	ND (0.047)	ND (0.00045)	ND (0.00003)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
22MW2	2014	0.017 J,B	ND (0.049)	ND (0.049)	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
22MW2	2015	ND (0.044)	ND (0.10 QN)	ND (0.074)	ND (0.001)	ND (0.000012)	ND (0.0040)	ND (0.0040)	0.00066 J	ND (0.00050)
22MW2	2016	ND (0.025)	0.1 J,B,QL	0.36 J,QL	ND (0.0001)	ND (0.0000051)	ND (0.00025)	ND (0.00025)	0.000085	0.000026
26MW1	2004	0.0166 J	0.078 J	0.249 J	ND (0.0004)	ND (0.0000562)				
26MW1	2004					ND (0.0000543)				
26MW1	2004					ND (0.000111)				
26MW1	2010	0.044 U	0.057 U	0.057 U	0.00015 U					
26MW1	2011	ND (0.044)	0.083	0.073 J	ND (0.00045)	ND (0.000073)	ND (0.0038)	ND (0.0038)	0.0006 J	ND (0.00035)
26MW1	2012	ND (0.044)	0.029 J	0.030 J	ND (0.00045)	ND (0.000071)	ND (0.004)	ND (0.004)	0.00019 J	ND (0.00025)
26MW1	2013	ND (0.044)	0.029 J	ND (0.047)	ND (0.00045)	ND (0.00003)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.015 B)
26MW1	2014	ND (0.044)	ND (0.050)	ND (0.050)	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
26MW1	2015	ND (0.044)	ND (0.10 QN)	ND (0.072)	ND (0.001)	ND (0.00001)	ND (0.0040)	ND (0.0040)	ND (0.00050)	ND (0.00050)
26MW1	2016	ND (0.025)	0.11 J,B,QL	0.79 QL	ND (0.0001)	0.0000045 J	ND (0.00025)	ND (0.00025)	0.000474	0.000025
MW10-1	2004	ND (0.090)	ND (0.333 B)	ND (0.556 B)	ND (0.0004)				0.00457	
MW10-1	2010	0.044 U	0.68	0.43	0.00015 U					
MW10-1	2011	0.017 J	0.46	0.59	ND (0.00045)	ND (0.000071)	ND (0.0038)	ND (0.0038)	0.00086 J	0.00038 J
MW10-1	2012	ND (0.044)	0.64	0.28	ND (0.00045)	ND (0.000071)	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
MW10-1	2013	ND (0.044)	0.4	0.17	ND (0.00045)	ND (0.00003)	ND (0.004)	ND (0.004)	ND (0.015 B)	ND (0.015 B)
MW10-1	2014	ND (0.044)	0.8	0.37	ND (0.0004)	0.000016 J	ND (0.004)	ND (0.004)	0.0011 J	ND (0.00025)
MW10-1	2015	ND (0.044)	0.39	0.14	ND (0.001)	ND (0.00001)	0.0014 J	ND (0.0040)	0.004	0.00028 J
MW10-1	2016	ND (0.025)	0.49 J, QL	0.32 J, QL	ND (0.0001)	0.0000046 J	ND (0.00025)	ND (0.00025)	0.000558	0.000042
MW88-1	2002	0.024 V,J	1.2	0.43	0.00058					
MW88-1	2004	0.0141 J	ND (0.345 B)	0.168 J	ND (0.0004)				ND (0.004)	
MW88-1	2010	0.02 U,B	0.75	0.037 J,M	0.00015 U					
MW88-1	2011	ND (0.044)	0.74	0.54	ND (0.00045)	ND (0.000072)	ND (0.0038)	ND (0.0038)	0.0016 J	0.00035 J
MW88-1	2012	ND (0.044)	1.9	0.15	ND (0.00045)	ND (0.000071)	ND (0.004)	ND (0.004)	0.00041 J	ND (0.00025)
MW88-1	2013	ND (0.044)	0.22	0.05 J	ND (0.00045)	0.000019 J	ND (0.004)	ND (0.004)	ND (0.00025)	ND (0.00025)
MW88-1	2014	ND (0.044)	0.26	0.049 J	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	0.0027	0.00025 J
MW88-1	2014	ND (0.044)	0.21	0.043 J	ND (0.0004)	ND (0.000016)	ND (0.004)	ND (0.004)	0.003	0.00023 J
MW88-1	2015	ND (0.044)	0.1 B	ND (0.071)	ND (0.001)	ND (0.000011)	ND (0.0040)	ND (0.0040)	ND (0.00050)	ND (0.00050)
MW88-1	2016	ND (0.025)	0.52 J, QL	0.23 J, QL	ND (0.0001)	0.0000071 J	ND (0.00025)	ND (0.00025)	0.000301	0.000075
MW88-10	2002	0.12	55	1.3	0.0027					
MW88-10	2004	0.0357 J	1.38	ND (0.549 B)	ND (0.0004)				0.0376	
MW88-10	2010	0.044 U	1.6	0.036 J	0.00015 U				0.00222 J	
MW88-10	2011	ND (0.044)	0.54	0.15	ND (0.00045)	ND (0.000074)	ND (0.0038)	ND (0.0038)	0.00083 J	0.00021 J
MW88-10	2012	ND (0.044)	0.5	0.064 J	ND (0.00045)	0.00033	ND (0.004)	ND (0.004)	0.00076 J	0.00022 J

Northeast Cape FUDS Table C-3.1 COCs and Analytes in Groundwater Above SSCLs and 2016 ADEC Criteria

		GRO	DRO	RRO	Benzene	Naphthalene	Arsenic-Total	Arsenic- Dissolved	Lead-Total	Lead-Dissolved
	SSCL	1.3 mg/L	1.5 mg/L	1.1 mg/L	0.005 mg/L		0.01 mg/L	0.01 mg/L	0.015 mg/L	0.015 mg/L
	2016 ADEC	2.2 mg/L	1.5 mg/L	1.1 mg/L	0.0046 mg/L	0.0017 mg/L	0.00052 mg/L	0.00052 mg/L	0.015 mg/L	0.015 mg/L
MW88-10	2013	ND (0.05 B)	0.97	0.042 J	ND (0.00045)	0.00074	ND (0.004)	ND (0.004)	ND (0.015 B)	ND (0.015 B)
MW88-10	2013	ND (0.05 B)	0.94	0.043 J	ND (0.00045)	0.00084	ND (0.004)	ND (0.004)	ND (0.015 B)	ND (0.00025)
MW88-10	2014	0.021 J,B	0.66	0.041 J	ND (0.0004)	0.000044	ND (0.004)	ND (0.004)	0.0011 J	0.0020 J
MW88-10	2015	ND (0.044)	0.43	ND (0.071)	ND (0.001)	ND (0.00001)	ND (0.0040)	ND (0.0040)	0.00069 J	0.00026 J
MW88-10	2016	ND (0.025)	0.3 J, QL	0.16 J, QL	ND (0.0001)	0.0000088 J	0.00022 J	0.00023 J	0.00143	0.000227
MW88-3	2002	0.42	34	0.22	0.00057					
MW88-3	2004	0.104	0.768	ND (0.549 B)	ND (0.0004)				ND (0.004)	
MW88-3	2014	0.018 J,B	0.46	0.030 J	ND (0.0004)	0.000019 J	ND (0.004)	ND (0.004)	0.0010 J	ND (0.00025)
MW88-3	2015	ND (0.044)	0.38	ND (0.073)	ND (0.001)	ND (0.00001)	ND (0.0040)	ND (0.0040)	0.00019 J	0.0031
MW88-3	2016	ND (0.025)	0.49 J, QL	0.15 J, QL	ND (0.0001)	0.000035	ND (0.00025)	ND (0.00025)	0.000383	0.000158
MW88-4*	2002	1.2	72	1.9	0.03					
MW88-4*	2002	1.2	56	1.3	0.03					
MW88-4*	2004	0.917	3.82 J	1.46 B	0.0276				0.00502	
MW88-4*	2004	1.09 J	3.49	1.11 B	0.0337				0.00409 B	
MW88-4*	2004	1.25	3.89	ND (0.750 B)	0.03				0.00423 B	
MW88-4*	2010	0.23	3.2	0.38 M	0.0022				0.0025 J	
MW88-4*	2010	0.24	3.3	0.43 M	0.0024				0.00266	
MW88-4*	2011	0.4	2.3	0.55	0.0094	0.075	0.01	0.011	0.0013 J	0.00032 J
MW88-4*	2012	0.31	2	0.24	0.0048	0.089 D	0.011	0.0038 J	0.0019 J	ND (0.00025)
MW88-4*	2012	0.3	1.8	0.21	0.0042	0.085 D	0.011	0.011	ND (0.00025)	0.0019 J
MW88-5*	2002	1.3	9.8	2.3	0.019					
MW88-5*	2004	1.5 J	11.3	2.28 B	0.0297				0.012	
MW88-5*	2010	0.19	12	1.6	0.0093				0.004 J	
MW88-5*	2011	0.23	7.5	2	0.016	0.00084	0.0058	0.0049 J	0.0019 J	0000046 J
MW88-5*	2011	0.25	7.2	1.8	0.02	0.00078	0.0057	0.0052	0.0019 J	0.00049 J
MW88-5*	2012	0.16	4.6	0.58	0.0064	0.029	0.007	0.0055	0.0021	0.00023 J

Notes:

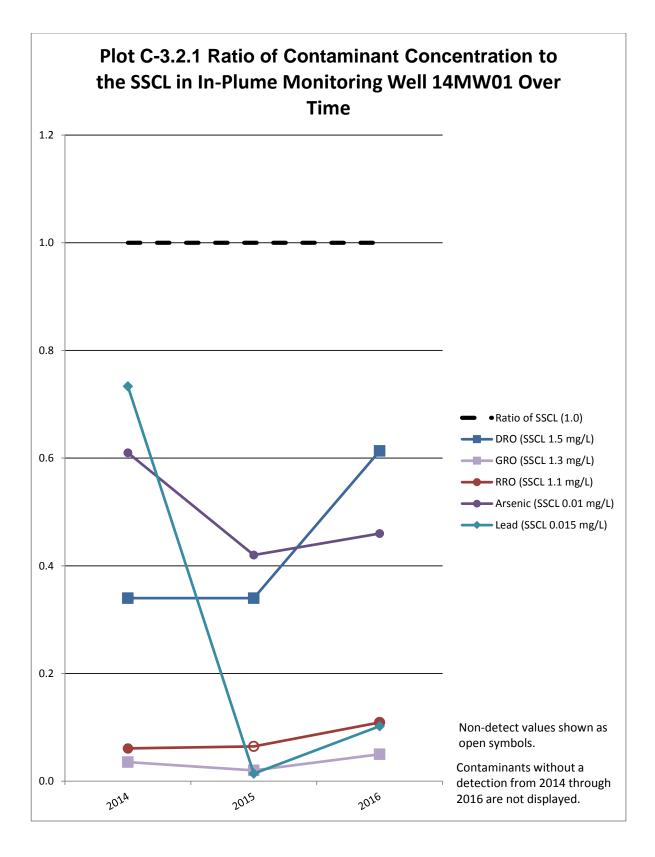
mg/L = milligram per liter

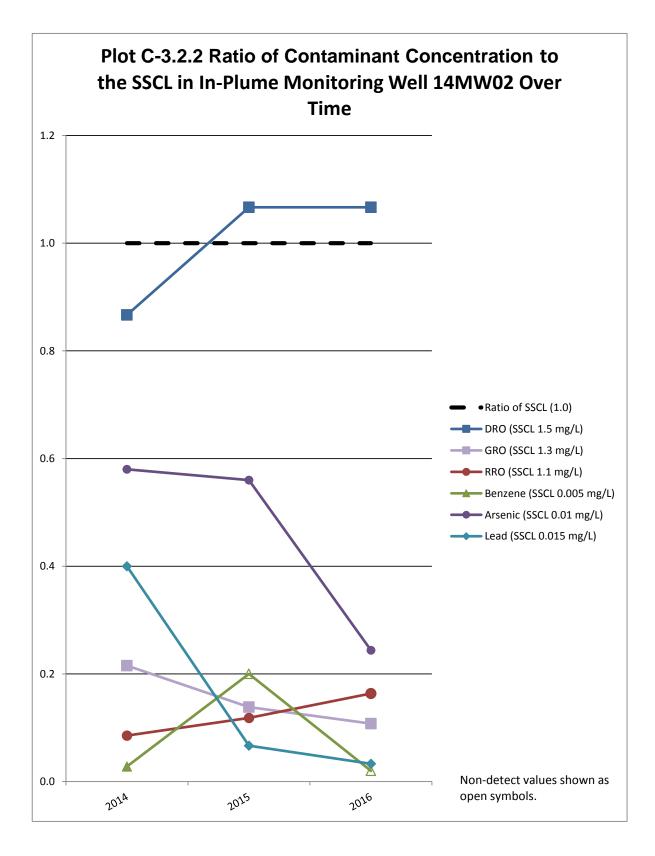
COC = contaminant of concern

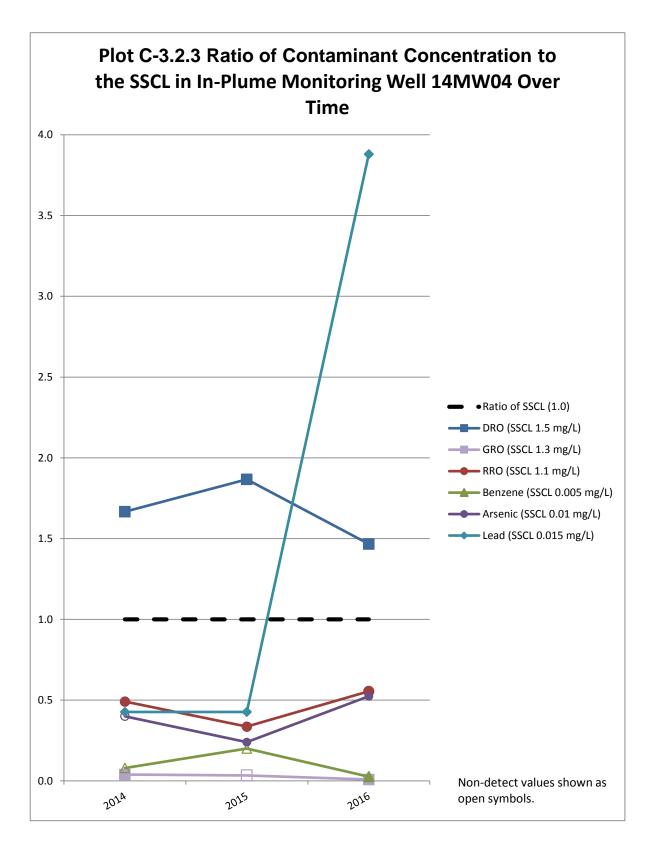
SSCL = site-specific cleanup level

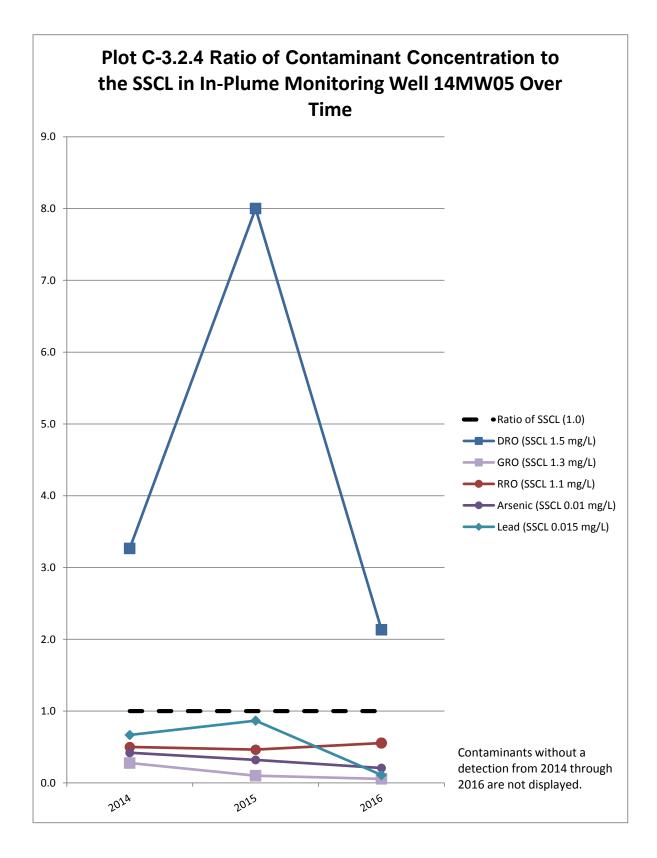
ADEC = Alaska Department of Environmental Conservation

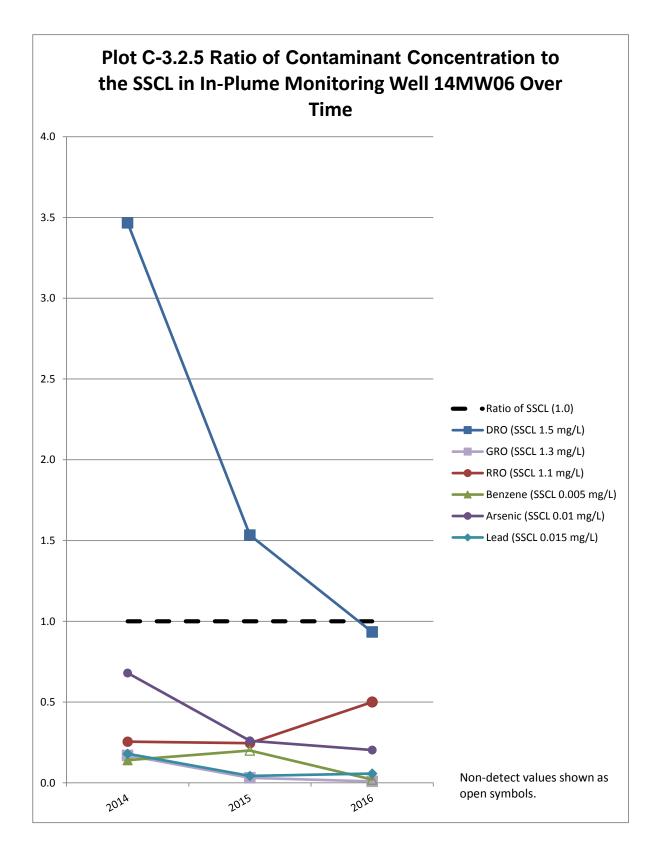
* = Monitoring well not currently installed and sampled.

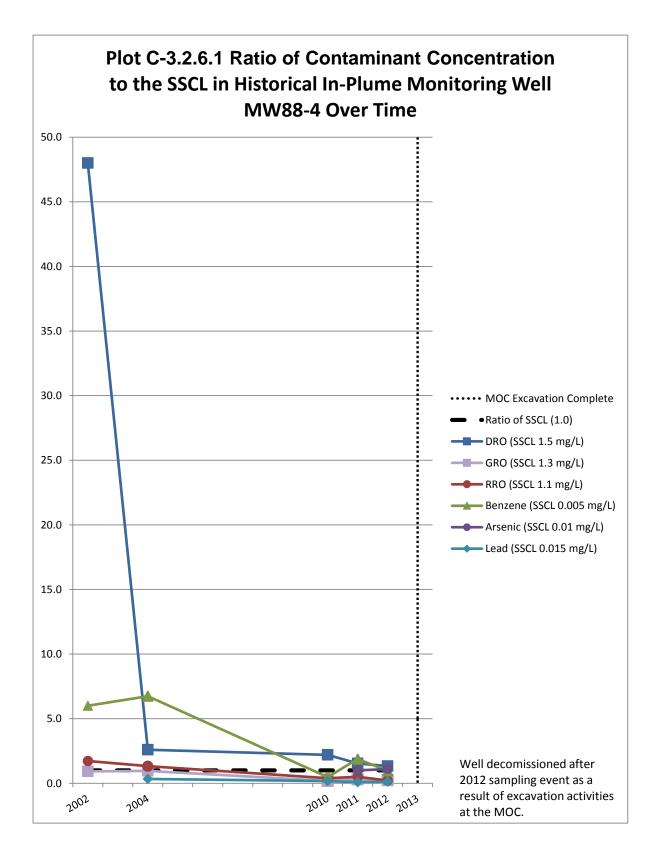

-- = Not Sampled

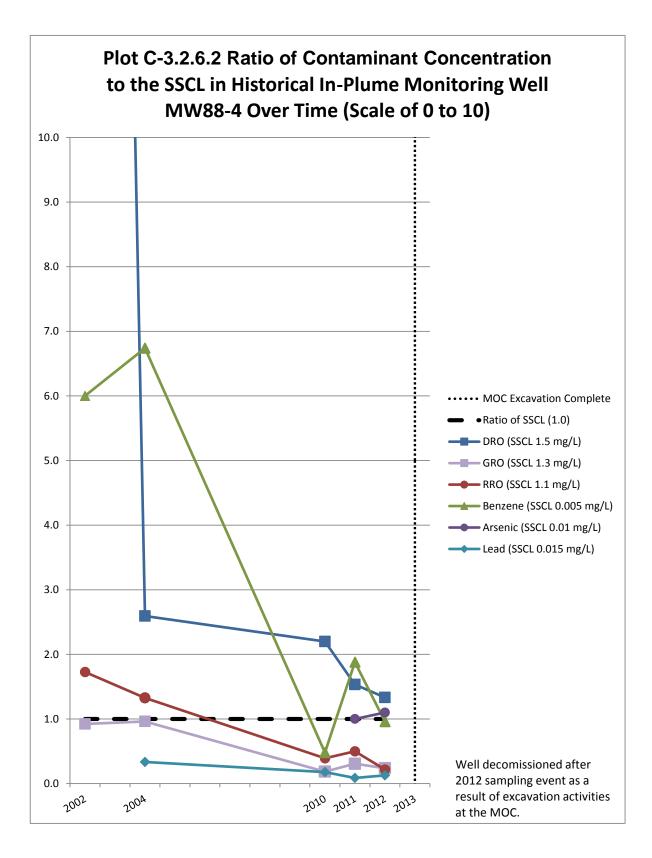

Bold and highlighted text indicates result exceeding the SSCL.

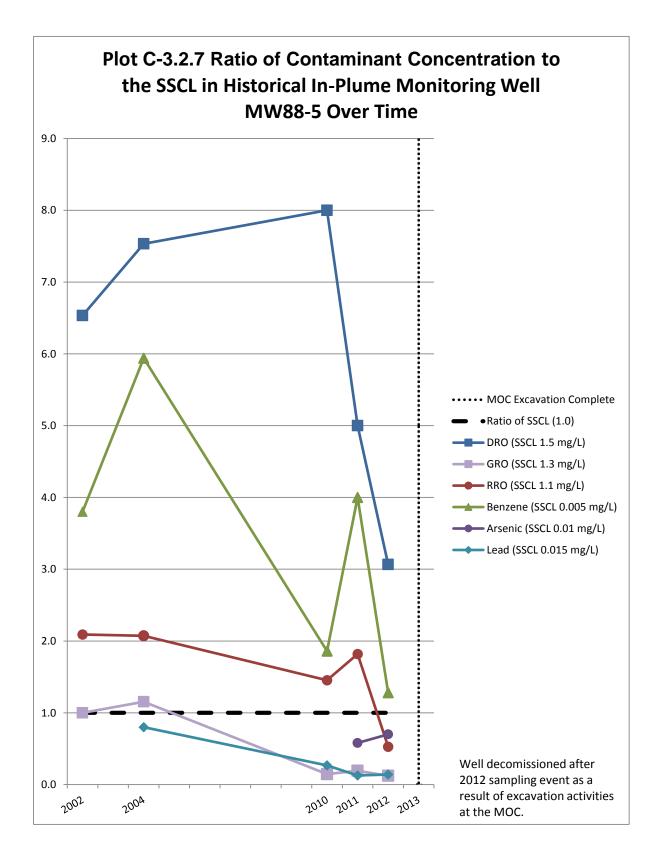

Bold and italicized text indicates resu exceeding 2016 ADEC evaluation criteria.

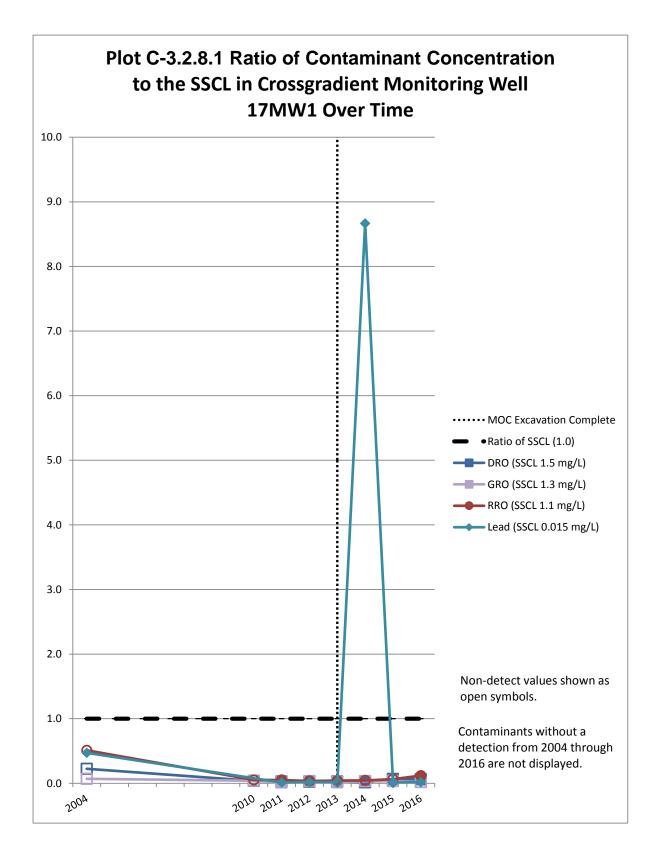

For additional definitions, refer to the Acronyms and Abbreviations section.

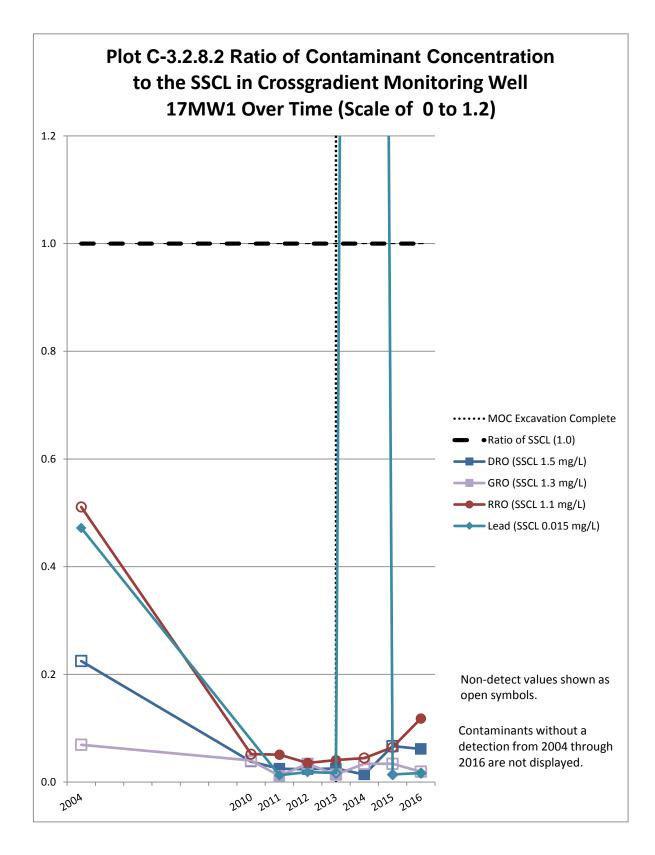

For data qualifiers, refer to the DQA in Appendix B.

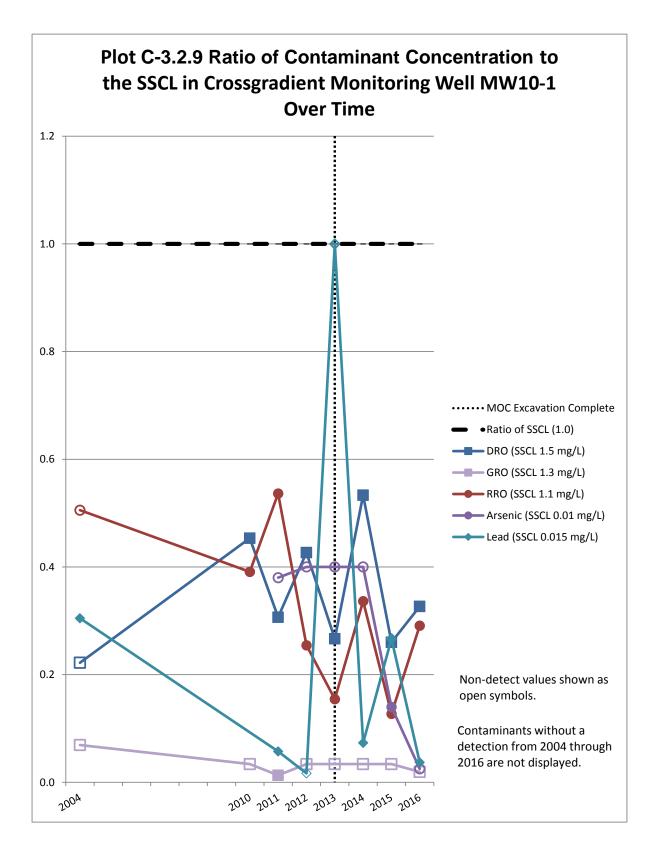


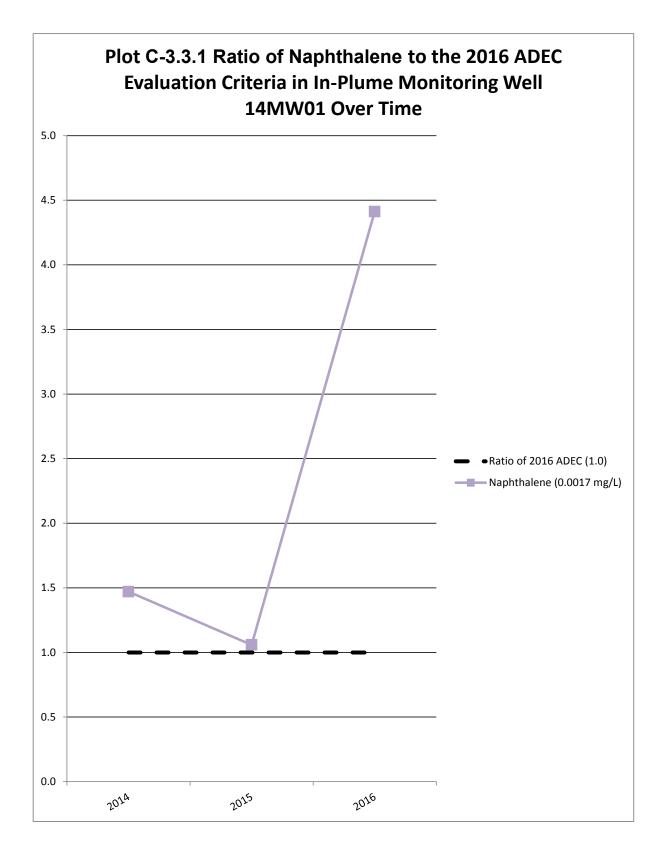


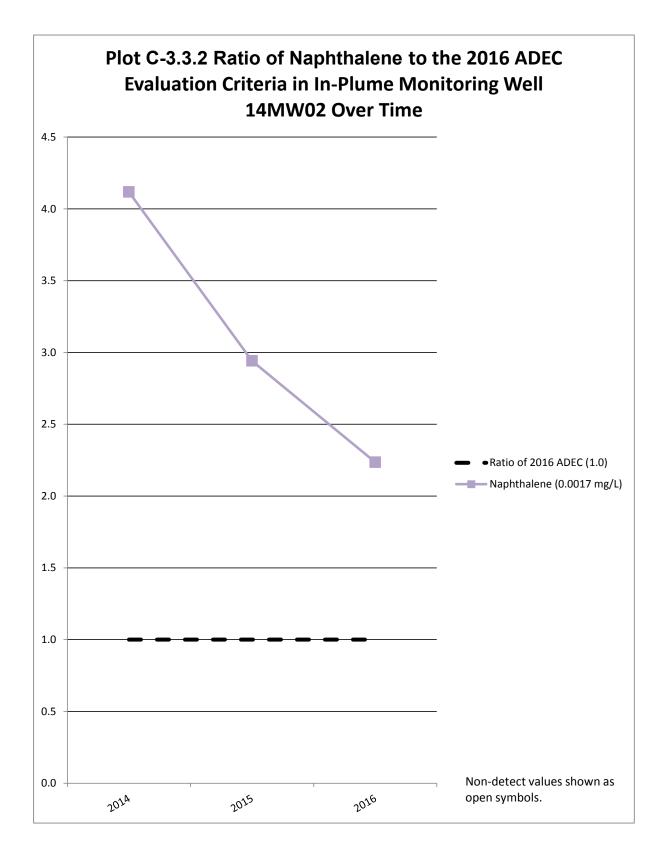


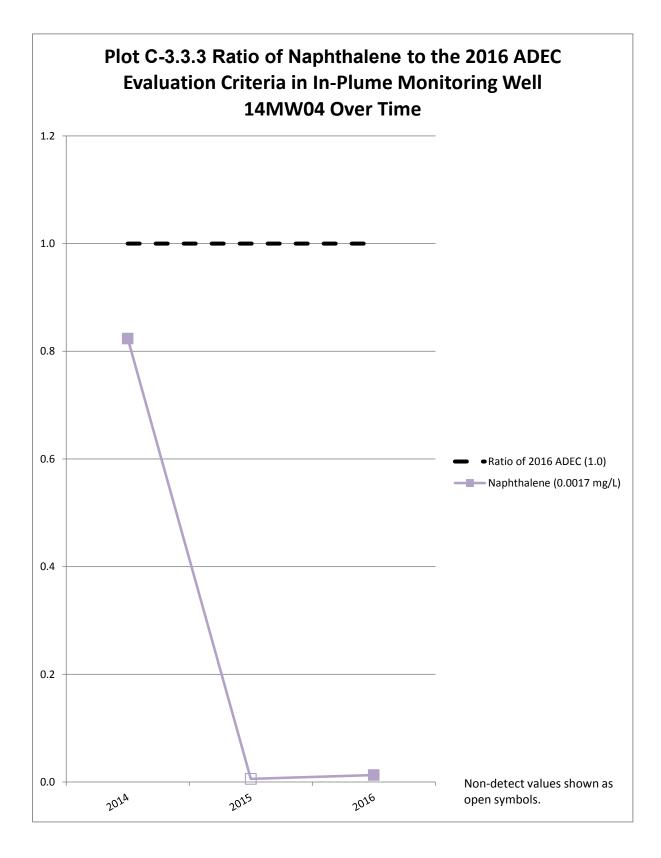


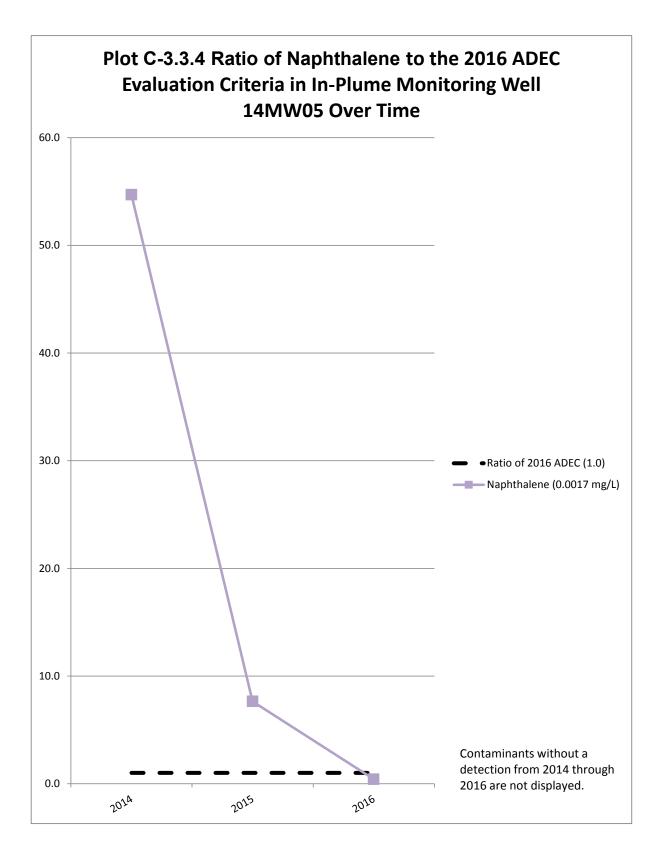


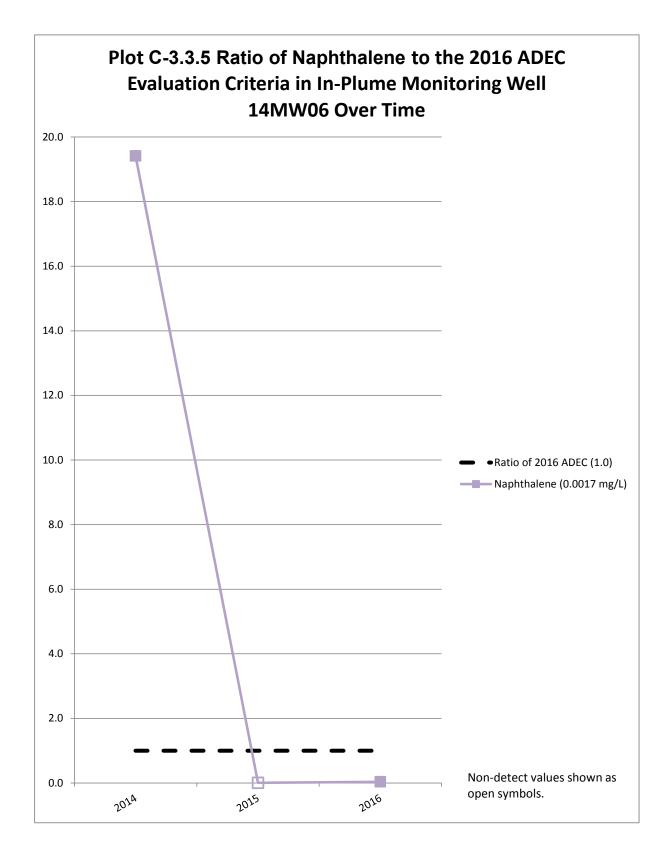


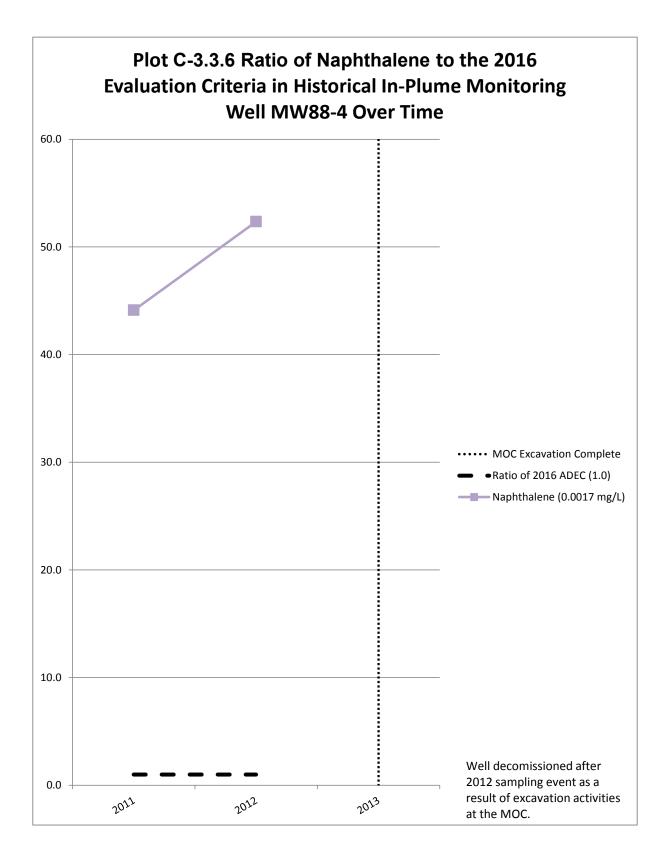


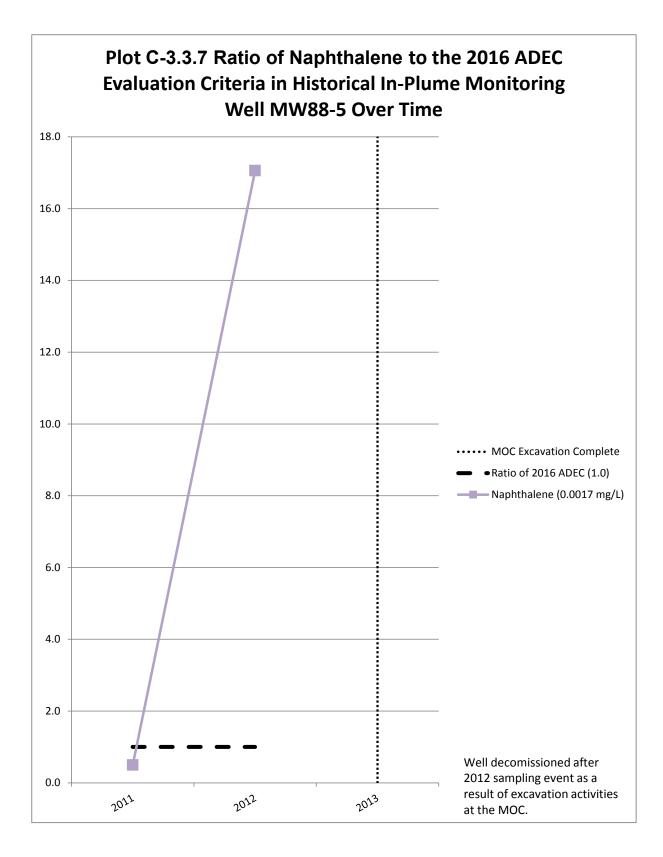


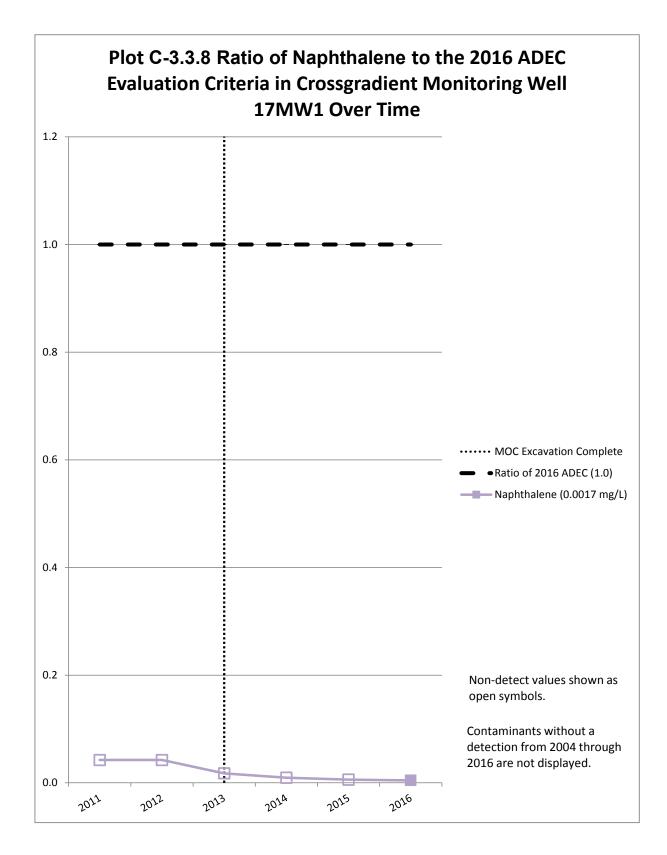


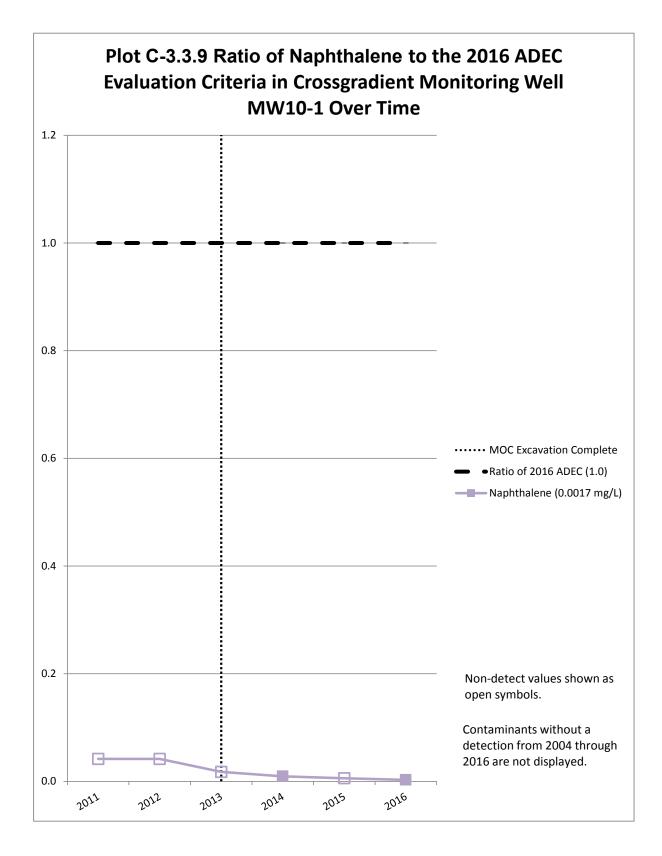


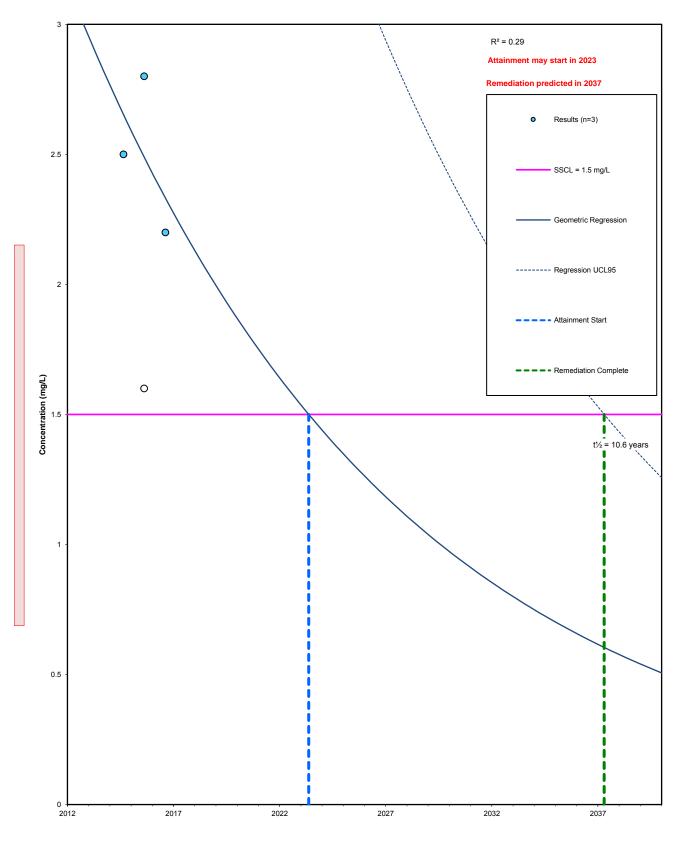












ATTACHMENT C-4 DRO Trends Over Time

2016 Northeast Cape FUDS Plot C-4.1.1 Well 14MW04 DRO

2016 Northeast Cape FUDS Table C-4.1.1 Input Data

<u>Statistical Geometric Regression to Evaluate Natural Attenuation</u> H. McLean with assistance from D. Ward; Jacobs Engineering January 2017

	NEC									
	14MW04									
DRO										
Date	mg/L	Qualifer	Log mg/L							
Included			11							
8/23/2014	2.5		0.40							
8/15/2015	2.8	QN	0.45							
8/15/2016	2.2	QL	0.34							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
Excluded			•							
8/15/2015	1.6	QL QN	0.20							
			#N/A							

LinEst of Log COCs		
-7.77E-05	3.68	m (1/day), b
1.22E-04	5.17	se(m), se(b)
0.29	0.06	r ² , se(y intercept)
0.40	1	F,degrees of freedom
0.00	0.00	regression sum of squares, residual sum of squares
	0.06	Standard Deviation
	6.31	Student's t for one-tailed 95% confidence interval

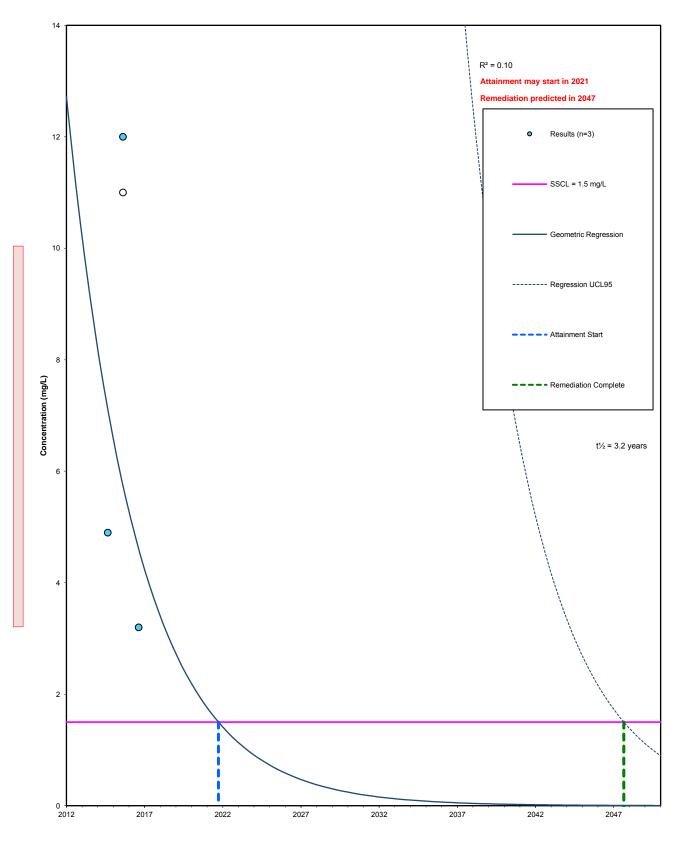
0.40 ± for 95% CI

Cleanup Level			
Date	DRO		
1/2/2012	1.5		
1/3/2040	1.5		

Goal Seek for Cleanup Dates

		Log			Linear			GoalSeek
Phase	Date	-95%	Trend	+95%	-95%	Trend	+95%	Target
Remed	4/18/2037	-0.61	-0.22	0.18	2.43E-01	6.04E-01	1.50E+00	1.000131
Attain	5/17/2023	-0.22	0.18	0.57	6.04E-01	1.50E+00	3.73E+00	1.000013

Plot Limits			
	Year	Х	Max Y
Start	2012	40910	3
End	2040	51138	2.8


2016 Northeast Cape FUDS Table C-4.1.2 Curve Data

	14MW04 Log Linear						
		Log					
Date	-95%	Trend	+95%	-95%	Trend	+95%	
1/2/2012	0.10	0.50	0.89	1.269509654	3.152617943	7.82900694	
5/5/2012	0.09	0.49	0.88	1.241504994	3.083072986	7.656303505	
9/7/2012	0.08	0.48	0.87	1.214118101	3.015062151	7.487409809	
1/10/2013	0.07	0.47	0.86	1.187335347	2.948551597	7.322241811	
5/14/2013	0.06	0.46	0.85	1.161143405	2.883508228	7.160717326	
9/16/2013	0.06	0.45	0.85	1.135529243	2.819899678	7.002755979	
1/19/2014	0.05	0.44	0.84	1.110480114	2.757694296	6.848279169	
5/24/2014	0.04	0.43	0.83	1.085983555	2.69686113	6.69721003	
9/25/2014	0.03	0.42	0.82	1.062027376	2.637369909	6.54947339	
1/28/2015	0.02	0.41	0.81	1.038599657	2.579191031	6.404995736	
6/2/2015	0.01	0.40	0.80	1.01568874	2.522295545	6.263705177	
10/5/2015	0.00	0.39	0.79	0.993283224	2.466655142	6.125531407	
2/6/2016	-0.01	0.38	0.78	0.971371962	2.412242134	5.990405672	
6/10/2016	-0.02	0.37	0.77	0.94994405	2.359029446	5.858260733	
10/13/2016	-0.03	0.36	0.76	0.928988825	2.306990599	5.729030837	
2/14/2017	-0.04	0.35	0.75	0.90849586	2.2560997	5.602651679	
6/19/2017	-0.05	0.34	0.74	0.888454959	2.206331425	5.479060373	
10/22/2017	-0.06	0.33	0.73	0.868856148	2.15766101	5.35819542	
2/24/2018	-0.07	0.32	0.72	0.849689676	2.110064237	5.23999668	
6/28/2018	-0.08	0.31	0.71	0.830946006	2.063517421	5.124405337	
10/31/2018	-0.09	0.30	0.70	0.81261581	2.017997402	5.011363873	
3/5/2019	-0.10	0.30	0.69	0.794689968	1.973481528	4.900816039	
7/8/2019	-0.11	0.29	0.68	0.77715956	1.929947649	4.792706828	
11/9/2019	-0.12	0.28	0.67	0.760015862	1.887374103	4.686982444	
3/13/2020	-0.13	0.27	0.66	0.743250345	1.845739705	4.58359028	
7/16/2020	-0.14	0.26	0.65	0.726854666	1.805023738	4.482478888	
11/18/2020	-0.15	0.25	0.64	0.710820666	1.765205942	4.383597956	
3/22/2021	-0.16	0.24	0.63	0.695140367	1.726266504	4.286898281	
7/25/2021	-0.17	0.23	0.62	0.679805966	1.688186048	4.192331746	
11/27/2021	-0.18	0.22	0.61	0.664809833	1.650945625	4.099851294	
3/31/2022	-0.19	0.21	0.60	0.650144507	1.614526704	4.009410909	
8/3/2022	-0.20	0.20	0.59	0.635802689	1.578911164	3.920965587	
12/6/2022	-0.21	0.19	0.58	0.621777244	1.544081283	3.834471319	
4/10/2023	-0.22	0.18	0.57	0.608061192	1.510019729	3.749885065	
8/12/2023	-0.23	0.17	0.56	0.594647708	1.476709554	3.667164735	
12/15/2023	-0.24	0.16	0.55	0.581530118	1.444134182	3.586269169	
4/18/2024	-0.25	0.15	0.54	0.568701895	1.412277404	3.507158113	
8/21/2024	-0.25	0.14	0.54	0.556156655	1.381123368	3.429792202	
12/23/2024	-0.26	0.13	0.53	0.543888156	1.350656573	3.354132939	
4/27/2025	-0.27	0.12	0.52	0.531890293	1.320861858	3.280142676	
8/30/2025	-0.28	0.11	0.51	0.520157096	1.291724398	3.207784596	
1/2/2026	-0.29	0.10	0.50	0.508682726	1.263229693	3.137022694	
5/6/2026	-0.30	0.09	0.49	0.497461475	1.235363565	3.06782176	
9/8/2026	-0.31	0.08	0.48	0.486487758	1.208112148	3.000147359	
1/11/2027	-0.32	0.00	0.47	0.475756115	1.181461882	2.933965816	
5/15/2027	-0.32	0.06	0.46	0.465261206	1.155399506	2.869244201	
9/17/2027	-0.34	0.05	0.45	0.454997809	1.129912051	2.805950307	
1/20/2028	-0.34	0.03	0.43	0.444960816	1.104986834	2.744052641	
1/20/2020	-0.35	0.04	0.44	0.444900010	1.104900004	2.144002041	

2016 Northeast Cape FUDS Table C-4.1.2 Curve Data

	14MW04							
	Log							
Date	-95%	Trend	+95%	-95%	Trend	+95%		
5/24/2028	-0.36	0.03	0.43	0.435145234	1.080611454	2.683520402		
9/25/2028	-0.37	0.02	0.42	0.425546178	1.05677378	2.62432347		
1/28/2029	-0.38	0.01	0.41	0.416158872	1.033461952	2.566432389		
6/2/2029	-0.39	0.00	0.40	0.406978644	1.01066437	2.509818351		
10/5/2029	-0.40	-0.01	0.39	0.398000927	0.988369689	2.454453187		
2/6/2030	-0.41	-0.01	0.38	0.389221253	0.966566817	2.400309348		
6/11/2030	-0.42	-0.02	0.37	0.380635254	0.945244903	2.34735989		
10/14/2030	-0.43	-0.03	0.36	0.372238657	0.924393339	2.295578467		
2/15/2031	-0.44	-0.04	0.35	0.364027284	0.904001748	2.244939313		
6/20/2031	-0.45	-0.05	0.34	0.355997049	0.884059984	2.19541723		
10/23/2031	-0.46	-0.06	0.33	0.348143957	0.864558124	2.146987576		
2/25/2032	-0.47	-0.07	0.32	0.3404641	0.845486464	2.099626253		
6/28/2032	-0.48	-0.08	0.31	0.332953655	0.826835514	2.053309693		
10/31/2032	-0.49	-0.09	0.30	0.325608887	0.808595994	2.00801485		
3/5/2033	-0.50	-0.10	0.29	0.318426141	0.790758826	1.963719186		
7/8/2033	-0.51	-0.11	0.28	0.311401841	0.773315137	1.920400659		
11/9/2033	-0.52	-0.12	0.27	0.304532494	0.756256245	1.878037714		
3/14/2034	-0.53	-0.13	0.26	0.297814681	0.739573663	1.836609271		
7/17/2034	-0.54	-0.14	0.25	0.291245058	0.723259089	1.796094716		
11/19/2034	-0.55	-0.15	0.24	0.284820358	0.707304406	1.756473889		
3/23/2035	-0.56	-0.16	0.23	0.278537383	0.691701673	1.717727076		
7/26/2035	-0.56	-0.17	0.23	0.272393007	0.676443128	1.679834994		
11/28/2035	-0.57	-0.18	0.22	0.266384172	0.661521178	1.642778791		
3/31/2036	-0.58	-0.19	0.21	0.260507889	0.646928397	1.606540026		
8/3/2036	-0.59	-0.20	0.20	0.254761234	0.632657525	1.571100668		
12/6/2036	-0.60	-0.21	0.19	0.249141346	0.61870146	1.536443082		
4/10/2037	-0.61	-0.22	0.18	0.24364543	0.605053258	1.502550022		
8/12/2037	-0.62	-0.23	0.17	0.23827075	0.591706128	1.469404624		
12/15/2037	-0.63	-0.24	0.16	0.233014633	0.578653428	1.436990395		
4/19/2038	-0.64	-0.25	0.15	0.227874463	0.565888663	1.405291205		
8/22/2038	-0.65	-0.26	0.14	0.222847682	0.553405481	1.374291281		
12/24/2038	-0.66	-0.27	0.13	0.217931789	0.541197671	1.343975198		
4/28/2039	-0.67	-0.28	0.12	0.213124338	0.529259159	1.31432787		
8/31/2039	-0.68	-0.29	0.11	0.208422936	0.517584003	1.285334546		
1/3/2040	-0.69	-0.30	0.10	0.203825245	0.506166394	1.256980797		

2016 Northeast Cape FUDS Plot C-4.2.1 Well 14MW05 DRO

2016 Northeast Cape FUDS Table C-4.2.1 Input Data

<u>Statistical Geometric Regression to Evaluate Natural Attenuation</u> H. McLean with assistance from D. Ward; Jacobs Engineering January 2017

NEC										
	14MW05									
	DRO									
Date	Date mg/L Qualifer									
Included	ncluded									
8/23/2014	4.9		0.69							
8/15/2015	12		1.08							
8/15/2016	3.2	QL	0.51							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
			#N/A							
Excluded			•							
8/15/2015	11		1.04							
			#N/A							

LinEst of Lo	og COCs	
-2.61E-04	11.80	m (1/day), b
7.67E-04	32.40	se(m), se(b)
0.10	0.39	r ² , se(y intercept)
0.12	1	F,degrees of freedom
0.02	0.15	regression sum of squares, residual sum of squares
	0.20	Standard Deviation

0.39 Standard Deviation

6.31 Student's t for one-tailed 95% confidence interval

2.48 ± for 95% CI

Cleanup Level			
Date	DRO		
1/2/2012	1.5		
1/3/2050	1.5		

Goal Seek for Cleanup Dates

		Log			Linear			GoalSeek
Phase	Date	-95%	Trend	+95%	-95%	Trend	+95%	Target
Remed	8/26/2047	-4.78	-2.30	0.18	1.67E-05	5.01E-03	1.50E+00	1.000247
Attain	9/22/2021	-2.30	0.18	2.65	5.01E-03	1.50E+00	4.49E+02	0.999466

Plot Limits			
	Year	Х	Max Y
Start	2012	40910	14
End	2050	54791	12

2016 Northeast Cape FUDS Table C-4.2.2 Curve Data

	14MW05					
		Log			Linear	
Date	-95%	Trend	+95%	-95%	Trend	+95%
1/2/2012	-1.37	1.10	3.58	0.0424711	12.71577	3807.076
4/18/2012	-1.40	1.08	3.55	0.0398071	11.91815	3568.271
8/4/2012	-1.43	1.05	3.52	0.0373101	11.17056	3344.444
11/19/2012	-1.46	1.02	3.50	0.0349697	10.46987	3134.658
3/7/2013	-1.48	0.99	3.47	0.0327762	9.813128	2938.031
6/23/2013	-1.51	0.96	3.44	0.0307203	9.197581	2753.737
10/8/2013	-1.54	0.94	3.41	0.0287933	8.620646	2581.004
1/24/2014	-1.57	0.91	3.38	0.0269872	8.0799	2419.106
5/11/2014	-1.60	0.88	3.36	0.0252943	7.573074	2267.363
8/27/2014	-1.63	0.85	3.33	0.0237077	7.098039	2125.139
12/13/2014	-1.65	0.82	3.30	0.0222206	6.652801	1991.835
3/30/2015	-1.68	0.79	3.27	0.0208268	6.235492	1866.894
7/16/2015	-1.71	0.77	3.24	0.0195204	5.844359	1749.789
10/31/2015	-1.74	0.74	3.21	0.0182959	5.477761	1640.031
2/16/2016	-1.77	0.71	3.19	0.0171483	5.134159	1537.157
6/3/2016	-1.79	0.68	3.16	0.0160726	4.812109	1440.736
9/18/2016	-1.82	0.65	3.13	0.0150644	4.510261	1350.363
1/4/2017	-1.85	0.63	3.10	0.0141195	4.227346	1265.659
4/21/2017	-1.88	0.60	3.07	0.0132338	3.962178	1186.268
8/7/2017	-1.91	0.57	3.05	0.0124037	3.713643	1111.857
11/23/2017	-1.93	0.54	3.02	0.0116257	3.480698	1042.114
3/10/2018	-1.96	0.51	2.99	0.0108964	3.262365	976.7455
6/26/2018	-1.99	0.49	2.96	0.0102129	3.057727	915.4774
10/11/2018	-2.02	0.46	2.93	0.0095723	2.865926	858.0524
1/27/2019	-2.05	0.43	2.91	0.0089719	2.686155	804.2295
5/15/2019	-2.08	0.40	2.88	0.0084091	2.517661	753.7827
8/30/2019	-2.10	0.37	2.85	0.0078816	2.359736	706.5003
12/16/2019	-2.13	0.34	2.82	0.0073872	2.211717	662.1838
4/1/2020	-2.16	0.32	2.79	0.0069238	2.072983	620.6471
7/18/2020	-2.19	0.29	2.76	0.0064895	1.942952	581.7158
11/3/2020	-2.22	0.26	2.74	0.0060825	1.821077	545.2267
2/18/2021	-2.24	0.23	2.71	0.0057009	1.706846	511.0263
6/6/2021	-2.27	0.20	2.68	0.0053433	1.599781	478.9712
9/21/2021	-2.30	0.18	2.65	0.0050082	1.499432	448.9269
1/7/2022	-2.33	0.15	2.62	0.004694	1.405377	420.7671
4/25/2022	-2.36	0.12	2.60	0.0043996	1.317222	394.3737
8/10/2022	-2.38	0.09	2.57	0.0041236	1.234597	369.6359
11/26/2022	-2.41	0.06	2.54	0.0038649	1.157155	346.4498
3/13/2023	-2.44	0.04	2.51	0.0036225	1.08457	324.7181
6/29/2023	-2.47	0.01	2.48	0.0033953	1.016539	304.3496
10/15/2023	-2.50	-0.02	2.46	0.0031823	0.952774	285.2587
1/30/2024	-2.53	-0.05	2.43	0.0029827	0.89301	267.3653
5/17/2024	-2.55	-0.08	2.40	0.0027956	0.836994	250.5943
9/2/2024	-2.58	-0.11	2.37	0.0026202	0.784492	234.8754
12/18/2024	-2.61	-0.13	2.34	0.0024559	0.735283	220.1424
4/5/2025	-2.64	-0.16	2.31	0.0023018	0.689161	206.3335
7/21/2025	-2.67	-0.19	2.29	0.0021574	0.645932	193.3909
11/6/2025	-2.69	-0.22	2.26	0.0020221	0.605415	181.2601
2/22/2026	-2.72	-0.25	2.23	0.0018953	0.567439	169.8902

2016 Northeast Cape FUDS Plot C 2-4.2 Curve Data

	14MW05					
		Log			Linear	
Date	-95%	Trend	+95%	-95%	Trend	+95%
6/9/2026	-2.75	-0.27	2.20	0.0017764	0.531846	159.2335
9/25/2026	-2.78	-0.30	2.17	0.001665	0.498485	149.2453
1/10/2027	-2.81	-0.33	2.15	0.0015605	0.467216	139.8836
4/28/2027	-2.83	-0.36	2.12	0.0014626	0.437909	131.1092
8/14/2027	-2.86	-0.39	2.09	0.0013709	0.410441	122.8851
11/29/2027	-2.89	-0.41	2.06	0.0012849	0.384695	115.1769
3/16/2028	-2.92	-0.44	2.03	0.0012043	0.360564	107.9522
7/1/2028	-2.95	-0.47	2.01	0.0011288	0.337947	101.1807
10/17/2028	-2.98	-0.50	1.98	0.001058	0.316749	94.83399
2/2/2029	-3.00	-0.53	1.95	0.0009916	0.29688	88.88535
5/20/2029	-3.03	-0.56	1.92	0.0009294	0.278258	83.30985
9/5/2029	-3.06	-0.58	1.89	0.0008711	0.260804	78.08409
12/21/2029	-3.09	-0.61	1.86	0.0008165	0.244444	73.18612
4/8/2030	-3.12	-0.64	1.84	0.0007652	0.229111	68.59539
7/25/2030	-3.14	-0.67	1.81	0.0007172	0.21474	64.29262
11/9/2030	-3.17	-0.70	1.78	0.0006722	0.20127	60.25974
2/25/2031	-3.20	-0.72	1.75	0.0006301	0.188645	56.47984
6/12/2031	-3.23	-0.75	1.72	0.0005906	0.176812	52.93704
9/28/2031	-3.26	-0.78	1.70	0.0005535	0.165721	49.61647
1/14/2032	-3.29	-0.81	1.67	0.0005188	0.155326	46.50418
4/30/2032	-3.31	-0.84	1.64	0.0004863	0.145583	43.58712
8/16/2032	-3.34	-0.87	1.61	0.0004557	0.136451	40.85304
12/1/2032	-3.37	-0.89	1.58	0.0004272	0.127892	38.29046
3/19/2033	-3.40	-0.92	1.55	0.0004004	0.119869	35.88862
7/5/2033	-3.43	-0.95	1.53	0.0003753	0.11235	33.63744
10/20/2033	-3.45	-0.98	1.50	0.0003517	0.105303	31.52747
2/5/2034	-3.48	-1.01	1.47	0.0003297	0.098698	29.54985
5/23/2034	-3.51	-1.03	1.44	0.000309	0.092507	27.69628
9/8/2034	-3.54	-1.06	1.41	0.0002896	0.086704	25.95898
12/25/2034	-3.57	-1.09	1.39	0.0002714	0.081265	24.33066
4/11/2035	-3.59	-1.12	1.36	0.0002544	0.076168	22.80447
7/28/2035	-3.62	-1.15	1.33	0.0002384	0.07139	21.37402
11/12/2035	-3.65	-1.17	1.30	0.0002235	0.066912	20.03329
2/28/2036	-3.68	-1.20	1.27	0.0002095	0.062715	18.77667
6/15/2036	-3.71	-1.23	1.25	0.0001963	0.058781	17.59887
9/30/2036	-3.74	-1.26	1.22	0.000184	0.055094	16.49495
1/16/2037	-3.76	-1.29	1.19	0.0001725	0.051638	15.46027
5/4/2037	-3.79	-1.32	1.16	0.0001617	0.048399	14.4905
8/19/2037	-3.82	-1.34	1.13	0.0001515	0.045363	13.58155
12/5/2037	-3.85	-1.37	1.10	0.000142	0.042517	12.72963
3/22/2038	-3.88	-1.40	1.08	0.0001331	0.03985	11.93114
7/8/2038	-3.90	-1.43	1.05	0.0001248	0.037351	11.18273
10/24/2038	-3.93	-1.46	1.02	0.0001169	0.035008	10.48128
2/8/2039	-3.96	-1.48	0.99		0.032812	9.82382
5/27/2039	-3.99	-1.51	0.96		0.030754	9.207603
9/11/2039	-4.02	-1.54	0.94		0.028825	8.630039
12/28/2039	-4.04	-1.57	0.91	9.024E-05	0.027017	8.088704
4/14/2040	-4.07	-1.60	0.88	8.458E-05	0.025322	7.581325
7/30/2040	-4.10	-1.62	0.85	7.927E-05	0.023734	7.105773

2016 Northeast Cape FUDS Plot C 2-4.2 Curve Data

	14MW05					
	Log			Linear		
Date	-95%	Trend	+95%	-95%	Trend	+95%
11/15/2040	-4.13	-1.65	0.82	7.43E-05	0.022245	6.66005
3/2/2041	-4.16	-1.68	0.80	6.964E-05	0.020849	6.242286
6/18/2041	-4.19	-1.71	0.77	6.527E-05	0.019542	5.850727
10/4/2041	-4.21	-1.74	0.74	6.118E-05	0.018316	5.48373
1/19/2042	-4.24	-1.77	0.71	5.734E-05	0.017167	5.139753
5/7/2042	-4.27	-1.79	0.68	5.374E-05	0.01609	4.817352
8/22/2042	-4.30	-1.82	0.65	5.037E-05	0.015081	4.515175
12/8/2042	-4.33	-1.85	0.63	4.721E-05	0.014135	4.231952
3/26/2043	-4.35	-1.88	0.60	4.425E-05	0.013248	3.966495
7/11/2043	-4.38	-1.91	0.57	4.147E-05	0.012417	3.71769
10/27/2043	-4.41	-1.93	0.54	3.887E-05	0.011638	3.484491
2/11/2044	-4.44	-1.96	0.51	3.643E-05	0.010908	3.26592
5/29/2044	-4.47	-1.99	0.49	3.415E-05	0.010224	3.061059
9/14/2044	-4.49	-2.02	0.46	3.201E-05	0.009583	2.869048
12/30/2044	-4.52	-2.05	0.43	3E-05	0.008982	2.689082
4/17/2045	-4.55	-2.07	0.40	2.812E-05	0.008418	2.520404
8/2/2045	-4.58	-2.10	0.37	2.635E-05	0.00789	2.362307
11/18/2045	-4.61	-2.13	0.35	2.47E-05	0.007395	2.214127
3/6/2046	-4.64	-2.16	0.32	2.315E-05	0.006931	2.075242
6/21/2046	-4.66	-2.19	0.29	2.17E-05	0.006497	1.945069
10/7/2046	-4.69	-2.22	0.26	2.034E-05	0.006089	1.823061
1/22/2047	-4.72	-2.24	0.23	1.906E-05	0.005707	1.708706
5/10/2047	-4.75	-2.27	0.20	1.787E-05	0.005349	1.601524
8/26/2047	-4.78	-2.30	0.18	1.675E-05	0.005014	1.501066
12/11/2047	-4.80	-2.33	0.15	1.57E-05	0.004699	1.406909
3/28/2048	-4.83	-2.36	0.12	1.471E-05	0.004404	1.318658
7/13/2048	-4.86	-2.38	0.09	1.379E-05	0.004128	1.235942
10/29/2048	-4.89	-2.41	0.06	1.292E-05	0.003869	1.158416
2/14/2049	-4.92	-2.44	0.04	1.211E-05	0.003626	1.085752
6/1/2049	-4.94	-2.47	0.01	1.135E-05	0.003399	1.017646
9/17/2049	-4.97	-2.50	-0.02	1.064E-05	0.003186	0.953812
1/3/2050	-5.00	-2.52	-0.05	9.973E-06	0.002986	0.893983

2016 Northeast Cape FUDS Table C-4.3.1 Input Data

Mann-Kendall Input Data

Time	14MW02	14MW04	14MW05	
Year		DRO (mg/L))	
0	1.3	2.5	4.9	
1	1.6	2.8	12	
2	1.6	2.2	3.2	

mg/L = milligram per liter

DRO = diesel range organics

2016 Northeast Cape FUDS Table C-4.3.2 Trend Test Analysis 14MW02

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Level of Significance

14MW02 - DRO

General Statistics

- Number or Reported Events Not Used 0
 - Number of Generated Events 3
 - Number Values Reported (n) 3
 - Minimum 1.3
 - Maximum 1.6
 - Mean 1.5
 - Geometric Mean 1.493
 - Median 1.6
 - Standard Deviation 0.173
 - Coefficient of Variation 0.115

Mann-Kendall Test

M-K Test Value (S) 2 Tabulated p-value N/A Standard Deviation of S 1.633 Standardized Value of S 0.612 Approximate p-value 0.27

Insufficient evidence to identify a significant trend at the specified level of significance.

2016 Northeast Cape FUDS Table C-4.3.3 Trend Test Analysis 14MW04

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation From File 2017 Ne Cape DRO Groundwater.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

14MW04 - DRO

General Statistics

- Number or Reported Events Not Used 0
 - Number of Generated Events 3
 - Number Values Reported (n) 3
 - Minimum 2.2
 - Maximum 2.8
 - Mean 2.5
 - Geometric Mean 2.488
 - Median 2.5
 - Standard Deviation 0.3
 - Coefficient of Variation 0.12

Mann-Kendall Test

- M-K Test Value (S) -1 Tabulated p-value N/A Standard Deviation of S 1.915 Standardized Value of S 0
 - Approximate p-value 0.5
- Insufficient evidence to identify a significant trend at the specified level of significance.

2016 Northeast Cape FUDS Table C-4.3.4 Trend Test Analysis 14MW05

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Level of Significance Date/Time of Computation From File Confidence Coefficient Confidence Coefficient Confidence Coefficient

14MW05 - DRO

General Statistics

- Number or Reported Events Not Used 0
- Number of Generated Events 3
 - Number Values Reported (n) 3
 - Minimum 3.2
 - Maximum 12
 - Mean 6.7
 - Geometric Mean 5.73
 - Median 4.9
 - Standard Deviation 4.668
 - Coefficient of Variation 0.697

Mann-Kendall Test

M-K Test Value (S)	-1
Tabulated p-value	N/A
Standard Deviation of S	1.915
Standardized Value of S	0
Approximate p-value	0.5

Insufficient evidence to identify a significant trend at the specified level of significance.

APPENDIX D Field Documentation

JACOBS

	Site	Name			6 g + 5	Event		Well I	D Pr	oject Number
NEC	- Mod			Moc	MNA	Samplin	ng	14MWO		DK8707
		Conditions			MOC MNA Sampling PID Readings of Total VOCs (ppm) 11231			Date		mpler Initials
Overcas	f, cal	m		Ambier	Ambient 0.0 Breathing Zone 0.0 In Well 0.0			8/13/20	16 00)HM
	.,						1 Screened			
Wel	Integrity		TOC StickL	p (ft ags)				iameter(in) / Gallons per linear foot(gal/ft)		
Good	Fair P	oor (- 0.25)	PV	o ss	1/0.0	41 2/0.168	4 / 0.653	6 / 1.47
Depth to	Depth to Product (ft) Depth to GW			V (ft btoc)		of Casing (ft bloc)	Product T	hickness (ft) an	d Volume Reco	overed (mL)
	-	2	5.35		33.2	(final)				
Max Purge	e Volume =	(<u>33</u> Previous To	ft -	25.39 Depth to Wa Depth to Top	5 ft) +	0-163 gal/ Gallons per Ft	ft * 3 = <u>3.7</u>	gal * 3.785 Vol	L/gal = 14.16 Max Purg	e Vol
				V	Vell Purgi	ng Inform	ation	10 sheer	1	
Sta	art Time		Finish	Time	Depth of	Tubing (ft btoc)		Equipment U	sed for Purging	
1746		1	815		26.5		Bailer		mp (Submers	
	Color	-	Odd		Sheen		4	Meter Used During Purging		
Clear Clo Other:	udy Brow	m (None Faint	Moderate Strong	Nex	No Yes	YSI 0961016	Multi Meter	Hach Turbid	
Purging re	ached: St	ability Ma	x Vol. F	Purge wate	er was: Treate	Stored Oth	er Note: 🔄	AC Filter		
1334	Vo	lume	Flow		E-Section -	Water Q	stabilize)		Water Level	
Time (HH:mm)		s or Liters)	(0.013-0.13 gpm,	Temper- ature	± 3% °	± 10% or 0.1 mg/L	± 0.1 *	± 10 mV *	± 10% or 0.5 NTU	Drawdown < 0.3 ft
(in the second s	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)
1749	0.5	0.5	HAN BINS	-						25.5
1755	2.25	2.75	36375	4.16	57	10.81	5.59	160.8	15.4	25.51
1755	1.15	2.75	375 375 500	4.16	5 7 53	10.81	5.59	160.8	15.4 6.7	25.51
	-		375375	4.16						
1800	2.5	5.25	375-315 500	4.16	53	10.21	5.36	181-2	6.7	25.52
1800 1805	2.5	5.25 7.75	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1800 1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1800 1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1800 1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1800 1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52
1800 1805 1810	2.5 1.5 1.25	5.25 7.75 10.0	500 500	4.16 3.76 3.81	53 52	10.21	5.36	181-2	6.7 4.52	25.52 25.52

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1815	1832 /8/13/2016	26.5	Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC-	14 MWO7 - WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 0.0 ppm
Container/Pres B-40 mL VOA Vial 3- 1L amber 2-250 mL amber 1-250 mL HDPE 2- " " W/	W/ HCI SW82/ SW82 D/ HCI AK 10 EPA 3	nalysis Requested 0 /AKIOI / RSK175 705.1M / BOB2 2 / 103 300.0 / 310.1 0 20/ 7470	Notes BTEX, GRO, Methane PAHS, PCBS DRO, RRO SUIFATE, Alkalinity Total Metals RCRA & Ni, V, Zn Diss. V V, Mr

1848

Suggested Notation:

Nitrate = 0.1 mg/L

"-----" = not measured ""= stable "+" = rising "-" = falling

JACOBS

	Site	Name				Event		Well		roject Number
NE	C - N	100		Mod	MOC MNA Sampling			MW88.	-1 0:	DK8702
		Conditions	ž		PID Readings of Total VOCs (ppm) 910685					ampler Initials
Overcas	st, ligh	t wind	1.	Ambien	t 0.0 Brea	thing Zone 0.0	In Well 0, 2	8/13/201	6 4	c, HM
		Jang a	singuf	rostjan	Well I	nformatio	1	and a last		
Well	Integrity		TOC Stick	up (ft ags)	Well C	asing Material	Casing Di	ameter(in) / G	allons per line	ar foot(gal/ft)
Good	Fair P	oor (-	-0.15)	P	VC SS	1/0.0	41 2/0.163	4 / 0.653	6 / 1.47
Depth to	Product (<u>ft)</u>	Depth to G	W (ft btoc)		th of Casing (ft btoc)		nickness (ft) a	nd Volume Red	covered (mL)
- 14			16-71		23.20) (final)				
Max Purge	Volume =	(20 . Previous T	otal Depth	Depth to Wa	ter or of Filter Pack	Gallons per Ft	$ft * 3 = \frac{1.85}{Max Purge}$	gal * 3.785 _{Vol}	L/gal = 7.0 Max Put	ge Vol
				V	Vell Purg	ing Inform	ation			
	rt Time		Finish			f Tubing (ft btoc)			Jsed for Purgin	
1553	Valar	1	528		17.7		Bailer		ump (Subme	·
Clear Clos	Color udv. Brow	m	Od None	or Moderate	Sheen Yes	Purged Dr. Yes	4	Meter Used	During Pargin	1
Other:			Faint	Strong	No	No	0961016	65	Hach Turbi	dimeter
Purging rea	ached: St	ability Ma	IX Vol.	Purge wate	er was: Treat	ed Stored Oth	er Note: GA	tc filte	r	-
	Vo	Volume (Gallons or Liters) (0.		Temper-		the second se	uality (three must	and the second	T	Water Level
Time (HH:mm)	(Gallons	soruters	(0.013-0.13 gpm,	ature (°C)	± 3% •	± 10% or 0.1 mg/L	±0.1 •	± 10 mV 🎙		Drawdown < 0.3 ft
- Second R	Change	Total	50-500 mL/min)	(0)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)
1556	2.0	2.0	-							16.71
1604	1.5	3.5	188	5.54	58	6.21	5.08	177.4	6.68	16.74
1609	1-25	4.75	250	5-86	58	37 4.63	5.22	177.1	3.14	16.74
1614	1.75	6.5	350	6.10	58	4.33	5.22	180.1	0.14*	16.74
1015 1619	1.75	8.25	350	6.15	58	4.09	5.23	183.7	2.19	16.74
+	1.25	9,5								
										100000
					2.012	10175-000-00				-
										-

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1628	1647 /8 13/2016	17.75'	Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC- MW	188-1-WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 0, 1 ppm
Container/Preser	vative Ar	nalysis Requested	Notes
3-40 mL VOA vialsw	1Hel SWB20	60/AKIOI/RSK175	BTEX/GRO/ Methane
3-1L amber 2-250 mL amber u		70DSIM/ 8082	PAH/ PCB DRO/RRO
1-2 SO ML HDPE	1	300.0/310.1	Sulfate/Alkalinity Total RCRA Metals & NijV, Zn
2-250 ML HDPE W/ HN	03 SW 60	20/7470	Dise J J J J J & Mn

Suggested Notation: * E6 error. Verified check stds to be reading ok.

"-----" = not measured ""= stable "+" = rising "-" = falling

Nitrate = 0.2 ppm

JACOBS

	Site	Name		1000		Event	Well	ID Pr	oject Number		
NEC-	MOC			Mo	C MNA	samplin	ng	14 MWO	6 05	DK8702	
	Weather	Conditions			PID Readings of Total VOCs (ppm)			Dat		mpler Initials	
arcas	t, Soo'C	elng. S	50-7-	Ambier	nt <u>0.0</u> Breath	ning Zone 🕖 🖉	8/13/16	; kar	, 55		
					Well Ir	formation	1 Screene	\$ 5-15	1		
Well	Integrity	-	TOC Stick	up (ft ags)	Well Ca	ising Material	Casing D	Casing Diameter(in) / Gallons per linear foot(gal/ft)			
Good	ood Fair Poor (-0.50))	PV	c ss	1/0.0	41 2/0.163	4/0.653	6 / 1.47		
Depth to	Product (W (ft btoc)	Total Depth	of Casing (ft btoc)	Product T	hickness (ft) ar	nd Volume Reco	overed (mL)	
NI			3.40		14.7					-	
Max Purge	Volume =	(<u>15</u> Previous To	ft - tal Depth	- <u>3, 4</u> Depth to Wa Depth to Top	tt) *	0.163 gal/ Gallons per Ft	$ft \star 3 = \underbrace{5.67}_{Max Purge}$	gal * 3.785 _{Vol}	L/gal = 370 Max Purg	HIM 8/15/20	
1						ng Inform	ation	1 I .			
Sta	rt Time		Finish	Time		Tubing (ft btoc)			Ised for Purging		
1231		1.0	1300		5.0		Bailer	the second s	Imp Submers	sible Pump	
-	Color		<u>Od</u>		Sheen		Purged Dry Meter Used During Purg		During Purging	Irging	
Clear Clo Other:	udy Brow		Faint	Moderate Strong	Yes	No	YSI	Multi Meter	Hach Turbid	imeter	
Purging rea	ached: Sta	ability Ma:	x Vol.	Purge wate	er was: Treate	Stored Oth	er Note: G	AC Filte	r		
		lume	Flow	Tompor	Water Quality (three must s			stabilize)	Water Leve		
Time (HH:mm)	(Gallons	OLiters	(0.013-0.13 gpm,	ature	± 3% 🖌	± 10% or 0.1	± 0.1 🧹	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft	
(Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)	
1233		Zeo	redm	9.95	259	1.34	6.55	99.4	12.4	3.50	
236		800	200/m	9.43	251	1.26	6.32	97.1	9,95	3.53	
1240		1500	225/41	9.41	245	0.98	6.24	87.7	6.07	3.53	
1244		2500	252/m	9:32	241	0.33	6.37	72.3	4.69	3.53	
1248		3250	250/min	9.30	238	0.85	6.50	60.8	3.77	3.53	
1252		4100	250/min	9.31	236	0.73	6.57	52.7	3.30	3.53	
1256		9800	250/um	9.29	235	0.58	6.57	49.7	2.68	3.53	
3:0		5500	250/11/1	9.33	235	0.45	6.57	47.2	2.29	3.53	
	Ved D	1310			1.1.1.1.1	-					
Samp	Parte										
Samp											
Saup						- - 					

Sample Collection Information

Sec. A strengt	Start Time 13/0	Finish Time / Date 1417-/8/13/2016	Depth of Tubing (ft btoc)	Peristaltic Pump Submersible Pump		
imited whome.	SAMPLE ID: 14 MWOG -	WG(-9)	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = Z mg/L		
That cup bit	Container/Prese 8-40 mL voA vials w 2-40 mL voA vials	Hel Swez	60, AKIOI, RSKITS	Nocs, GRO, Methane Glycol		
	3-11 ambers 2-250 mL ambers w	/HCI AK	8270051M, SW 8082 102, AK103	PAH'S, PCBS DRO, RRO SUIFATE, AIKALINITY Total RCRA metals plus Ni, V, ZA DISS. RCRA metals plus Mn, Ni, V, Z		
	1-250 ML HOPE 2-250 ML HOPE WI HNO		4 300.0, EPA 310.1 6020, SW 7470			
	Suggested Notation:	-	Nitraite -	Diss. RCRA metals plus Mn. Ni, V. 7 O. Zwg/L		

"-----" = not measured " "= stable "+" = rising "-" = falling

JACOBS

	Site	Name				Event		Well	ID Pr	oject Number
NEC-	Moc			M	OC MNA	Samp	ling	MW88-"		DK8702
	Weather	Conditions				s of Total VOC		Date	A MA	ampler Initials
accest.	lisht end, light showers Ambien			t 0.0 Breath	ing Zone	_ In Well 6.0	8/15/16	BILL KR	2, CC	
Sec. 1					Well In	formatio		8/16/2		10.00
Well	Integrity		OC Sticku	ip (ft.ags)	Rt ags) Well Casing Material Casing Dia)iameter(in) / Gi	allons per linea	r foot(gal/ft)
Good	Fair P	oor (-0.2)		(PV	c) ss	1/0.0	2/0.163	4 / 0.653	6 / 1.47
Depth to	Product (f	<u>t)</u>	epth to G			of Casing (ft btoc)	Product	hickness (ft) an	nd Volume Reco	overed (mL)
¢.	/A		12.0	5	19.5			N/4		10
Max Purge	<u>Volume</u> =	(<u>19.45</u> Previous To) ft - tal Depth	Depth to Wa Depth to Top	ter or tilter Pack	0,163 gal/ Sallons per Ft	$ft * 3 = \frac{352}{Max Purge}$	gal * 3.785 ^{3 Vol}	L/gal = 435	je Vol
72.01					Vell Purgi			and the second		
	rt Time	-	Finish		10.022	Tubing (ft btoc)			sed for Purging	
	3 [23] Color	5	152 Odd		 Sheen	Purged Dr	Bailer		Imp Submers	
Clear Clo Other:		n (5	Moderate Strong	Yes	Yes		Multi Meter	Hach Turbid	1.0
Purging rea	ached: Sta	ability Max	Vol.	ourge wate	er was: Treated	Stored Oth	er Note:	GAC fi	k-	
	Vol	ume	Flow			Water C	t stabilize)	and the second	Water Level	
Time (HH:mm)		or Liters)	(0.013-0.13 gpm,	Temper- ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft
(1.1.1.1.1.1.1)	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	よ ORP (mV)	Turbidity	(feet btoc)
235		1.500	300	4,00	66	4.01	4.81	728.5	(NTU) 437	12.03
		3.00	300	3.68	63	2.24	4.10	7007	204	10:01
240					01		4.10	280,7	100	12:26
			260	3.78	62	2.45	4.33	265.3		12.22
1245 1250		4.300	760 480	3.78	62			1 - 11	137 85.2	-
1245 1250						2.45	4.33	265.3	137	12.22 [7.22
1245 1250 1255		4.3au 6.7w 7.6vo	480 180	3.78 3.90 3.97	62 62	Z.45 Z.58	4.33 4.67	765,3 245.3	137 85.2	12.22 12.22 12.21
1245 1250 1255 1300		4.3a 6.7w 7.6vo 8.2w	480	3.78 3.90 3.97 3.84	62 62 62 60	2:45 2:58 2:80 3:22	4.33 4.67 4.04 4.92	765,3 245,3 229,7 227,4	137 85.2 53.2 45,2	12.22 12.22 12.21 12.21 12.21
1245 1250 1255 1300 1305		4.3av 6.7w 7.6v0 8.2w 9.8w	480 180 200	3.78 3.90 3.97 3.84 3.84 3.47	62 62 62 60 58	2.45 2.58 2.80 3.12 3.68	4.33 4.67 4.04 4.97 4.92 4.86	765,3 245.3 229.7 727.4 229.8	137 85.2 53.2 45.7 6mor ade	12.22 12.22 12.21 12.21 12.21
1245 1250 1255 1300 1305		4.300 6.700 7.600 8.200 9.300 11.700	480 180 200 200	3.78 3.90 3.97 3.97 3.84 3.47 3.46	62 62 62 60 58 57	2.45 2.58 2.80 3.12 3.68 3.99	4.33 4.67 4.04 4.97 4.96 4.96 4.75	765,3 245.3 279.7 729.7 727.4 229.8 233.4	137 85.2 53.2 45,2 Emograde 14:5	12.22 12.22 12.21 12.21 12.49 12.30 12.29
1245 1250 1255 1300 1305 1305 1310		4.300 6.700 7.600 8.200 9.800 11.700 13.00	480 180 720 320 380 260	3.78 3.90 3.97 3.84 3.47 3.46 3.33	62 62 62 60 58 57 57 57	2.45 2.58 2.80 3.22 3.68 3.99 4.16	4.33 4.67 4.04 4.94 4.92 4.96 4.75 4.90	765,3 245.3 229.7 727.4 229.8 233.4 229.3	137 85.2 53.2 45,2 6mg ade 14.5 12.3	12.22 12.22 12.21 12.21 12.29 12.30 12.30
1250		4.300 6.700 7.600 8.200 9.300 11.700	480 180 720 720 720 720 720 720 720	3.78 3.90 3.97 3.97 3.84 3.47 3.46	62 62 62 60 58 57	2.45 2.58 2.80 3.12 3.68 3.99	4.33 4.67 4.04 4.97 4.96 4.96 4.75	765,3 245.3 279.7 729.7 727.4 229.8 233.4	137 85.2 53.2 45,2 Emograde 14:5	12.22 12.22 12.21 12.21 12.49 12.30 12.29

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling Peristaltic Pump Sybmersible Pump
SAMPLE ID: 16 NEC - M		QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 0 0 mg/L
Container/Preser 8-40 mL vo A vials 3-1 L amber 2-250 mL amber 1-250 HD PE 2-250 HD PE 2-250 HD PE Wi HNOg	vative An w/HCI Sw87 Sw87 /HCI Ak 107 EPA	alvsis Requested 260,4×101, RSK 175 270 D SIM / 8082 2/103 300.0/310.1 020 (7470	Notes BTEX, GRO, Methane PAHS, PCBS DRO, RRO SUIFALE, Alkalinity Total RCRA Plus NI, V, 8 Zn Dissolved RCRA " 4 Mi

Suggested Notation:

"----" = not measured "" = stable "+" = rising "-" = falling

Ditrate = 0.0 mg/L

JACOBS

	Site	Name				Event		Well I		roject Number
ALE	C- MO	-		Mo	C MNA S	amplina		14MW05	05	OK8702
100		Conditions			PID Reading	s of Total VOC	s (ppm)	Date		ampler Initials
avecast	t, Lind	1 40	F	Ambien			In Well 23.0	Slishe	KA	z,cc
					Well Ir	formatio	n			
Well	Integrity	1	FOC Stick	up (ft ags)	Well Ca	Casing D	iameter(in) / Ga	llons per linea	r foot(gal/ft)	
Good	Good Fair Poor (-0.52))	PV	c)ss	1/0.0	41 2 / 0.163	4 / 0.653	6 / 1.47
Depth to Product (ft) Depth to GW			W (ft btoc)	Total Depth	of Casing (ft btoc	Product T	hickness (ft) an	d Volume Rec	overed (mL)	
N/	<i>'k</i>		3.06	1.1.1	14.	55 (final		b1	A	
Max Purge	e Volume =	(<u>15</u> ¹ Previous To	ft - tal Depth	Depth to Wa Depth to Top	ter or of Filter Pack	0.163 Gallons per Ft	/ft * 3 = <u>5, 6 4</u> Max Purge	gal * 3.785 _{Vol}	L/gal = <u>22,</u> Max Purg	lo ge Val
			12.21	V	Vell Purgi	ng Inform	ation			
	art Time		Finish		Depth of	Tubing (ft btoc		Equipment U	sed for Purging	2
150	8	1	155	2		,00	Bailer	Peristaltic Pu		sible Pump
	Color		Od	or	Sheen Purged Dry			Meter Used During Purging		
Clear Clo Other:	udy Brow	n	Faint	Moderate Strong	Yes	Yes	YST	Multi Meter	Hach Turbic	limeter
Purging rea	ached: St	ability Max	Vol.	Purge wate	er was: Teater	Stored Oth	ner Note:	GAC fil	to	
		huma	Flow	Water Quality (three must stabilize)						Water Level
Time (HH:mm)		lume s of Liters)	(0.013-0.13 gpm,	Temper- ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft
(Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	A ORP (mV)	Turbidity (NTU)	(feet btoc)
1510		0.200	190	7.92	102	1.36	5,73	99.3	17.6	3.20
1515		1,100	180	7.65	108	1.10	5.72	101.1	16.8	3,13
1520		1.900	160	7.57	112	0.95	5.74	108.7	\$1.3	3.2
1525		2.70	160	7.44	115	0.81	5.77	89.7	10.1	3.31
1530		4.100	250	7.03	116	0,65	5.79	97.6	13.3	3.22
1535		4,900	1:60	7.05	118	0.44	5.82	90.5	11.0	3.30
1540		6.300	290	6.94	121	0.47	5.83	79.7	10.4	3.31
		7.700	290	6.86	125	0.47	5.95	75.6	9.45	3.30
1545			1000	107	127	0.46	5.87	74151.6	8.45	3.30
		9.00	260	6.92						
545 5 5 0		9.00	160	6.94						
1		9.00		6.00						

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1553	1635 /8/15/16	\$ 5,00	Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC - 14	4MW05-WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 10.0 + mg/L
Container/Prese		alysis Requested	Notes
8-40 ML VOA	vials a/HCC S	WEZED; ALCIOI, RSIC	175 BTEX, GRO, methode
3-12 amber	5.	~82700 SIM/Swgoi	
2-250 Ml amber	W/HCL AL	K102/103	DROJARO
- 250 mC HOPE		PA 300.0/310,1	Selfate + Albeilin. +/
2-750 ML HOPE	n/HNOR 5.	w6020/7470	Total we tals Reicht

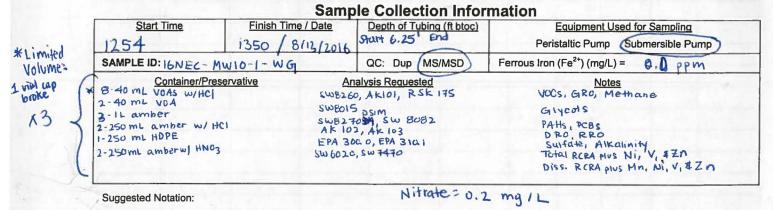
Suggested Notation:

"-----" = not measured "" = stable "+" = rising "-" = falling

Witrates = O. U may 1L

Groun	dwater	Samp	ling Da	ata She	et				JA	COBS	
	Site	Name			r /	Event		Well	D Pr	oject Number	
NEC -	Moc	14		MAG	MALA	Samel	ina	22 M 14/	2 05	DK8702	
NEC	Moc Weather	Conditions		Pioc	MOC MNA Sampling PID Readings of Total VOCs (ppm)			22 M W	and the second s	mpler Initials	
Obeica	st, Wind	16 45	c (-		tBreath			5/14/10	the the	35,00	
	1	0.0			Well In	formatio	n		1		
Well	Integrity		TOC Stick	up (ft agş)	Well Ca	sing Material	Casing [Diameter(in) / Ga	llons per linear	foot(gal/ft)	
Good	Fair Po	oor (-0.4	5)	PY	ss	1/0.	041 2/0.163	4 / 0.653	6 / 1.47	
1.	Product (f	<u>t)</u> [Depth to G	W (ft btoc)		of Casing (ft bloc)	Product	Thickness (ft) an	d Volume Reco	overed (mL)	
N	IA		27.25		34.4	1 (final)	v	n	IA .	5	
Max Purge	Volume =	(<u>34.2</u> Previous To	tt - Dtal Depth	Depth to Top	of Filter Pack			gal * 3.785 • Vol	L/gal = <u>4, 2</u> Max Purge	<u>7</u> L 3 Val	
					Vell Purgi						
26	irt Time		Finish			Tubing (ft btoc)		Equipment U	sed for Purging		
1510			153		1 1 1 miles	2515 Bailer			Peristaltic Pump Submersible Pump		
	Color		<u>Dd</u>		<u>Sheen</u>			Meter Used	During Purging		
Clear Clo Other:	udy Brown	n	None Faint	Moderate Strong	Yes				Hach Turbidi	meter	
Purging rea	ached: Sta	ability) Ma	x Vol.	Purge wate	er was: Treater	Stored Oth	er Note: 💪	AC Filter	1		
	Vol	lume	Flow	E USAN	v	L Water C	luality (three mus	stabilize) Water Leve			
Time (HH:mm)		of Liters)	(0.013-0.13 gpm,	Temper- ature (*C)	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft	
and the second of	Change	Total	50-500 mL/min)	No Carto	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)	
1314		0,2	. 125	4,65	58	14.01	5.86	221.1	14.8	27,25	
1519		1.1	+125	4,40	57	12.69	5.53	241.3	12,1	27.25	
1524		2.25	225/2in	4.41	56.	12.415	5.40.		5.63	27.26	
1529		3.1	225/min	4.49	55.	12.33	5,47	232.6	3.98	27.27	
534		4.0	225/mil	4.50	55	12.15	5.52	230.6	2.95	27,27	
	pled	01									
Jan	prec.	~ 1	TIC								
			-		-						
						141					
				2							
245-240 Mile	1 I	1970 N. 1999 S.	1			19 <u>0</u> 14					
				1							
									<u>e</u>		

Sample Collection Information


Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1542	1617 3/14/16	28.5	Peristaltic Pump Sobmersible Pump
SAMPLE ID: 16NEC - 22N	1W2 - WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 6.0
Container/Preserve 8-40 mL VOA vials w/1 3-1 L amber	HCI SW826	alysis Requested 0/4K101/RSK175 70051M/8082	Notes BTEX/GROJ Methane PAHs/PCBs
2 - 250 mL amber w	IHCI AK 102	/103	DRO/ RRO
		00.0 / 310.1	Sulfate / Alkalinity Total Metals RCRA NI, V. Zn
2-250 ML HDPEW/HNO3	SW 60	20/7470	Total Metals RCRA # NI, V. ZA Diss. Metals RCRA # Ma, Ni, V, ZA

Suggested Notation:

"----" = not measured ""= stable "+" = rising "-" = falling

Nitake = O.1 mg/L

		Site	Name				Event		Well	ID Pr	oject Number	
	NE	C- M	OC		Mo	CMNA	Samplin	MW10-	09	DK870		
			Conditions			PID Reading	s of Total VOC	s (ppm) 91068			mpler Initials	
	overcast	, light	wind		Ambier	nt <u>0.0</u> Breath	ing Zone 0.0	In Well 0.0	8/13/20	16 CC	, HM	
		. ,					formatio				1.12	
	Well	Integrity		TOC Stick	up (ft ags)	p (ft ags) Well Casing Material Casing				allons per linea	foot(gal/ft)	
	Good	Fair P	oor 2	.20		PVC SS 1/0.0				4 / 0.653	6 / 1.47	
	Depth to	Product (<u>ft) [</u>	Depth to G	W (ft btoc)							
	NA	r	5	.20		11.0	(final)	-				
	Max Purge	<u>Volume</u> ≐	(<u>10,79</u> Previous To	5 ft - otal Depth	- 5.20 Depth to Wa Depth to Top	ter or of Filter Pack	0.163 gal Gallons per Ft	$ft * 3 = \frac{2,71}{Max Purge}$	gal * 3.785 9 Vol	L/gal = <u>10,3</u> Max Purg	L e Vol	
						Vell Purgi	ng Inform	ation				
		art Time		Finish	Time	me Depth of Tubing (ft btoc)				Ised for Purging		
	1221	the second				6-25 Baile			Peristaltic Pump Submersible Pump Meter Used During Purging			
	Clear Cloudy Brown Other: Odor Faint Str					Xes No 10	Yes	slight	Multi Meter	Hach Turbid	imeter	
State State	Purging reached: Stability Max Vol. Purge water was: Treated Stored Other Note: GAC filter											
	Volume		lume	Flow		Water Quality (three must		stabilize)		Water Leve		
	Time (HH:mm)		s or Liters	(0.013-0.13 gpm, 50-500	Temper- ature (°C)	± 3% Conductivity	± 10% or 0.1 mg/L DO	± 0.1	± 10 mV ORP	± 10% or 0.5 NTU Turbidity	Drawdowr < 0.3 ft (feet btoc)	
		Change	Total) pri r				
		Change	Total	(mL/min)	1000	(µS/cm)	(mg/L)	(std units)	(mV)	(NTU)	Carlo Activities	
	1226	1.25	1.25	(mL/min)				(std units)	(mV) *		5.42	
		1.25	1.25		10.10	32-1010	5.82	(std units) 5.23	(mV) ` 215.9	8.03	Carlo Carlo Martinger	
	1226	1.25	1.25	(mL/min)	10.10 10.28			(std units)	(mV) *		5.42	
	1226	1.25	1.25	(mL/min)) 250		32-1010	5.82	(std units) 5.23	(mV) ` 215.9	8.03	5.42 5.8	
	1226 1231 1236	1.25 1.25 1.2	1.25 2.5 3.7	250 240	10.28	72-1010 72 71	5.82 54.88	(std units) 5-23 5-19	(mV) * 215.9 224.8	8.03 7.10	5.42 5.8 5.75	
	1226 1231 1236 1241	1.25 1.25 1.2 0.5	1.25 2.5 3.7 4.2	250 240 100	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	
	1226 1231 1236 1241 1247	1.25 1.25 1.2 1.2 0.5 0.5 0.75	1.25 2.5 3.7 4.2 4.95	(mL/min)) 256 240 160 125	10-28 10-31	72 71 72 71	5.82 54.88 4.68	(std units) 5.23 5-19 5-26	(mV) * 215.9 224.8 225.5	8.03 7.10 11.3	5.42 5.8 5.75 5.70	

"----" = not measured "" = stable "+" = rising "-" = falling

JACOBS

Site Nam	<u>ie</u>			Event		Well	ID Pro	oject Number
MOC		Mag	MNA	Sampli	na	20MW.	-1 05	DK8702
Veather Cond	ditions		PID Readings	s of Total VOCs	pprh) Date San			mpler Initials
hindy, L	15°F	Ambien	t <u>0.0</u> Breath	ing Zone <u>(), ()</u>	in Well	8/14/10	6 icl	SS, CC
			Well In	formation				-
tearity	TOC Sti	ckup (ft ags)	Well Ca	sing Material	Casing Di	ameter(in) / Ga	allons per linear	foot(gal/ft)
air Poor	(-0.1	5)						
roduct (ft)	Depth to	GW (ft btoc)			Product TI	nickness (ft) ar	nd Volume Reco	overed (mL)
-	22.	76	29,1	<u> </u>	6/1	t		
olume = (2 Pre	4.5 wious Total Depth	ft – <u>72</u> Depth to Wa Depth to Top	ter or of Filter Pack	0.163 gal/f Gallons per Ft	t * 3 = <u>1.093</u> Max Purge	gal * 3.785 _{Vol}	L/gal = <u>4.14</u> Max Purge	L a Vol
			the state of the second se	ng Informa	ation)	
Time		sh Time	Depth of	Tubing (ft btoc)		Equipment U	lsed for Purging	
3				Contraction of the second seco	Bailer			ible Pump
lor					*	Meter Used	During Purging	
y Brown	Faint	Moderate Strong	Yes No	Yes	YSI Multi Meter Hach Turbidimeter			imeter
ned: Stabilit	y Max Vol	Purge wate	er was: Treated	Stored Othe	r Note: G	AC Filt	er	
Volume	Flow	and the second	Sept. La du	Water Qu	ality (three must	stabilize)	an and suid	Water Level
		ature	± 3%	± 10% or 0.1	±0.1	± 10 mV	± 10% or 0.5	Drawdown < 0.3 ft
Change 1	otal 50-500	and the second second	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)
1.7	100	4.08	73	13.00	5.60	225.4	57.8	22.42
2.	300	4.17	73	11.78	5.29	247.2	34.2	22.40
3;			73	11.56	5.33	245.0	17.3	22.40
4.	400 225/mil	~ 4.46	73	11.60	5.51	2269	12.3	22,40
6	500 25/min	4.54	73	11.37	5.57	230,0	9.12	22.40
61		4.63	73	11.65	5.60	222.5	6.05	22.38
inchas the	1855	Tuta	(ave vo	100 M		pled @	1858	
3.5 F		1	1-3-		/	1.		
		-						
							1	1
	Moc Veather Cond faih dy, C tegrity aip Poor roduct (ft) colume = (2 Pre Change 1 Change 1 Ch	air Poor (-0.1) roduct (ft) Depth to. roduct (ft) Depth to. Dume = (24.5 Previous Total Depth Previous Total Depth If Or If y Brown None Faint Flow (Gallons op Liters) Flow Change Total I.726 So-500 Z.320 So-500 3,360 Total J.440 Total G.500 Total	M O CM O CVeather ConditionsAmbien $U h d 4, 45\%$ Ambien $U h d 4, 45\%$ AmbientegrityTOC Stickup (ft ags) $airPoor(-0.15)Depth to GW (ft btoc)22.76plume = (24.5Previous Total Depthft - 72Depth to TopDume = (24.5Previous Total Depthft - 72Depth to TopVPrevious Total DepthfimeIf 555OfQdorory BrownQdorNoneModerateFaintFaintStrongned:Stability (Max Vo)Purge wateVolume(Gallons op Liters)Flow0.013.013gpm,50-500mL/min)I.7.654.082.3co4.173.3co7/min4.374.4w73/min4.546.10c4.63$	MocMocMocMocMocVeather ConditionsAmbient OO PID ReadingsAmbient OO Ambient OO BreathVell InVell IntegrityTOC Stickup (ft ags)Well CaairPoor(-0.15)PVroduct (ft)Depth to GW (ft btoc)Total Depth22.7629.11plume = (24.5ft -72.72(ft) +Previous Total Depthft -72.72(ft) +Dume = (24.5ft -72.72(ft) +Previous Total DepthDepth to Vater orDepth to Top of Filter PackWell PurginTimeEinish TimeDepth of23QdorSheeny BrownNoneModerateY BrownFlowTemper- ature (0.013-0.13 gpm, gpm, gpm, (°C)Temper- ature (°C)LabilityMax VolPurge water was: (°C)VolumeFlowTemper- ature (°C)VolumeFlowTemper- ature (°C)I.7264.08732.3207/min4.392.3207/min4.394.4407/min4.546.0004.6373	MOCMOCMOCMOCMA ASampliVeather ConditionsPID Readings of Total VOCsAmbient $\hat{\mathcal{Q}}$ Breathing Zone $\mathcal{Q}_{\mathcal{Q}}$ Well InformationtegrityTOC Stickup (ft ags)Well Casing MaterialairPoor(-0.15)PVCroduct (ft)Depth to GW (ft btoc)Total Depth of Casing (ft btoc)22.76Total Depth of Casing (ft btoc)22.76Dolume = (24.5 Previous Total Depthft -72.72(-ft -72.72(-ft) • 0.163 Gallons per FtDepth to Top of Filter PackGallons per FtImeEinish Time Part StrongDepth of Tubing (ft btoc) Gallons of Citer)VolumeFlow (0.013.013) gpm, ChangeVeil Purgeed Dry (°C)VolumeFlow (°C)Temper- ature ature ature ature (°C)VolumeFlow (°C)Conductivity (mgL)VolumeFlow (°C)Conductivity (mgL)1.7264.087313.202.32072/min 4.177311.763.32072/min (min)4.547311.60500072/min (min)4.547311.654.4007311.657311.65	MocM	MocMocMocMocMocMocMocVeather ConditionsPID Readings of Total VOCs (perh)DatVakdy, 45%Arrbient Q_{12} Breathing Zone Q_{12} In Well Q_{23} Vealther ConditionsInternationWell Casing MaterialCasing Diameter(III)/GVealt Conduct (ft)Depth to GW (ft btoc)Ital Depth of Casing (ft btoc)Product Thickness (ft) ar1000000000000000000000000000000000000	MOCMOCMOCMOCMNASampling20 M W - 105Veather ConditionsPID Readings of Total VOCs (perh)DateSa $B/14/16$ SaAmbient D^{*O} Breathing Zone Q_{12} In Well Q_{10} DateSaWell InformationWell Casing MaterialCasing Diameter(in)/ Gallons per linearImage: Sample of the Conduct (ft)Depth to GW (ft bloc)Total Depth of Casing (ft bloc)Provide Thickness (ft) and Volume ReccDume = (24.5ft - T2.72ft) + 0.163gal/ft + 3 = $\int_{1.2615}^{1.2615}$ gal + 3.785 L/gal = $\frac{4.14}{Max}$ PurgeDume = (24.5ft - T2.72ft) + 0.163gal/ft + 3 = $\int_{1.2615}^{1.2615}$ gal + 3.785 L/gal = $\frac{4.14}{Max}$ PurgeDume = (24.5ft - T2.72ft) + 0.163gal/ft + 3 = $\int_{1.2615}^{1.2615}$ gal + 3.785 L/gal = $\frac{4.14}{Max}$ PurgeDume = (24.5ft - T2.72ft) + 0.163gal/ft + 3 = $\int_{1.2615}^{1.2615}$ gal + 3.785 L/gal = $\frac{4.14}{Max}$ PurgeDume = (24.5ft - T2.72ft) + 0.163gal/ft + 3 = $\int_{1.2615}^{1.2615}$ gal + 3.785 L/gal = $\frac{4.14}{Max}$ PurgeDume = (24.557.5BailerPeristaltic Purp globmersOdder ateProvide of Filler PackDepth of Tubing (ft bloc)Equipment Used for PurgingTimeListshiltyModerateStoregYesfti - 0.1fti - 0.1YesModerateStoregYesStoregStoregStoregfti - 0.1fti - 0.1YesModerateStoregYesStoregStoreg<

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1858	1922/8/14/2016	23.5	Peristaltic Pump Submersible Pump
SAMPLE ID: 16 NEC- 20MW	1-1- WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = O , O
Container/Preserva 8-40 mL voA vials w 3-1L amber 2-250 mL amber W, 1-250 mL HDPE	HCI SW82 SW82 HCI AKI	alysis Requested 60/AK101/RSK 175 27081 M / 8082 102 /103 300.0 / 310-1	BTEX <u>Notes</u> HM VOCS / GIRO/ Methane PAHS / PCBS DRO/ RRO Sulfate / Alkalinity
2-250 ML HDPE W/ HNO	3 500 60	20/7470	Diss. RCRA plus Ni, V, Zn

Suggested Notation:

"-----" = not measured " "= stable "+" = rising "-" = falling

Nitrate = 0.1 mg/L

JACOBS

	Site	Name				Event		Well	ID PI	roject Number
NEC-	MOC -			Moc	MNA	Sampli	ng	26MWI	65	DK8702
		Conditions			PID Readings of Total VOCs (ppm)				e <u>S</u> i	ampler Initials
averast	- cond.	1 45%	F	Ambien	Ambient 0.0 Breathing Zone 0.0 In Well 0.2 8/14/16 W. 5					
					Well In	formation	1			
Well	Integrity		TOC Stick	up (ft ags)	Well Ca	sing Material	Casing	Diameter(in) / Ga	allons per linea	r foot(gal/ft)
Good	Fair P	Poor (-0.4)		PV	o ss	1/0.	.041 2/0.163	4/0.653	6/1.47
Depth to	Product (<u>ft)</u>		W (ft btoc)		of Casing (ft bloc)	Product	Thickness (ft) an	d Volume Rec	overed (mL)
r	IA		34.5	4	41.	70 (final)		NIA		
Max Purge	Volume =	(41.5 Previous To	ft - otal Depth	- 34.9 Depth to Wa Depth to Top	54ft) *	0.163 gal/ Gallons per Ft	$ft * 3 = \frac{3.4}{Max Purg}$	gal * 3.785 ge Vol	L/gal = 17.8 Max Purg	DÔ le Vol
						ng Inform	ation			
	rt Time		Finish	Time	Depth of	Tubing (ft btoc)			sed for Purging	
	52		1734		36		Bailer		mp Submers	
-	Color		Od		Sheen	Purged Dry		Meter Used	During Parging	
Clear Clos Other:	udy Brow		Faint	Moderate Strong	Yes	Yes	C	Multi Meter	Hach Turbid	imeter
Purging rea	ached: St	ability Ma	x Vol.	Purge wate	r was: (reate	Stored Othe	er Note: G	AC filte	r	
	Vo	lume	Flow	A set al and a	a strange to	Water Q	uality (three mus	t stabilize)	No.	Water Level
Time (HH:mm)	(Gallons	s or Liters)	(0.013-0.13 gpm,	Temper- ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10%jor 0.5	Drawdown < 0.3 ft
(rin tatany	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L) V	pH , (std units)	ORP (mV)	Trichidity	(feet btoc)
1657		0.900	100/unin	4.76	51	12.73	5.51	239.3	54.5	34.56
1702		1.400	100/min		52	12.88	5,55	227.7	42.8	34.55
1707		3,200	250/min	4,30	50	13,27	5.41	251.7	13,5	34.56
1712		5.90	540/mm	3,87	49	13,83	5.11	257.9	7.93	34.56
1717		8,400	50/min	3,72	43	13.59	5.08	253.2	8.42	34.56
1722		10.00	min	3,99	49.	13.37	5.29	240.7	4.47	34.56
1727		11.90	30/m.n	4.25	49	13.01	5.42	234.2	3318	34.56
1732		13.00	22 yrin	4.54	50-	12.98	5.48	231.4	3,98	34.56
									1	
									1212	1
							Service Street			
					nla Callas			1		

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1331737	1810/8/14/2016	36.0	Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC-26M	wi-wg	QC: Dup MS/MSD	Ferrous iron (Fe ²⁺) (mg/L) = \bigcirc
Container/Preserva 8-40 mL VCA vials		alvsis Requested AKIOI/ RSK 175	BTEX / GRO/ Methane
3-1 Lamber	SW 82=	HONSIM / SW 8082	PAHS / PCBS
2-250 mL amber w/HC 1-250 mL HDPE		/AK103 0.0/ EPA 310.1	DRO/ RRO
2-250 ML HOPE W/HNO	3 500 60 20)/ SW7470	Sulfate/Alkalinity 2n Total RCRA plus NI, V, Zm - un E/ Diss. RCRA plus Mn, NI, V, Zn

Suggested Notation:

"----" = not measured " "= stable "+" = rising "-" = falling

Ditrate = 0.0 mg/L

Page 1

7.00

Groun	awater	Samp	ning Da	ata Sne	et				J	ICO DO	
	Site	Name				Event		Well		roject Number	
NEC	- MUC			Mod	MUC MNA Sampling				MW88-10 050K8		
	Weather	Conditions	3		PID Readings of Total VOCs (ppm)				Date Sampler Initia		
averast,	sod c	eiling,	50 F	Ambien	t 0. C Breath	ing Zone 🕖. 🙂	in Well <u>O. (</u>	8/13/1	6 h	(R, 55	
					Well Ir	formation	1			Lana a Sula	
Well	I Integrity		TOC Stick	up (ft agş)	Well Ca	sing Material	Casing D	iameter(in) / G	Gallons per linea	ar foot(gal/ft)	
Good	Fair P	oor (-0.35	5)	PV	c) ss	1 / 0.0	41 2/0.16	8 4/0.653	6 / 1.47	
Depth to	Product (Depth to G	W (ft btoc)		of Casing (ft btoc)	Product T	hickness (ft) a	nd Volume Red	covered (mL)	
PII	1		20.4		25.	67 (final)		N/A			
Max Purge	e Volume =	(25.4 Previous T	otal Depth	Depth to Wa	ft) *	0-163 gal/f Gallons per Ft	$ft * 3 = \frac{2', 4'}{Max Purge}$	gal * 3.785 _{Vol}	5 L/gal = Max Pur	ge Vol	
						ng Informa	ation				
	art Time		Finish			Tubing (ft btoc)	1	Equipment (Used for Purgin	g	
192			182			2,5	Bailer	Peristaltic P		sible Pump	
	Color		<u>Od</u>		Sheen	Purged Dry		Meter Used	During Purging	1	
Clear Clo Other:	udy Brow	n	Faint	Moderate Strong	Yes	No	(YSI	Multi Meter	Hach Turbi	dimeter	
Purging rea	ached St	ability Ma	x Vol.	Purge wate	er was: Treate	Stored Othe	er Note: G	AC filte	<i>x</i>		
	Vo	lume mL	Flow		Water Quality (three must stabilize)						
Time (HH:mm)	(Gailons	or liters)	(0.013-0.13 gpm,	ature	± 3%	± 10% or 0.1 mg/L	±0.1 🧹	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft	
1.1.1.1.2.1	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)	
1803		300	127/min	5,19	GZ	3.86	5.51	171.6	30.7	20.62	
1907		1000	12.5/mm	4.91	61	2,44	5.09	204.2	13.8	20,58	
312		1700	125/min	5,26	62	2.07	5.62	177.3.	20.4	70.53	
1316		1900	100 min	5.25	62	1,71	5.63	180.6	11.5	20:69	
1821		3400	we min	4.22	62	1.41	5.55	186.3	10.9	20.64	
1925		3900		4.50	62	1:06	5.54	189.6	8.5	20,64	
San	pled	Q	1829	>							
	1										
						-					

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1829	1859 18/13/2016	22.5	Peristaltic Pump Submersible Pump
SAMPLE ID: IGNEC-M	NBB-10-WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = $O_1 2 mg/L$
Container/Preser		nalysis Requested	Notes
8-40 mL VOA VIAIS	W/ HCI SW82	60/AKIOI/ RSKI75	BTEX/GRO/ Methane
3-1 Lamber		7051M / 8082	PAHS/PCBS
2-250 mL amber	W/HCI AK I	02/103	DRUÍRRO
1-250 ML HOPE		300.0/310.1	Sulfate/Alkalinity Total RCR4 Metals & Ni, V, Zn
2-250 ML HDPE W	1 HN03 SW 60	20/7470	Diss. RCRA metals & Mn, Ni, V. Zn

Suggested Notation:

"-----" = not measured "" = stable "+" = rising "-" = falling

Vitrate = 0.1 mg/L

Page 1

JACOBS

JACOBS

	Site	Name			Event					Project Number	
NEC -	MOC			Mo	MNA	Samplin	9	I7 MWI	09	DK8702	
	Weather	Conditions			PID Readings	of Total VOCs	(mog)	Date	S	ampler Initials	
Chorast,	windy	45°F		Ambien	t <u>Ø. Ø</u> Breathi	ng Zone 0.0	In Well 0.0	5/14/10	s ke	.ss, cc	
				5 . 9	Well In	formation	1				
Well	Integrity		TOC Stick	up (ft ags)	Well Ca	sing Material	Casing [)iameter(in) / Ga	illons per linea	ar foot(gal/ft)	
Good	Fair F	oor (-0.15	5)	PV	ss ss	1/0.0	041 2/0.163	4 / 0.653	6 / 1.47	
Depth to	Product (ft.) [Depth to G	W (ft btoc)	Total Depth	of Casing (ft btoc)	Product 1	Thickness (ft) an	d Volume Red	covered (mL)	
ju	IA		12.11	>	15.6:	5 (final)		N/A		14.1	
<u>Max Purge</u>	Volume =	(<u>15.5</u> Previous To	ft - Ital Depth	Depth to Wa	ter or ft) * (Salions per Ft	$t + 3 = \frac{1.6}{\text{Max Purge}}$	gał * 3.785 ^{a Vol}	L/gal = Max Pur	27 ge Vol	
					Vell Purgir	ng Informa	ation			1.1.1.1.1	
and the second second	rt Time		<u>Finish</u>	Time	Depth of T	Tubing (ft btoc)		Equipment Us			
	23	+		Hm e/15/2 -1417	13.5		Bailer	Peristaltic Pu			
Clear Clo	Color Indue Brown		None	or Moderate	Sheen Purged Dry			Meter Used During Purging			
Other:			Faint	Strong	Yes	Yes No	10	Multi Meter	Hach Turbi	dimeter	
Purging rea	ached: St	ability Ma:	x Vol.	Purge wate	r was: Treated	Stored Othe	er Note: G	AC filter			
		lume	Flow	Temper-	1	Water Quality (three must stabilize)				Water Leve	
Time (HH:mm)	(Gallon:	s or Liters)	(0.013-0.13 gpm,	ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft	
See parts 2	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units) ✓	ORP (mV)	Turbidity (NTU)	(feet btoc)	
3.32		0,00	125/min	3.93	65	11.43	5.40	238.1	149	12.10	
337		1.400	125/m	4.36	65	11.10	5.24	236.8	497	12.10	
1342		2.300	125/1mm	4.35	60	10,67	5.32	233.9	162	12.10	
347		3.200	125/mn	4.18	58	10.75	5.36	242.6	73.5	12.10	
1352		5,200	250/min	and the second se	56	10.98	5.03	257.9	25.7	12.10	
1357		6,900	250/min	3.16	56	11.04	4.93	260.3	15.1	12.10	
1402		8.900	200/mit	3.48	56	10.69	5.24	239.4	6.96	12.10	
1407		9.500	200/min		56	10,41	5.45	225.2	3.75	12.10	
1412		10.20	rochun		56	10.63	5,48	222.3	2.88	12,10	
1417-		12.00	200/men	3.94	56	10:31	5,45	223.4	2.84	17.10	
	Hed &		22			10.00					
	a r	E LT								+	
Jung		The second						and the second second			

Sample Collection Information

	5 8/14/16	Depth of Tubing (ft btoc) 13, 5	Equipment Used for Sampling Peristaltic Pump Submersible Pump
SAMPLE ID: 16 NEC - 17 MWI -		QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = \bigcirc
Container/Preservative 8-40 mL VOA vials w/ 1 3-1L amber 2-250 mL amber w/ HC	101 SW82 SW82	alysis Requested .60 / AKIOI / RSK175 .70051 M / 8082 2 / 103	<u>Notes</u> BTEX/GRO/Methane PAHS/PCBS DRO/RRO
1-250 ML HDPE 2-250 ML HDPE W/HNO3	EPA a	300.0/310.1 20/7470	Sulfate / Alkalinity Total RCRA metals & Nil V, Zn Diss. RCRA metals & Mn, Ni, V, Zn

Suggested Notation:

"-----" = not measured " "= stable "+" = rising "-" = falling

Nitrate = 0.2mg/L

JACOBS

		Name				Event		Well		oject Number
NEC - IN	Noc			Mo	MOC MNA Sampling				4 05	DKSTOZ
	-	Conditions				s of Total VOCs	(mqq)	Date		ampler Initials
aecast,	windy,	40'F		Ambien	t <u>U.D</u> Breath	ing Zone 0.0	in Well 0.9	3/15/1	6 KR	2, cc
			- M.	-	Well In	formation				
Well	Integrity		TOC Sticku	up (ft ags)	Well Ca	sing Material	Casing Di	ameter(in) / Ga	allons per linea	r foot(gal/ft)
Good	Fair P	oor (-0.48	5	PV	c) ss	1/0.04	41 2 / 0.163	4 / 0.653	6 / 1.47
	Product (<u>R)</u>	Depth to G	N (ft btoc)		of Casing (ft btoc)	Product Th	nickness (ft) an	d Volume Reco	overed (mL)
ju	IA		3.85		13	.35 (final)		N/A		
Max Purge	<u>Volume</u> =	(<u>15</u> Previous To	ft - otal Depth	- 3,85 Depth to Wa Depth to Top	ft) + ter or of Filter Pack	0.163 gal/f Gallons per Ft	t * 3 = 4-917 Max Purge	<mark>72</mark> gal * 3.785 _{Vol}	L/gai = <u>70.6</u> Max Purg	s Vol
PHO D				V	Vell Purgi	ng Informa	ation			
	t Time		Finish			Tubing (ft btoc)			sed for Purging	
190			133			5.5	Bailer	Peristaltic Pu	-	sible Pump
			Ode		Sheen	Purged Dry		Meter Used	During Purging	
Clear Clou Other:	dy Brow	n	Faint	Moderate Strong	Yes	Ves	YSH	Multi Meter	Hach Turbid	imeter
Purging rea	ched: St	ability Ma	x Vol. I	Purge wate	er was: Treated	d Stored Othe	er Note: 🥝	Ac fille	~	
	Volume (Gallons or Liters)		Flow			Water Qu	ality (three must a	stabilize)		Water Leve
Time (HH:mm)			(0.013-0.13 gpm,	Temper- ature	± 3%	± 10% or 0.1 mg/L	±0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft
(Farman)	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)		pH (std units)	ORP (mV)	Turbidity (NTU)	(feet bloc)
1802		100 mL	ki	7.62	253	2.61	6.36	99.0	852	3.60
1807		1.400	160	7.24	259	1.87	6.19	103.9	-	3.68
1312		2.900	300	7.27	254	0.78	6.19	98.3	-	3,55
817		4,200	260	7.32	237	0,56	6.14	99.2	-	3.45
1822		5,900	320	7.45	227	0.53	6,12	92.6	-	3.49
1927		6.200	.75	7.44	211	0,61	6.07	91.0	-	3.44
1332		6,900	16070	7.60	207	0,64	6.06	90.7	-	3.43
1837		7.700	160	7.66	203	0,62	6.05	91.4	-	3.40
Sand	ned ,	0 18	540	April	FBLA	ended				
1					-	0				
								a 2.8		
		204						12-11-2		
							ead. Ruse			A COLORED TO A COL

Sample Collection Information

Start Time F	inish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1340	1910/8/15/2016	5.5	Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC- 14M		QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = $3.5 mg/L$
Container/Preservativ		alysis Requested	Notes
3-40 ML VOA VIUS	w/HCL Swa	3260, ALCIOI, R3K 175	BTEX, GRO, methice
3- IL ambe-	Swe	32700 SIM/SWE082	PAHS + PCBS
2 - 250 mL amber W/H		02/103	DRU/RRO
1-250 mL HOPE		4 300,0 /310.1	Scifate + Alkalmity
2-250 ml HDPF w/H	NO3 Swe	5020/7470	Total metals Recen

Suggested Notation:

"----" = not measured ""= stable "+" = rising "-" = falling

Notrate = Or O mglL

JACOBS

	Site	Name			1.1.1	Event		Well	ID E	Project Number		
NEC-	MOC			MO	MOC MNA Sampling				2 0	SDK8702		
	Weather	Conditions			PID Readings of Total VOCs (ppm)				e S	ampler Initials		
_ow clos	uds,	wind	14	Ambier	nt 0.0 Breath	ning Zone 0. 0	_ In Well <u>3 · 4</u>	8/10/2	016 C	C, HM		
					Well I	nformatio	n	1				
Well I	Integrity		TOC Stick	up (ft ags)	Well Ca	asing Material	Casing D	liameter(in) / Gi	allons per linea	ar foot(gal/ft)		
Good F	Fair F	Poor	(-0-3)		PV	ss	1/0.0	041 270.163	4 / 0.653	6 / 1.47		
Depth to I	Product		Depth to G	W (ft btoc)	Total Depth 16.85	of Casing (ft bloc) (final)		hickness (ft) ar	nd Volume Rec	covered (mL)		
Max Purge \	Volume =	= (17 Previous To	ft - otal Depth	Depth to Wa	t) * ater or p of Filter Pack	0.163 gali Gallons per Ft	/ft + 3 = <u>3 8</u> Max Purge	gal + 3.785	L/gal = <u>12 . 0</u> Max Pur	ge Vol		
				V	Vell Purgi	ng Inform	ation					
1734	t Time		Finish	Time		Tubing (ft btoc)			sed for Purgin	-		
	- 1		1817		11.5		Bailer		imp Submer			
	<u>olor</u> dy Brov	vn	Od None	or Moderate	Yes	Sheen Purged Dry Yes Yes			Multi Meter Hach Turbidimeter			
Other:			Faint	Strong	(No)	No						
Purging read	ched: \$	tability Ma	x Vol	Purge wate	er was: (freate	d Stored Oth	er Note: (GAC F	iller			
and the second	V	olume	Flow		Salar and State	Water Q	uality (three must	stabilize)		Water Leve		
Time (HH:mm)	(Gallon	s or (iters)	(0.013-0.13 gpm,	Temper- ature	± 3% *	± 10% or 0.1 mg/L	± 0.1 .	± 10 mV •	± 10% or 0.5	Drawdown < 0.3 ft		
	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)		
1740	1.5	1.5		-	VE					10.52		
	0.75	2.25	150	6.70	97	1.48	5.77	23.0	14.0	10.56		
1750	2.3	4.55	460	6.12	99	1.03	5.32	30.6	9.39	10.52		
1755	1.0	6.55	260	6.82	106	0.75	5.98	-0.5	7.78	10.57		
1800	1.5	7.10	300	7.15	113	0.65	5.98	-0.9	6.99	10.55		
805 2	2.2	9.30	440	6.90	115	0.49	5.94	3.6	6.28	10.56		
	2.0	11,30	400	6.84	118	0.42	5.89	8.8	5.35	10.55		
-	2.0	13.30	400	6.94	123	0.51	5.88	11.6	4.60	10.55		
							199 F					
					4					-		

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1817	1852 8/10/2016	11.5	Peristaltic Pump Submersible Pump
SAMPLE ID: 16 NEC-	14MW02-WG1-9	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 10.0
8-40 mL VOA vialswi 3-1L amber 2-250 mL amber w/ 2-250 mL HDPE w/ HA 1-250 mL HDPE	HCI DRC 103 ** Meta	alvsis Requested XI GIRO, Methane I, PCB VIRRO IS(Total & Dissolved) He, alkalinity	Notes SW8260, AKIOI, RSK 175 SW8270 SIM, SW8082 AK102/103 SW6020/7470 EPA 300-0/310.0

Suggested Notation:

Nitrate = 0.0 ppm

"----" = not measured "√"= stable "+" = rising "-" = falling * * Total - RCRA plus Ni, Zn, V Dissolved - ↓ , & MN

Page 1 * While collecting dissolved metals, part of acid accidently expelled from bottle. Will note this on CGC.

×2*

JACOBS

		Site	Name				Event		Well		oject Numbe
	NEC-	Moc			Mod	MNA	Sampling		14 MWC	01 05	5DK8703
			Conditions	2		PID Reading	s of Total VOC	(ppm)	Dat	te Si	KR, CC,
	cloudy.	overca	st, wir	dv	Ambien	t 0.0 Breat	hing Zone 0-0	_ In Well 22 - 4	8/10/20	16	HM
	LL					Well I	nformatio	n			
	Wel	I Integrity	5.510	TOC Sticku	p (ft ags)	Well Ca	asing Material	Casing D	iameter(in) / G	allons per linea	r foot(gal/ft)
	Good	Fair P	Poor (-0.15)	PV	ic) ss	1/0.0	41 2/0.163	3 4/0.653	6 / 1.47
	Depth to	o Product (Depth to GV		Total Depth	of Casing (ft btoc)	Product T	hickness (ft) a	nd Volume Rec	overed (mL)
			5.65		22.2	(final)		+			
	Max Purge	<u> Volume</u> =	(22 Previous T	ft -	Depth to Wa	5ft) * ter or of Filter Pack	0.163 gal/ Gallons per Ft	/ft * 3 = <u>3</u> (8) Max Purge	gal * 3.785 _{Vol}	$5 L/gal = \frac{12}{Max Purg}$	
							ng Inform	ation			
		art Time		Finish 1	lime		Tubing (ft btoc)		Equipment (Jsed for Purging	1
	151		/	623		16.3		Bailer		ump Submers	
		Color		Odo		Sheen	Purged Dr	Υ	Meter Used	During Purging	
	Clean Clo Other:	oudy Brow	n		Moderate Strong	Yes	Yes	VSI 09 61 01 60	Multi Meter	Hach Turbid	imeter 16
	Purging re	ached: St	ability Ma	IX VOL F	urge wate	er was: Treate	d Stored Oth	er Note:	GAG		
		Vo	lume	Flow		Superior and	a final the second s	luality (three must	stabilize)		Water Leve
	Time (HH:mm)	(Gallons	s o(Liters)	(0.013-0.13 gpm,	Temper- ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdowr < 0.3 ft
24	(in mining	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)
	10.00	1	0.						3		11
*	1515	2.0	2.0								15.71
*	1515 1523	2.0	2.8	100	5.04	176	0.82	5.34	-20.8	546	15.67
*	-	0.8	2.8		5.04	176		5.34	-20.8	546 9.99	15.67
New	1523 1530				4.64	156	0.65			-	
New providimeter	1523 1530 1538	0.8	2-8 3.4	86 250	4.64		0.65	5.90 5.79	-32.1.	9.99 76.9	15.67 15.71 15.71
New projulimeter	1523 1530 1538 1545	0.8 0.6 2.0 1-3	2-8 3.4 5.4 6.7	86 250 163	4.64 4.75 5.32	156 114 110	0.65 0.76 0.99	5.90 5.79 6.15	-32.1 -20.7 -22.6	9.99 76.9 63.5	15.67 15.71 15.71 15.68
New urbidimeter	1523 1530 1538 1545 1551	0.8 0.6 2.0 1-3 0.76	2-8 3.4 5.4 6.7 7.40	86 250 163 117	4.64 4.75 5.32 5.50	156 114 110 109	0.65 0.76 0.99 1-01	5.90 5.79 6.15 6.18	-32.1 -20.7 -22.6 -18.0	9.99 76.9 63.5 49.7	15.67 15.71 15.71 15.68 15.68
New urbidimeter 17212	1523 1530 1538 1545 1551 1557	0.8 0.6 2.0 1-3 0.75	2-8 3.4 5.4 6.7 7.40 8.15	86 250 163 117 125	4.64 4.75 5.32 5.50 5.64	156 114 110 109 108	0.65 0.76 0.99 1-01 1.12	5-90 5.79 6.15 6.18 6.18	-32.1 -20.7 -22.6 -18.0 -12.5	9.99 76.9 63.5 49.7 43.1	15.67 15.71 15.71 15.68 15.68 15.68
New urbidimeter 17212	1523 1530 1538 1545 1551 1557 1604	0.8 0.6 2.0 1-3 0.75 1.25	2-8 3.4 5.4 6.7 7.40 8.15 9.4	86 250 163 117 125 179	4.64 4.75 5.32 5.50 5.64 4.91	156 114 110 109 108 98	0.65 0.76 0.19 1.01 1.12 0.70	5.90 5.79 6.15 6.18 6.18 6.13	-32.1 -20.7 -22.6 -18.0 -12.5 -7.2	9.99 76.9 63.5 49.7 43.1 38-3	15.67 15.71 15.71 15.68 15.68 15.68 15.68
New urbidimeter 17212	1523 1530 1538 1545 1551 1557 1604 1010	0.8 0.6 2.0 1.3 0.75 1.25 0.50	2-8 3.4 5.4 6.7 7.40 8.15 9.4 9.9	86 250 163 117 125 179 83	4.64 4.75 5.32 5.50 5.64 4.91 5.22	156 114 110 109 108 98 99	0.65 0.76 0.99 1.01 1.12 0.70 0.70	5.90 5.79 6.15 6.18 6.18 6.13 6.13 6.12	-32.1 -20.7 -22.6 -18.0 -12.5 -7.2 -7.3	9.99 76.9 63.5 49.7 43.1 38-3 40.9	15.67 15.71 15.71 15.68 15.68 15.68 15.68 15.67 15.68
New urbidimeter 17212	1523 1530 1538 1545 1551 1557 1604	0.8 0.6 2.0 1-3 0.75 1.25	2-8 3.4 5.4 6.7 7.40 8.15 9.4	86 250 163 117 125 174 83 160	4.64 4.75 5.32 5.50 5.64 4.91	156 114 110 109 108 98	0.65 0.76 0.19 1.01 1.12 0.70	5.90 5.79 6.15 6.18 6.18 6.13	-32.1 -20.7 -22.6 -18.0 -12.5 -7.2	9.99 76.9 63.5 49.7 43.1 38-3	15.67 15.71 15.71 15.68 15.68 15.68 15.68

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
1625	1642 8/10/2016	18.5'	Peristaltic Pump Submersible Pump
SAMPLE ID: 16 NEC-14	MWOI-WG	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 10.0 mg/L
Container/Preser		nalysis Requested	Notes
8-40 mL vod viels w/ HCI	BT	EX, GRO, Methane	SW8260, AKIOI, RSK 175
3-1 Lamber	P	AH, PCB	SWE270SIM, SW 8082
2 - 250 mL amber wi HC1 1 - 250 HDPE wi HN 03 1 - 25 0 H DPE wi HN03	DR Not Me	tals (total & dissolved)	AK 102, AK 103 Sw6020, 7470
1-250 H DPE with NO3 1-250 H DPE		Ifate, alkalinity	EPA 300.0, EPA 310.1

Suggested Notation:

Nitrate = 0,0 ppm

"----" = not measured "1"= stable "+" = rising "-" = falling * Had issue with Stabilizing pumpflow

*** Total - RCRA plus Ni, Zn,V Dissolved - V

€ Mn

JACOBS

	Site	Name		1. 1.		Event		Well	ID P	roject Numbe
NEC - M	100			Moc	MNA S	ampling		14MW03	05	DK8702
	Weather	Conditions		PID Readings of Total VOGs (pp				Date		ampler Initials
rerazt,	andy.	404		Ambien	t Ø.O Breath	ing Zone 0.0	In Well 1.0	8/15/16	10	r, cr
					Well Ir	formatior	San Harrison and San			
Well	Integrity		TOC Stick	Up (ft ags) Well Casing Material			Casing D	iameter(in) / Ga	allons per linea	ar foot(gal/ft)
Good	Fair P	oor (-0.2)	PV	d ss	1/0.0	41 2/0.163	4 / 0.653	6/1.47
Depth to	Product (<u>ft)</u>	Depth to G	W (ft btoc)	Total Depth	of Casing (ft btoc)	Product T	hickness (ft) ar	nd Volume Rec	overed (mL)
Q	1A		11.9	0	23.9	8 (final)		NIA		Sec.
Max Purge	Volume =	(<u>24</u> Previous To	ft - otal Depth	_ <u>[].9</u> Depth to Wa Depth to Top	ter or filter Pack	0.163 gal/l Gallons per Ft	ft + 3 = <u>5,97</u> Max Purge	Z gal * 3.785 _{Vol}	L/gal = Max Pur	. 39 ge Vol
		115		V	Vell Purgi	ng Informa	ation			11.4
Sta	rt Time		Finish		Depth of	Tubing (ft btoc)		Equipment U	Ised for Purgin	a
(31	5		1351		14		Bailer	Peristaltic Pu		sible Rump
5	Color		Od		Sheen	Purged Dry		Meter Used	During Purging	1
Clear Clou Other:	udy Brow	m	Fant	Moderate Strong	Yes	Yes	rsi	Multi-Meter	Hạch Turbi	dimeter
Purging rea	ached: St	ability Ma	x Vol.	Purge wate	r was: Treate	Stored Othe	er Note: (GAC Fil	ter	
Park Street	Vo	lume	Flow	and the second	La station	Water Q	uality (three must	stabilize)		Water Leve
Time (HH:mm)		s or citers)	(0.013-0.13 gpm,	ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% or 0.5 NTU	Drawdown < 0.3 ft
1410	Change	Total	50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO /	pH (std units)	ORP (mV)	Túrbidity (NTU)	(feet btoc)
1315	2.0	0,500	(min	5.20	95	1.62	5,83	17.0	24.1	12.19
325		1.700	240	4.43	93	0.80	5.59	18.4	17.7	12.09
1330		3.300	320	4,19	93	0.60	5.68	21.2.	8.58	12.13
1335		4,50	2400	4.02	93	0.60	5.86	21.5	9.32	12.19
1300		6.200	340	3,85	94	0.67	5.83	30.6	18.15	12,14
1345		7,500	100	3,95	93	0.61	5.94	29.9	26.5	12.09
1350		8,700	240	4.14	93	0.60	5.99	26.7	26.1	12.07
Samp	Ned 1	DI	54		K941					
1		1	1 1	19.00	- 1-1	Sec				
161.24					1000			-		1
							-			-
							1			
-										

Sample Collection Information

Start Time (354	Finish Time / Date 1436 8/15/16	Depth of Tubing (ft btoc) 14.0	Equipment Used for Sampling Peristaltic Pump Submersible Pump
SAMPLE ID: 16NEC- 14N	WO3-WG	QC: Dup MS/MSD	Ferrous Iron (Fe2+) (mg/L) = 10.0 + mg/L
Container/Preserval 8-40 mL VOA vials w/	tive <u>An</u>	alvsis Requested AKIOI, RSK 175	Notes BTEX, GRU, Methane
3-11 amber	Sw82 FOD	sim/ Sw8082	PAHS & PCBS
2-250 mL amber w/H	21 AK102/1	03	DRC/RRU
1 - 250 mL HOPE 2 - 250 mL HOPE W/HND:		0/310-1 7970	Sulfate * Alkalinity Total Metals RCRA & Ni, V, Zn Discolved " " * Mn
Suggested Notation:		Nitrate	0.0 mg/L

Suggested Notation:

"-----" = not measured "√"= stable "+" = rising "-" = falling

JACOBS

	Site	Name				Event		Well		roject Number
VEC-	MOC			MO	CMNA	Sampl	ina	14Mwo	3 0	5 DK 8702
	Weather	Conditions			PID Readings	of Total VOCs	(mag)	Dat	e <u>S</u>	ampler Initials
we cast,	ho b	reze	SOF	Ambier	nt <u>0.0</u> Breath	ng Zone _0.0	In Well 6.3	8/13/16	14	2,53
					Well In	formation	Screene	d Interva	1 12 - 22 '	bas - Hm 8
Well	Integrity		TOC Stick	up (ft ags)		sing Material	Casing D	iameter(in) / G	allons per linea	r foot(gal/ft)
Good	Fair P	oor 6	0.2)		PV	S) SS	1/0.0	41 2/0.163	4/0.653	6 / 1.47
Depth to	Product (1		Depth to G		Total Depth	of Casing (ft btoc)	Product T	hickness (ft) ar	nd Volume Rec	overed (mL)
N/	it		11.	37	1	(final)		N/A		
<u>/lax Purge</u>	<u>Volume</u> =	(22 Previous To	otal Depth	Depth to Wa	ater or co of Filter Pack	Gallons per Ft	$ft * 3 = \frac{4,9}{Max Purge}$	ੁgal * 3.785 Vol	L/gal = <u>18, 1</u> Max Purg	7-5 L je Vol
				V	Vell Purgin	ng Inform	ation			
1	rt Time		Finish	Time		Tubing (ft btoc)			Ised for Purgin	
1-	08		1640			B.5 Durned De	Bailer		Ump Submer	
-	<u>Color</u> udy Brow	n	Ode None	Moderate	Sheen Yes	Puraed Dry Yes				
Other:			Faint	Strong	Yes	No	YSI	Multi Meter	Hach Turbic	limeter
ourging rea	ached: Sta	ability Ma	x Vol.	Purge wate	er was: Treated	Stored Othe	er Note: GIA	IC FILTER	r	
	Va	Iume	Flow			Water Q	uality (three must	stabilize)		Water Leve
Time		or Liters)	(0.013-0.13	Temper- ature	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV 🗸	± 10% or 0.5 NTU	Drawdown < 0.3 ft
(HH:mm)	Change	Total	gpm, 50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)
1609		750	25%mm	5.30	985	2.82	6.70	9.8	23.2	12.14
1607		1300	1 . 1	5.16	96	1.82	6.22	35.4	17.6	11.98
617	1	1750	25%	6.63	96	1,10	6.34	25.5	15.3	11.98
1621		2000	100/mn	5.95	96	1.25	6.63	8.5	13.2	11.98
625		2600	125/m	6.73	97	0,89	6.78	+0.6	12.8	11.98
1629		Ba	125/mm	6.81	98	0.79	6.73	1.1	12.2	11.78
633		zba	125/min		97	0,85		5.6	10.2	11.98
			125/min	5.90	96		6.60		13.1	
637	117	4100		0		0.82	6.48	11.9	12.1	11.98
Saup	red (c	169	44, 1	inged	total at	61.		-		
	1		1							The second second second
										1

Sample Collection Information

Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling
MW03		Peristaltic Pump Submersible Pump
HO-I-WG	QC: DUP MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = 0.2 mg/L
ative 8/11 Ar	nalysis Requested	Notes
HCI SW821	D/AKIOI / RSK175	BTEX, GRO, Methane
SW82	70051M/8082	PAH/PCB
1HCI AKIO	2/103	DRO/RRO
EPA 3	60.0/310.1	Suifate/Aikalinity Total RCRA Metals & NI, V. Zn
HN03 500602	0/7470	Diss. "
	1777/8/13/16 1003 1001-WG 100	1777/0/13/16 13.5 MW03 QC: Dup MS/MSD ative MMSB Analysis Requested HCI SW8260/AKI01 / RSK 175 SW8270051 M / 8082 /HCI AK 102 / 103 EPA 300.0/310.1

Suggested Notation:

*

kikate = O.O mg/L

"-----" = not measured "" = stable "+" = rising "-" = falling

* Sampler error. ORP just outside of range.

Page 1

	Site	Name				Event		Well	ID Pr	oject Numbe
NEC-	MNA	SIE MO	C	MO	MOC-MNA Sampling			14MWOS	14MW03 05DK87	
110	Weather	Conditions	1	PID Readings of Total VOCs (ppm)			Dat	e <u>Sa</u>	ampler Initials	
averas	F, breez	y 50	F	Ambier	nt Breathi	ing Zone	In Well 0-6	8/10/1	6 K#	2, 55
						formation				
Well	Integrity		TOC Stick	up (ft ags)		sing Material			allons per linea	
Good (Fair P	oor	NA	6	PV	SS SS		-	4/0.653	
Depth to	Product (f		Depth to G			of Casing (ft btoc)			nd Volume Reco	overed (mL)
	U/1+				23.0			airt		
Max Purge	Volume =	(24 Previous T	ft - otal Depth	Depth to Wa	ft) * (ater or p of Filter Pack	(j. 163 gal/ Gallons per Ft	$ft * 3 = \frac{5.86}{Max Purge}$	gal * 3.785 _{Vol}	L/gal = 72.7 Max Purg	L e Vol
				V	Vell Purgir		ation			
Start Time Finish Ti		Time	Depth of 1	Tubing (ft btoc)			Ised for Purging			
	Color	-	Ode	or	Sheen	Purged Dry	Bailer		ump Submers	sible Pump
-	udy Brown			Moderate		Yes		INIELEI USEU		
Other:	-		Faint	Strong	No	No	YSI	Multi Meter	Hach Turbid	imeter
Purging rea	ached: Sta	ability Ma	x Vol.	Purne wate	er was: Treated	Clarad Othe			All a second sec	
water, water both formed		-		uigo mat	or was. montou	Stored Othe	er Note:			
- de la la	Vol	ume	Flow		settimenter		er Note: uality (three must	stabilize)	an an the sec	Water Leve
Time (HFI:mm)		200703	Flow (0.013-0.13 gpm,	Temper- ature	± 3%	Water Qu ± 10% or 0.1 mg/L	uality (three must ± 0.1	± 10 mV	± 10% or 0.5 NTU	Water Leve Drawdown < 0.3 ft
		ume	Flow (0.013-0.13	Temper-	Section of the	Water Q ± 10% or 0.1	uality (three must ± 0.1 pH	the state of the s		Drawdown
	(Galions Change	ume or Liters)	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)
(HH:mm)	(Galions Change	ume or Liters) Total	Flow (0.013-0.13 gpm, 50-500 mL/min)	Temper- ature (°C)	± 3% Conductivity (µS/cm)	Water Qu ± 10% or 0.1 mg/L DO (mg/L)	uality (three must ± 0.1 pH (std units)	± 10 mV ORP	NTU Turbidity	Drawdown < 0.3 ft (feet bloc)

Sample Collection Information

<u>Start Time</u>	Finish Time / Date	Depth of Tubing (ft btoc)	Equipment Used for Sampling Peristaltic Pump Submersible Pump
SAMPLE ID:		QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) =
Container/Prese	ervative	Analysis Requested	Notes

-

Suggested Notation:

"----" = not measured " " = stable "+" = rising "-" = falling

1 of 2 VEC 2016 Hottee M Ret in the Para ENVE FIELD FOOK Nº 550 Ø5 DK 8702 V20120FLD AE-ECC-JØ7-050K.8702-H04-001 TTT Environmental 4 Instruments and Supplies 8/4/2016 - 8/24/2016 (907) 770-9041 www.tttenviro.com

ALL-WEATHER ENVIRONMENTAL FIELD BOOK

Numbered Pages

& Jacobs

-		and the second se		1	
	am	P	-	-	-
		<u> </u>	-		

Address

Phone _

Project NEC 05DK8792

Rite in the Rain — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, *Rite in the Rain* ensures that your notes survive the rigors of the field, regardless of the conditions.

Specifications for this book

Page I	Pattern	Cover	Options
Left Page	Right Page	Polydura Cover	Fabrikoid Cover
Columnar	1/4" Grid	Item No 550	Item No 550F

1996 - 2012, All Rights Reserved

RiteintheRain.com

Made in the USA US Pat No 6,863,940

PAGE	REFERENCE	DATE
3-11	Mob to Nome; prepare for mob to	814 -
	NEC; mob to NEC	8/8
9-27	Groundwater@ MOC	8/8 -
	wells	8/14
28-42	SUKi River (S29) SD, WS, & Flow	8/15 -
	SD, WS, & Flow	8/16
43-64	SØ8	8/17-
	ss & sd	8122
65-67	Demob	£/23
		8/24

Reference Page Index

147	Error codes, Hazardous classifications, Container types
148	Sampling guidelines (Liguids)
149	Sampling guidelines (Solids)
150	Approximate Volume of Water in Casing or Hole, Ground Water Monitoring Well
151	PVC Pipe casing tables
152	Soil Classification
153	Soil Classification
154	Maximum Concentration of Contaminants for the Toxicity Characteristic
155	Conversions (Concentrations, Volume/Flow or Time, Velocity, Acceleration)
156	Conversions (Length, Weight, Volume, Temp, etc)

	CONTENTS	
PAGE	REFERENCE	DATE
		•
	a second s	
	Lun	
-		
	2	
	and the second	-
1	9	
	2	
-	201 - C	

Location NURTHEAST CAPE (NEC) Nome Date 8/4/2016 Project / Client 050×8702 / USACE & ECC

Nome

0715	Pick up remaining items from Jacobs
	office
0830	Arrive at airport
0955	Depart for Nome.
	Prepare SPAs on plane.
1130	Arrived in Nome.
1200	Taxi to Stampede Auto.
	Performed vehicle inspection.
1215	Arrive at BSNC Building. Receive access
	to office space.
1300	Arrive at old Alaska Rooms
1345	Receive first shipment from Alaska
	Air cargo.
1645	Complete transfer of all gear from
	AK Air cargo to office space.
	Start unpacking boxe's.
930	EOD
	Nacoo medoan
	Summary: Mob to Nome
	Started preparing office & equipment.

Location NEC /Nome Date 8/5/2016 Project / Client 05PK8702 / USACE & ECC Nome Arrive at BSNC office space. 0730 unpack coolers & prepare sample kits. Receive call that ECC (Stan Seegars 1130 *Kristopher Reidt) & AK Total Safety (chris Carson) arrived in Nome. Transported ECC & AKT. S. to venicle rented EAK Rooms. continue prepping sample kits. 1230 Drop gear at Bearing Air. 1530 Arranged 8 AM departure. Discussed w/ pilot likelihood of flight and best time of day to fly Review SPAs & HSP 1700. sin ele Drop additional gear at Bearing Air 1745 because elected to upgrade Navajo flight to larger aircraft EOD 1815 Hole mafean Summary FCC & TS arrive in Nome - continue to prepare MOB to NEC.

Location NEC / Nome Date 8/6/2016 Project / Client \$5DK87\$2 / USACE & ECC

	Arrive at Bearing Air 49m 816
0170	Hald Sheaky Thingate:
	Weather: cloudy, poor visibility, rain, Soris
	Personnel: Stan Seegars (55)
	Kristopher Reidt (KR)
	chris carson (cc)
	Hollee McLean (HM)
	Concerns: driving - pedestrians & atvs
	w/o helmet
	weather delays likely (spoke w/ Bearing)
	Obj: continue kit prep
	Gothrough all equipment assuming
	Review Schedule (travel, will re-assess at
	Review WP \$ SPAS J Bearing Air
	PPE: Modified Level D appropriate for
	hack
0350	Depart for Bearing Air.
00800	Arrive at Bering Air.
3810	Brie Red at Bering Air. Stand down from Pilot Key
0010	No one has been to run way this year;
	need 3 mile visibility do they can
1400	assess the runway and 1000 ft ceiling.
0400	Managed ice, reviewed WP, schedule, #of Sample juis, and equipment (flow meter).

6 Loca	tion NEC/ NOME Date 8/6/2016
Proje	ect / Client 050K8702 / USACE 2 ECC
	Nome
1015	ECC & Total Safety mab to Bering Air;
	will try to perform dry set-up of tent
	in hangar to ensure comfort w/ &
ja j	knowledge of process.
1045	Mob to Bering Air to set up emergency
	shelter. Model # H0004-067 weatherport
1315	completed set up and take down of
	emergency shelter.
1330	Procure additional items from hardware
	store.
1345	Talked with Bering Air. Aiming
	for 9 AM tomorrow. Someone flying
- Dent C	to Savoenga today; should help w/
	determining conditions.
1450	Calling EOD
1	
	Hacomotioan
	Summary:-Weather Day
	-practiced crecting emergency
	Shelter
	N

TOJECT	/ Clien	it _	150	10	+02	- /	US	ACE	- 4				-	
-					-		-	_	_	N	om	e	_	-
0730											2 0	and		
									WP					
0733								¢.,	Wil	1 0	nec	Ki	e la	iter
0810					0									
	Per	so	nne	21:	55	ik	R	, C	с,	Н	M			
	PPI	E:	Mo	dif	iec	Le	ve	D					_	
	WX	5	Nor	ne-	SU	nny	w	100	lins	a	our	nd r	nour	
			NE	L-	ove	erca	st	*	fer	794				
	saf							1			1	Ber	ng	Air
	Ob	1:	set	UP	sh	elte	r							
					Nall		1.00	•				1	i.	T
		-			lept	1								1.5
	-							a	COUR	S	PA	w/	les	sons
	lear										1			
			-12	r.		•F	10						*	
0840			-	-										
0850	Ser.				ng	Air	ira	vel	to	NE	5.1	blot	off	<u> </u>
	a fer	who	ours	- '	-	_						*		<u> </u>
852	Mol	oto	offi	(e_)	ma	nag	e ic	c.						
0920	Mob	to	cree	K to	-+es	t fl	011	met	er.	Add	ition	al		
	pra	cti (e/+1	stor	ial	and	m	qnua	l ar	s N	203	sory		
1045	Mob	to	Ber	ring	Air	. Ch	eck	fli	ght	Sta	rus.			
	Grou			3			() ()							
	"+84		1.00									1		
	the		24											

Proje	ect / Client OSDK8702/ USACE & ECC	
	Nome	
1115	Make decision to go ahead.	
	Will start loading Plane. First	-
	flight will keep plane on ground	
	to set-up camp. Likely will not	
1	have time for groundwater measurements.	
1200	Reviewed Process/ Procedure for Tsunami	
	while on island w/o alert system.	
-	completed SPA.	
1205	watched video tutorials for flow meter.	
	Team feels much more prepared for	
	task	1
1405	Told we are not flying.	-
1450	Practice stream flow measurements.	
1630	Complete field practice w/ stream	-
	flow mater.	
	Downloaded test data.	
	Changed some settings on moter.	
1720	Return to field, continue testing	
	stream flow meter,	
1900	Transfer data to laptop.	1
1930	EOD	
	Weather standcwn	-
	Acquainted selves w/flowmeter	

11

ocation	NEC	. 1	N	me	2			Da	te	8/8	3	_	9
roject /	Client _	050	(87	02	10	ISA	CE	aE	cc		_		
					/						/N	EC	3
	1										/		
0030	Call	Be	rin	9	Air	10	nee	t at	00	00			
0180	sa fet	4.7	ail	ga	le :		547.			÷			
1	WX: j	Part	M	clu	Uclu	+	ne	ove	vcas	+ 8	clove	14	
-		NEL	- s	imil	ar	but		0 ° F	· cod	ler			
92.	Perso											·** 8	
	s'a fet	4:	one	a	ircr	af	r v	vill	st	ay	w/ 1	25	
	Obj:								0				
				visi									
					ths						• :		
	PPE:						D						
an							2						
	Arrive												Lat
2930	Depar					-	wr	. C /	ISA	te	fo	low	•
	Novaji												
-	Casa	pil	0+-	ĸ	yle			<u> </u>					4
020	Arrive	at	NEC	Te	st	sat	e11i-	te p	hon	e. 1	inpa	yc	
	Nava	0.									•		
0-40	Casa	arri	ves.	un	pac	ĸc	asq						
	Sta rt	sett	ing	up	eme	rge	ncy	she	:1 te	r.			
100	Set up	eme	rge	nay	sh	elte	n,						
325	Break												
	Coord				or	Bà	sec	amp	fr	am	Sta	n's 6	PS
		163					ns						
		35									<u></u>		
				Im									

A

	on NEC / Nome Date 8/8
Proje	t/Client OSDK8702/ USACE & ECC
-	NEC-MOC
1500	Calibrate PID 100ppm Isobilylene
	SIN 910685 Lut # 16-5516
	Zero cal = 0.0 ppm
	Span cal = 100.0 ppm
1510	SS & CC set-up weather station tcheck boach
1	KR & HM mob to Moc to collect
	well depths. BTOC TB (41)
Time	Well ID su(ft) Depth to Gwa(ft) the PLD
1534	MW10-1 2.21 5.04 11.0 0.0
1550	14MWO7 (-0.25) 25.73 33.21 0.0
1610	Having difficulty locating wells.
	Discussing plan forward.
	SS, KR, CL & HM locate all wells; record depth
1645	Mob From Moc to shelter, tomorrow.
1705	Load Navajo.
	Load Navajo. According to Stan : 2 mi vis & 500 'ceiling
1	for uninstrumented. Company standard.
	May be "Frexible" if visibility is good at
	Fur a way w 8/8
1715	Depart NECfor Nome; Saw ATVers on beach.
1801	Arrive in Nome.
÷	Discussed w/ Bering Air future flights.
	Will call to morrow at 8 Am.
5 1	

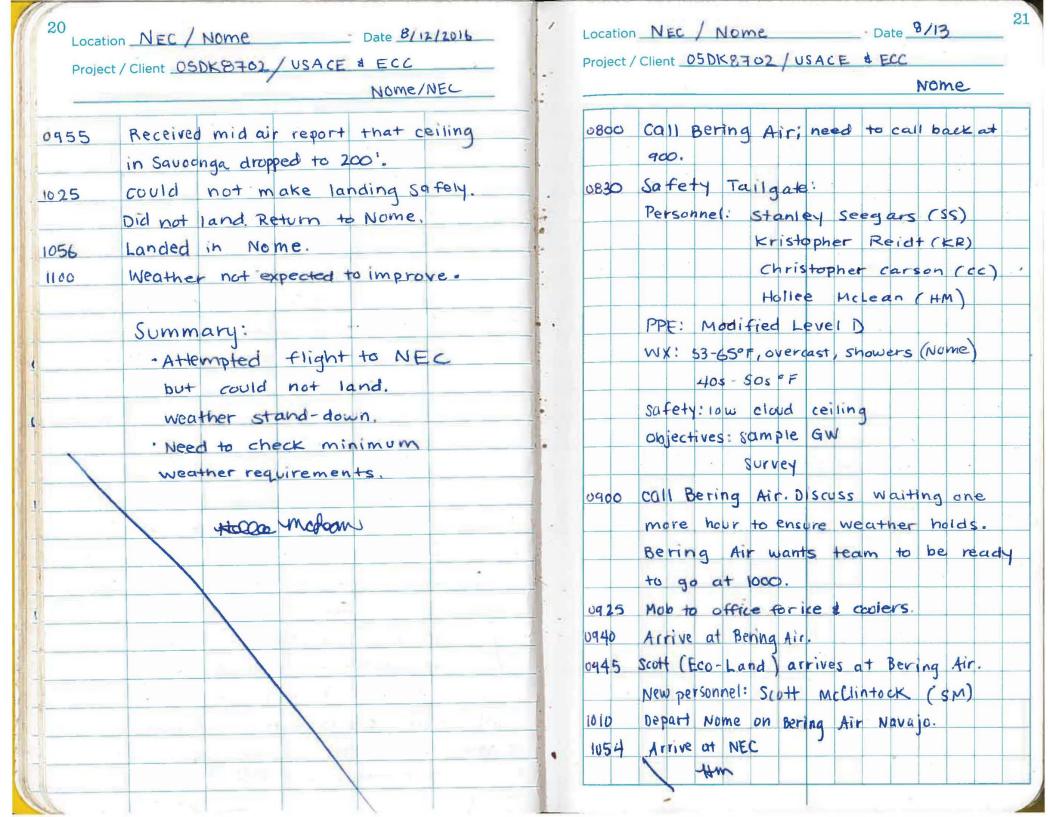
	NEC,							- 11
roject ,	/ Client 0	SDK87	02/0	SACE	* ECC			-
						Nome		-
816	Mob to	04	Acka	Danie	-			
830		A THE R A		check				
000								
DX	aily su	manak		-				
				r fin	ent mi	me		
-			rica j	Nava	o rem	nained	en	
-		indby					3	
-			er si	neiter	ap we	eathe		
-		ation		-			_	
-				0 Ma		-	-	
_	Perfor	rmed	site	walk.	_		-	
1	-				-		-	- 1
			-				_	-
-			1					
			He	an	mas	an	_	<u> </u>
						-		
-						- Inder		
						*		
, I								
			-					
				-				

12 Loca	ition NEC/Nome Date 8/9	5	Loca	ation	N	EC,	/ NO	me			Pag		0+0 8/1		der 1	.3
	ect / Client OSDK8102 / USACE & ECC							3707		USA	CE	* E	cc			
	Nome	-	~											NEC	- MOC	2
0800	Call Raning Air washer later	ace	-				-		1				2			٦
	Call Bering Air, weather delay.	spa			0		0				0	2	1	0		4
0805	Safety Tailgate:	Headsp	6	2	4	1.0	34.	0 ~ ~	6.9	0.4	0.11	-0+	0 74	33	0.0	
	PPE: Modified Level D	1			Hick	-						1				-
		050	2 2		-		N N		2	S		3	2 2			-
	WX: overcust with showers, 55-F-54-F in Nome	- 2	4	0	0	2	Ľ₹,	7 1	4 2	व	83	83.	2 2			-
-	Safety: Non-Project Personnel, wind, wildlife	1	1-1	3	0	8	5				.88	1	42	5	8	-
	Objectives: survey, Gw depths, sample wells	. *	話			2	Ŧ		Bun	Ŧ	2	EE	中门	3	d	-
10.24			7 20			3	1-501			ID	-	100				-
0930	Mob to get ice Prepare for 11 AM	4	2						6-				9 9			2 12
an AF	departure.	ta							6		-		34.	Bhu		-
0945	Mobto Bering Air. Discuss with pilot	6	2 5		*	1+	02	3 5	Les	94	3	•		9		2
	Stan about flying. We will try to go after surveyor arrives.	Ter	2	ů Ži	0.50		12.0	2.4	1	6.9	5.6	3.6	1.32	4	8	-
	piken					2			. Å	-	C			m	2	-
1020	Received brief from David . The plane will	-	-		-		-				-		4	.9	-	-
	stay on the gravind on stand-by.	1	F	~		-	2	~	5	-	-	52)	ę	300		-
	Scott from Eco-Land arrives. Hold		5	15		.45	0	15		-	-0.25)	÷	-1	3	70	
1030	meeting for preparation of tudays activities.	145	1 3	-		0 -	2			(- 0.	3	5	2]	. <u>.</u>		
10.30	David olsen states weather is deteriorating.	V	1 1 1 1 1 1 1	0	and an	-1.0	2		0.1	- 1						+
1100	We will wait on the ground for better weather. Call'No Flight" for now.	0	1234	1230	11	1205	d	1207	1 00	1153	1156	2121	PHI	1144	1140	-
1238		F	1	-		-					-					+
1- 00	Discussed weather. Concern about local/	9	- 1		-	2			0				-			-
		=	3	NO	Cow	MI	OM	1-M	-	-	FON	VOS	38-3	MOG	10	-
	visitor theft. Zero exposure on our end.	Me	MWE	14mmai	14 MW62	22 MW	14mm03	1-MW02	MW198-10	MW 88-1	FOWMPH	14mw05	MM	14 MW06	MWI0-1	
	Keep following the plan & check in.	+					-	~ -	2		T	No.	~ `		~	-

Projec	t / Client OSD	K8702	/ USACE	+ ECC		Project /
				Nor	ne	1
1 1310	Calling	day	as wea	ather day		0800
°			-		1.11 4.	0845
			1			
		HEC	benak	anu	it	
01						
04	Carlos Bar	/	2.1			
		/				0920
10						0925
	2. 1.					. 0948
10						1016
11	а.	*	2			(116
						MiniRae, 3000
			-			MiniRae 2000

15 NEC/ Nome Date 8/10/2016 Client USDK8702 / USACE & ECC Nome Call Bering Air. Break in the weather. will try to depart ~ 1000. Safety Tailgate Personnel: Stanley Seegars (SS) Kristopher Reidt (KR) chris carson (CC) Hollee Milean (HM) PPE: Modified Level D WX: SOFFSWI showers Standby aircraft Safety: Personnel, wild life, may not have objectives: inventory camp, GW depths, sample GW MWS Mob to office to gather ice. Arrive at office and prepare ice Mob to Bering Air. Arrive at Bering Air; aircraft will remain onsite Depart Bering Air. Atrive at NEC; perform quick check that all gear is still present. Callorate PIDs SA Zero Span 10685 U.U ppm 100.0 ppm 231 Failed 0. 0 ppm

16 Location	NEC/Nome		Date 6/	10
	/ Client 05 0K 8702			
				C- MOC
				- 1/05
1138	MOB to MOC to	measure	GW De	PHUIS
	See pg 13			
1345	Calibrate PID Zero		span	
	S/N 11231 0.0		100	
350	Calibrate Turb	idimeter		
	Lot # A6061			
	Turbidimeter 1			
checik		ead 6.95		
0	60.5	50.2		
	506	507		
0	Turbidimeter 17	1000		
check	c std 6.867 6.86	Reading	6-99	
	10.5 Sho 56.9		55.7	
11	506- 513		515	[1625]
1500	All Mob to 14 Mwci			a group .ut
	See sample f			
1705	GAC FAter up		1 about	(KR)
1	5 meters from 1	HMWOI	- [at 1-7]	
1715	Meb to 14MWO	2 (cc ± H	M) MOIT	s that
1	See Sample for	M. one	dissolved	metals
	Collect DUP	jar - i vica	broke w	ed lebeling.
1855	GAC filter app	rox. 4 gi	al (KR)	
1915	Mob to shelter			
	unpack gear & pi	epare for	departure	
C.		1	1	


	n NEC / Nome Date 8/10	
roject	/ Client OSDK8702 / VSACE & ECC	-
	NEC	-MOC
1945	Depart for Nome	
	Perform sample sheet ac.	
	Prepare labels.	
2034		

1945	Depart for Nome
	Perform sample sheet oc.
	Prepare labels.
2034	Arrive in Nome.
2039	Packout gear & samples.
2050	Arrive at office. Label samples &
	manage ice.
2135	Depart office after call to Kevin
	Maher
2145	Br Bomplete sample summary.
2215	Break for dinner
2230	complete sit Rep
2400	EOD
	Daily summary:
	sampled 2 wells
	- 2 primary & 1 DUP.
	Issues w/turbidimeter & pump
	controller / battery.
X	· 16NEC - 14 MWOI - WG @ 1625
	· 16NEC-14MW02-WG(-9)@1817
	Hocke moloan

.

	Date 9/11/2016 Date 9/11/2016 Date 9/11/2016
Project	Nome
OOFU	sample management.
	Create chains
	Pack coolers
800	Call Bering Air. check in at 1000.
0930	List of items to bring back from
	NEC:
	Tape, PIDs & Batteries,
1 - A	Ziplocs, Trip Blank
	To purchase: Battery from auto shop.
0945	MOB to AK Air cargo
-	# 9357
	907-563-3322
	05 DK8702
0955	Artive at AK Air Cargo.
	Ship samples Air way Bill # 027-4010-5785
1000	call Bering Air. No travel today.
1100	purchase additional Battery Clar Quest.
1105	EOD
1	Daily Summarg: Shipped 2 coolers
	coc #1 Almond Joy
	cac#2 Mounds
1	AWB# 027-4010-5785
	Haldemakan

_ocation	NEC / Nome Date	8/12/2016 19
Project /	Client OSDK8702/ USACE & EC	-C :
		me/NEC
0800	call Bering Air ; will try to de	epart at 930
0830	Safety Tailgate:	
	Personnel: Stan Seegars	
-	Kris Reidt	
	chris Carson	
	Hollee McLean	
	PPE: Modified Level D	NEC.
	WX: 54-61°F & showers in Nome, e	
	Safety: Will not have standby	
	objectives: Sample at Moc	
	Eco-Land Surv	rey cannot
	make today's flight.	
	Mob most of rem	aining gear
	because of travel on a king Ai	
0850	communicate w/ Kevin Maher.	
	all wells 1-2 below DTW.	4
0855	Mob to office to gather gear.	
0110	Arrive at Bering Air. Meet with	pilot Kevin.
0920	call KM. Target analytes are n	
	of column will be drawing from	surrounding
	aquifer. 1-2' ogsfor agil me 1/12	les.
0935	Load onto King Air wi pilot	Kevin.
0946	pepart Nome for NEC (ridin	
-1-10	Arrive in NEC WM 8/12	, , , , , , , , , , , , , , , , , , , ,

	on NEC/			Date <u>8/</u>	13/2016
Projec	t / Client _0 •	50K 8702	USACE	# ECC NEC	
1055	Mob su	rvey gear	, sample	gear, ¢ c	alibrate
	equipm	ent. safety	brief w	ISM.	
1109		Turbidim			
	Check P	eadings:			
+		17396	17212		
1	6.86	6.52 NTU	6.79	NTU	
	60.5	59.2	59.95		
	506	509 V	512	1	-
	calibrat	e PIDS (check)	*	
	SIN		Zerc	100.0	bban
1120	910685		0.0	100-1	
(120	11231		0.0	100-0	× *
in 58	Mob to	MOC			
1205	Arrived	+ MWID-I			
1221	start p	ourging u	vell		
1254	Sampl	e well	MWID-1	t MS	/MSD
1		W sam	S. IA		
		ers: CC,			La selfera
				10-1-W	9
1350		ampling	and the second se	and the second sec	
				1 1.5 ga	lons
	1	CF.			
T	1.	the			

Project /	Client 050K8702/USA	ICE & EC	22		-	-	
			N	JEC			
1421	cullect equipment	Blank	-	-			
	16 NEC- IUMW-1-	AVS	Dvw				
	Sampler: CC. HM	HM 0/1	5/2016				
	6-40 mL VOAS W/HCI	VOCS,	GRO	SW	8264	D, 41	101
	2-40mL VOAS	GIYCOI			015		
	3-11 amber	5062700	SIM, SWE	082	PA	Hsi	PCB
	2 250ml amber wy HCl	DRO/RRC		A	KIQ	10	3
	SOMLHDPEWLHNO3 S	w6020/7	1470	plus			lizn
1440	Mob to camp for	lunch				_	
1520	Return to Mac.						
1545	Arrive at Mwse-1						
1553	Begin purge of w						-
1628	Sample well MW	88-1.	-			_	
-	16NEC - MW88-1-						
	Sampters: cc, HN	1					
	See GW samplin	ng For	m	-			4
1647	End sampling Mu	N88-1-					
	GAC filter approx		129	allo	ns.		
1710	Visitors arrive to	site.		1			
	3 people; 2 adults marie,	4 1 cl	hild				
	Eugene Tooleyi- us	ed to wa	ork ul	Brig	tol.		
	Report ut cabid fox	. Boat	ed in fi	om	Sau	bong	
	- the		1	1			

24 Location	NEC/ NOME Date 8/13/2016	Locat
	/ Client DS DK8702 / USACE & ECC	Proje
-	NEC/Nome	
1730	Mob to (14MWD7)	
1146	Start purging 14MW07	
1815	Sample 14MWO7	12:
	IGNEC- HMWO7-WG	131
	See GW sample form	162
1 100	Samplers : cc, HM	164
1832	Endsampling 14MW07	181
19:05	GAC Filter approx 3 gallons	182
	GAC filter approx 3 gallons Rinse	142
	water,	
1	GAC filter approx 2 gallons alronoy	
1	GAC filter approx 2.5 gallon & DI	
	H20 Rinse	
2 000	Pack Plane w/ Gear & samples.	
2040	Depart NEC	
2132	Arrive in Nome	
2150	Transport gear & samples	
1	to office.	
1030 Hm	Return to aid Alaska Rooms	
BADI	EOD	
1	Daily summary:	
	Survey for \$29 \$ 508	
1	-pm	
1		

	c.	umpl	od	r				-11	ant	ed	1	Du	- At		
		MS,									- uniter -				
1254									-010	1-	WG		MS	/Ms	D
1310							1			1	G(ĩ	JUP	
1628		MW	88-	1				W88							
16 44	-	141	WO3	3	16	NEC	- 14	Mut	3	- w	G			×	
1815	_*	141	NWO	7				AMU							
1829		MW	38-1								WG				
1421		EB									DVI				-
												1 - 1			
															~
				4	toc	bon	ab	an)						
						-	0								
														4	
					1									-	-
						1								-	
			1											-	
	-							1						-	
									1			5			
										1		-			
						~		-	-		1		-		
		-				-	5	-		11.84		1			

Proje	ct/Client 05 DK 8702 / USACE & ECC	Project / Client 050K8702 / USACE + ECC
	Nome	Nome
830	Safety Tailgate:	review equipment rentals vs. purchases.
	PPE: Modified Level D	2140 Mob to office to label samples
	Safety: weather & flying	à prepare coolers à sample manageme
	WX: clear, 50-65 Nome	2300 Depart for old AK Rooms.
	45-55, variable in NEC	Complete EOD paperwork
	obj: Drive & fly	2330 EOD
	Collect samples	Daily Summary:
	Prepare samples for shipment	
900	call Bering Air. weather hold.	sampled 4 wells @ Moc
900	Mob to office. Him 8/14	C 1422 17MW1
900	Enter well depths from 8/10/2016	@ 1542 22mw2
	into spreadsheet	C 1737 26 MWI
930	Mob to office for sample management.	@ 1858 20MW-1
932	Battery that did not work in field shows	Packed 7 coolers for shipment to
	full charge after less than 1 hour.	ALS on 8/15/2016
	According to SS. after 5 min battery	@1422 17M HM 8/14/16
64.1	showed 70%,	CoC # 3 Milky way
030	SS, KR, & CC mob to Bering Air for	" 4 100 Grand
	flight to NEC. HM Stays behind to	" 5 snickers
	perform sample management.	6 Caramello
	Prepare 5 coolers for shipment	"7 Butterfinger
	on 8/15/2016.	" 8 Twix
530	complete sample management.	"9 Kitkat
300	Return to Old Alaska Rooms to	Holle mahaan

Projec	ct / Client OSDK8702 / USACE EECC	Project /	Client OSDK8	to2/US	ACE & Ed		52
	Nome / NEC		Provide State	1	1	N	EC
0800	Mob to office to continue sample mgmt.	1235	Mob to Swoff 2 f	ater 10w.	to co Sampler	liect se s: SS \$ HN	diment, M
0830	SS & KR corrive at office to help	1 3	Surface	wate	r(WS	3) at S2	29
41	pack coolers.	1 2 2	2-1Lam	ber	PAH	SW8270	SIM
0905	Arriveat AK Air Cargo. Ship 7 coolers		3-40ml VUA	rvialu/ 14C	BTEX	· SW826	0
12 6	to ALS		Sedimer	nt (50'	at ST	29	
0940	AWB# 027-4010-6113	1	2-8020	mber	DROVERO		02/103
	Depart for Bering Air.		01 31 42 5	1000 - 10 - 10 - 10 - 10 - 10 - 10 - 10	and the second se		
0945	Received call from KM.		14 10 10 10		PCB	SU	08022
1.1	Need to resample 14MW03.				Metals As. Cr. D		1000
1	will have to get glass wave from lab.	1. 1. M.	1. 1.	-	As, Cr, P		
1 1	Need filter from KM	Sample ID	9-50-010	Time	and the second	Depth bgs	
	14MW03 did not meet stability			1310	8/15/2016	erganics	saturated
10 2	before sample collection.	1.5	' H20		27	SD Collector	Brown Blackton
1030	Load plane to NEC.					a talas	paren-s.
1123	Arrive in NEC. Plane remains on ground.	16NEC-S	29-50-008	1350	P. 34	O-1'	ML, grey ish brow
1150	Turbidimeter check S/N 17212	. 0.	5 1420	100-00	Contraction of Contraction (Sec. 1)	SD rollecta	organics
12-2	check Std Reading		3 . 11			1-1-2	
- 19	6.86 6.77		529-50-00	5 1420		Organics 0-0.5	ML; brown
	60.5 58.9	1.	5' H20	2		0.5-1	At 1.0 foot
2-11 10	506 509	Coller	ted sample			for SD.	bgs, bravg up angula
	All Turbidimeter checks whay	Ft	from stake				cobble of
1. 30	PID Calibrate theck : Zero Cali Span Cal	1 - 14				SA	3" and gravel

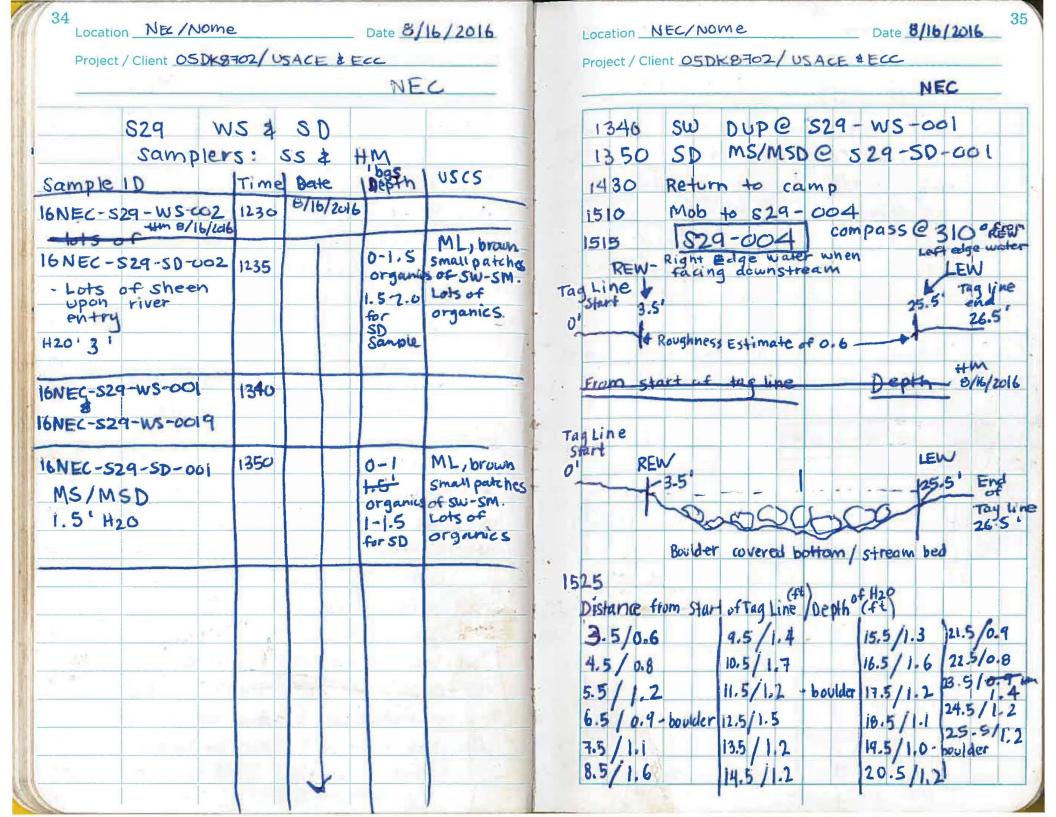
Location INEC/ Nome Date 8/15/2016

30

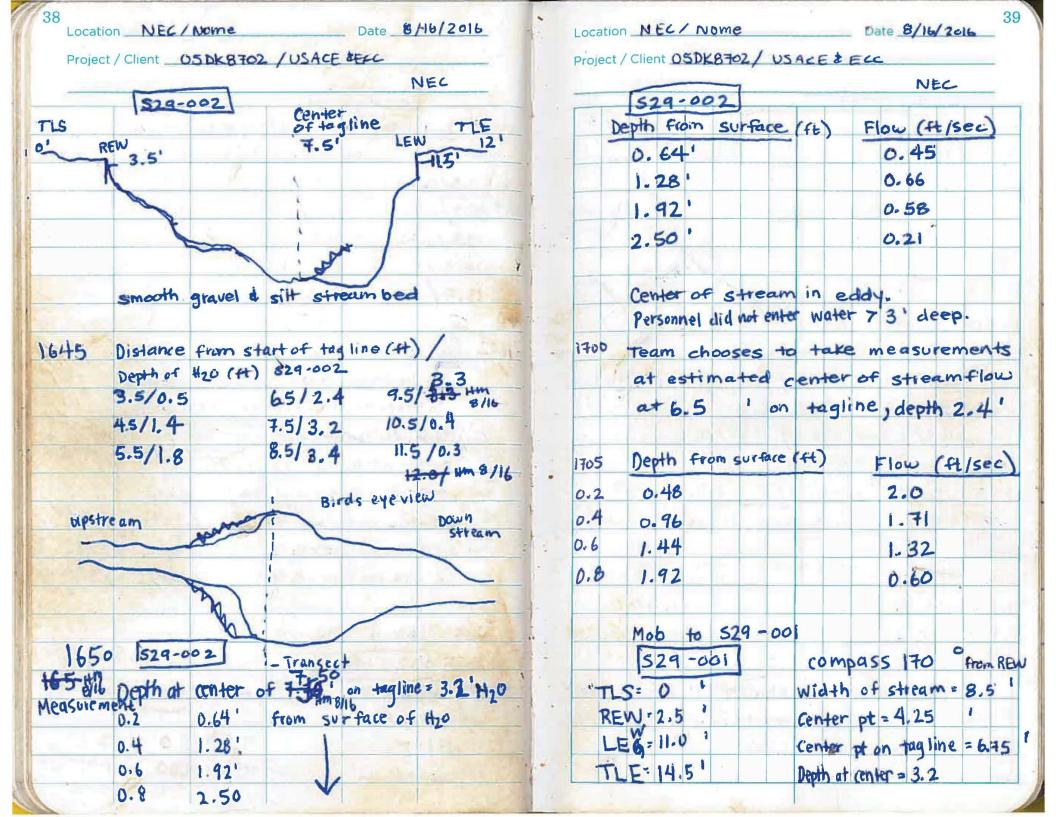
Project / Client 05DK 8702 / USACE & ECC

the second second		1	NE	C 1
Sample 1D	Time	Date	Depth	uscs
H6NEC-S29-SD-006 2.0 'H20 Organics 1.0 'bgs	1445	Bishal	1.0- 2.0	ML, trace gravel, little organics Brown Cobble gravel (= 2. bgs
16NEC-28-5D-007 1.0" H20 Organics 0.5 bgs	1520		0.5 - 2.9 pm 2.9/15 1.0	ML, little Sand, little Organies. Brown, Some Rust color.
16NEC-529-50-009 1.5' H2O Organics 1.5' bgs	1555		uzgani 1.5 2.0' 1.ejs	ML, title sand (mpdians) damp. Little organics. Brown some rust colo estrong odor
16NEC-529-WS-004 16NEC-529-5D-004 U.753 H20 organics 0.75-1.75 Rick5@ 2' (boulders)	1803 1810		1.5 - 2; removed organic	SM, brown sand with silt and little gravel
16NEC- 529-80 WS-003 MS/MSD	1910		in the	
16NEC-529-50-003 # 16NEC-529-50-0039 H20 1.0'bgs m 1.5'bgs boulders # cobbles fo	1925		0-1.0 feet organic SD Sample 1.0- 1.5'bgi	1.0-1.25 ML, some organics, brown, saturated. i.25-1.5 SW, medium sand, no fines.

Location NEC / Nome Date 8/15/2016 Project / Client 05DK8702 / USACE & ECC NEC/Nume * Require re-survey : 529-5D-005 529-001 (8/16/2016)


\$29- SD-006

808-054 (BH1+12016) BAT


\$29-5D-007 1740 verified mouth of suki River blocked by sand berm. 1800 At sample location 529-004, strong winds prevail but water still flowing downstream. Collected WS from flawing water / sudi River."SD" sample collected from peninsula under submerged vegetation. 1910 collected WS MS/MSD for 529 @ 529-003, 3X volume 1920 - Saw the Observed sheen while collecting SD sample, 2x volume. 1925 collect Duplicate sample S29-50-003 2020 Depart NEC for Nome. 2110 Arrive in Nome. Take Samples to office. Replace ice. Took 2 bags of IDW. 21 30 Mob to old Alaska Rooms; break for dinner. yum

32 Locatio	n_NEC/N	Nome		Date 8/	15/2016
Project	/ Client 05	DK8702/	USACE	& ECC	
-			-	Nome	
1015 AM	Safety	Tailgat	le:		1.4.1
	PPE: M	lodified	Level D	10	
	WX: 20	5-1- 49	Sor 4	5-55°F;	44-56°P
			Seegars		
			er Reidt		
	Lais.		her Cars	-)
			McLean		
	обј:		samplin		c
			at \$29.		
	Safety:	weather	\$ wind	all me	
	and still	e la se	. Sugar	7180	
	and the	- Stores	- Land	en en	
	Daily	Summ	any:	: slast	Les Anil
	2 prim	nary W	IS 4	IMS/N	aso
	Bpri	mary S	D &	1 DUP	
	3 MU	NCN	NOC	12	Strate .
			@ 135	54	
	19	"4	@ 184	+0	n
	P. P.	"5	@ 15	53	
	Visual	inspect	ion o	1.	h; *
2.4.1					sand,
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ags 1D		
			1 E 71	100	C.
2300	Start s	H Rep &	EOD	1.40	
		1 to	Doome	horn	1

	Client OSDK 8702/USAC	Date 8/16/2016
		Nome
0915		
	WX - 53-61°F; mi	
	PPE : Modified Level	
	Personnel Stanley See	
		Reidt (KR)
2		carson ((C)
	Hollee McL	
	Safety: water, wild	tlife
	Obj Finish Moc	
	Finish S29	
920	Mob to office Prep cool	
	Arrive at Bering A	
	Depart Nome for NI	
054		plane. Plane will
	remain on ground.	
167	Calibrate Turbidimeter	
	Check std	Reading
	6.19	5.59
	60-5	58.9
11.	506 rolibrate PID 5/Nº 910	508
1 21		685
		an Cal 100.0 ppm
1210	Mob to site 29. 3 visitors arrive.	- the 100 kg 5

Project	on <u>NEC / N</u>			Date 8/16	/ ==			/ Client C								
	529-			NE	۷.	3		52	9-0	03				- 1	NE	c
538	Depth i	measure . Conter	of stream	14.5' um at 14.5	f tagline	-	1555		ance			rt of t	aglin	e (#)/1	Depti
1	to-2 Dept	まき	Ft below water surface	Flow	Reading	4	11-5/	0.9		16.51	1.2		21.	5/0	.5	
-	0.2 from	surfac-	e = 0.24	D-32 HIM B	0.46	12.5	125/	0.9		17.5/			22	10.2	-	
-	0.4 "		"= 0. 48			-	13.5/	1 22		18.5/			0	2		
Ner I	0.6 "	-	= 0.72			-	14.5	1		19.5/	1000					
	0.8		= 0.96'	0.25	5	-	15.5	1.	-	20.5/	1.7			- Series		
			lis blowi ng down	ing upst stream	team,	160	1	stance 2 lent	hof	cross	s se	ection	is E	5.25	•	
n.C.	1520	1-00	al con	noase 28	a cram		B	16,75	am	tagl	ine	Depth 1 waters	eme	feet		Tow
	520	9-00		mpass 28	10.	12		16,75 epth a	5' un	+agl	ine	Depth 1 waters	urface	ifeet		low Readin
ag Line	IS20		3 con		w tag	*	D	16,75	5' un at 16.	+agl .75'	ine i is	Depth I water 5	urface	feet		Jow Readin CHEISE
ag Line Start					10.	*	D 4	16,75 epth a	5' un at 16. sum	+agl .75' face =	ine (is 0.2	Depth 1 water 5 1.2' 24'	elow urface	. ifeet 4 '		
	REW				w tag	*	D+ 0	16,75 epth a 2 from	5' un at 16. sum surfa	+ a gl .75' face = nce = 0	ine 1 is 0.2	Depth L water s $1 \cdot 2'$ 24'	offace	4 ') F 1. 1.	31
	REW				w tag		D 4 0. 0.4 0.6	16,75 epth a 2 Fram f from	5' un at 16. surfa surfa	+ a gl . 75' face = ace = 0 ace = 0.	ine 1 is 0.2 481 72'	Depth 1 water 5 1.2'	of 2 0.48	(feet 4 ' 8 '	- - -	31 23
	REW	(e			w tag		D 4 0. 0.4 0.6 0.8	16,75 epth a 2 from from from from	5' un at 16. surfa surfa surfa	+ a gl .75' face = 0 ace = 0 ace = 0	ine (is 0.2 .481 .72' .96 (Depth 1 water 5 1.2'	0. 42 0, 72	(feet 4 ' 8 '	- - -	.31 23 96
	REW	(e	hter 16:75'on 14:40 14:40 100 100 100 100 100 100 100 1		w tag		D 4 0. 0.4 0.6	16,75 epth a 2 from from from from Mob	5' un at 16. surfa surfa surfa surfa	+ a gl $.75'$ $face = 0$ $ace = 0$ $ace = 0$ $S29 - 0$	ine (is 0.2 .481 .72' .96 (Depth 1 water 5 1.2'	0. 42 0, 72	4 ' 8 ' 5 ') F 1- 1- 0. 0.	31 23 96 34
	REW	(e	hter 16:75'on 14:40 14:40 100 100 100 100 100 100 100 1		w tag		D 4 0.4 0.6 0.8 1615 1635	16,75 epth a 2 from from from S29	5' on surfa surfa surfa surfa surfa surfa surfa surfa surfa surfa	+ a gl $.75'$ $Face = 0$ $ace = 0$ $ace = 0$ $S29 - 0$ $O 2 - 1$	ine 1 is 0.2 481 .72' .96'	Depth 1 water 5 1.2'	0.72 0.72 0.9(18) F 1- 1- 0. 0.	31 23 96 74
	REW	(e	hter 16:75'on 14:40 14:40 100 100 100 100 100 100 100 1		w tag		D 4 0.4 0.6 0.8 1615 1635	16,75 epth a 2 from from from from S29 Mob	5' un at 16. surfa surfa surfa surfa to to to to	+ a gl $.75'$ $Face = 0$ $ace = 0$ $ace = 0$ $S29 - 0$ $O 2 - 1$	ine 1 is 0.2 481 .72' .96'	Depth L water s	0. 72 0. 72 0. 72 0. 90	18 18 18) F 1. 1. 0. 0. 5. 0. 5. 0.	31 23 96 34
	REW	(e	hter 16:75'on 14:40 14:40 100 100 100 100 100 100 100 1		w tag		D. 0.4 0.6 0.8 1615 1635 Tag Li REW	16,75 epth a 2 from from from from S29 ine st 3.5	5' un at 16. surfa surfa surfa surfa to to to to	+ a gl $.75'$ $Face = 0$ $ace = 0$ $ace = 0$ $S29 - 0$ $O 2 - 1$	ine (is 0.2 .481 .72' .96'	Comp Genter	0. 42 0. 42 0. 72 0. 91 0. 91	18' 18' 18' 18') F 1. 1. 0. 0. 5. 0. 5. 0.	31 23 96 74
	REW	(e	hter 16:75'on 14:40 14:40 100 100 100 100 100 100 100 1		w tag		D. 0.4 0.6 0.8 1615 1635 Tag Li	16,75 epth a 2 from from from S29 Mob S29 ine st 3.5 11.5	5' un at 16. surfa surfa surfa surfa to to to to	+ a gl $.75'$ $Face = 0$ $ace = 0$ $ace = 0$ $S29 - 0$ $O 2 - 1$	ine 1 is 0.2 .481 .72' .96'	Comp	0. 42 0. 42 0. 42 0. 72 0. 90 00 00 000 0	18 18 18 18 18 18 18 18 18 18) Fi 1. 1. 0. 0. 5. 0. 7. 0. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	31 23 96 74

40 Location N.FC/NOme	- Date 8/16/2016	LocationNE	L/ Ntome	Da	te 8/16/2016 4
Project / Client DSDK8702 /	USACE & ECC	Project / Client	OSDK8702	USACE 1	Ecc.
529-001	NEC	·	A		NEC
	center on 16.75 one LEW TLE 16.75 ine LEW 14.5		am elected	1.1.40 00	dition 1
TLS REW	16.75 ine LEW 14.5				Cron F
		me	astrements	· · Movea site	640 \$9.01
	cillu cider				7. Hm 8/16
	Silty sides Worganics.	TLS OI	16		
				Width = =	
	Rocky	LEW 9			1.75 HE 110 3.5
		TLE II.	5	Center ontag	line = 5.5"
1730 Distance from st	art of tagline (ft)				
Depth of wate	r (ft)	Dis	tance from.	start of tag	line (ft)/
2.5/0.9 5.5	12.8 8.5/2.0 11/0.6	de	epth of wat	er (ft)	[Compass @ 170" REW
3.5/ 1.8 6.5		2.0	12.1	5.0/2.9	8.0/2.2
	12.2 10.5/0.8	3.0	12.3	6.0/2.9	9.0/2.1
		4.0	2.9	7-0/ 2.B	
1735 Depth@ center	(6.75') is 3.2' H20				
Depth from Sur	face (ft) of the Flow (ft/sec)	1754 De	epth at cen	ter (5.5'	in tealine) in
0.2 0.64	0,41	2	.91 H2O.		· · · · · · · · · · · · · · · · · · ·
0.4 1.28	0.45	Dept	h from surf) of H2O	ace Flou	(ft/sec)
0.6 1.92	0.45				16
	0.40	0.2 0.5			
0.8 2.56		0.4 1.16		0.1	
	· · · · · · · · · · · · · · · · · · ·	0.6 1.7		0.1	
	ximately 2' upstream	0.8 2.3		0.2	
	ment may affect flow.				scheding SS.CL, all
Vegetation along	REW.	and the second sec		to camp. Re	move 1 bag IDW
	10 I.S. 14*	1815 Lua	d plane		
					A

	on NEC/NOME Date 8/16/2016 t/Client OSDK8702 /USACE SECC		Client OSDK8702 / USACE & ECC
_	NEC/NOME		Nome
1852	Depart NEC for Nome Arrive in Nome	1015	Sa fety Tailgate: Personnel: Stunley Seegars, Kristopher Reidt, Chris Carson
2000	Perform sample management		WX 8
2200	End Management		PPE - Modified Level D
2300	Complete Sit Rep & EOD		Safety : Fatigue management, wildlife, weather
1000	Daily Symmary		Objectives : sample 508
	sample 1 well @ MOG. MOC complete.	-	
	1 primary sample	0845	Depart for office to prepare cooiers.
	· sample S 29	0930	Arrive at AK Air Cargo to ship 4
1.00	2 sediment: 2 primary # 1 MS/MSD		coolersto ALS
	2 surface water : 2 primary \$ 1 DUP		COC#s 10-13 Destination changes
	· collected flow on Sur (S29)	_	AWB# 027-4010-6345 From SEA to PDX.
	4 measurements -	1000	Arrive at Bering Air.
-	Remove 1 bag IDW	1015	safety Tailgate see above
	Pack 4 coolers	1035	Depart Name for NEC.
		1125	Arrive in NEC & pack gear to mob to
1			site \$8. GAC filtered 91 of Decon water
	No comotian	1210	Mob to Sø Bto collect samples.
			Samplers: SS, KR, CC, HM
			Bottles; Methods; Analyses
			1-8 oz amber DRU/RRO AK102/103
- m - 5			PAHS SW8270DSIM
-			·All sample names start with:
		-	- 16NEC- 508-"
	, pr		

(Location 10)	pie 10 Date	Time	(Ht bgs)	
SD-0.65 (MS/	MSD) 8/17/2	016 1245	1.5-1.75	Grey, ML 0-1.5' organics # wet/saturated H20
50-066		1253	1.5-1.75	Grey & Brown, ML, 0-1.5 organics
\$5 - 067 (Ms		1305	1.3-2	0-1.3 crganics wet 1.3-2' orown, mpisto ML, little
\$\$-064 (9) (D	UP)	1310	1.3-2	organics. See above 3
50-063 SD HM 0/17/264		1320	1.0- 1.66	1.0-1.66 brown, damp ML
SD -062		1330		D-1.5' organics & water wet m 1.5-2.0. brownigney moist/ML
5-058 (9)(DU	P)	1336	1.5-2.0	Ort 0-1.5' organics 1.5-2.0' brown ML wet
SS - 959	No. 1	1845	1.5-1.75	0-1.5' organic luyer 1.5-1.75' brown ML, damp, trace organics
	11			
mainder of ample 10	Date .	Time Dep		SCS & other observations ,
\$5,7060	8/17/2016	1403 1.5-	-1.8 0-	1.5 organics & water 5-1.8 ML, brown, wet, trace organics
	19/10/10/10	1412 1.7-	- 2.2 0-	
SD -061		116 1.1.		1.7 organics & water
SD -061 SS 057		427 1.5	1.7	
	1	427 1.5	1.7 2.0 0- 1-5 5-2.25 0-	-2.2 ML, brown, wet, little praanics 1.5 organics -2.0 ML, brown, wet 1.75' organics
SS 057		427 1.5	1.7 2.0 0- 1-5 5-2.25 0- 1.7 -2.1 0-	-2.2 ML, brown, wet, little praanics 1.5 organics -2.0 ML, brown, wet 1.75' organics t5-2.25 ML, brown, wet 1.7 organics
SS 057 SD - 056		1427 1.5 1432 1.79 1438 1.7	1.7 2.0 0- 1-5 5.2.25 0- 1.7 -2.1 0- 1.7 -1.75 0-	-2.2 ML, brown, wet, little praanics 1.5 organics -2.0 ML, brown, wet 1.75' organics t5-2.25 ML, brown, wet 1.7 organics 7-2.1 ML, brown, damp 1.4 organics
SS - 056 SS - 055		1427 1.5 1432 1.79 1438 1.7 1442 1.4	1.7 2.0 0- 1-5 5-2.25 0- 1.7 2.1 0- 1.7 -1.75 0- 1.4 -2.0 0-	-2.2 ML, brown, wet, little pranics 1.5 organics -2.0 ML, brown, wet 1.75' organics t5-2.25 ML, brown, wet 1.7 organics 7-2.1 ML, brown, damp

Remainder of Sample 1D SD- 054	Date	Time 1636	Sample Depth 7-5 - 2.0 2.0 2.0	USCS & other observations Hz0 depth 0.5'; organics C 0'bgs - 1.5 i.5-2.0 ML, wet, medium_stiff, brown, tracetton
SD-049		1651	1.25 - 1.75	H20000th 0.75'; 0-1.25 bgs organius. 1.25-1.75 ML, grey & brown, wet/sqturated
SD -0509 DUP		1656	0.9-1.25	0-0.9' organics 0.9-1-25 ML, grey & brown, saturated,
SS-048	X	1704	1-0-1-5	1.0-1.5 ML, brown, muist/wet, little organics
SS -045		1712	1.25-1.75	0-1.251 organics 1.25-1.75' ML, brown, damp
55 046		1717	1.5-1.75	1.5-1.75 ML moist, brown
55-047		1726	1.0-1.5	0-1' organics strong o dor to 1.0-1.5 ML, brown, damp, medium stift
\$\$ - 003		1742	0-75-1.0	0-0.75 organics trace gravel 0.75-1.0 ML, brown, moist, foel odor te m Not Sampled; along roadside, coilect
55-004	-	1752	2.5-3.0	Not Sampled; along roadside. co ilect Sand or go down to Gilt?
55-008	~	1806	0	laced PID into holed eads 194 ppm 1-95 organics 25-1.75 ML; brown + 55 184 Control - 19 184 May reading of 10 18 Project / C
50 - 07		1813		1.75 organics wet at 2.0: 75-2.0 MLbrown wet 1.5 organics. 1.1.75 submerged, ML1 hrown/grey, wet.
SS 00 5		1829	1.5-1.75	-1.75 submeried mill o C C + U K 3
55-002		1835	1.0-1.5 0	little otganics of the context of the context of the otganics of the context of t
(MS/M5D)			1.	15 MLibrown, trace O to a o co
55 -001	*	1840	1.6-1.5)	amp, with organics.
				C (6-10 bed. bed.
				4

48 Loca	tion NEC / Nome Date 2/17/2016
Proje	ect / Client 050k8702 / USACE & ECC
	NEC/Nome
1850	Mob to camp. Load up samples & gear.
1926	Depart NEC for Nome.
2015	Arrive in Nome. Take samples to
	office & refresh ice Transported
ι	I bag Samptrash & 1 bag 10W.
1	See Logbook 2 for info on B visitors today.
	Daily summary:
	shipped 4 coelers to NS
	Collected SS: 17 primary, 2 DUP, 2 MS/MSD
	SD: 12 primary, 2 DUP, 1 MS(MSD
2100	Break for dinner
2230	Sample Summary & sample tracking
2330	EOD
~	
	Holdo maban
	Nevel strugster.
1. 1.	
r	
1	

Project /	Client OSDK8702/USACE & ECC
	Nome
0700	Prepare labels for sample shipment.
0750	call from KM regarding sample
	locations along 2 within roadbed.
0805	Safety Tailgate:
	Personnel: . Stan Seegars
	Kristopher Reidt
	chris carson
	Hollee Mclean
	PPE: Modified Level D
	WX:
	Safety: Fatique
	Obj- ship samplex, sample sos
0225	Mob to office for sample management
0930	Mob to AK Air Cavgo.
*	ship two soil / sediment coolersto ALS.
	AWB# 027-4010-6430
1000	Arrive at Bering Air. Meet W Scott
	McClintok for survey
1010	Receive call from KM regarding sample
*	points immediately adjacent to roadside.
	18663654406 7513429
1035	conference call w/ KM & Don Maloney
	From Aaron. Should not sample in road
- v.	bed. In 20' grid along road bed, relocate

50 Locatio	n NEC/Nome Date 8/18/2016	Location NEC/ Nome										51
Project	/ Client 050K8702 / USACE & ECC		Proj	ect / Clie	nt 050	K 87	02/	USAC	ENEC			
	Nome / NEC	-		2		_	_	ics.	NEC			-
	directly west at vegetation. From 10' centroid, rclocate N/#AW Until We reach vegetation. (73*75) (69) Field team boards plane. Very strong fuel odor. Alerted pilot to strong smell. Pilot (Jack) got out of plane to check for leaks. No teaks. Pilot started plane but team continued to express concern. Asked pilot to please not take off. We all got out of plane. Turns out the odor was epoxy from a new door seal that http://weilow.	11 Sampling IbNEC-Søe		0-1.5' arganics 1.5-2.0' ML, brown, 11Hlesand, withorganics damp/moist	0-1.5' organics 0-0. H.O 0.25' 1.5-2' MLI brown, trace sand, little	5' 420	1.75-2.0' ML, brown, wet / Saturated, 11411e or ganics	in n	75' organics 210=1.4 ppm	Hie org	0-1.5 'organies 1.5-2.0' ML. brown. trace S and, damp/moist	
	night before. The fumes were trapped inside the aircraft,	face So		1.5-2.0	1.5-2.0	1.75-2.25		1.75-2.25	1.75-5	1.5 -2.0	1.5-2.0	
1150	Depart Nome for NEC	150		S		52		32	0	0	8	
1212	Arrive in Nome. Missing survey equipment. Must still bein other plane?	S at		141	1422	크		143	SE.	bhh	1459	
1245	2 Visitors (Floyd and his wife) arrive to collect birthday cake -	ent Date		8/10/2016		-						->
1335	Field team mobs to SØB to determine	edim						2				
1345	pts that need to be relocated. Field team elects to relocate SOB- 04,13,21,39,69,73,\$75 \$ For samplers, bottes, \$ Methods see pg # 43.	Site ob Se Remainder of San	(01 207) (1	11055	5000-010.	500- QS		SS 012	SS 006	SD - 014	(b) 810-55	5

	ion <u>NEC/NOME</u> Date <u>8/18/2016</u>				EC / NOW		ACE		Date 8/18	(2016	53
Projec	ct / Client 05 DK8 702 / USACE & ECC NEC	1	1			0102/		4 200		EC	t'
1455	SOB-004 ADJ 7' W° SOB-013 ADJ 7.25' W° SOB-021 ADJ T.25' W° SOB-021 ADJ W° SOB-067 ADJ 3.75' NW° SOB-067 ADJ 6' W° SOB-021 ADJ 6' W° SOB-021 ADJ 6' NW° SOB-023 ADJ 8.25' NW° SOB-073 ADJ 8.25' NW° SOB-075 ADJ 6.5' NW° SOB-039 ADJ 7.5' W° PID Bag Blank 0.6 ppm	& other observations	organics Bt. blackish. L'S' ML, brown, moist, with organics	Wet ML	organics .5 ML greatish brown, moist, trace	1.5° organics -2.0 ML, grevish brown, moisbytrace	organics. H200 Surface 5 ML, see above. moist/wet	. Hu B/il/ wit see SD-C407 brand	urk brown, moist/wet, ics Hno @ surface	ul. brown, trace organics, moist ganics	D' ML, brown, trais organics, moist
1805 1835 1842 1930	GAC filter approx. Bgal decan water: Load Plane for departure to Nome Depart NEC for Nome. Brought [1 bag IDW] Arrive in Nome. Transport Samples i	Depth 1 USCS	- 1	1.5-2.0 1-5-2 mcist	1.0-1.5 0-1' 1-0-1		2.0-2.5 0-2'	2.0-2.5 0 2.	0 1		1.572
1100	gear to office. complete labels & sample mgmt sit Rep, send photos of sample relocation.	Date Time	8/18/ 2016 1510	1513	1526	1533	1543	1616	1626	1632	
	Daily Summary · Relocated 7 Sample locs that conflict with read- · collect samples @ SOB SS - 12 primary & 1 dup (lin permatrest) SD - 10 primary & 1 dup · No survey; base Station left in Nome. EDD HODD MODEN	der of sample	10 (Loc 10) SS -022-	55 -027 401851ct	SS-031 -tussick	55 -036(9) 25 SD NUP	SD- 640 .	140-05	10 - QS	30 -016	

er Observations	, greyish brown, moist, little organics	nics brown, damp, tittle organics, ML	5'- cobbles 3"- 9", some boulders to to those along road.	25 0.25 - 1 Gravel & coorbles 5. Some organics, saturated, ML, brown 7.	et sample, difficult to PID: headspace of bach, unics w/ coarse sand & gravel (SW) p brown, damp	* Permafrost, ML, brown, little organics.	anics own, ML, damp, with organics,	Project / Client 05DK8702 / USACE & Ecc Name Name OBCC Call Berring Air. Call back at 930 Call TIT to verify special shipping info: Call TIT to verify special shipping info: Batteries - Do NOT need declaration. PhD Cal gas Return unused NUN 2800 Battery ; wet, non - spillable AWB NUT RESTEL CTED per special AGT
194 E		ganics brown,	.25' - co	s some of a odor	rganics		brown, H	
	2-2.5 1	0-2' or 2.0-2.5	C Sturie	0-15 orga 1.0-1.2	0-2' 0	0-2: of 2.0-2		5 100 - 10 package 5 100 - to package 5 65 - to handle
	2.5	2.0-2.5	1.5	1.0-	1.5-2.5			If fully expelled, throw bottle away Puncture & recy cle.
e Time	1638	1643	1715	1720	1737	1749	1801	Northalize and from s.
Date	8/18/		TR.					5-674
Remainder of Sample 1D Loc 1D)	30-015	5 -019	55-020	50- 026	55 - 024 . Hustick	SS-023 * tussigk -	55-028	Rutkowski ing Air. Not

 56
 Location NEC / NOME
 Date 8/19/2016

 Project / Client 05DK 8702 / USACE & ECC

cull Greg Rutkowski 106 * Lithium - ion battery Flow meter ? PID Checkall batteries - Lithium 10h battery sticker-- on AWB: Nature & quent of Goods lithium ion batteries in compliance with section I of PI966. * NAC- for chemetrics test leit # 1019 - NAC shipping account Prepare samples & supplies for 1115 shipment. 1345 Ship 1 cooler to ALS via Goldstreak AWB# 027-4010- 6555 Ship 2 pallets of gear from Nome to Anchorage office; notify K. Maher on arrival. To ship on cargo flight 8/20 issue wiknowing AMPS of Lithium ion batteries contained in equipment. Confirmed w/ agent "DOES NOT CONTAIN DG!" AWB# 027-4010-6566 ar . EOD Hollemoleou

Location NEC/Nome

Project / Client 050K8702/ USACE & ECC

57

Date 8/19/2016

2300	Receive message from Linda at
	AK Air Cargo. Cooler/broke & shipme
	not taken on plane Samples placed
	outside in a secure cart. Luiil step
	by tomorrow to replace the ice.
	called agent back so we could get cooler
	tonight to refreshice Linda will
	get cooler & drop it off at old Alaska
	Rooms
22.25	
1365	Linda calls. Cooler is in the mail
	truck behind locked gate. She
	cannot find the key to the touck.
	I will pick up cooler to morrow at 830.
	1 tolometon
	1
-	

	tion NEC/NOME Date 6/20/2016 ct/Client 050K8702/USACE 1 ECC	Location NEC/Nome Date 8/21/2016 Project / Client 05DK8702 / USACE & ECC
	Nome	NUME
0800	Call Bering Air. Weather hold. Bering Air is not making any scheduled flights. (41) back at 1000.	0800 Call Bering Air. No one answers phase. 0830 Call Bering Air. Not looking good. 1600 called as WX day.
0835 0846	Arrive at office to replace ice.	started working on reports. EOD
09.15	Ship cooler to PDX on same AWB.	
1015	Call Bering Air. NO Flight yet. Call back at noon. TO DO: Ship chemetrics via NAC to ANC Ship/PKg remaining items to ANC - defrost freezer.	
	-ship coolers to ALS.	
1200	NO Flight.	

	ect / Client USACE OSDK8702 / USACE # ECC		Project /	-	-	-	11.			ELC		15 4		
1	Nome/NEC_		SØB	SUT	55	Sai	mplin	P		R		VEC		
0800	Call Bering Air. Depart at 930.	1				,	1			Sandrach	1	moist,		
0090	Safety Tailgate: WX: 38-49.F, windy	-	1.5	sbq	والحار		5			6 +		g iquel im		
•	PPE: Modified Level D	-	0.5	2.6			sha	t	Se	S P.	4	5		
	Personnel: Stanley Seegars	3	cs.	0.25	3		0.5	moist	£	en. sand		tra	1	
11	Kristopher Reidt	atio	ganits.	HJOC	L'mo	501	Hzoe	5	0	d sheen.		Sand	1	
	Christopher Carson	bservations	ore		-	organics	H2	ML, brown, little organics.	0-U.5' organics. 0.5-1.0'	T SS				-
-	itollee McLean	op	SEG	organics.	que		S	6 01	0	the st		· Ccante		1
	safety: wind & windchill	other	19 10	aria	ML	trace	0-1.0° organics	T	5 1	brown, medium to	oies	2.2	1	
	obj: site 08		N 10			+ + +	0rg	ş	val.	mec. Fu	0.5° cinhies	3S	HIS	
905	Depart for office	44	220	in	0.1	wet,	10	Pron	ŝ	S. i.	s.	0.5-1.0		-
0930	Arrive at Bering Air.	vscs	0.5' +20.	0-0.5'	0.5-1.0	3	17	M	0-0	0.1	0-0	5.0	little	
945	Lond plane	0					19	-			-0.			7
150	Depart Nome for NEC.	Sample		1 is		-	10		-01		5			12
035	Arrive in NEC			0.5	1.0		1-			-	o			
	over in wind. someone came an second the	Time		1	1330		1338		1343	1	1353			
	tent in our absence-	-	016							-1		-		
200	Try to verify that all moved locations are there.	Date	8/22/2016	T		1		1						2
	529-006 still + he re but onder approx. 5# of H20	- + o	Moved 025 Hun	015	7 . from actual	80	4	1	3.(4)		669	ed frem	(green	C not needed.
1300	See Legbookt 2 Make to the C Sec as 42 Sec Existen	Remainder of Sample 10	10p	0	5		100		S -013.(3	1	ecte	in the	=/5
1.1.0	Mob to site B. See pg 43 for bittles, analyses, 2 samplers	ain	Mav	as	7. 400	wor	13	-	SS	2	SS	·collect	P.C.	r -

W	-				-
1+++	1				
Remainder of 1 Sample 1D (Loc 1)	Date 1	Time	Depth	03001	62 Lo Pro
and the second s	8/22/	1404	1.0-	0.5' organics, 0.5-1. c' cobbles, H20 C ~0.75' bys 1.0-1.5' sw & ML, wet, little gravel, with organics	Location _ Project / (
55 - 071	T	1412	1.5-2:0	0-1.5' organics. 1.5'-2.0' ML, brown & grey; little organics, trace gravel, damp/moist.	NEC Client D
SD - 068 MS/MSD		1423	1.5-2.0	0-15' organics 0-1.5' organics cobbles, H20C 1.5-2.0' Brown ML, Little organics, moist fiver 0.25' bgs	-C / Nome 05 DK8702,
SD 070		1430	1.5-2.0	0-1.5° organics. H20 @ surface 1-3-2.0° beson, ML, nittle organics, Little course s and, moist	ne 102/
35 - 572		1442	1.0-	U-1' cobbles 1.0-1.5' SW ; warse sand, Inthe sitt, wet	USACE
SS -073		1456	20-25	0-1' organizes 1'-2' cobbles 2'-0.5' - Grey ML, little organics, damp/moist, sample	CETE
SD. + 074		1504	1.0 -	0-1' organics. 1-0-1.5' Greyish brown, MC, little organics,	- c g
SD . = 075		1512	1.5-2.0	0-1.0 vegetation, 1.0-1.5 coolos, 1.5-2.0 Grey, ML, little organics, moist/wet, sample submerged	te ST
55 -039		1522	2.0-2.5	0-21 organics. ML, light & dark brown, trace organics, damp to moist	2/106
55 -044	A	1537	2.0-	0-2 organics with cooptes. Sample under H20. 2-2.5 see 55-039	
SD1-043	I	1541	1.5-0	0.5 H20 0-1.5 erganics 1.5-2.0' ML brown, trace organics, moist, trace gravel	
SD 1-042	1	1553	1.5-2.0	0.5' H20 0-1.5 'organics 1.5-2.0 see 043	Proj
5D - 038		1681	1.5-2		ation ject /
50 -037(9) DVP		1608	2-2-5	J.5' H20 0-2.0 Urganics. 2.0-2.5' ML, gray, trace	NEC Client
55-032		1616	1.07.5	damp organics. 1.0-15' ML, brown, little organics,	NEC / NOME
SD -033		1622	1.05	o-i'organics 1-1.5' ML, brown; wet	me
SD-034		1630	1-5-20		
50-035		1639	1.5-2	0.75 H20 0- 1.5 organics 1.5-2 See 033	USACE
50 -029		1645	1.5-2	Hzoe surface O-1. Sorganics. 1.5-2.0 see 033 with little organics i wibles	CE *
55 -030		1655	1-1.5	Fuel odor. 0-1.0 organics 1.0-1.5 SW, course sand with gravel. Trace organics. Wet.	Date
12-			5		8122/2016
					Luib
	V				63
	1		N.	X	

Location Nome / NEC Date 8/23 (2016 65) 64 Location Nome / NEC Date 8/22/2016 Project / Client USACE ECC / 05DKB702 Project / Client 050K8702 / USACE SECC Nome Arrive at office to prepare samples for 0630 Empty vials of HCI from vota 1700 shipment & gear for demold. trip branks. called chemetrics GAC filter approximately 7 galions 0930 ship - as dangerous good in of decon water accepted quantities class # 8 Mob to shelter pack plane. 1 Bay 10W 1715 Disposal-special Handling W/RCRA 1820 Start plane to leave NEC. Arrive at AK Air Cargo. Waiting for them 1005 Arvive in Nome. 1915 to open at 1030 AM. opened early for me. Daily Summary: 1015 Shipped 1 coolers to ALS Goldstreak. salvage shelter. verify swing tie method for survey. AWB 027-4010-6765 SOB Finished nut needed. SS-11 primary (1DUP & 1005 1005 D) 027-4010-6776 - empty coolers general freight Shipped sampling supplies to ANC SD - 13 primary (& 1 DUD & 1 MS/MSD) AWB 027-4010-6780 Prepare to depart Nome for NEC. 1115 Arrive in NEC. 1216 complete sample labels & sit Rep theat beach ? mouth of sugi. Beach has been revered -2200 EOD off. 1247 Stopat culverton Sual- Water is higher Hallometoan than yesterday downstream of 5401. them

Locatio	on Nome /	NEL		Date8/23/2016	
Project	t / Client 050	K8702/	USACE	<u>i</u> cc	Project / Client 050k8702 / USACE 2 ECC
	Pŧ	Dist	pt	Dist NEL	Name
ADJ 054 060		3.06 '	57	19.27	0645 Dispose of 2 bags general trash
039	039	7.35'	44	22.10'	Recycle amber battles (by George).
075	0 30	8.40'	75	6.11	0900 ship test kits via NAC.
073	073	8.16'	072	7.05	NOA - H. McLean
021	021	5.83'	071	17.17	AWB# 345 2303 9041
013	013	7.25'	068	15-21	1100 Return vehicle to Stampede Auto
004	007	23.73	003	13.38'	1115 Receive ride to airport to wait for
	-				~1220 departure.
406	Field \$ 2 securing our		t camp. Sp	ent 1.5 hours	1400 Arrived in Anchorage
1500	,		529	Removed	
1500				From	Holenoban
				002, \$003.	
	Rema				
1515	3 ATV	\$ 185	people anti	ve et søs.	
				ſ	
15.35	Return	to camp	. Wair for	CASA.	
1730				I bag general tons	J
1755	Start N				
1844		in Nome			
1900	Arrive at	OU AK	Rooms.		
	EOD				
	1	Do mak			

2 08 2

2016

NEC

Kristopher Reidt

ALL-WEATHER ENVIRONT CALL FILLD BARASA MELD BARASA

V 2012 0 FLD

AE-ECC-J07-950K8762-H04-002

550 Environmental - Poly - 43/4 in x 7 1/2 in
 TTT Environmental
 Instruments and Supplies
 (907) 770-9041
 www.tttenviro.com
 INT3 2 2 81 05 5 01 1 1111 2
 ISBN 976-1932349 15 4

8/6/2016-8/23/2016

ALL-WEATHER **ENVIRONMENTAL FIELD BOOK**

Numbered Pages

Address	
Phone	1.5

Rite in the Rain - A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

Specifications for this book:

Page I	Pattern	Cover Options		
Left Page	Right Page	Polydura Cover	Fabrikoid Cover	
Columnar	1/4" Grid	Item No. 550	Item No. 550F	

© 1996 - 2012, All Rights Reserved

RiteintheRain.com

Made in the USA US Pat No. 6,863,940

PAGE	REFERENCE	DATE
		-
781		
	ai	
4		

CONTENTS

Reference Page Index

147	Error codes, Hazardous classifications, Container types
148	Sampling guidelines (Liquids)
149	Sampling guidelines (Solids)
150	Approximate Volume of Water in Casing or Hole, Ground Water Monitoring Well
151	PVC Pipe casing tables
152	Soil Classification
153	Soil Classification
154	Maximum Concentration of Contaminants for the Toxicity Characteristic
155	Conversions (Concentrations, Volume/Flow or Time, Velocity, Acceleration)
156	Conversions (Length, Weight, Volume, Temp, etc)

Location NEC / Nome Date 8/6/16 Project / Client 05068702 USACE + ECC

0710	Hold tailgate sofety meeting @
	Old Alaska Rooms: Yet mile U.S.
	in Savoonga, Expected weather delays.
	personnel: Stan Sugars (SS)
	Kistopher Reidt (KR)
-	Chrs Casan (cc)
	Hollee Miclean (HM)
	Safety Topics: Driving though above
	(pedestrians + ATU'S), weather deby. ansite, air travel.
-	Todays objectives : Contrue says hat prep.
	- contine go Thegh all epiperent and
	uz Kplan.
	- Review schedle ad possible Scenaros
	- Practice setting op energency cap text.
0750	Depct for Berry Him
08/0	Anne at Ben Air. Discissed aarte
	and flight stedle of Kenn (Pilot)
	No are has flown to site yet This year.
	Berny Air will require low ft ceiling and
ia	3 mile visibilit/ Anne at field office. Discuss wotpla
0900	and suple procedies.

	CONTENTS	
PAGE	REFERENCE	DATE
1.		
	19	
2		
	and the second sec	
		1

Location NEC/Nome , Date 8/6/16 Project / Client \$5 KD8782 /USACE + ECC

Return to Borny Air to practice Settle 1045 cp weathopert shelter. Finsh setting yo and pacting sheller. 300 Go to Builder Sypty & prehase tols and cable charps for setting ip shelt in the field. Reten to Bern Hor. Discuss a/ Chris (schedule) 1300 about attempting a thight tommercon many @ 0900. Responded to a email correspondence from 1330 Scott Mclintock (Surveyor) regarding remaining questions about suple locations. Also called Dan Malany (El Phi) and gave him a states update of The project. 1400 Bud I day 12

Location NEL / Nome Date 3/6/16 Project / Client 05058702 /USACE + ECC

Mostly sunny Scatter Clards, 1st and Figsy conditions in Swange. Fig expected to lift soun. 0830 Held trilgat safety meeting @ OK Maska Rooms. Expect to the to NEC this warning Personnel in attendance Sten Sugars (SS) Kistopher Reizt (Kak) Chris Casa (CC) Hollie McLean (HM) Safety topics: Hazads associated as/ setting up emergeray shelter, heavy appropriate PPE, Hageds associated with water at the site. Today's abjectives: Ist fight to NEC setup enginery carp and stage field equipment. 0840 Depart for Being Air 0850 Check in with schedule Chis regady This maning's Hight. was not fied that the was a litting tay are saccongs that is expected to clear later in the marnine.

Location NEC / Norma Date 8/7/16 Project / Client OSDK8702 / USACE + ECC

Ansie at the de office to check an 0900 get ite. Restand and sarted freeze to allow for better freerow at Gel ite parts Will want to please call from Boy An for also they autopate they will be able to thy. 0915 Set up stream the relocity weter on the slaw atside it tam to practice Collecting Stean the ingenerents. Chis Case had noticed the lack of cell please signal art that locutor. We land to tick atthe to wat for place call from Beny Air ta 100 possible Right to NEC. 1130 133m londing equipment outo ane rolt to attempted mobelization thesat to NEC. Chuis the Benny Ar worked their interpretation of the Aught schedule. Being the was und The impossion that Agets weld be daily" bet not necessarily three a day. Atrant will want an The yard while Field team Sets up every camp. Schedule Changes_ a possible changes to number of Flights a day the tield due then.

Location NEC /Nome Date 8/7/16 Project / Client 05DK8702 USACE + ECC

1200 was whited by Ben Ar that the awardt are laided and are now harm for a weather update for the other www scheduled Hight to the Island. Turgened abut studies for the Naveje and King the average to not assite. Reversed Stream velocity garging pricedues 1230 while agiting an stud by at Bern At. Emailed a project to Dar Malarey veganding flight states, articipated arcast and chang in plans of keeping place an gand an sit Emailed -Scott tim Eleland Survey and responded to his earlier greater regular sike #29 locatar names us. Candinates. Hollos Miclan had suggested he review the data an the second tob of the spead sheet. If this does not asper his greaters, he will need to arage a meeting to obsciss. 1430 Los white by Kyle from Berny Chr that today's flight has been cancelled. CASA Generat is loaded and will make another ablenpt formanow marine at 0900.

Location NEC/NOME Date 8/7/16 Project / Client 050 8752 / USACE + BCC 1430 Contacted Scott regarding Survey Bledle. Addessed his guestias about Sik # 29 by pointing at the search tab on the Excel File. Will a stupt the site Survey on Tuesday tollowing the mobili Bath AUM. 1300 Cartined to practice with The Stren Flar velocity metor. Updaked Du Dlaking an Schedle. 1645 Rehm to lodging to revie expanded equipment manal for than inster and catch up a log back hotes. Reviewed user's manual the stea the weter 1730 End I day ____ Ve

Location NEC /NOME Date 8/8/16 Project / Client OSOK 8702 /USACE + ECC Mostly Sung, light breeze, good is in Stronge 0000 Called David Olsen to discuss pessible Flight to NEC. Was with Red that we will plan for 0900 departure. 0810 Conducted tulgate setty weeky: at Alasta Rooms . Personnel in Attendance Sten Seegars (SS) Kns Reid + (KR) Chris Carson (CC) Hollee Mclean (HM) Discussed similar topics as \$17/10. with the addition of safe cildlife events and preparing attending econocia than plan. 0900 Anne at Berng Him 0930 Deput on Navajo w/ CASA for Inclaireation Fight. Nachjo pilot - Sta CASA pilut - Kyk 1020 Ame at NEC. wait for CASA to ame. 1040 CASAAnnes. Begin unloady aircreft 1325 Finish tent styp. Breek & huch

10 Location NEC / Nome Date 3/8/16 Project / Client OSDK 8702 / CSHCE + ECC Cal. Smith PID: 3/10: 910685 150 200 al = 0.0 ppm Span cal = 100.0 ppn 1510 SS + CC Finish Sk Setter KR + HM begin Grendwater electrus at the MOC. [Well depth measurements are recorded in fret not bale # 1). 1600. Reasses effert. Focus a Shirtly locating wells. 1645. All grand water Sciples locations identified. Return to Base Camp and propare for demote back to Dome. 1715 Depart NEC. 1801 Anice at Bern Av. Discos Duranis Schedele a/ Kyle. Will ty to sillar for drop-att many Plight and they veter Right. Othrise, may have to Veep place a Studby. Will notify Don Malovery if they will not parte the flats. End & day

Location DEC/Nome Date 3/8/16 11 Project / Client OSDK8702 /USACE TECC Overast, 1000 ft + ceily, 50F, expected shows 0805 Condect many talgak ster noting at OH Alistic Rouns. Personnel present: Stan Seagers (55) Kirs Razt (K.2) Hollee McLea (HM) Chis (asan (a) New topics ! Seams equipment an s.k. Will get lock for failer head to consider how to seare equipment able the to team is in Nane. 6812 Make Marun Call to Ben An. to check states of 0900 depathe. Was notoried that they are anobe to get weather internation thousand Saracuga and may not get a Hight aut at 0900 Called Scott McClintock and bett 0815 voice mail to relay states yout. 0840 Called Don Malary to discuss Flight delays. Was told to See how las The survey will the and take a fight to see it we

12 Location NEC/None Date 3/9/16 Project / Client 05DK8702 /USACE + ECC Clerest, SD'F, Fogsy in Swanger. get in to the site assume we can possibly be on the grand king enough to Finish. 0850 Called Sout Mc Cintoc. Was workfield his survey at NEC will take at lost 8 has te complete. 1000 Clad Ceiting in Savanga seems to be holding at Sto". Will male attapt to Fly in to NEC. Contacted South McClinhack and notified him tar intertra to descuber Netified Don Malary of the warthe Leley. 1100 Weather march in are Saconga. Delyed Plught. Fickt team decided to take the follow day off walk as Surveye is fireasty to be taggy for several days, Called Da Malany and Ascussed the 1200 possibility of internantly staying at a te Bland as a glowative goverach to com the camp to engencies only. Les told That he will tosuss this gotton on Jacks Gd USACE. ----1230 Bud of Day w

Location NEC/NOME Date 8/10/16 Project / Client 05DK 8702 / USACE + ECC Overcest, SOF, 3 whet USB lity & Swanga 0815 Called David @ Ben Por Las. ispired that The weather has Cleared are Savance and we can attapt a flight to NBC. sechdled Flight departure @ 1000. No bred Don Malary of change & tield Schedule. Conducted maring Sofety useting 0900 @ Old Alaska Rooms. Posamer in attendance : Stan Seegers (35) Chris Reist (KR) Chris Casa (Cc) Hollie McClean (HM) Sofety topes: An Nevel, heather delays wildlike / people encountry and doing an invertery at equipment an Site before direct departs. Will make see Berry Arr has av Contact into in the field. 1000 Arrive @ Ben Am to hat to depake 1100 Annie @ NEC. Bagin site investory Everythe agrees to here. Begin Collecting GW electrus see frete notebosic # 1) for data.

14 Location NBC/NomE Date & W/iG 1: Project / Client OSPK8702 /USACE + ECC Owcost, hav chad ceiting (300') SOTE 1354 Bosin Calibation of YSIs YSI = 1 (SU: OFEID 1038) YSI+2 (SN:096101665) Condiction by Subon: 1413 us/cm EXP: 11/2013 Pet # 00653-18 - gened 8/10/16 451 Pre-cal Post-cal YSI # 2 1.432 1.413 YSI # 2 1.375 1.413 Dissolved Organ \$15741 106.1 100.1 YSI#2 104.3 99.7 PH 7. W Pat & 00654-04 ARP= 11/2017 YSI #1 7.28 7.01 YSI#2 6,38 7-01 PH 4.00 Part # 00654-00 Exp = 7/2017 45261 4.20 4.04 YSIAZ 3.97 4.04 PH 10: ~ Pat # 00654-08 # = 08/2017 751 +1 9,85 9.89 YSI#2 9.46 9.90 ORF Patt 8032 Exp. 09/2019 751+1 256.3 240.0 YSI#2 264.9 240.0

Location NEC/Note Date \$10/16 Project / Client 050k8702 USACE + CCC avasty has dad carly (300') Sort, Lindy 1430 Bain and of genderate siply. 1500 Set op an unitere well 14 Mul of 2. Refer to field notebook # 1 for details of sampling at this location. Kele to Gendact allecton Firm for supe details. # 1625 Collected Gup sample ID 16NEC-14MWC02-WG-1712 Setup at mariton well 14MW03. Saptos: KR + 55 Having issues with subvesible pup. cuable to hold a land on the cantoller. 1730 Stop Sayply effect at this Weather. Return Ried equipment to Base Camp and assist samples HM ECC at well tacation 14MW02. * 1817 Collected Ger sample ID 16NEC-14MOZ-WG(-9) Keter to Ge samply form for detail to sayplay 1915 Return to shelter. Begin equipment dean and preparing the Fight to nome.

Location NBC/Nome Date 5/10/16 Project / Client 050k8702/csAce + BCC Ande @ Dane. 0900 2034 Anne C affre. Prepare scaple labels 2050 and get Ice. - Liks hothered by pilot (Sta) that NOC is not an the charter ittnessy for taun He said he want make his set aaldde If weather is Friendle for Agent townow. - Notified Scott Millintale that we will afferent to they to NOC in the many -- Pupare duity report to DEC PW. Bud of day 2400

Location NISC/None Date 8/11/16 17 Project / Client 050×8702 / USACE + BCC

Call Bern Aw to check a weather conditions. Whis withred I low clad ceiting above Bauranga. Norified Dan Malary and 0815 Satt McIntock about weather delay KIR, SS, CL go to Field SFR 0930 to help prepars samples for shipment. Go to Alaska Air Cago to ship 0945 Single Cookers, Called Ben Air, was whiled at 1015 low clad ceiling. Will call @ 1300. Called Bene this likes astried I Ba Cover. Field tegin Continued clard will and attapts to the to KE.

18 Location - NEC/WOME Date 08/12/16 Project / Client 05068702 / USACE + ECC averast, 50%, Clad ceby in Scrange And Yes' alle made morning call to Bong An. Les antitud of transfer Curditions. Will pla a a drop of Aght@0870. Berry An will provide gir King Air git the expuse of a Naugo Awart. Called Scott Mclutet He will not be acadable todage due to meeting a another chest. 0930 Anne @ Bern Am Repare to depart to NEC. 1020 Fly are NEC. Clad certing had dryped to Zoo' w/ Zeo usbitty, Kenned averaget to Wave. 1110 Called Da Malerey and nothing him it the eventher delay. Today will be the 4th Option task 1 " Weather delay and first upther Task 3 tynnamd Agent die to weather. ve

Location DEC/NOME Date 08/13/16 Project / Client 05PK870C /USACE + ECC averast 45-50% @ ale 1. Any Clard's Sor celling ola Called Ben Av. Whis winned of Istrung Clad cely. Will call back @ 0900. nehred Scot Melmback. 0830 Conducted Tailgate Schetymetry Q Old Alaska Rooms Personvel a Ste! Str Sugars (35), Chis les (tc) Hollee Miclen (HIM), and Kis Reat Safety Topes: Touvel in None Chil Tavel to NEC Tavel clife ansite Bugging weather are Chief. Olar Chilled Ben Av. his uskined that we all attempt a Alght @ load. 1015 Departed Ben Ar (None) for NEC 1100 Anne at Ben Ar DEC. All equipuent allarted for. Usistilly was grox. 15 wi and clad ceiting arend 500' due the approach. Unputed tied can apipunt. calibated insteamts ad pepaed to Gu supling.

20 Location	NEC/ANNE	Date8/(3	116
		- /USALE + ECC	
		50 F /5m ws	
	ibated 751 m	ters.	
Condechuty	Solution		
Instant	Pre-Gal	post-Cal	
Y51#1	1.378	1.413	
Y5\$#2	1.036	1.415	
Dissource	1 Oxygen		
	104.9	99.3	
YSIAZ	97.5	99.5	1= [
PH 4.W			
75141	3.75	4.01	
45142	4.05	4.01	1
PH 10.00			G
Y31#1	9.93	10.01	
YSI HE	9.34	10.01	1
PH F.a			den la
Y51+1	7.10	7.01	
YSINZ	6.98	7.01	
OLP Sel			
Y 51 H1	238.7	240.1	
4510 E	237.6	240,0	
	071.0		
Sec. 00	14 For Calibrati	ian Lot #'s and	
p p	spiration dates.	wi wi my and	
	The Galls,		-
* *			

Location NEC/Wave Date 8/13/16 21 Project / Client OSDK 8702 /USACE + BCC Bolun cluds, Soo't ceiling. So't nownd. 1220 Samples KR + SS Setup @ manitaria well 14 MW 05 1732 Began prom well. * 1310 Collect Gw sample 16NEC-14M6x66-6. and deplocate sample 16KEC-14MWW06-W6-9 Break For kuch, finished says this location @ 1417. 1600 Scuptors KR + SS set up a well 14/10/03 ¥1644 Collect GW sample 16NEC-14MOB-WG. Finished Sauplus this becater @ 1727. Samples KE + SS Setup @ well 1800 locatra 1614EC - MW 38-10-WG-\$1829 Collect Gw Sample KNEC-MW 28-10-WG, Furshed Sample @ Hrs locate at 1859. Begu Spe breek down. Depart NEC For None. 2040

Location NEC/Nove Date 3/14/16 Project / Client 05048702 /USACE +BCC Mostly Suny @ Nove. 200' clad ceth @ Sarange. 0330 Conduct maning Sofety @ Old Alaska Revens Posanel: Kris Reat, Sten Seegars, Hollee Melen, - Churs Casa. Safety Topics: Travel to and from Site. Travel acud Ware, Litelike ereants tatique management. 0920 Called Berg Av. Was withed that he are presulty on a weather delay. will call att was an Northet Dan Malary of delay. Holloe Melen and Sta Seegers specked the the Stice to pepce Suple labels. has called by Being Hir Notified 1009 That the field team can head down For departure. Hollee Michea will Stay In Nome to porcess samples. 1114 Depart None for NEC in Navago Gir plane, Annie @ NEC, Limited isibility a d 1200 Clard Ceiling @ 400'- Sco'. Pillot had Suggested That he kenger a the good for a white,

23 Location NEC/None Date 8/14/16 Project / Client OSDK 8702 / USACE + ECC hav clud certing 400' SO'F, Light here 120 Calibated PID SN:597-910685 Fresh giv calibation: 0.0ppm Fishbuttyene calges: 100 ppm 1229 Calibrated YSI SU: URGIO/665 (YSIAZ) (see pg 14 for cal soluna lot as perp date) Conductionty Pre-Cal Post-Cal andictuly 1.403 1.413 uslan2 рн 7.00 7.00 7.01 рн 4.00 3.99 4.00 рн 10.00 9.98 10.06 ORP 238.1 240.0 РО 96.0% 99.6% 1245 Brank Fr Lunch. 1310 setup at well 17MW-2 DTw = 12.10 TD = 15.65 PIP: 0.0 for all spaces 1328 Start Rigin Control tubol, 17 = 149 1070 of 1422 allected Ges sample 16NEC-17MW-66 1505 Setup at well ZZMWZ 1540 Usitars avoire on 4-wheeler. Since ustars as yesterday. Eigen and his Fronky at allecting hate at The ky of the culler.

24 Location NEC Nome Date 8/14/16 Project / Client 050K8702 /USACE + ECC Wardy, 454=, areast, Sa'a. They * 1542 Collect GW sample 16NBC-22MWZ-WG-1640 Setys at will 26MW 1. Begin Pyrs Q 1652. * 1737 Collected Giv Sample /GNEC-76MW1-W6 (see Gin Snight disk sheet for details) 1815 Setup at well TOMW -1. Begin Pugung @ 1823. # 1858 Collect ON Sapk 16NEC. 20 MW-1-4t (see the Samples Sheet for details) Breakden site, Return to Carp. 1958 Boad Navejo ad disembate for None. 2045 Anie in Work. Dryp sample adves aff at affice and put firsh ice an samples. -End & day

Location NBC / NOME Date 3/4/16 25 Project / Client 050687-02 Wasty, youst accept 0900 - Made having check-in call to Berly to canfirm flight to NBC. Was howed that the weather & Savoange looks favache So Rey all abbent & Fight. Reguladed a departie the of lose. · Package and ship sauple costors to ALS. 1000 knie at Ban the Was astored by Don Matany that USACIS had directed BCC to vessige mantan well 14MW03 de to lack of stabilizer for at three parameters. 1034 Depart Neve the have auplace. 1000' clad certing an approach to NEC 1140 Anie @ WEC. Bogn propana for Gu Sample and Sutace Grater Skean gassing. 1158 Calbak PID (see field book #1) 1159 Calibak VSI (see follow ps).

26 Location NEC/NomE Date 8/15/16 Project / Client _______ SDI< 8707_____ Windy, 40-457, about YSISN: 096101665 pre-cal post-cal Dissolved Oxygen 105.5 % 99.6% Specific Conductance 1.398 m3/an 1413 an 5/cm2 7.60 7.06 4.00 4.00 pH 7.0 (7.06) P4 4.00 (4. w) p4 10.00 (10.06) 10.06 10.06 ORP (240.0) 242.9 240.0 Son 1300 Samplers Kit + CL setyp an Monitarius well 14MOS. Bogin pogues @ 1215. * 1354 allect Ga suple 10AEC - 14MW 03-46 1454 Samples the tak setup at well 14Ma 05. # 1553 allect Gen Sample 16 N.B-14MW165-WG-1640 Brack 1740 Saupes R+ CC setup at Well MMWOY Begin puging @ 1801. * 1840 Collect Ger Sample ISNEC-14Mhours 1920 Return to camp and begin prepares for departure. 2010 Depart NEC for Nome. Total at 3 60 suples allecte

Location NEC / NOME Date 5/15/14 27 Windy, 40-45 F, areast 0955 Anne at Beng Aur is home # lok on manhan well 14MW wit: Puze water clas very Keb. & thraghet progra process. Juikel trobing read was approximately 860 while the subsequent readings Shared a. evor code on the instruct Which indicated the water way too tubile for the instruct to read. A Calibration section was used with hos read accurately. # TAI gave Selety briefing was and all b @ 1015 at Beng Arr. personnel an Site: Stan Seegers, Kas Reat, Kollee Melea, Chis Casa Safety topics " Track a site, Fight to- From Wave / NOC, along and Neve, apposue to weather, Fastigue management & Discarded two bags of IDW and thash from cap at Ben Mr.

28 Location NEC/ NOME Date 8/15/16 Project / Client ______ OS DK6702_ areast, Sa'- 300' ceily, 45°F, light brook Orov Called Da Makey shart having Sample locators begavered @ the Sela River site. Called Scott Michatelle about vesuigen The site. Scott Said he will let is than his availed ity in two days the. 0915 Conducted marine tubeck Setty metry 0 Old Alaska Roans. Posamel or site: She Spegars, Kis Robit Hallee Molean, Chis Case Safety discosses: Taxel and have, Tievel to USC, have in your water exposure to elevents. Mave @ Ben Av. Disanbalt fe 1000 WEC time @ NEC. Bio-900 clad com, 1055 good usibility, moderte hand, Apor 15% Anemanete does not apper to be herting ges alloughety.

Location Date 8/15/16 29 Project / Client 050k8toz areast QABC, 45-F, light - no breeze Calibate Justicents for Ger suply Y31 #2 50: 096101665 (see ps 14 tar Gil. shows Lot #'s ad expension dates) pre-cal post-cal yen 101.2% 100.4% 100.4% Dissuked Oregen Condetruzi 1.431 45/602 1432 45/602 pH 7. w (7.01) 7.06 7.01 pH 4.00 (4.01) 3.96 4.01 PH 4.00 (4.01) 3.96 4.01 PH 1000 (10.01) 10.00 10.01 239.7 240.0 ORP 1220 Samples KGR + CC setip Q well MW88-3, Byan prym @ 1233 # 1330 allet Gu Sample 16 abc - Mines -3 - ho 1405 Finish @ well Milio 8-3. Reken to Cayo to reduce tool lat to close will manuert 1500 Collect Tanal total depth from well ZZMWZ, Return to camp to Propar low Field equipment to make back to prome Sampler C. C. goes to asist the 1600 nest of the field team of stee make Plan megsucherts.

Location NFC/NONS Date 8/12/16 Project Client OSDIC 8 For Overast. 500' clad ceits 457 Cher Stics in June, 50 F July broth 1730 Sample K.R. goes to join the the field bear w/ Steam water measurements. (Kote to field note bash \$1) te details petainan to Site 29) 19a Complete Scaplan and Sdean the measurements along the Sigi over, * Camp was usike I by Figure Tilly and his family again. They had let a package to are of the pilots at the A shelk the the field team to bring back to done. 1955 Anne in Wave Discard I bay at Camp related bash at Ben Nov. · herby Dan Malary I progress, Contact Scott Michateck that we all reque additional Survey @ NBC. He will citterpt to come as thet tan tomaran 2020 - Go to strice to prepare samples ter Shipment to lab. 2230 End of day. inc

Location NEC/Anno Date 8/17/16 Project / Client OSDK8702 clea Stres in Rove, Set F light - to breeze 0830 Retin Reitel track (DCC) to the Dredge R2 7 Becase a balding the was beginnes to show the threads. Replaced vehicle a/ & jesp. Orov Gu to affice to pepae saples for Shipnest. 1000 Drop sample Cuertes ST @ Alastic Arches 1015 Conduct Tailgate Safety Meeting P Deving Har. l'assonnel au site: Stan Sugars, Chris Casa Hollee Mclean, Krstepher Reit Safety Topos dowsed: Taksie massement, Slops/trips/falls, there to from site. 1035 Deput Nove for NJSC in House suphie 115 April War, Stars late clear al Unlimited us billy, Condicted 360" the are Not for aerel photos. 128 Anne C MAR. Rupper For saply O Site E. 1224 Field kon annes @ Site 8. 1530 Far usiters came by the carp on two 4- Wheelers One of the usiters is the dereption of Bigure Tilly who has a calm Is when to the west. The voiters had asked the pilot of they and boy a builday

Location NEC/NOME Date 8/17/16 Project / Client 050K8702 /USACE + ECC 32Clear slaves, GUANF, light breeze Cale ta his Sais buthday, Far more UBAars shaved up (8 fotel), It was Eigene Tuly and his wate and grad children 1857 Bud suppy @ Ste 8. Collected a total of 29 sedwarts sayples and additional QK/QC saples (deplocate + Kis/Kisos) - Begin sit cleage and prepare the departe back & Usue. 1932 Take of the home. Are back at Ben An. 2015 Disorded Z brags of Kash (1 camp tash, 1 IDcv). Go to affice to put fresh ice 2045 on samples, Collected à total of 17 primery soit suples w/ 2 deplates and 2 instaso Saplis 3 12 Septiment w/ 2 deplocate and 1 MS/MSD Saples. the of day -2110

33 Location Noc None Date E/18/16 Project / Client OSOK 8702 /USACE + ECC aveast, 1ght prese, 45%, clad aly 600-700' 0000 Mann tiget Stat week O oth Masta Keoms. Personnel on sit: Skan Seegars, bus Reit Hollee Melein, Chris Carson Solly typics: Travel to and for Mane, fatigue management, slips/hips/fells 0830 Field kan hende to office to prepare samples to ship to the lap. Called Berna this to cartinen manan 0900 Aught to NBC. Followed up with Continuation to Scott Michatrick to antin schedle to to day. Anne @ Bern Arr. D956 Congunicated and Vein Make and De Maliney about adjust several sample locations at sik 8. He le converce call u/ Vain and Dan 1040 regache plan for adjusting suple lacations at site 8 and sweyner adjusted scyle locations at site 9. (Refe to fin (Refer to fie to uste book # 1 for details garding which samples will be adjusted).

34 Location MTC/Wave Date 8/10/16 Project/Client 05DK8702 /USAC+ BCC Oberangt in Done 50+ 0F Band Navajo airplane for DEC. 1100 Strang petroleum odar was appraved in the cabin, Aslad plat if the sull was varial for this putaler averthe. -Pilot cubické a well and the place to after the core us fiel leaks or For any obvices judgatus of suce of Swell, No saves I the oder were find. Field team commente again a how share The odar was, signing it was gaing people a boadache. Agai, ten asked pilot If we and ask the mantuage people If they and cartin the same I day. Pilot shot down arether and said we woold use a differt place. Churs, who waks in schedeling both had said the oder was not the petrobern bet from "remaining the cogites up" adjais five new plastic, pehaps from a new toke in the place. 1140 Bood her avoist. Pilot while the team That save I ador in previous sincraft was die to door sealant instral on the door.

Location WBC/WOMIS Date 8/15/16 35 Project / Client 05060702 Whity, Owerst, 60-En'cely 459 1250 Anne Q NEC. Upon in log ly the sweetert, The survey or realised his toke at equipment was not linded on to the new sucret F. Surger and with langula to surg be adjusted blatting to day, Will be available tourner. 1325 Calibrate PID SN: 592-910685 Ber cal ges: Q.O ppu Spa Cal gas: 100.7 ppm Field ten heads to site 8 icen to Contine sediment / soil samply 1808 Prepare to disembak fe Nome Field team heads to cap to chea up walk area and boad acrest. 1830 Take of for None 1915 Hune back at Ben Hu Field tem heads to affice to put steph ite of on samples 2030 End & day -

36 Location NEC/RDUE Date 8/19/16 Project / Client 050K8707 / USACE + LECC Foggy + four clard Cety in fine, high ands and Bu 0749 Called Berry Av to cleak states of charter Aght. Was worthed that we are an a weather Stadley and was instructed to call back @ Hoo, 0930. 0930 Called Berry An, Still on Studly. Will call again @ 1100 - Comenty hope while and van in Savonga. Teopunant in the SO"S. Called Berry Av, Spoke a/ Danie den 1100 regarding today's Physit. Loss fold a stern is blown thrigh and the west will be formerer will stud down today and call in the morning. - provided Scott Michatack of delay and told him that we will pla in form marine . - Notfied Don Malory & beather delay. - Field fear heads to office to pack Field gupment and proce Saples to Suprest. 1200 Go to Alask Allers to ship gyment

Location NFC/WOME Date 8/20/16 Project / Client CSDK8702 USACE +ECC Love - Fossy, rain, breety 0757 Called Berry du to check a states of chate Plylet to are. Les Told they are not figure any scheded Plights today. Foggy in Sacanga Will Cell back @ low 0845 Call Scott Mc Clutock. Noted him at the weather delay. Was dold that he will not be available to and the west the sure Suggest that we save the in The ranging porties 0500 Called Ban Malary, Mohsted hu of weather delay and states of the Survey. Requested a Zev Survey tope to a Sung tes. Called Bern Air to check a Right Shirs. Still pap weaker canditions in Sarconga. The WORA loit weather observation at the Savaya aupert reparts Overenst sky if Zer' clad Certury. Will call back at 1200.

Location NEC/NOME Date 8/21/16 Project/Client 050K8707 / USACE + ECC Kome- averast / Jugs - 1507, rainy Savounga - aneast, 454, andy; and cety sour Called Being Ar for Alght sends to NEC. 0830 has told by the schedule That Flogsts this marking. Will be contacted by Kyle (meterd manger a David Olsu) regarding Agent foday. Called Beng Mr. 3Hill a stort denn 1030 de to tenses Phylot turs IK

Location NEC/NOME Date 8/22/16 39 Project/Client 050K8702 /USACE +ECC None - Mostly andy, andy, 757 0800 - Called Berry Not to check a Hight. Was untiled that and that ce faceble and will depart @ 0930. 0900 - 60 & affire to pick pice and Saple cookers. 0940 - Disemback Berny Ari for NEC 1070 - Mare @ Upt. Skang - Cras (40 mgh) 40 %. The carp Steller had been Blam are doing the 3 dy waster delay. The Tilly's loss come by to Scare it down the tit is dostaped. The field equipment use 13 9 mess hit appears severable. - Contacted Da Malarey and golka him a the site to. Uses ushet ! to look at the adjusted side backing to see it they can be survey bed 1200 - The lower Sign fiver is several feet higher the when parasty sayle c.

40 Location <u>NEC/ware</u> Date <u>8/22/16</u> Project/Client <u>OSDKEFOT</u> <u>USACE 2570</u> Sample locations for Side 29 Heart reque Surey 5-290 529-005 - Schered 329-006 -Adjusta in the field, Presently Schwerged unde unter, Appens alin 700' to look soi -005 to ad S29-008 which is comes the ner. - SZ9-007 - Adjested in The held, Citin the men New Water w/in 300 of 529-005 ad 529-008. Lovalin is grant clust dep in the crate. - 529-001 - All sayes at Plu we alles et at the surveyed point after the maning were adjusted from a better were in The Shan This loop count be soning tred Theis any The angend boarder of m alse properity. Maybe does not agree 1700 Begin sediner + / Soil Suply @ Site 8

Location NEC/NOME Date 8/23/16 Project / Client OSDKGTOR / USACE + ECC avecest/andy/ 459= ship field computer proded by 1030 Tracks' Finimen back to Anchorage. 115 Deput Ben The An NEC. 1210 Far duet acriel Europ of the estray of the say. Live. Lada WEC. Endet said sug of the coking, 1730 Sand the appeals leveled the the acce Retu. Griss of the Jand be Kucked are then haves, Typ of Sad by latter alast of above avent were acto level The non locks seen Text light the Reach Avea of Sugi Rive new the bridge where samples were allected appears lister the yesterday. 1245 Field tea herds to Sole 8 to Collect sun the weasurents for Select Shuple locations (Ret to field book # 1 for dark)

APPENDIX E Photograph Log


PHOTOGRAPH LOG TABLE OF CONTENTS

Photo Number

Page

Photo No. 1	08 August 2016; 1044 hours. Field gear loaded into the CASA. View facing northwest.	E-1
Photo No. 2	08 August 2016; 1058 hours. Field gear unloaded from the Bering Air CASA. View facing north.	E-1
Photo No. 3	August 2016; 1113 hours. Erecting emergency shelter. View facing south.	E-2
Photo No. 4	08 August 2016; 1534 hours. Emergency and field gear stored inside weatherport shelter. Inside.	E-2
Photo No. 5	08 August 2016; 1704 hours. Emergency weatherport shelter, weather station, and ATV. View facing northeast	E-3
Photo No. 6	10 August 2016; 1216 hours. Collecting in well air measurement using a PID at well 14MW04. View facing south.	E-3
Photo No. 7	10 August 2016; 1217 hours. Typical collection of groundwater depth at a monitoring well; well 14MW04. View facing down	E-4
Photo No. 8	13 August 2016; 1252 hours. Stability parameter collection at well 14MW06. View facing southeast	E-4
Photo No. 9	10 August; 1535 hours. Purging groundwater at monitoring well 14MW01. View facing southeast	E-5
Photo No. 10	13 August 2016; 1631 hours. Sample collection at well MW88-1. View facing north	E-5
Photo No. 11	13 August 2016; 1918 hours. Using GAC filter on-site. View facing east	E-6
Photo No. 12	14 August 2016; 1245 hours. Washout near Suqi River culvert. View facing southeast.	E-6
Photo No. 13	14 August 2016; 1253 hours. Flagging placed as safety barrier around washout near Suqi River culvert. View facing southeast	E-7
Photo No. 14	22 August 2016, 1038 hours. Location of emergency shelter after storm event. View facing east	E-7
Photo No. 15	22 August 2016, 1040 hours. State of equipment inside emergency shelter upon arrival to NEC after storm event. Inside	E-8
Photo No. 16	22 August 2016, 1105 hours. Water in drip pan after storm event. View facing down.	E-8

(intentionally blank)

Photo No. 1 – 08 August 2016; 1044 hours. Field gear loaded into the CASA. View facing northwest.

Photo No. 2 – 08 August 2016; 1058 hours. Field gear unloaded from the Bering Air CASA. View facing north.

Photo No. 3 – August 2016; 1113 hours. Erecting emergency shelter. View facing south.

Photo No. 4 – 08 August 2016; 1534 hours. Emergency and field gear stored inside weatherport shelter. Inside.

Photo No. 5 – 08 August 2016; 1704 hours. Emergency weatherport shelter, weather station, and ATV. View facing northeast.

Photo No. 6 – 10 August 2016; 1216 hours. Collecting in well air measurement using a PID at well 14MW04. View facing south.

Photo No. 7 – 10 August 2016; 1217 hours.

Typical collection of groundwater depth at a monitoring well; well 14MW04. View facing down.

Photo No. 8 – 13 August 2016; 1252 hours. Stability parameter collection at well 14MW06. View facing southeast.

Photo No. 9 – 10 August; 1535 hours. Purging groundwater at monitoring well 14MW01. View facing southeast.

Photo No. 10 – 13 August 2016; 1631 hours. Sample collection at well MW88-1. View facing north.

Photo No. 11 – 13 August 2016; 1918 hours. Using GAC filter on-site. View facing east.

Photo No. 12 – 14 August 2016; 1245 hours. Washout near Suqi River culvert. View facing southeast.

Photo No. 13 – 14 August 2016; 1253 hours. Flagging placed as safety barrier around washout near Suqi River culvert. View facing southeast.

Photo No. 14 – 22 August 2016, 1038 hours. Location of emergency shelter after storm event. View facing east.

Photo No. 15 – 22 August 2016, 1040 hours. State of equipment inside emergency shelter upon arrival to NEC after storm event. Inside.

Photo No. 16 – 22 August 2016, 1105 hours. Water in drip pan after storm event. View facing down.

APPENDIX F Responses to Comments

Alaska Department of Environmental Conservation (ADEC)

Contaminated Sites Program

Document Reviewed: Draft 2016 Northeast Cape FUDS Main Operations Complex (MOC) Groundwater MNA Monitoring Report Commenters: Curtis Dunkin-ADEC Project Manager

Date Submitted: June 12, 2017; ADEC Received RTCs on August 7, and Submitted Review Determinations on August 16, 2017 (post comment resolution meeting conducted on August 10, 2017)

#	Page #	Section	ADEC Comment	Response
1.	ES-1	Executive Summary	Please revise/amend the first bullet at the bottom of this page to better clarify whether the observed water table variability and/or what appears to be the predominant groundwater (GW) flow direction is based on both the historical as well as the 2016 results, or just 2016 results. It would be helpful to clarify throughout the document whether such statements are specific to annual and/or seasonal variability based upon the data sets and time frames of collection being considered.	Accepted. The ES and Section 6.2 will be revised to provide clarification. The first bullet of the ES will be revised to state: "The elevation of the water table at the MOC is variable and the groundwater flow direction is predominantly northwest. The elevation of the water table at the MOC varies both across the site and annually while the groundwater flow direction at the MOC was predominantly northwest in 2016". Section 6.2, last sentence of the second paragraph, will be revised to state: "Based on data collected during the 2016 sampling event, groundwater flow at the MOC was predominantly northwest (Figure A-3.1)".
			Please revise/amend the second bullet at the bottom of this page to clarify that although natural attenuation appears to be occurring, only two wells were suitable/appropriate at this time to calculate and evaluate natural attenuation based on availability of adequate data; and not due to a determination of relevance/applicability with respect to the other well locations.	ADEC-Accepted August 15, 2017 Accepted. The text will indicate the number of wells used to make this assertion. The second bullet of the ES will be revised to state: " <i>Current groundwater conditions in</i> <i>wells 14MW04 and 14MW05 indicate</i> <i>natural attenuation is occurring at the</i> <i>MOC</i> ". ADEC-Accepted August 15, 2017
			Findings of the 2016 RAOs should also include bullets for all major points;	Accepted. Exceedances of the 2016 ADEC

Page 1 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			including but not limited to i.e. COCs for which analytical results indicate concentrations exceed applicable cleanup levels that were not designated a site-specific cleanup level (SSCL) in the 2009 Decision Document (DD).	levels will be stated in the ES. The third bullet of the ES will be revised to state: "exceeded groundwater SSCLs and DRO, naphthalene, chromium, and lead exceeded 2016 ADEC evaluation criteria". ADEC-Accepted August 15, 2017
2.		2.0	Please apply all applicable comments which ADEC submitted on section 2.0 for the draft 2016 Suqi River and Site 8 Monitoring Report (which ADEC submitted previously to the Corps) to this section. Please also apply any other general applicable ADEC comments on the 2016 Suqi/Site 8 report to the subject MOC report based on the two efforts having been implemented concurrently by the same field crews during the same mobilizations.	Accepted. The historical analytical suites will be included in the text. Please see revised text for Section 2.2.1, paragraph eight, at the end of this document. ADEC-Accepted August 15, 2017 Accepted. The two concurrent field efforts will be presented in the same way as the 2016 Suqi River and Site 8 Monitoring Report. Section 5.2, first paragraph, will be revised to state: " <i>NEC sampling occurred</i> <i>from 10 through 22 August 2016</i> . <i>Groundwater sampling activities at the</i> <i>MOC occurred from 10 through 16 August</i> 2016. Soil, sediment, and surface water sampling activities occurred from 13 through 22 August 2016 and are presented under separate cover (USACE 2017). Copies of the field logbooks are provided in <i>Appendix D</i> ". ADEC-Accepted August 15, 2017
3.	2-5	2.2	In the first sentence of the last paragraph on this page it would be helpful to	Accepted. The range of dates will be added.
			state the range of dates associated with the demolition actions.	Section 2.2, first sentence of last paragraph, will be revised to state: " <i>Demolition and</i>
L			1	Page 2 of 34

Page 2 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
				removal of the buildings and the majority of other structures from 1990 through 2014 were completed under multiple USACE contracts (USACE 2016a)". ADEC-Accepted August 15, 2017
4.	2-6	2.2.1	Please elaborate and provide more context for the referenced 'undocumented incidents of much larger spills' which is stated in the third paragraph of this section.	Accepted. The First Five-Year Review will be included in the text. Section 2.2.1, third sentence of third paragraph, will be revised to state: "As noted in the First Five-Year Review, interviews with former installation personnel suggest there were several undocumented incidents of much larger spills from the large aboveground storage tanks (USACE 2015a)". ADEC-Accepted August 15, 2017
			Please revise/amend the last sentence of the third paragraph of this section to clarify that the referenced boundary only pertains to the extent of removal that was approved by ADEC due to the likelihood that advancing the excavations further northward, past this boundary, would have resulted in greater damage to the downgradient drainage system as well as a downgradient release of contaminated groundwater to the surface water pathway. Please also clarify further that contamination is known to remain at areas associated with the northern most MOC areas of concern and that residual contamination exceeding the SSCLs remains in soils located downgradient of the MOC throughout the Site 28 drainage. Please apply this rationale throughout the document where applicable.	Accepted. Text will be added to clarify why upgradient excavation was not performed. Section 2.2.1, fourth through sixth sentences of third paragraph, will be revised to state: "Based on the results of the excavation and removal activities, the northernmost edge of the areas excavated at the MOC contains petroleum in subsurface soils at concentrations that are below the risk-based site-specific cleanup levels (SSCL) identified in the 2009 DD. Additional excavation further northward was not performed due to the likelihood that excavation would have

#	Page #	Section	ADEC Comment	Response
				resulted in greater damage to the downgradient wetland area known as Site 28 Drainage Basin. Residual contamination exceeding the soil SSCLs remains within the Site 28 Drainage Basin downgradient of the MOC". ADEC-Accepted August 15, 2017
5.	2-7	2.2.1	Please add a short clarification to the second sentence of the first paragraph on this page to better clarify why the ISCO was not effective at the MOC. Noting that ADEC's understanding is that the ineffectiveness was not solely due to the organic material content of the soil, rather also due to the variability in substrate materials, conductivity, preferential flow, etc. This is all helpful information to better define the CSM in relation to the site conditions and how they impact the residual contamination, MNA, etc.	Accepted. Text will be added to discuss additional reasons ISCO was not effective. Section 2.2.1, fourth sentence of the fifth paragraph will be revised to state: " <i>Results</i> <i>indicated that ISCO was not an effective</i> <i>means of remediating the petroleum-</i> <i>contaminated soil present at the MOC due</i> <i>to the peat and organic silts in the soil, the</i> <i>presence of permafrost and/or frozen zones,</i> <i>and the observation of preferential flow</i> <i>zones (USACE 2015a)</i> ".
			Recommend revising the reference to 'existing monitoring wells' in the second paragraph on this page, and elsewhere throughout the report where applicable to clarify that this is intended to mean the installed wells to date which are considered serviceable and part of the MOC groundwater well monitoring network. Please revise/amend the last sentence of the second paragraph on this page, and apply to similar statements where applicable throughout the report, that not all of these wells were sampled during the stated time frame, and clarify that the referenced wells were installed and sampled in different years.	ADEC-Accepted August 15, 2017 Accepted. References to 'existing monitoring wells' will be replaced with "currently installed and serviceable monitoring wells". Text will be revised in Sections 2.2.1 and 6.3. Section 2.2.1, sixth paragraph, will be revised as follows: "Several monitoring wells have been installed and removed over time at the MOC. Monitoring well installation at the MOC began during RIs and continued through 2014 (USACE 2015b). Previous

Page 4 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			Please amend the discussion in the third paragraph on this page to clarify whether the soil and groundwater associated with the installation locations of the subject upgradient wells were confirmed to be below applicable cleanup levels at the time of installation. ADEC-Tentatively Accepted August 15, 2017; noting that it would also be helpful to include a brief summary of the ranges of analytical detections in soil samples for all six monitoring wells that were installed in 2014 in order to emphasize whether these were close to the applicable cleanup levels, well below, or whether there was a wider range. Please also clarify in the amended/added statement above, and elsewhere throughout the document where applicable, that not all of the cleanup levels that were selected and approved in the 2009 DD were/are considered SSCLs; rather some of these, like PCBs are the default most stringent concentration of 1 mg/kg in soil.	groundwater sampling events, from 2002 through 2015, collected groundwater from various combinations of monitoring wells (USACE 2016a). Currently installed and serviceable monitoring wells at the MOC, installed between 2002 and 2014, are 17MW-1, 20MW-1, 22MW2, 26MW1, MW10-1, MW88-1, MW88-3, MW88-10, 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, 14MW06, and 14MW07 (Figure A-3.1)". ADEC-Accepted August 15, 2017 Accepted. A statement regarding soil contamination at monitoring well locations will be made. The following two sentences will be added to the end of the seventh paragraph in Section 2.2.1: "Soil samples collected during the installation of currently installed and serviceable monitoring wells were analyzed for a variable analytical suite including GRO, DRO, RRO, BTEX, PAHs, PCBs, metals, and TOC. None of the soil samples exceeded SSCLs (USACE 2002, 2004, 2015b)". ADEC-Tentatively Accepted August 15, 2017; please see and apply additional comment on the left.
6.	2-8	2.2.1	Please revise/amend the last sentence of the first paragraph on this page to clarify whether the statement is intended to apply to the subject removed	Accepted. The text will be updated to clarify the removal and sampling of MW88-4 and

#	Page #	Section	ADEC Comment	Response
			wells only. Recommend revising/amending the last three sentences of this paragraph to better present the intended context. I.e. revise to state 'through 2012, however the wells were removedat the MOC. [Prior to demolishing the wells during removal actions in 2013, the wells were sampled for the last time; the analytical results of which indicated neither exceeded SSCLs.] [Historical data from these wells] providedowngradient contamination.'.	MW88-5. Please see the revised text for Section 2.2.1, eighth paragraph, at the end of this document. ADEC-Accepted August 15, 2017
7.	4-1	4.0	Please revise/amend the first sentence in the first bullet on this page to better clarify/emphasize that the cleanup levels were promulgated in November 2016, and not 'promulgatedby USACE request.'.	Accepted. The text of the first bullet will be revised as follows: "Analytical results from samples collected in 2016 without SSCLs were screened against 18 AAC 75 Table C levels promulgated in November 2016 (ADEC 2016b). Although the approved 2016 WP referenced using evaluation criteria from 18 AAC 75 Table C promulgated in January 2016, the USACE requested that the most recent ADEC levels be used for comparison purposes in this report." ADEC-Partially Accepted August 15, 2017; however please revise the first part of the proposed revision, since it's not the samples that don't have SSCLs rather the COCs/analytes; i.e. revise to state 'For those groundwater samples collected in 2016, which had analytical results that indicated detections of COCs for which the 2009 DD does not specify SSCLs, the

#	Page #	Section	ADEC Comment	Response
				2016 analytical results were screened against'.
			Please revise/amend the first sentence of the second bullet on this page to specify that the purging activities and the referenced SOP were also consistent with ADEC Guidance.	The first sentence of the response will be revised as follows: Analytical results from samples collected in 2016 were screened against SSCLs and 18 AAC 75 Table C levels promulgated in November 2016 (ADEC 2016b). Although the approved 2016 WP referenced using" Accepted. The text of the second bullet will be revised as follows: "Monitoring wells at the MOC were purged according to the field SOP, which is consistent with ADEC sampling guidance, provided in the 2016 WP (USACE 2016b) with the exception of well MW10-1."
8.	5-5	5.2	The data quality assessment (DQA) and other sections, including data tables, appendices, etc. include discussion of PCB analysis of groundwater,	ADEC-Accepted August 15, 2017Accepted. PCBs were part of the analytical suite for MOC monitoring well samples.
			however PCBs are not mentioned anywhere in the narrative of the report. Please clarify PCBs in the applicable narrative sections of the report and amend respective sections to include discussion of and references to the PCB analysis and results.	Section 5.2, first sentence of eighth paragraph, will be revised to state: "analyzed for GRO by Alaska Method 101 (AK101), DRO by AK102, RRO by
				AK103, polycyclic aromatic hydrocarbons

#	Page #	Section	ADEC Comment	Response
			Please revise/amend the reference to VOC analysis associated with sample from wells MW10-1 and 14MW06 to clarify that these are associated with a sub-site (presumed by ADEC to be Site 10) of the MOC as well as the greater MOC.	by U.S. Environmental Protection Agency (EPA) Method SW8270-SIM, PCBs by EPA Method 8082, benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method SW8260, methane by RSK 175" ADEC-Tentatively Accepted August 15, 2017; per response to RTC immediately below. The first sentence of the last paragraphs on Page 5-5 will be updated as follows: "For consistency with historic sampling events, 2016 samples from all wells were analyzed for GRO by Alaska Method 101 (AK101),, PCBs by EPA Method 8082, " ADEC - Tentatively Accepted August 15, 2017; re: this and the RTC paragraph immediately above – conditional whether analytical results of PCBs indicated neither exceedances or notable detections of applicable cleanup levels. This was also not discussed in detail during the August 10, 2017 resolution meeting. Accepted. The reference to VOC analysis
			Please amend the discussion in this and other applicable narrative sections	will be clarified as follows:
			of the report to clarify how metals samples were collected for both dissolved and total; noting the narrative only references collection of	"Samples from monitoring wells MW10-1 and 14MW06, associated with Site 10
			filtered samples although figures and charts include data for both.	within the MOC, were also analyzed for

#	Page #	Section	ADEC Comment	Response
				volatile organic compounds (VOC) by EPA
				Method 8260 and glycols by EPA Method
				SW8015."
				ADEC-Accepted August 15, 2017
				Accepted. The text of the first sentence of the second paragraph on page 5-5 will be
				revised as follows:
				"alkalinity by SM 2320, total Resources
				Conservation and Recovery Act (RCRA)
				metals
				ADEC-Accepted August 15, 2017
				The text of the last sentence of the second
				paragraph on page 5-5 will be revised as
				follows:
				"Additionally, filtered water samples were
				collected from all wells for analysis of
				dissolved metals (RCRA metals,
				manganese, nickel, vanadium, and zinc) by
				EPA Method SW6020A/SW7471 using a
				disposable 0.45 micron in-line water filter
				following collection for the other parameters
				listed above."
				ADEC-Accepted August 15, 2017
				The following bullet will be added as the
			Please elaborate on the statement 'shared between the two field teams' in	last item on page 7-1:
			the last sentence of the fourth paragraph on this page to better clarify to the	"• In general, dissolved metals
			reader what this is supposed to mean. Were there two separate field teams	concentrations obtained from field filtered
			associated with the efforts conducted in association with the two different	samples were less than the metals

#	Page #	Section	ADEC Comment	Response
			projects implemented at NEC FUDS in 2016, namely the Suqi River/Site 8 investigation/monitoring and the MOC MNA monitoring? Or was there one primary field team, comprised of the same personnel and equipment, implementing both efforts separately but simultaneously, and combining/sharing efforts and resources for both projects?	concentrations reported in corresponding unfiltered samples." ADEC-Accepted August 15, 2017 Accepted. The text of the second sentence of the third paragraph on page 5-5 will be revised as follows: "Additional monitoring well information was recorded in the field logbooks shared between the two 2016 Northeast Cape sample collection efforts; MOC groundwater, and Site 8 and Suqi River (Appendix D)." ADEC-Accepted August 15, 2017
9.	6-1	6.0	Although ADEC realizes that the primary goal of section/subsections 6 is to discuss the 2016 results, it would be helpful if the introduction of this section referenced and identified the other appendices, tables, etc. which provide other data evaluation results; noting that while the wording currently emphasizes the 2016 results, that it actually broadens its context extensively by also evaluating and discussing the historical results, SSCLs vs. 2016 revised 18AAC75 cleanup levels, Appendix C trend charts, etc.	Accepted. The introduction on Page 6-1 will be revised as follows: "The primary focus of this section is to summarize and interpret the 2016 field measurements and analytical results collected at the MOC. Some information from prior data collection efforts at the MOC is also included in Table 6-2 and Appendix C when needed for comparison purposes. The sample summary table, complete analytical results, and DQA for the 2016 data are included in Appendix B." ADEC-Accepted August 15, 2017
10.	6-6	6.3.1 and	Associated with the comment immediately above, ADEC notes that the reporting discussion, as it involves the SSCLs and/or the 2016 revised	Accepted. The data discussion for SSCLs exceedances and comparison with 2016
			reporting discussion, as it involves the SSCLs and/or the 2010 levised	creedances and comparison with 2010

#	Page #	Section	ADEC Comment	Response
		Report in General	 18AAC75 cleanup levels, is difficult for the reader to follow. Noting further that the primary objective of this section should be limited and focused on discussing the 2016 results based on the SSCLs per the 2009 DD. ADEC requests that a new section or subsection be added that accomplishes this, and then revise the existing draft narrative sections, including heading/subheading titles, etc. to better present the intended evaluation comparison between the SSCLs and the 2016 revised 18AAC75 cleanup levels. Further with re: to the comment in the paragraph immediately above, applicable tables, table notes, highlighted information, etc. should also be revised/amended to account for this; noting that i.e. some of the data tables focus solely on whether the LOD exceeded the revised cleanup level but make no indication of whether the LOD exceeded the SSCL - which could potentially result in misinformation to the reader. Please apply this rationale and revise/amend accordingly throughout the document where applicable. Please provide ADEC with a redline revision of the report (post 	ADEC levels will be separated in exclusive subsections. This will also apply to the results presented in Table 6-5. ADEC-Accepted August 15, 2017 Discuss during comment resolution meeting. We would like to preserve the figures in their current form and would like to obtain feedback for the best way to clarify the notes. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
11.	6-6	6.3.1	RTC acceptance/approval), prior to finalizing the report. Please revise/amend the three wells referenced in the first sentence of this section to specify/clarify whether the dissolved lead exceedance is also associated with one of these three wells; or clarify if the lead exceedance represents a fourth well. Please apply this rationale and revision request to other similar statements as applicable throughout the document. Similar to the comment in the paragraph immediately above, please revise/amend the second sentence of this section to specify the number of wells if the statement is referring to the same three wells discussed in the prior sentence, etc.	Accepted. The well IDs were added to the text so the reader can readily identify which wells exceed for lead. ADEC-Accepted August 15, 2017 Accepted. The well IDs were added to the text so that it is clear which wells are being discussed. ADEC-Accepted August 15, 2017 Accepted. The term "general standard" will be removed from the document and the text replaced with "evaluation criteria".

#	Page #	Section	ADEC Comment	Response
			Please revise/amend the latter half of the second sentence of this section (which continues on to page 6-7) to clarify that the revised 2016 18AAC75 cleanup levels are not the stated 'general standard', rather the 2016 cleanup levels were promulgated after the NEC FUDS SSCLs were determined and approved in the 2009 DD; and that the SSCLs are the criteria which have been implemented at the NEC FUDS to date based upon the 2009 DD - even though more stringent cleanup levels for some COCs have since been promulgated by the State. Further, the presentation and transition between the narrative, tables, and back to narrative that is associated with the statement in the paragraph above is difficult to follow and potentially confusing to the reader. Noting the pause in the narrative for the 2 pages of tables and then starting the narrative with narrative that has an abrupt change in context (i.e. the low biased discussion). Recommend adding subsection headers or relocating the tables. Please also see/apply comments below; noting the comment re: the	 ADEC-Accepted August 15, 2017 An introductory paragraph will be added to section 6.4 that includes the relationship between the SSCLs from the DD and the 2016 ADEC evaluation criteria. ADEC-Accepted August 15, 2017 Accepted. The discussion in Section 6.4.1 will be separated into two sections so that comparisons to SSCLs and 2016 ADEC evaluation criteria is more distinct. ADEC-Accepted August 15, 2017 Accepted. Text regarding the ratio at which analytes were found below the SSCLs or evaluation criteria will be deleted from the
12.	6-8	Table 6-5	referenced '1/10 of the SSCL'. Recommend amending the depiction, table listing format, etc. for the SSCLs and '2016 ADEC' by adding a color association; and also apply this rationale/association consistently throughout all tables and other applicable references throughout the document. Some of the tables, figures, etc. become convoluted between separating and comparing and associating the respective information as is presented in the current draft format.	text. ADEC-Accepted August 15, 2017 Accepted. As part of responding to comment #10, the comparisons to SSCLs and 2016 ADEC evaluation criteria will be in separate subsections. This separation applies to the data table, so the color scheme proposed is no longer needed. ADEC- Accepted August 15, 2017
13.	6-10	6.3.1	ADEC notes what appears to be a potential low bias of what is presented and understood to date to be the extent and characteristics of the groundwater contaminant plume at the MOC; both from a quantitative and qualitative perspective. Indicators of low-biased in some of the analysis	Discuss some elements of this comment during the comment resolution meeting. The discussion of the DRO qualifiers was revised. The previous statements about low

#	Page #	Section	ADEC Comment	Response
			results from the 2016 effort (including those from prior efforts), along with other factors such as monitoring well locations where historical analysis results indicate increases as well as decreases in COC concentrations in groundwater, and also locations that are or have been at the cleanup level and/or just below the cleanup level, indicate that the residual contaminant plume associated with the MOC (and adjacent sites i.e. Site 28 Drainage) is not stable, and possibly not thoroughly characterized. Further evaluation of these issues are necessary prior to developing and implementing the next monitoring/investigation effort. This issue should be addressed further in the applicable narrative sections of the report and indicated as a recommendation. Please also add a recommendation section to this report that includes important issues to consider for future efforts; i.e. well service issues, sampling, previous issues with historical and 2016 sample collection and analysis, changes in site conditions, etc.	QC samples affecting the DRO results did not clearly tell the story. DRO was qualified due the results being reported from an analysis that occurred 2 days past the extract hold time. A run within extract hold time was not used since the instrument QC did not meet goals and the analysis marginally outside of the hold time provided higher DRO results. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. The DRO plume appears to be stable with the largest swings in concentration decreases associated with monitoring events
			Please clarify what the last sentence of the first paragraph on this page has to do with the low biased. Making the statement that upgradient wells (which are presumed to have always been below applicable conservative cleanup levels let along the SSCLs), have less than 1/10 th the applicable cleanup level has nothing to do with low bias impacts. However ADEC emphasizes that any elevated detection results that are observed in samples from the upgradient well locations would then have to either be the result of cross-contamination of the sample, or contamination that is in the groundwater at that location.	that occurred just after excavations were complete at the MOC. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. Noting further that the project team agreed that current available data indicate that there are no statistically significant trends at this time.

#	Page #	Section	ADEC Comment	Response
			Please revise/amend the references/statements throughout the document where applicable re: whether or not sources of contaminants are considered anthropogenic to clarify (i.e. in the instance of lead) that while there are no confirmed specific sources/source areas for lead, that the concentrations of lead in groundwater at the MOC which exceed applicable cleanup levels (as compared to groundwater locations for which analysis results indicate no detection of lead), are at this time perceived by ADED to be related to anthropogenic activity. Please apply this rationale and revisions accordingly throughout the document where applicable.	This statement will be removed. Additional text will be added to identify that upgradient wells did not exceed SSCLs and that exceedances were along the downgradient portion of the MOC. ADEC-Accepted August 15, 2017
			Please revise the reference to 'evaluation criteria' in the first sentence of the third paragraph of this section in order to be consistent with one reference to i.e. 'revised 2016 18AAC75 cleanup levels' throughout the document.	Additional text was added to the lead discussion to identify that reducing conditions are the likely reason lead in groundwater exceeds at 14MW04. ADEC-Accepted August 15, 2017
			Please revise the second sentence of the third paragraph of this section by stating i.e. 'are equal to the SSCLs respectively.'. Re: the statement in the second to last sentence on this page that there are no SSCLs for naphthalene and chromium, it would be helpful to also compare the 18AAC75 Table C cleanup criteria that was promulgated and applicable in 2009 to the historical site characterization results that resulted in the rationale and determination that SSCLs were not specified for those COCs, and further how these would relate to the 2016 results. Would pre-2009/DD analytical results for groundwater at the MOC have indicated that those concentrations were below or above the revised 2016 18AAC75 cleanup levels?	Disagree. The agreed upon language has always been "evaluation criteria" when referring to other analytes without established SSCLs. References throughout the report to 2016 ADEC Cleanup Levels will be revised to 2016 ADEC evaluation criteria. ADEC-Not Accepted August 15, 2017; ADEC is not aware of the stated 'agreed upon language' – please provide reference and further clarification on this issue prior to finalizing the report. The intent of ADEC's comment was to avoid potential misunderstanding re: actual promulgated cleanup levels and/or

#	Page #	Section	ADEC Comment	Response
14.	6-11	6.3.1	Please apply prior comment above to the reference to anthropogenic sources of chromium in the first paragraph on this page; and apply to other similar references/statements throughout the document where applicable.	approved ACLs, SSCLs, etc. vs. 'evaluation criteria' that can be easily inferred/misunderstood to be something else. ADEC's request in the original comment is unchanged. This statement no longer appears in the document. ADEC-Accepted August 15, 2017 This assessment will be deferred until the next Five Year review. ADEC-Accepted August 15, 2017; also per further resolution discussion and project team concurrence on August 10, 2017. Discuss during comment resolution meeting. The statements about anthropogenic sources are cited from previous reports. ADEC- Tentatively Accepted August 15, 2017;
				per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
15.	6-11	6.3.2	Please revise the last three sentences of the second paragraph since the current wording/presentation de-emphasizes that the concentration of GRO actually increased from 2002 to 2004 along with significant spans of time that occurred between the 2004 and more recent sampling events. The third sentence is unclear if it is intended to reference all historical and current monitoring wells at the MOC or just specific wells.	Accepted. The second paragraph in Section 6.4.3 will be revised to clarify the discussion. The revised paragraph is included at the end of this table for review. ADEC-Accepted August 15, 2017 Discuss during comment resolution meeting.
			In the last paragraph on this page, and in other narrative section discussions	ADEC-Tentatively Accepted August 15,

#	Page #	Section	ADEC Comment	Response
			throughout the document where applicable, please also discuss the increases in some COC concentrations at some wells over subsequent years as compared to the monitoring event at which point analytical results have consistently indicated a decrease in concentrations over subsequent years.	2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
16.	6-12	6.3.2	 Please revise/amend the statement in the last sentence of the second paragraph on this page by also discussing the ranges of detections that have been observed since 2011. Were these well below the cleanup level, right at or just below, etc.? This should also take in to account ADEC's requests in prior comments to further evaluate and discuss what appears to be fluctuations of contaminant concentrations in groundwater at the MOC over the years. Please apply this rationale and revision to other similar applicable statements/discussions throughout the document where applicable. Please revise/amend the statements in the first and fourth sentences of the last paragraph on this page to clarify whether the statement is intended to represent 'all years of monitoring/investigation' or just 2016 results. Please apply this rationale and revision to other similar applicable statements/discussions throughout the document where apply this rationale and revision to other similar applicable 	Discuss during comment resolution meeting. We would verify which statements need to be revised. ADEC-Tentatively Accepted August 15, 2017; conditional per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
17.	6-13	6.3.2	 Please revise/amend the last sentence of the third paragraph on this page to clarify whether the statement is intended to imply historically for all samples from all wells. Please elaborate on the discussion re: naphthalene concentration trend associated with 14MW01 that is stated as not having 'generally decreased'. Please also further clarify what is meant by generally decreased in this and other references/sections throughout the document. 	Discuss during comment resolution meeting. We would verify which statements need to be revised. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. Accepted. Statements regarding specific analyte concentrations 'generally

#	Page #	Section	ADEC Comment	Response
			In the first sentence of the last paragraph on this page and elsewhere throughout the document where applicable, recommend revising the use of 'presented in the 2009 DD' to 'specified in the 2009 DD'. Similar to prior comments above, please provide further clarification for the decisions that resulted in SSCLs for the subject COCs not being specified in the DD.	decreasing' will be removed. ADEC-Accepted August 15, 2017 Accepted. The usage of text in relation to the 2009 DD suggested in the comment will be incorporated in the report. Naphthalene and chromium were not identified as groundwater COCs in the 2009 Decision Document and thus a site-specific cleanup level was not specified. ADEC-Accepted August 15, 2017
				Discuss during comment resolution meeting. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. The report will be updated throughout the
				text, tables, and graphs to eliminate references to exceedances of chromium. In accordance with footnote 6 to Table C of the 2016 ADEC revised regulations, the appropriate comparison value for total chromium in groundwater is Chromium (III) at 22 mg/L, not Chromium(VI) at 0.00035
			ADEC-Tentatively Accepted August 15, 2017; ADEC notes that the	mg/L. All references to exceedances of chromium in comparison to the lower value will be revised. Applicable footnotes will be added which specify which 2016 ADEC

#	Page #	Section	ADEC Comment	Response
			original RTC may not be consistent with what the project team agreed on during the August 10, 2017 comment resolution meeting. ADEC recalls the project team agreeing to keep both in the report, however to focus this effort's reporting on the total Cr III, and that future assessment re: anthro- vs. non-anthropogenic sources and the applicability of Cr VI was still necessary.	evaluation criteria is being used for total chromium comparisons. ADEC- Tentatively Accepted August 15, 2017; please see further response to RTC on the left.
18.	6-14	6.4	Please revise/amend the last sentence of the second paragraph of this section. The number of years of observed cleanup level exceedances alone (i.e. as the narrative states in this case two years) does not impact the determination of suitability to analyze for natural attenuation, rather it's the presence of the COC coupled with having an adequate number comparable data sets over an adequate number of years. Has the attenuation evaluation and discussion taken in to account the significant quantity of contaminated overburden (although below the SSCL for DRO in soil) that exceeds the migration to groundwater level which could be continuing to contribute COCs to groundwater? Do the calculations and evaluations consider the regional and site-specific environmental conditions?	Agreed. Section 6.4 was revised to provide a clarification on the use of the small data set for in-plume wells. ADEC-Accepted August 15, 2017 The attenuation evaluation will include a discussion of the observations that support natural attenuation is occurring (contaminant trends and geochemical parameters). ADEC-Accepted August 15, 2017
19.	7-1	7.0	 Please revise/amend the first sentence in this section to better specify the historical data set. Is this for all years of all monitoring wells up through 2015 or specific years and/or wells? It would be helpful to include some conclusion summaries which are specific to the statements and discussions throughout the report that are related to the revised 2016 18AAC75 cleanup levels; i.e. historical vs. the 2016 results which exceeded some of the revised 2016 cleanup levels. 	Accepted. The conclusions section will be revised to list conclusions specific to 2016 results separately from conclusion drawn from the historic data set. ADEC-Accepted August 15, 2017
20.		Figure A-	Please amend all figures to include the applicable date (2016) in the title.	Accepted. The year "2016" will be added to

#	Page #	Section	ADEC Comment	Response
		3.1		the beginning of the title for Figures A-3.1 through A-3.4. To be consistent with the comments to the Site 8 & Suqi River Report Figure A-2 will be revised to include "2016 Area of Interest" and "Remediation Site" in the legend. ADEC-Accepted August 15, 2017
21.		Figure A- 3.3	It would be helpful to include a new figure that depicts the applicable groundwater elevation data available to date (i.e. 2014) for the two cross sections and the wells that comprise them, in order to evaluate the ranges and fluctuations over the years.	Discuss during comment resolution meeting. The historic groundwater elevations at each well are plotted as a time series graph in Appendix C. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
22.		Figure A- 4.1	Has the extent of ferrous iron in groundwater at the MOC ever been evaluated based on whether or not all of it is naturally occurring vs. whether some fraction of it may be the result of anthropogenic sources i.e. ferrous metals contributions over the years and/or ongoing?	Discuss during comment resolution meeting. The 2016 ferrous metal distribution in groundwater is highest in the area of the in- plume wells (norther end of the site) and drops off rapidly towards the central portion of the MOC. No subsurface ferrous metal is suspected at the north end of the site. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified
			Recommend revising the depiction and associated legend entries for existing wells to a color rather than depicting all of the former and existing wells in different black and white formats.	and discussed during the August 10, 2017 comment resolution meeting. Accepted. Current Monitoring Wells symbology will be displayed in blue and

#	Page #	Section	ADEC Comment	Response
			ADEC realizes that the gray background and overall color schemes of this and other similar figures my make it difficult, but it would be helpful to	white. This will be applied to all Figures. ADEC-Accepted August 15, 2017
			depict the surface features in a sharper more contrasting color of blue to provide a better visual representation of the site features. The current format makes it difficult to discern site characteristics and features.	Discuss during comment resolution meeting. We do not have a higher resolution aerial image of the MOC.
			Please add a figure note that explains the 'Site Boundary' to clarify that this is for administrative/site naming convention purposes that is based	ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017
			primarily on the footprint of DoD activities and structures associated with the MOC and not at all associated with any boundary(s) associated with the extent(s) of contamination that are related to the MOC.	comment resolution meeting. Accepted. A note will be added to clarify the purpose of the boundary. The following
				note will be added to all appropriate figures: "The Administrative Site Boundary is based primarily on the footprint of DOD activities
				and structures associated with the MOC and not based on the extent(s) of contamination".
				ADEC-Accepted August 15, 2017 Also, the legend will be revised to state "Administrative Site Boundary Surveyed in
23.		Figure A-	Has the potential for impacts from the wetland conditions in the adjacent	2014". ADEC-Accepted August 15, 2017 Discuss during comment resolution meeting.
23.		4.8	Site 28 Drainage been evaluated for how they might influence the groundwater conditions at the MOC; noting the high water table that was	No study of this type is part of the site activities to date. ADEC-Tentatively
			observed due to the precipitation from the storm event(s) which were associated with the time frame of the sampling effort as well as differences over previous years of monitoring/investigation?	Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment

Page 20 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
				resolution meeting.
24.		Figure A- 5.1	Please revise/amend the title of the figure to clarify that it represents historical results and specify the range of years. Please apply this revision to other figure titles where applicable.	Accepted. Figure titles will be revised to include the range of years for which data was collected and presented in the tables. For example, Figure A-5.1 title will be revised to state: "DRO Results in Groundwater at the MOC from 2002 through 2016". ADEC-Accepted August 15, 2017
			Please include a figure note on this and all other applicable figures to clarify the rationale for why different years of data are listed. Does the figure represent all available historical results to date or only select years based on whether or not prior/current exceedances were observed?	Accepted. A note will be added to clarify why different years of data are listed. The following Note will be added to all A-5 Figures: "All available results are presented in tables". ADEC-Accepted August 15, 2017
			ADEC notes its prior comment re: the addition of a color scheme to better differentiate the information associated with the SSCLs vs. the ADEC 2016. Recommend depicting the different criteria with a different color background and depicting values which are exceedances in bold red, and those which are not in non-bold black font. It is difficult to discern the information being presented when comparing SSCLs with ADEC 2016 based on the issue(s) noted above; noting the figure titles, depictions, format and presentation of information, etc. Please clarify.	Accepted. Exceedances shown in the tables will be presented differently. For Figures A- 5.1 through A-5.3 and A-5.5, SSCL exceedances and/or ADEC exceedances will be presented in red, bold font on a grey background. For Figure A-5.4, where the SSCL and ADEC criteria are not equivalent, SSCL exceedances will be presented in black, bold font on a red background and ADEC exceedances will be presented in red, bold font on a grey background. Additionally, the symbol for an SSCL exceedance will be made larger, thicker

Page 21 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			Please include an additional figure that is similar to A-5.1 but only depicts the 2014-2016 data as compared to the SSCLs and ADEC 2016.	black circle. ADEC-Accepted August 15, 2017 Accepted. An additional figure set (Figure A-6) will display results from 2014 through 2016 only. ADEC-Accepted August 15, 2017
			Please apply the comments above to all other figures in the report as applicable.	Accepted. Other applicable edits will be made to figures. ADEC-Accepted August 15, 2017
25.		Figure A- 5.2	Please include figure notes and elaborate in applicable narrative sections to better specify/clarify the total vs. dissolved concentrations and whether there are two different respective SSCLs for each one; noting that the report appears to indicate that there are two different cleanup levels for all of the respective metals although the primary evaluation and discussion seems to be focused on the dissolved.	Accepted. The following text will be added to the end of Section 6.4 text: "Filtered and unfiltered groundwater samples results are presented in this report as distinct results in an effort to distinguish if soil particles in unfiltered groundwater are contributing to metals levels. There are no distinct SSCLs or 2016 ADEC evaluation criteria associated with filtered or unfiltered samples. The 2016 ADEC evaluation criteria are typically calculated considering only the water soluble fraction. Therefore, metals results from unfiltered samples overestimate metals levels." ADEC-Partially Accepted August 15, 2017; revise to 'groundwater sample results are presented' and also revise the references for evaluation criteria to cleanup levels, per prior comment(s)

#	Page #	Section	ADEC Comment	Response
			The second figure note on this and other applicable figures is misleading, since it groups the LOD quality criteria together for both the SSCLs and the ADEC 2016; noting that this issue does not apply consistently for all COCs based upon the SSCLs vs. the ADEC 2016 and is potentially confusing/misleading to the reader. The note should be revised by stating 'and/or' instead of 'and', and further clarify that the LOD exceedance is respective to the criteria indicated (i.e. as indicated by the color scheme requested by ADED in other comments). This issue is not as critical for lead since there is no difference between the SSCLs and the ADEC 2016 for that COC, however it is potentially confusing when included for i.e. naphthalene in Figure A-5.3 - although there is no SSCL indicated (per the DD). This issue should be clarified in all applicable figures.	above throughout the document where applicable. The Evaluation Criteria note will be revised to present "Metal (Total and Dissolved)" as neither the SSCLs or the 2016 ADEC evaluation criteria differentiate between total and dissolved metals. The same criteria will be used for both. Section 6.4 will be revised to more clearly present total and dissolved metals comparisons. ADEC-Partially Accepted August 15, 2017; revise references for evaluation criteria to cleanup levels, and apply to all other comments other applicable comment(s) in this template and throughout the report where applicable. Accepted. Instead of having a figure specific note, the note will be changed for all appropriate figures. The note will be revised to state: "…greater than SSCL and/or 2016 ADEC evaluation criteria". ADEC- Accepted August 15, 2017
26.		Figure A- 5.5	In the second to last figure note on this figure (and others where applicable), please clarify why the (USACE 2016b) is listed as a reference for the revised 2016 AAC75 cleanup levels.	Accepted. The reference should have been to ADEC. The reference will be revised to state: "(ADEC 2016b)". ADEC-Accepted August 15, 2017
27.			Appendix B: Data Quality Assessment	

#	Page #	Section	ADEC Comment	Response
28.	B-1-1	1.0	Please revise the sentence in the last paragraph on this page by stating 'The attachmentscontain the following: summary table and'.	Accepted. Section 1.0, first sentence of third paragraph, will be revised to state: "attachments to this DQA contain the following: sample summary table and analytical". ADEC-Accepted August 15, 2017
29.	B-1-3	1.1	Please revise/amend the sentence towards the bottom of this page that begins with 'These QC parameters met' by revising 'Section 1.2 or in the' to 'Section 1.2 and in the' since these issues should not be identified and addressed in one or the other rather all of the issues should be adequately addressed and explained in both.	Accepted. Section 1.1, fourth sentence of second paragraph will be revised to state: "…listed in Section 1.2 and in the associated…". ADEC-Accepted August 15, 2017
30.	B-1-5	1.2.2	Please revise the reference to 'site-specific criteria' to 'SSCLs' if that is what is being implied in order to maintain consistent referencing throughout the report. Please revise the statement 'There is one exception,' since the statement goes on to explain two examples; i.e. make one sentence out of the last two on this page by stating i.e. 'less than the [SSCL] with the exception of the two samples'.	Accepted. 'Site-specific criteria' will be revised to state SSCL. This change will be applied throughout the document. ADEC-Accepted August 15, 2017; and apply similarly to all other applicable uses of the word 'criteria' throughout the report to emphasize and differentiate between concentrations that are promulgated and/or approved cleanup levels (i.e. Method Two CLs, SSCLs, etc.) vs. other 'criteria'. The last two sentences will be combined into one sentence and revised to state: "Data quality is minimally affected since results were either significantly greater than or less than the site-specific cleanup level (SSCL) with the exception of two samples, 16NEC-

#	Page #	Section	ADEC Comment	Response
31.	B-1-6	1.2.3	Associated with prior comments re: PCBs above, ADEC notes that table B-	14MW06-WG and 16NEC-14MW06-WG- 9, that had detections for diesel-range organics (DRO) at 1.4 mg/L which is just less than the SSCL of 1.5 mg/L". ADEC- Accepted August 15, 2017 Accepted. Please see the response to
			1 and this narrative section (as well as others that follow in the DQA) is the first time PCBs are mentioned in the report. Please better clarify the application of PCBs as a COC and/or QC in association with the NEC FUDS monitoring effort.	comment #8 for report updates associated with the PCB analysis. ADEC- Tentatively Accepted August 15, 2017; re: this and the RTC paragraph immediately above, given that analytical results of PCBs indicated neither exceedances nor notable detections of applicable cleanup levels. This was also not discussed in detail during the August 10, 2017 resolution meeting.
32.	B-1-8	1.2.7	Please revise/amend the last sentence of the second paragraph of this section to specify/clarify if this is intended to apply only to the results for the actual duplicates and their respective associated primary samples; and/or to also apply to all the other primary sample results (groups of results) that are represented by the high RPD values of the primary/duplicate pair.	Accepted. The last sentence of the second paragraph will be revised as follows: "The effect of using the higher of the results between the primary and field duplicate sample for trend analysis and reporting was minimal since all the QN-qualified results were less than the 2016 ADEC evaluation criteria." ADEC-Accepted August 15, 2017
33.	B-1-8	1.2.8	Please revise/amend the reference to 'ADEC criteria' in the first sentence of the second paragraph of this section in order to maintain consistent references to SSCLs and/or 'ADEC 2016' throughout the document. Please	Accepted. References to ADEC criteria will be revised to state "2016 ADEC evaluation criteria" to remain consistent with the main

#	Page #	Section	ADEC Comment	Response
			apply this revision to all other variations of what should be only references to SSCLs and/or 'ADEC 2016' throughout the document.	body text. ADEC-Not Accepted August 15, 2017; please see other related comments throughout template.
34.	B-1-9	1.2.9	Please elaborate the discussion in this section to clarify the applicability of this PCB QC criteria to the 2016 NEC FUDS MOC MNA effort.	Accepted. Please see the response to comment #8 for report updates associatedwith the PCB analysis. ADEC- TentativelyAccepted August 15, 2017; re: this and the RTC paragraph immediately above, given that analytical results of PCBs indicated neither exceedances nor notable detections of applicable cleanup levels.This was also not discussed in detail during the August 10, 2017 resolution
35.	B-1-10	1.3	Please elaborate more in the DQA re: what resulted in the 95% completeness. What issues resulted in 5% incompleteness.	Accepted. The second sentence of the first paragraph of Section 1-3 on Page B-1-10 will be revised as follows: "The completeness goal of 100 percent for all parameters was met and exceeded the work plan completeness goal of 95 percent; no sample results were rejected." ADEC-Accepted August 15, 2017
36.		Table B- 1-1	Please clarify the multiple samplers which are listed for this effort; noting multiple sampler IDs that are listed for the same sample.	Accepted. The following text will be added as the last paragraph of Section 1.2.1 Appendix B: "Three samplers were utilized to collect
			ADEC-Partially Accepted August 15, 2017; ADEC realizes that this is	groundwater samples. The daily sampling teams each consisted of two or three samplers. Because more than one field staff Page 26 of 34

#	Page #	Section	ADEC Comment	Response
			after the fact, however what was done either prior to or in the field is not considered a preferred scientific documentation practice. Was it documented who actually took the individual samples? For example, had ADEC known this was going to be the proposed method, ADEC would likely have not approved it, and even if, would have potentially required additional QCs. This should have been accurately documented in field notes, and should be indicated and summarized in the narrative.	member was involved with the collection, packaging, and transporting of samples, multiple initials appear on the sample tracking form in the sampler column and on groundwater sampling forms." ADEC- Partially Accepted August 15, 2017; please see additional response to RTC on the left.
			Revised Response We did not clarify in our initial response that only one person was responsible for setting up the equipment, purging the well, recording stabilization parameters, and recording sample containers. Other initials were recorded on the sampling forms because they help package and transport samples. The DQA sample summary (Table B-1-1) will be revised to reflect the initials of the individual sampler responsible for setting up the equipment, purging the well, recording stabilization parameters, and recording sample containers at each monitoring well. We suggest that the field forms remain unaltered.	
37.	Page 8 of 10	Table B- 1-2	Similar to comments above please revise/amend the reference to 'ADEC criteria' in the table note. Please revise/amend the table notes to specify/clarify whether any LODs	Accepted. The note will be revised to state "2016 ADEC evaluation criteria". In addition, the column headers will be revised to state "2016 ADEC evaluation criteria" and "SSCL" as appropriate. ADEC-Partially Accepted August 15, 2017; please see other related comments throughout template.
			exceeded the SSCLs; and apply the revision similarly throughout the	Accepted. The table note will clarify that

#	Page #	Section	ADEC Comment	Response
			document where applicable (as also commented above) to correct instances where only the LOD is noted as exceeding either 'ADEC 2016' or both 'SSCLs and ADEC 2016' but never indicated specifically for SSCLs.	nondetect result LODs exceeded the 2016 ADEC evaluation criteria only. ADEC-Accepted August 15, 2017 The note will be revised to state: "Nondetect results with LODs exceeding 2016 ADEC
			Please revise what appears to be corrupted font in the table note for 'limit of detection' in this and numerous other tables.	 evaluation criteria; nondetect result LODs did not exceed SSCLs". ADEC-Accepted August 15, 2017 Accepted. The next version of the pdf file will be reviewed for this table to ensure that
			Please clarify/explain the notations of '-' in this and all other applicable tables throughout the document; both in table notes and in applicable narrative sections.	the font is consistent with the rest of the table. ADEC-Accepted August 15, 2017 Accepted. The notes will include " not provided or not analyzed". In the narrative sections, Table 6-4 will be revised; the symbol "-" will no longer be present. ADEC-Accepted August 15, 2017
38.			Appendix C:	
39.		Charts General	It would be helpful if the years that do not correlate with a sampling event could be excluded from applicable charts to better associate the year with the data points. This could also be better emphasized by applying highlight or bold font to the respective year and would simultaneously emphasize years that were not sampled.	Accepted. For Figure C-2, Only years associated with data will be shown on the trend line. ADEC-Accepted August 15, 2017 Similarly, C-3.2 Figures will present results from 2002 through 2016 but only include years associated with data on the x-axis. ADEC-Accepted August 15, 2017
40.		C-1.1	Respective sections of the narrative should discuss the potential as well as confirmed impacts that the varying groundwater elevations (the greatest	Discuss during comment resolution meeting. ADEC-Tentatively Accepted August 15, Page 28 of 34

August 4, 2017

#	Page #	Section	ADEC Comment	Response
			being 8 ft) have on analytical results and groundwater concentrations of COCs; including general plume conditions that might be expected when the groundwater elevation is 69 ft amsl in 2010 vs. 77 ft amsl in 2011.	2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. The requested assessment may be more meaningful when more data is available for the 15 wells in the existing network. Currently there is only one in plume well with more than 3 monitoring events. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
41.		C-2.2.3	Respective applicable narrative sections should elaborate on the fluctuations of certain groundwater constituents/analytes and any correlation between events i.e. RAs, ISCO, etc.; noting ADEC's prior comment re: instances where a decrease is followed by a general increase and vice versa.	Discuss during comment resolution meeting. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. The requested assessment may be more meaningful when more data is available for the in-plume wells in the existing network. Currently there is only one in plume well with more than 3 monitoring events. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
42.		C-3.2.2.2	For this and all other charts for COCs and/or analytes where extreme historical results skew the presentation of much of the data, it would be	We would like to review the examples of the revised charts at the comment resolution

#	Page #	Section	ADEC Comment	Response
			helpful to include an additional chart similar to the example for methane that excludes the extreme result(s) allowing for better overall evaluation of the data trend(s).	 meeting. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting. Accepted. The charts will be revised to improve the presented information as follows: All charts presented in C-3 will be revised. The y-axis will be changed to present results as a ratio of the SSCL (or 2016 ADEC evaluation criteria for analytes without SSCLs). ADEC-Accepted August 15, 2017 In addition to the main chart with all results, the secondary charts will be revised to present data from 2010 through the current monitoring event. This will better represent groundwater following the excavation of contaminated soil at the MOC. ADEC-Accepted August 15, 2017 Only the highest result from duplicate samples will be presented. ADEC-Accepted August 15, 2017 Only the highest result from duplicate samples will be presented.

#	Page #	Section	ADEC Comment	Response
				symbol on the charts than detected results.
43.		Plot C 2- 4.1 Curve Data	While the two data charts are identified to each be specific to one of two wells, the two have identical chart IDs which is confusing, given that the other plot pages are specific to either C-4.1 or C-4.2. Also, with re: to the natural attenuation evaluation and plotting for the limited two wells, please see and apply comment above to clarify that these are the only two being evaluated based on extent of adequate and applicable data, and not because these are the only two wells which are relevant to	ADEC-Accepted August 15, 2017 Accepted. The chart IDs for 14MW05 will be updated to correctly state "C-4.2". ADEC-Accepted August 15, 2017 Accepted. Introductory text will be added to Appendix C. Please see revised text at the end of this document. ADEC-Accepted August 15, 2017
44.		Appendix E	ongoing attenuation monitoring.Photo No. 6: Please always reference the well and/or site feature location with all photo descriptions.General: This and future reports should include more photos of the greater MOC areas, adjacent sites and transition areas associated with the MOC, as well as photos which depict site features which are specific to residual contamination and its fate and transport issues; i.e. the cross sections, the transition area between the MOC and Site 28 drainage, upgradient, cross gradient, downgradient views of the MOC, surface water conditions adjacent to and immediately downgradient of the MOC, etc.	Accepted. Well ID's (14MW04) will be added to Photos No. 6 and 7 in Appendix E. ADEC-Accepted August 15, 2017 Discuss during comment resolution meeting as it deals with future reporting efforts. ADEC-Tentatively Accepted August 15, 2017; per agreed upon revisions identified and discussed during the August 10, 2017 comment resolution meeting.
45.			End of ADEC Comments	
46.			Other changes needed for consistency with comment responses	ADEC-Tentatively Accepted August 15, 2017; please see responses on the left to similar comments below.
47.			To be consistent with the comments for Site 8 and the Suqi River, Section 6.5 Deviations will be changed to Section 6.1. All other Section 6	ADEC-Tentatively Accepted August 15, 2017; please see response on the left.

Page 31 of 34 August 4, 2017

#	Page #	Section	ADEC Comment	Response
			references will change. ADEC-Tentatively Accepted August 15, 2017; noting that these non-ADEC comments were not discussed during the August 10, 2017 comment resolution meeting. Please provide clarification re: why sections of the MOC report would be revised to be consistent with the other reports.	
			Clarification For consistency between the MOC Report, and Site 8 and Suqi River Report, sections that appear in both reports will be aligned to the same table of contents order. Therefore, Section 6.5 Deviations of this report will be changed to Section 6.1. This will also require the renumbering of the subsections.	
48.			To be consistent with the comments for Site 8 and the Suqi River, Section 5.3 will be revised to more closely match the Site 8 and Suqi River Report. ADEC-Tentatively Accepted August 15, 2017; noting that the non- ADEC comments above were not discussed during the August 10, 2017 comment resolution meeting. Please provide clarification re: why sections of the MOC report would be revised to be consistent with the other reports; noting that ADEC does not necessarily disagree with this, rather would prefer to have this clarified further. For consistency between the MOC Report, and Site 8 and Suqi River Report, sections that appear in both reports will be aligned to the same table of contents order. Therefore, Section 5.3 of this report will be revised to follow the organization of the Site 8 and Suqi River Report.	ADEC-Tentatively Accepted August 15, 2017; please see response on the left.

#	Page #	Section	ADEC Comment	Response

Section 2.2.1 Revised Paragraph 8:

Groundwater at the MOC exhibited evidence of contamination prior to the 2009 DD (USACE 2009) promulgation, COC identification, and SSCL listings. Groundwater samples collected in 2002 were analyzed for GRO, DRO, RRO, BTEX, alkalinity, sulfate, methane, ethane, and ethene (USACE 2003) while in 2004 groundwater samples were analyzed for GRO, DRO, RRO, BTEX, PAHs, TOC, and metals (USACE 2005). Groundwater samples collected in 2002 and 2004 exceeded what would be the future SSCL for GRO, DRO, RRO, benzene, and total lead in monitoring wells MW88-3, MW88-4, MW88-5, MW88-10, and 20MW-1 (Table 2-1). After implementation of the 2009 DD (USACE 2009), DRO, RRO, benzene, arsenic, and lead exceeded the SSCL. From 2010 through 2011, groundwater samples collected from monitoring wells at the MOC were analyzed for GRO, DRO, BTEX, PAHs, PCBs, methane, metals, and natural attenuation parameters including [list the parameters] (USACE 2011. 2012). Beginning in 2012, the analyte list was expanded to include RRO (USACE 2013, 2014a). In 2014 and 2015, VOCs and glycols were added to the analytical suite for monitoring well 10MW-1 (USACE 2015b, 2016a). Monitoring wells MW88-4 and MW88-5 served as source area wells from 2002 through 2012, however these wells were removed due to soil excavation at the MOC. Prior to demolishing the wells during removal actions in 2013, the wells were sampled for the last time; the analytical results of which indicated no exceedance of SSCLs. Historical data from these wells provide valuable information regarding historical downgradient contamination. **ADEC-Accepted August 15, 2017**

Section 6.4.3 Revised Paragraph 2:

GRO historically exceeded screening levels in only one NE Cape monitoring well; MW88-5. This well was located in the northern portion of the MOC in an area of soil contamination removed during 2012 MOC soil excavation activities. GRO exceedances in MW88-5 occurred in 2002 (year of installation) and again in 2003 with reported concentrations of 1.3 mg/L and 1.5 mg/L, respectively. Monitoring did not occur again at MW88-5 until 2010 and a GRO concentration of 0.19 mg/L was reported. Monitoring continued at MW88-5 in 2011 and 2012 with reported GRO concentrations of 0.25 mg/L and 0.16mg/L, respectively. The MW88-5 time series plot for GRO included in Appendix C-3.2.1 shows concentration levels for the most recent sampling events (2010, 2011, and 2012) are significantly lower than those seen in 2002 and 2003 and less than 50% of the SSCL. Due to the lack of monitoring data between 2003 and 2010, the trend line assumes that a gradual decrease occurred. However, there is no information to confirm or disprove this assumption. Similar fluctuations in GRO levels were observed at well MW88-4 located approximately 200 feet east (cross gradient) of MW88-5

Page 33 of 34 August 4, 2017

suggesting similar factors were affecting both wells at the time of sample collection. Although more data points would be helpful to put the older results in perspective, both MW88-4 and MW88-5 were removed in 2012 and are no longer available for sampling. **ADEC-Accepted August 15, 2017**

Appendix C

This appendix provides summary results and measurements for MOC monitoring wells that are part of the current monitoring network and two former monitoring wells MW88-4 and MW88-5. Groundwater elevation measurements are presented in Appendix C-1, natural attenuation parameters are not included in Appendix C-2, and groundwater contaminant concentrations are presented in Appendix C-3.

Groundwater elevations, natural attenuation parameters, and contaminant concentrations were obtained from the groundwater monitoring wells that are part of the current network beginning in 2002 and continuing through 2016. Ongoing measurements occurred first in 2002, again in 2004, and then yearly since 2010. The former monitoring wells MW88-4 and MW88-5 will show results in 2002, 2004, 2010, 2011, and finally 2012 (year when decommissioned). Trend data presented in this Appendix will focus on results from 2010 through 2016 because of the gap in groundwater monitoring data form 2004 through 2010. For the data presentation of contaminants with an SSCL specified in the DD, results are presented as a ratio of the SSCL. For contaminants without an SSCL specified in the DD, results are presented as a ratio of the 2016 ADEC evaluation criteria. Using a ratio allows multiple contaminants to be displayed on one graph even though these contaminants have different SSCLs. The actual SSCL levels will be identified in the graph legends.

The trend plots that calculate a predicted DRO attenuation data at monitoring wells 14MW04 and 14MW05 are presented in Appendix C-4. Only the in-plume monitoring wells 14MW04 and 14MW05 were presented because they are the wells in the current monitoring network that continue to exceed the DRO SSCL.

ADEC-Accepted August 15, 2017

Page 34 of 34 August 4, 2017

ACAT Comment and USACE Responses – 17 August 2017

Comments of Alaska Community Action on Toxics on the 2016 Monitored Natural Attenuation Groundwater Sampling Report at the Main Operations Complex and 2) Site 8 and Suqi River Surface Water and Sediment Sampling Report

Prepared by Vi Waghiyi, Environmental Health and Justice Program Director and Tribal Member, Native Village of Savoonga; and Pamela Miller, Executive Director

Submitted June 7, 2017

1) 2016 Monitored Natural Attenuation Groundwater Sampling Report at the Main Operations Complex

Executive Summary (ES)

The document states that the results are compared to clean-up levels established through the 2009 decision document. It should be noted that the tribe does not necessarily concur that these clean-up levels are health protective and that they should have been an official party to the record of decision on a government-to-government basis.

- page ES-1: Question—are there any monitoring wells still in place in addition to the fifteen from which samples were collected during this RAO? No
- The ES indicates that natural attenuation is occurring at the MOC. How is this measured? How is this more than a subjective, qualitative judgement? Please quantify and provide justification.

Please refer to the detailed discussion in Section 6.0. Multiple chemical parameters were measured and analyzed to support the conclusion natural attenuation is occurring in groundwater at the site.

• The document indicates that contaminant concentrations have "generally" decreased over time. Please provide a summary here of the specific wells where concentrations have declined and to what extent. Saying that concentrations have "generally" decreased is too subjective.

Please refer to the detailed discussion in Section 6.0. The executive summary is meant to be an overview of sampling and conclusions.

• The statement that "attenuation of DRO is predicted to be complete in 2035" is not verified. What is this prediction based on? Even if this were true (and we believe that 2035 is an underestimate of the length of time to completion), this length of time for completion of MNA is unacceptable because it allows for continuing and harmful exposures to fish, wildlife, and people. Furthermore, it is likely that the fuel-related compounds are serving as a "vehicle" for the mobilization and transport of substances such as PCBs.

Verification of the predicated attenuation of DRO date can only occur closer to the time (2035) of predicted attenuation. Estimates of the rate of natural attenuation are based on modeling and analysis of trends over time (Appendix C-3). PCBs analyzed by SW8082 were part of the 2016 test methods, and PCBs (as Aroclors) were not

detected in any of MOC groundwater wells sampled in 2016. The protectiveness of the remedy will be evaluated in the next Five Year Review.

Introduction

- Indicate if and how the tribe was consulted on the 2016 Work Plan. All USACE documents are made available for review and comment at the Information Repositories. Notices were sent to stakeholders on 13 June 2016.
- The decision document does not represent the interest of the tribes or the people of St. Lawrence Island. We do not agree that clean-up levels defined in the decision document are protective of the environment or human health.
 USACE appreciates the difference in perspective as shared by ACAT and the people of St. Lawrence Island and will continue to work cooperatively with all stakeholders to implement the requirements of the Decision Document in accordance with the CERCLA requirements.
- We have concern about at least one photo (Appendix E) that shows a visible sheen. Results from the 2016 sampling effort for DRO and RRO in sediment and total aromatic hydrocarbons and TAqHs in surface water do not support an anthropogenic source for the sheen shown in Photo 6-5 on page 6-6 of the draft report.

Site Description and History

• Need to describe the profound influence of climate warming which is likely affecting mobilization and transport of contaminants in and around St. Lawrence Island.

The next Five Year Review may consider the effects of climate change on potential mobilization and transport of contaminants.

- Break up is often occurring earlier than June now. Noted.
- Page 2-3: The document states that contractors have observed significant changes in surface water characteristics at multiple locations across the site. What are the changes that contractors are observing? How does this affect fate and transport of contaminants?

The complete text from the Bristol report will be added to Page 2-3 as follows: "Bristol observed significant changes in surface water characteristics at multiple locations across the site, most notably at a location directly south (uphill) from Site 26 where surface water runs through a culvert underneath the road that runs from the MOC to the borrow source. This drainage originated in the Kinipaghulghat Mountain valley and exhibited variable flow in late spring/early summer. The drainage would flow for days at a time but would run dry later into the summer during drier periods."

The effects of variable surface water would not have a direct effect on MOC sample results. However, the precipitation variability that manifests as surface water variability would affect groundwater elevations.

• Under the Land and Resource Use section, page 2-4: As we have said repeatedly in

prior comments, it is important to indicate that the military displaced a permanent village at NE Cape. NE Cape was and is more than a place "seasonally occupied." It is considered a village site. By describing it as merely a place that is seasonally occupied, the Corps and their contractors diminish the historical and continuing importance of the site from the cultural, and spiritual perspective of the people of the Island. By diminishing the importance of NEC, the Corps mispresents and potentially underestimates the hazards, risks and exposure pathways of contaminants associated with the area. Surface waters and springs in the area are currently used and traditional drinking water sources. Salvaged materials that are likely contaminated with lead, PCBs, asbestos and other harmful substances continue to be used for building material for homes not only at NE Cape, but throughout the Island. The significant quantities of hazardous waste on the Island were left without the free, prior and informed consent of the people of St. Lawrence Island, in violation of the 1952 agreement with the Tribe and in violation of international law.

A draft Health Consultation prepared by the Agency for Toxic Substances and Disease Registry (ATSDR) dated July 2017 concluded there is no apparent health hazard associated with the Northeast Cape site. ATSDR's assessment contained the following findings: 1) eating fish from Northeast Cape in the summer (3 months) is not expected to harm people's health; 2) eating greens and berries from Northeast Cape year-round is not expected to harm people's health; 3) accidentally ingesting soil and drinking Suqitughneq (Suqi) River surface water are not expected to harm people's health; and 4) there is not enough contact with site contaminants to suggest that exposures are contributing to cancer and birth defects. The following statements in the report are accurate: "Local subsistence hunting camp structures are located adjacent to Site 3 and are seasonally occupied", and "Currently, there are no permanent NEC residents; however, representatives of Savoonga have indicated a desire to re-establish a permanent residential community at the site in the future." Remedial actions have removed contaminated soil containing contaminants above levels identified in the 2009 Decision Document for the Northeast Cape FUDS. Groundwater sampling at the MOC has indicated natural attenuation of residual petroleum constituents is occurring in site groundwater. Surface water samples collected from the Site 28 Drainage and Suqi River have not contained contaminants above levels identified in the 2009 Decision Document. Data collected to date indicate residual contaminants in sediment at Site 28 are not migrating. Remedial actions conducted under the NALEMP have removed contaminated building materials from structures at the NVNC. In addition to the endangered species mentioned, bowhead whale should be included.

Bowhead whale (endangered) will be added to the endangered/threatened species list on page 2-4 of the report.

• In addition to berries and reindeer as important subsistence foods, please include the fact that NE Cape is also used for other food and medicinal plants, including such plants as roseroot, coltsfoot, and willow.

Roseroot, coltsfoot, and willow will be added to section 2.1.4 of the report.

• It is important to indicate that the habitat and subsistence resources in and around NE Cape are significantly and adversely affected by the military contamination and perturbations. Resident and anadromous fish populations and their habitats are not recovering. The people of St. Lawrence Island can no longer fish for the once abundant tomcod or salmon there, for example. The seal haul out was disturbed and has not recovered.

The USEPA conducted an evaluation of the USACE cleanup efforts at Northeast Cape and concluded in February 2013 the cleanup is consistent with CERCLA and the National Contingency Plan. The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The sand berm that naturally, periodically develops at the mouth of the Suqi River creates a barrier to fish that would otherwise migrate from the ocean and into the river. The significant and adverse effects described above are noted as a continuing concern of the tribe and community.

• The document states that materials were initially abandoned in place due to the high cost of off-island transport. It should be noted that significant quantities of equipment and hazardous materials remain at the site in the shallow subsurface, thus providing continuing sources of contaminants that affect the environment and health. From the perspective of the people of St. Lawrence Island, this contamination has contributed significantly to health disparities, including a cancer crisis. The high cost to the health and well-being of the people of St. Lawrence Island must be considered in decisions about clean up decisions as primary prevention and protective measures.

The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

- Page 2-6: the document indicates that remedial actions occurred through 2014. It should be noted that the tribe and ACAT assert that the cleanup is far from complete. The site is being closed prematurely without adequate characterization and clean up. The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.
- Page 2-6: The document indicates that the primary sources of contamination are spills and leaks of fuel products. It should also include PCBs from transformers and electrical equipment, pesticides, heavy metals, solvents.
 PCBs from transformers and electrical equipment, and vehicle maintenance fluids, such as glycol and solvent will be added to the second paragraph on Page 2-6.
- Page 2-6 bottom of para 3: although the document indicates that the northern edge of the MOC has petroleum in subsurface soils at levels below the risk-based levels identified in the decision document, we do not agree that these levels are health protective and it is incumbent upon the Corps to remove this contamination per the 1952 agreement.

The USACE has followed the requirements of the DDs, which were developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

Page 2-7: this document misrepresents the ISCO by deeming it as not an effective • means of remediation. As stated previously by the TAPP advisor and ACAT, the remediation was conducted improperly and against the scientific and technical methods and protocol recommended by Dr. Scrudato. It cannot be claimed in this document that the ISCO method is ineffective when it was improperly implemented. In fact, the characterization in the document of the ISCO pilot test is an outright misrepresentation!

In situ chemical oxidation was deemed ineffective at the MOC during the 2009 pilot-scale test as a result of the presence of peat and highly organic peat soil, presence of permafrost or semi-permafrost zones, and observed preferential flow pathways.

- Page 2-7: Para 2 indicates up-, cross-, and source area monitoring wells. Several • downgradient monitoring wells should be added in order to provide a more complete picture of the fate and transport of contaminants in the groundwater. Permanent monitoring wells cannot be constructed in the tundra downgradient of the MOC because the freeze/thaw cycle will destroy the wells. No contaminants have been detected in surface water samples collected from the Site 28 Drainage and Suqi River. This has provided evidence contaminated groundwater is not migrating into surface water downgradient of the MOC.
- Page 2-8: Monitoring wells 88-4 and 88-5 should be re-instated and included in the • monitoring of groundwater at the MOC. The document acknowledges that they "provide valuable information regarding historical downgradient contamination." Given this, it is likely that they would continue to provide valuable information. Monitoring wells 14MW02, -04, and -05 were installed slightly downgradient of the locations of former monitoring wells MW88-4 and 88-5. Monitoring wells 14MW02, -04, and -05 are considered suitable replacements for former monitoring wells MW88-4 and 88-5.

Page 3-1: Key Field Personnel

The table should indicate qualifications of the key personnel, particularly of the Project Chemist and Analytical Laboratory PM. What laboratory was used for analyses? Qualifications of key personnel were included in Table 4-3 on page 4-7 of the Field Sampling Plan, which was part of the Final Work Plan dated August 2016. Analytical laboratory information was included in the Work Plan and in Table 3-1 on Page 3-1 of the draft reports.

Page 4-1: Work Plan Deviations The document should include justification for each of the deviations and how they affected data quality rather than simply claiming that they did not affect data "usability." The second sentence of Section 4-1 will be revised as follows: "None of the deviations significantly affected data usability or data quality."

Page 5-1: Mobilization and Demobilization

The document should disclose the total costs including transportation, charter flights, lodging etc. Given all of the days when inclement weather prohibited travel to NE Cape, is this method of mobilization cost effective compared with establishing a temporary base of operations at NEC? What are the cost comparisons used to justify this method of mobilization? By doing it this way, the Corps and their contractors bypass the Native Village of Savoonga and/or Gambell and thus not making it possible to include community oversight/community monitor(s) who are present at the NE Cape site when the sampling is occurring. In the future, community oversight/monitors should be included in all sampling programs at NE Cape.

Costs for the method of mobilization utilized during 2016 fieldwork were less than if a temporary camp had been mobilized, setup, operated, and demobilized from Northeast Cape. During the Long Term Management Plan public presentation in Savoonga on 26 July 2016, a request was made by a community member for the USACE to bring community members on a site visit during the 2016 sampling event. This request was seriously evaluated, but the USACE was unable to accommodate it for the 2016 event which occurred during August 2016. Mobilizing to Northeast Cape requires a sufficient lead time to plan for transportation needs and safety considerations. In the case of the 2016 event, there was limited ground transportation available. The Contractor had only two ATV's. Visitors would have been forced to walk from the runway to the sites of interest. No USACE representatives would have been on site to lead the site visit. Our contractor did not have a camp on site, so there were no facilities available to site visitors in case of bad weather. Given the unpredictable weather and the fact daily charter flights were being used, an emergency shelter was required. Because there was insufficient time to plan for additional site visitors, adequate emergency shelter was not available. The safety of our contractors and site visitors is a high priority for the USACE, and therefore we were not able to accommodate the request for a site visit during 2016. This request will be integrated into the planning phase for 2018 activities.

Page 5-5: Sampling Activities

Additional contaminants should have been included in the sampling program and should be analyzed in future sampling programs, including TCE (and other solvents), mercury, pesticides, and PCBs.

Contaminants identified during multiple remedial investigations and subsequent sampling and remedial actions were included in the sampling program.

Page 5-6: Waste Management

The document should indicate where solid wastes were disposed. The document indicates that

wastewater and sanitary waste were disposed on site according to 2016 WP. Did the Corps receive permission for this from the landowner and tribe? If not, this is a violation of the 1952 agreement, requirements for government-government consultation, and possibly other laws that would prohibit the dumping of waste on private lands.

All solid waste was removed from the site and disposed of at the Nome Landfill. The following will be added to as the last sentence of section 5.3: "Solid wastes were disposed at the Nome Municipal Landfill located in Nome, Alaska."

Table 5-1—define the constituents of general refuse.

The following footnote will be added to Table 5-1; "General refuse included spent personal protective equipment, sanitary waste, sampling materials, and empty food containers." Page 6-5, Table 6-4. It is incorrect to label this table "Analytical Natural Attenuation

Results from 2016" because there are no comparative data included in the table from prior years with which to assess the differences in values for these parameters and the effectiveness of natural attenuation. It would be more accurate to simply title the table "Analytical results from 2016."

The title of Table 6-4 will be revised to "2016 Analytical Natural Attenuation Parameter Results" as these results are specific to the 2016 samples. Please note that the historic results and 2016 results for these parameters can be found in Appendix C-2.1

Page 6-6 para 2: The first sentence states that "groundwater quality in samples...indicate natural attenuation is occurring. Although the parameters measured seem to indicate anaerobic petroleum degradation is occurring, there is no quantification of the direct measures of petroleum degradation in the wells that is necessary in order to substantiate this claim. These data (actual values of petroleum concentrations over time) should be presented in a succinct and clear manner in this section rather than in various, poorly designed tables and graphs in the Appendices. A quantification such as percentage of degradation and/or statistical analysis with representation of actual values/concentrations over time should be indicated for each well.

As noted in the comment evidence of natural attenuation is present based on the groundwater parameters measured in 2016. The analytical parameters selected for testing were defined in the work plan without deviation. Presentation of the time series DRO plots presented in Appendix C-3.2 will be simplified in the final report.

Page 6-6, Section 6.3: Contamination of Groundwater

The document does not demonstrate that concentrations have decreased over time with any kind of statistical analysis, so this is an unsubstantiated claim.

kind of statistical analysis, so this is an unsubstantiated claim. Section 6 of the report will be revised to separate the comparisons to SSCLs, ADEC Cleanup Levels, and analyte trends into separate subsections. Additionally, the statement about decreasing trends will be revised to be specific to DRO as follows: "The DRO concentration in two (14MW04, and 14MW05) of the three monitoring wells (14MW02, 14MW04, and 14MW05) with 2016 SSCL exceedances have generally decreased over time since monitoring began in 2014. The DRO concentrations in monitoring well 14MW02 have slightly increased since monitoring began in 2014" Please note this statement for 14MW04 and 14MW05 is based on the geometric regressions found in Appendix C-4.1 and C-4.2. Additionally, a Mann-Kendal analysis for DRO trends will be added for 14MW02, 14MW03 and 14MW05 14MW03, and 14MW05.

The fact that there are so many exceedances of SSCLs in groundwater confirm our previous assertion that monitored natural attenuation is not an adequate method to address the contamination and prevent further harm. Additional removal of contamination sources and active remediation of groundwater is necessary in order to adequately protect environmental and human health.

The USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

6.3.1—Current Contaminant Exceedances in Groundwater

Sentence 2: DRO, naphthalenes, total and dissolved arsenic, chromium, and lead exceeded 2016 ADEC levels—this does not indicate the well(s) in which these exceedances were

found.

Section 6.3.1 will be revised to separate out the comparative discussion of SSCLs versus 2016 ADEC Cleanup Levels. The wells which generated the exceedances will be identified in the text.

Table 6.5

This represents a significant number of exceedances and indicates the need for active remediation rather than passive natural attenuation to reduce levels of these contamination to safe levels.

The USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded remedies at Northeast Cape FUDS are currently protective.

Values should be presented as ppb.

Disagree. The sample results, SSCLs, and 2016 ADEC cleanup levels were shown in milligrams per liter to make comparison of sample results with SSCLs and 2016 ADEC cleanup levels an easy task. If a result exceeded the SSCL, then the result was shown in bold text and gray highlight so it was visually apparent.

Page 6-10, para 1: we are concerned that poor QA/QC may have resulted in the low biased reporting.

The revised text in Section 6 will include a revised discussion of the QL qualified DRO results as follows:

"Samples from wells 14MW06, 14MW03, and 14MW01 were also qualified QL as the extracts were analyzed past 40 days from extraction. The QL qualifier did not affect data usability in this case since analysis within hold time produced lower results than those obtained from the out of hold time analysis which occurred 2 days past the extract hold time."

Page 6-10, para 2: the document indicates that there is no known anthropogenic source of lead at the MOC. What about lead acid batteries, ammunition, leaded gas or aviation fuel? Lead is a potent neurotoxic chemical and it has been established that there is no safe level of exposure.

This is concerning from a public health perspective since this is a potential source of drinking water.

It is unknown whether lead-acid batteries, ammunition, leaded gas and aviation fuel were present at the MOC. As a result, the source of lead is likely not anthropogenic, but instead likely a result of local geology. As stated in the Northeast Cape Long Term Management Plan, groundwater at the MOC should not be used as a drinking water source until RAOs (i.e., SSCLs) are met.

Page 6-10, para 3: the document indicates that there is no anthropogenic source of arsenic and the levels should be attributed to background concentrations. No background or control samples were taken to substantiate this assertion. There could be anthropogenic sources at the MOC such as arsenic-based pesticides, pyrotechnics, or metallurgical

applications. The document also does not substantiate the assertion that chromium levels should be attributed to background levels.

Possible sources could include electroplating, metallurgical applications. There is no indication arsenic-based pesticides, pyrotechnics, or metallurgical applications were present at the MOC. As a result, the source of arsenic is likely not anthropogenic, but instead likely a result of local geology.

Page 6-12: Data indicate that levels of such substances as DRO in some wells are not declining and in fact show highest concentrations in 2015 and 2016. Also MW88-4 should not have been removed after the 2012 sampling program—it is necessary to evaluate the effectiveness of the POL-excavation and the well should be re-installed and sampled in future monitoring.

Only one well of the three wells with 2016 DRO SSCL exceedances, 14MW02, contained DRO levels which were higher than previous DRO results. At 14MW02, three monitoring events have occurred. The 2014 result of 1.3 mg/L obtained during the first year the well was installed is slightly lower than the 2015 result (1.6 mg/L) and 2016 result (1.6 mg/L). Monitoring well MW88-4 was removed during the course of contaminated soil excavation. It was not feasible to preserve the well because the contaminated soil surrounding the well was removed and disposed off site. Monitoring wells 14MW04 and 14MW05 were installed as replacement wells downgradient of the former location of monitoring well MW88-4.

Page 6-13: Identify possible sources/source areas for naphthalene. Although naphthalene in 14MW01 and 14MW02 exceeded the recently lowered ADEC Groundwater Cleanup levels, the assessment of potential sources is beyond the scope of this report.

Page 6.4: The document indicates that natural attenuation is occurring based on measured groundwater parameters. However, there is no statistical substantiation of this for the actual contaminant levels.

The Section titled "Natural Attenuation of DRO" will be revised in the final report to clarify only the geometric regression plots for 14MW04 and 14MW05 and the measured geochemical parameters in the area are the basis of the statement natural attenuation is occurring.

14MW02 indicates that exceedances of DRO SSCLs are occurring, yet this well is deemed not suitable to be analyzed for natural attenuation. This is not logical. It is important to continue to monitor trends in this well.

The discussion of 14MW02 results will be added to Section 6.4 in the final report.

We do not agree that adequate justification has been provided for the prediction that attainment for SSCLs will occur with natural attenuation by 2035. This is highly speculative. And it is not acceptable that these levels will persist far into the future, posing a continuing threat to human health and the environment.

Groundwater monitoring data for most of the existing in-plume MOC wells is limited to the last three years. This will be clarified in Section 6.5 as follows:

"The three years of monitoring results for these wells were assessed for statistical trends using both the Mann-Kendal trend test and geometric regression plots. However, the low number of measurements can only provide a coarse assessment of this primary line of evidence."

As stated in the Northeast Cape Long Term Management Plan, groundwater at the MOC should not be used as a drinking water source until RAOs (i.e., SSCLs) are met.

Page 7-1, Conclusions: the assertion in para 2 that natural attenuation is occurring in some wells is more accurate that what is stated in the executive summary. However, the document does not provide convincing information or statistical analysis of the trends over time that are necessary to substantiate claims that MNA is an effective method. We are not convinced that monitored natural attenuation is adequately effective. We also find it unacceptable that attenuation will not be complete at least until 2035, a speculative date at best.

Groundwater monitoring data for most of the existing in-plume MOC wells is limited to the last three years. This will be clarified in Section 6.5 as follows:

"The three years of monitoring results for these wells were assessed for statistical trends using both the Mann-Kendal trend test and geometric regression plots. However, the low number of measurements can only provide a coarse assessment of this primary line of evidence." Additionally, the following will be added to Section 6.4: "Based on both the geometric regression plots from monitoring wells 14MW04 and 14MW05 and the results of the geochemical parameters in the area, natural attenuation is occurring."

2) 2016 Site 8 and Suqi River Surface Water and Sediment Sampling Report Executive Summary

ES-1: more extensive sampling is needed to define the edge of the area contaminated with elevated DRO levels.

Sampling performed during 2016 at Site 8 defined the western boundary of soil containing elevated levels of DRO. The airstrip access road exists along the eastern boundary of Site 8 and acts as a cover for soil containing elevated DRO levels. There is no pathway for the petroleum constituents to adversely affect human health or the environment, so defining the eastern boundary is not necessary.

It is possible to separate biogenic from anthropogenic sources of DRO/RRO. The problem of interference indicates an inferior laboratory and/or analytical method.

Interferences observed in the soil results from Northeast Cape do not indicate laboratory inferiority in this case. Samples were processed using accepted DRO/RRO test procedures, AK102 and AK103, developed by the State of Alaska, and adopted into regulation by 18 AAC 78. The text below is the entire paragraph from Section 4.1 of the AK102 method: "Other organic compounds including, but not limited to, animal and vegetable oil and grease, chlorinated hydrocarbons, phenols, phthalate esters and biogenic terpenes are measurable under the conditions of this method."

ES-2: cannot assume that RR levels can be attributed to biogenic sources-this is not

justified.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

Page 2-4, Section 2.1.5 Land and Resource Use

Please see our comments provided for this section in the previously reviewed document above. These also apply to this corresponding section.

Please see our response above.

Page 2-5, Section 2.2.1, Site 8.

We think that Eugene Toolie knows the specific location of the break.

Mr. Eugene Toolie is welcome to provide the USACE with a different location for the pipeline break. The exact location may never be known. The location of the pipeline break near Site 8 can be inferred from site data and will remain approximate.

Page 2-6. The fact that TAqH levels exceed SSCL indicates that there are continuing sources that prevent the restoration and recovery of these surface waters and biota. These source areas must be fully removed.

The TAqH levels in the surface water sample closest to the Suqi River did not exceed the SSCL. This indicted petroleum constituents were not migrating offsite. The USACE has followed and will continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Regarding the "DD-selected remedy," the tribe was not properly consulted on a governmentgovernment basis as a full party to the Record of Decision. We believe the selected remedy to be inadequate.

As the USACE has stated in the past, the USACE cannot seek tribal signatures on Records of Decision (also known as Decision Documents [DDs]) because the tribe does not have jurisdiction over the land itself. CERCLA of 1980 regulations (see 40 Code of Federal Regulations [CFR] 300.515) require Indian tribes have jurisdiction over a site in order to be afforded substantially the same treatment as states. However, the State of Alaska maintains jurisdictional authority over territory other than Native allotments or other lands set aside under the superintendence of the federal government. Therefore, it would not have been appropriate to have requested Tribal signatures on the DDs.

Page 2-7: these past exceedances are unacceptably high. It appears that no sampling was done of this area in 2016. Why was this not done?

The objective of sample collection during 2016 was to delineate the extent and magnitude of petroleum contaminated sediment at Site 8 in support of recommendations contained in the First Five-Year Review Report. These data will be used to ensure the most heavily impacted area(s) are included within Decision Unit boundaries during future incremental sampling events likely to occur during the next Five-Year Review.

The sampling effort for surface waters and sediments is far from adequate for Site 8 and the

Suqi River. Additional analytes must be included as stated in our comments on the previous document: TCE (and other solvents), PCBs, mercury, pesticides. The objective of sampling sediment at Site 8 was to delineate the extent and magnitude of petroleum contaminated sediment at Site 8 in support of recommendations contained in the First Five-Year Review Report. These data will be used to ensure the most heavily impacted area(s) are included within Decision Unit boundaries during future incremental sampling events likely to occur during the next Five-Year Review. The objective of sampling surface water and sediment from select locations along the Suqi River was to verify Site 28 remedial actions did not affect the river. As a result, analytes were selected based on results for confirmation samples collected from Site 28 following remedial actions within Site 28.

Page 2-9. Evaluation by ATSDR was grossly insufficient and inconclusive. Noted. USACE does not have purview over ATSDR reports.

Page 4-1, Work Plan Deviations.

Deviations are not adequately justified and we think they compromise the results and conclusions.

The second sentence of Section 4-1 will be revised as follows: "None of the deviations significantly affected data usability or data quality. Data qualifiers were assigned to the data based on the rules established in the work plan. Under those work plan rules, none of the conditions identified with the 2016 data required results to be rejected.

Page 6-3: these sediment and soil level exceedances associated with Site 8 are disturbing and indicate that further characterization and active removal is needed.

The USACE has followed and will continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

The claim that RRO detections/exceedances can be attributed to biogenic sources is unjustified and indicates poor analysis.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an observation. The chromatographic interpretation is reasonable when a comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

Page 6-5. It is necessary to properly characterize the eastern extent of contamination and excavate to remove contaminated soil/sediment.

Sampling performed during 2016 at Site 8 defined the western boundary of soil containing elevated levels of DRO. The airstrip access road exists along the eastern boundary of Site 8 and acts as a cover for soil containing elevated DRO levels. The USACE has followed and will continue to follow the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the

CERCLA, concluded the remedy for this site is currently protective.

Page 6-5, Section 6.3. Extent and Magnitude of Contamination at Suqi River Five surface water and 11 sediment samples is not adequate to assess the extent of contamination in the Suqi River and estuary. Conclusions about effectiveness of prior remedies cannot be made. More comprehensive sampling is needed that includes analytes listed above.

The objective of sampling surface water and sediment from select locations along the Suqi River was to verify Site 28 remedial actions did not affect the river. As a result, analytes were selected based on results for confirmation samples collected from Site 28 following remedial actions within Site 28. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Page 6-10. Biogenic interference can be attributed to poor laboratory and/or analytical procedures. This is unacceptable and compromises the integrity of this report.
Interferences observed in the soil results from Northeast Cape do not indicate laboratory inferiority in this case. Samples were processed using accepted DRO/RRO test procedures, AK102 and AK103, developed by the State of Alaska, and adopted into regulation by 18 AAC 78. The text below is the entire paragraph from Section 4.1 of the AK102 method: "Other organic compounds including, but not limited to, animal and vegetable oil and grease, chlorinated hydrocarbons, phenols, phthalate esters and biogenic terpenes are measurable under the conditions of this method."

Page 6-1—Conclusions

Cannot attribute RRO to biogenic sources-unjustified.

The report assertion that biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

We concur that further removal actions are necessary. Better analytical methods are needed to discern anthropogenic sources and to remove interferences. Although removing impacted sediment and soil at Site 8 may be an alternate remedy, the

USACE has followed the requirements of the DD, which was developed in accordance with the CERCLA. The First Five-Year Review, which was performed in accordance with the CERCLA, concluded the remedy for this site is currently protective.

Samples were processed using accepted DRO/RRO test procedures, AK102 and AK103 in this case, developed by the State of Alaska and adopted into regulation by 18 AAC 78. Results from samples using the silica gel cleanup procedures typically indicated a significant reduction in DRO and RRO concentrations.

In the Suqi River, we do not believe that RRO can be attributed to biogenic interference.

Similarly to the soil samples, the report assertion biogenic sources are the primary contributing factor to chromatographic patterns generating RRO results for 2016 Northeast Cape samples is based on an interpretation. The chromatographic interpretation is reasonable based on the comparison of the patterns produced by the calibration standards versus the patterns observed in the sample.

End of comments and responses.