NORTHEAST CAPE HTRW REMEDIAL ACTIONS

SITE 28 TECHNICAL MEMORANDUM REVISION 1

Northeast Cape, Saint Lawrence Island, Alaska

Contract No. W911KB-06-D-0007 Task Order 0007

February 2012

Prepared for:

US Army Corps of Engineers Alaska District

111 W. 16th Avenue, Third Floor Anchorage, Alaska 99501-5109 Phone (907) 563-0013 Fax (907) 563-6713

F10AK096903_03.10_0021_a 200-1e

TABLE OF CONTENTS

SEC ⁷	<u> FION</u>	PAGE
ACR	ONYMS AND ABBREVIATIONS	v
1.0	INTRODUCTION	1
1.1	Site History	1
1.2	Previous Studies and Actions	1
2.0	SITE 28 DESCRIPTION AND BACKGROUND	3
3.0	2011 SITE 28 CHARACTERIZATION ACTIVITIES	5
3.1	Sample Location Selection	5
3	3.1.1 Transects	5
3	3.1.2 Discrete Samples	6
3.2	Matrix Determination – Soil versus Sediment	6
3.3	Sampling Procedures	7
3.4	Background Samples	8
3.5	Topographic Survey	9
4.0	SITE CHARACTERIZATION RESULTS	11
4.1	Historical Sample Locations and Current Analytical Sample Results	12
4.2	Fuel Constituents Analytical Results	13
۷	4.2.1 Biogenic Components	13
۷	4.2.2 DRO/RRO Sample Results with Silica Gel Cleanup	14
۷	4.2.3 Background Organic Analysis	17
۷	4.2.4 Evaluation of Biogenic Components	18
4.3	PCB Analytical Results	18
4.4	Metals Analytical Results	19
4.5	Data Verification	19
4.6	Nature and Extent of Contamination	19
5.0	RECOMMENDATIONS	23
6.0	REFERENCES	25

i

TABLES

Table 1	Site 28 Sediment Analytical Results
Table 2	Site 28 Sediment Analytical Results Exceeding Cleanup Levels
Table 3	Site 28 Soil Analytical Results
Table 4	Site 28 Soil Analytical Results Exceeding Cleanup Levels
	FIGURES
Figure 1	Vicinity Map
Figure 2	Location Map
Figure 3	Project Work Sites
Figure 4	Site 28 Historical and 2011 Transect and Sample Locations
Figure 5	Site 28 Analytical Results Exceeding Cleanup Levels
Figure 6	Fuel Constituents Exceeding Cleanup Levels
Figure 7	Sample 11NC28SS063-0.75 – Without Silica Gel
Figure 8	Sample 11NC28SS007-1.5 – Without Silica Gel
Figure 9	Sample 11NC28SS005-1 – Without Silica Gel
Figure 10	Sample 11NC28SS017-2 – Without Silica Gel
Figure 11	Sample 11NC28SS071-1 – Without Silica Gel
Figure 12	Background Sample Locations
Figure 13	Sample 11NC28SS079-3 – Without Silica Gel
Figure 14	Sample 11NC28SS079-3 – With Silica Gel
Figure 15	PCBs Exceeding Cleanup Levels
Figure 16	Metals Exceeding Cleanup Levels
Figure 17	Site 28 Potential Sediment Removal Areas, Estimated Volumes, and Potential Road Location
Figure 18	Site 28 Potential Soil Removal Areas, Estimated Volumes, and Potential Road Location

APPENDICES

Appendix A Photograph Log

Appendix B Field Notes

Appendix C Boring Logs

Appendix D ADEC Checklists and Chemical Data Verification Report

Appendix E Response to Comment Forms

(Intentionally blank)

ACRONYMS AND ABBREVIATIONS

minutesdegrees

AC&WS Aircraft Control and Warning Station

ADEC Alaska Department of Environmental Conservation

AK Alaska Test Method

AST aboveground storage tank

bgs below ground surface

Bristol Bristol Environmental Remediation Services, LLC

COCs contaminants of concern

DL detection limit

DRO diesel range organics

GRO gasoline range organics

LOD limit of detection

LOQ limit of quantitation

mg/kg milligrams per kilogram

MOC Main Operations Complex

MS/MSD matrix spike/matrix spike duplicate

NE Cape Northeast Cape

NOM natural organic matter

PAHs polynuclear aromatic hydrocarbons

PCBs polychlorinated biphenyls

POL petroleum, oil or lubricants

RI remedial investigation RRO residual range organics

Suqi Suqitughneq

SW U.S. Environmental Protection Agency Solid Waste Test Method

TOC total organic carbon

USACE US Army Corps of Engineers

USAF U.S. Air Force

UVOST UltraViolet Optical Screening Tool

WACS White Alice Communications System

(Intentionally blank)

1.0 INTRODUCTION

This Technical Memorandum presents the results of characterization activities performed in August 2011 at Site 28 of the Northeast Cape (NE Cape), on Saint Lawrence Island, Alaska. Bristol Environmental Remediation Services, LLC (Bristol), performed the work for the US Army Corps of Engineers (USACE), Alaska District, under Contract No. W911KB-06-D-0007, Task Order 0007.

1.1 SITE HISTORY

Saint Lawrence Island is located in the Bering Sea, near the territorial waters of Russia, approximately 135 air miles southwest of Nome, Alaska, at 63 degrees (°) 20 minutes (′) north latitude and 168° 59′ west longitude (Figure 1). The project site, which originally encompassed 4,800 acres located near NE Cape, falls between Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south (Figure 2). A U.S. Air Force (USAF) Aircraft Control and Warning Station (AC&WS) was constructed at the site during 1950 and 1951, and was activated in 1952. In 1954, the USAF constructed a White Alice Communications System (WACS) station, composed of four large parabolic antennas and a building housing the electronic equipment. The facility functioned as a surveillance station, providing radar coverage for the Alaskan Air Command and, later, for the North American Air Defense Command. It was part of an Alaska-wide early warning system constructed to reduce potential vulnerability to bomber attacks across the polar region.

The AC&WS and WACS operations were terminated in 1969 and 1972, respectively. The majority of the military personnel were removed from the NE Cape site by the end of 1969. The NE Cape buildings, and the majority of furnishings and equipment, were abandoned in place because of the high cost of off-island transport. In 2000, the White Alice Station was reclassified as a formerly used defense sites (FUDS) eligible property, and the USACE included the area in the ongoing cleanup program for NE Cape.

1.2 Previous Studies and Actions

Environmental investigations and cleanup activities at NE Cape began in the mid 1980s with the goal of locating and identifying areas of contamination and gathering enough information to develop a cleanup plan. Remedial investigations (RIs) were initiated at NE Cape during

February 2012 1 Revision 1

the summer of 1994. Additional sampling was performed during subsequent investigations: Phase II RI [Montgomery Watson, 1996 and 1999]; Phase III RI [Montgomery Watson Harza, 2003]; and Phase IV RI [Shannon &Wilson, Inc., 2005]. The studies divided the concerns among 34 separate sites. The results of the RIs showed that contaminants were present at some but not all sites. Bristol Environmental & Engineering Services Corporation performed removal actions in both 2003 and 2005. In 2009, Bristol returned to the island to construct a landfill cap, remove petroleum, oil or lubricants (POL)-containing drums, and perform a chemical oxidation study. In 2010, Bristol constructed a landfill cap over the Site 9 Housing and Operations Landfill; conducted an UltraViolet Optical Screening Tool (UVOST) investigation to delineate the extent of diesel range organics (DRO) contamination in soil at the Main Operations Complex (MOC) and removed POL- and polychlorinated biphenyl-(PCB-) contaminated soil.

2.0 SITE 28 DESCRIPTION AND BACKGROUND

Site 28 drainage basin is located north of the MOC and drains north into the Suqitughneq (Suqi) River, as shown in Figure 3. This site contains variable surface features consisting of wetlands, rolling tundra, ponds, and flowing streams. The most significant sources of surface water are overland flow (runoff) from the MOC and from the ground in the form of seeps immediately north of the MOC gravel pad and periodically throughout the drainage basin. Two distinct sub-drainages containing feeder streams originating as seeps drain into the main stream approximately one-quarter of the way down the drainage. Surface water runoff, usually during and immediately following occasional rainfall events, can contribute significant amounts of water to the basin. The general area contains subsurface, discontinuous permafrost, which significantly impacts the appearance of surface topography.

Three distinct drainages originate from the upgradient MOC gravel pad and contribute flow to Site 28 (Figure 4). The eastern drainage flows from the area adjacent to Sites 10 and 11, a vegetated area north of the former fuel tanks; the middle drainage originates from an area where a culvert was removed during 2010 remedial actions that previously directed flow from Site 27; and the western drainage is located downgradient of Site 13. The western drainage originated from a manhole and small, concrete supporting structure just north of the perimeter access road, which emptied into an artificially created swale. The manhole likely served as the drain leading from Building 110 (Heat and Electrical Power Building) at the MOC. In 2010, the concrete manhole structure was cleaned and removed. A 12-inch corrugated metal pipe, which attached to the manhole and continued upgradient toward the MOC, was cut and 63 feet of the pipe was removed. The open end of the pipe was then filled with bentonite and welded shut. In the middle drainage, another 12-inch corrugated metal pipe, measuring 32 feet in length, was completely removed.

Site 28 has been impacted by historical MOC bulk fuel releases in addition to releases from other sources. Soil staining has been observed near the head of the eastern drainage and at the former aboveground storage tank (AST) locations at Site 11. Sediments in the upper portion of the Site 28 Drainage Basin have been described as stained and will produce sheen when disturbed. Sampling activities occurred at the drainage basin between 1994 and 2001. Based on data available before 2011, the primary contaminants of concern (COCs) in soil and

February 2012 3 Revision 1

sediments are chromium, lead, zinc, PCBs, polynuclear aromatic hydrocarbons (PAHs), DRO, and residual range organics (RRO). The highest concentrations of contaminants are located proximal to the edge of the MOC gravel pad.

Surface water samples were collected from the drainage basin in 1994, 1996, and 2001. According to the Decision Document (USACE, 2009), concentrations of DRO, total recoverable petroleum hydrocarbons, PCBs, and lead, were elevated in 1994. Surface water samples collected in 2001 were analyzed for DRO, RRO, and PCBs. The samples were not analyzed for lead. DRO was detected at concentrations ranging from 0.39 to 2.3 milligrams per liter. PCBs and RRO were not detected. Data indicated that the most heavily contaminated surface waters of the drainage basin were found at the head of the western and middle drainages, located at the terminus of the former culverts.

3.0 2011 SITE 28 CHARACTERIZATION ACTIVITIES

3.1 SAMPLE LOCATION SELECTION

Sediment and soil sampling was conducted along transects and at discrete locations between the upper end of Site 28 and its confluence with the Suqi River to delineate the extent and magnitude of contamination at the site. The transect locations and discrete sample points were chosen to confirm the sample results from 1994, 1996, and 2001, as well as to gather additional information to fill data gaps within Site 28. Figure 4 shows the historical 2001 transect locations and the 2011 transect and sample locations.

3.1.1 Transects

Transect locations were proposed in the NE Cape work plan (Bristol, 2011) and confirmed or modified in the field by the USACE Quality Assurance Representative and the Bristol Contractor Quality Control System Manager. Transects generally encompassed an area between two banks of the drainage, which was defined by an approximate 2-foot increase in slope. The spacing and number of sample locations along each transect varied; sample locations were selected by the Field Team Lead based upon site conditions such as length of the transect and where contamination was likely to accumulate (e.g. ponded areas). Figure 4 shows transect and sample locations. Originally, a total of 70 sample locations were planned, having seven locations along a transect at three different depths (0.5 feet below ground surface [bgs], 1.0 foot bgs, and 1.5 feet bgs), for a total of 210 samples. This general procedure was followed wherever possible, though some variability occurred due to site conditions, for example:

A thick vegetative mat was present throughout much of the site. At many locations, the first depth where a true soil sample could be collected was deeper than 0.5 feet bgs. After the first sample was collected at a particular location, subsequent samples were collected at 0.5-foot intervals until three depth intervals were collected, or refusal was reached.

Shorter transects may have fewer samples than longer ones, with sample locations being more densely populated in stream channels and standing water.

February 2012 5 Revision 1

Refusal from rocks or permafrost occurred at some sample locations. At these locations, only one or two depth intervals could be collected.

3.1.2 Discrete Samples

The maximum number of samples to be collected at Site 28 was 210. Following sampling of the initially selected transects, 32 surplus samples remained. It was decided that these remaining samples would be collected at other discrete locations within the drainage that met the following conditions:

- 1. Discrete samples were collocated with historical samples that contained elevated contaminant concentrations, particularly PCBs.
- 2. Samples were in low-lying depositional areas where contaminants most likely accumulated.

Samples were collected from 12 discrete locations within the Site 28 drainage basin.

Like the transect samples, discrete samples were attempted to be collected at three different depths (0.5 feet bgs, 1.0 foot bgs, and 1.5 feet bgs) at each sample location. Due to the vegetative mat at some discrete sample locations, the first depth where a true soil sample could be collected was greater than 0.5 feet bgs. After the first sample was collected at a particular location, subsequent samples were collected at 0.5-foot intervals until three depth intervals were collected, or refusal from either rocks or permafrost.

3.2 MATRIX DETERMINATION – SOIL VERSUS SEDIMENT

The Site 28 drainage basin is a wetland made up of swales, pooled water, flowing water, and relatively dry areas. Because of the variety of site features, the samples collected could be either a sediment matrix or a soil matrix. The distinction of whether a sample is soil or sediment is important because the project cleanup levels for COCs vary based on the type of sample; for example, sediment samples have a DRO/RRO cleanup level of 3,500 milligrams per kilogram (mg/kg), whereas DRO/RRO soil samples have a cleanup level of 9,200 mg/kg. As a result, characterization of the sample's physical properties can have a significant impact on future removal actions.

February 2012 6 Revision 1

Initially, sediment was defined as material that appeared to have been transported and deposited by water, and all other material was considered soil. Samples collected during the field effort were defined as soil or sediment based on observations made at the time of collection, and the matrix was noted on field forms. After the field effort, the definition of a sediment or soil matrix was modified through discussions with USACE. All bank samples collected along the basin slope located topographically higher than the stream, ponds, and wetlands were considered to be a soil matrix. In wetlands, ponds, or active stream channels, material collected from 0–0.5 foot bgs was considered to be a sediment matrix; samples collected greater than 0.5 foot bgs or below vegetative mat were considered to be a soil matrix. The matrix originally noted on the field forms is now obsolete due to the modified definition.

Soil boring logs (Appendix C) were developed for each borehole location using the information recorded on the field forms. Matrix designations on the field forms were purposely not included in the electronic boring logs due to the modified definition of sediment. The modified definition of sediment, along with information contained in the field forms and electronic boring logs, were used to assign a matrix designation to each sample collected at Site 28 (see Tables 1–4). Figures 5, 6, 15, 16, 17, and 18 were developed based on the tables.

3.3 SAMPLING PROCEDURES

Site 28 samples were collected using a 4-inch diameter hand auger with a T-handle. Sample depths were measured by marking the auger handle at the ground surface at its sample collection depth. The distance between this reference mark and the sample contained within the auger barrel is equal to the depth bgs. Samples were collected from within the auger barrel, but not from any area within the barrel where the possibility for slough could cross-contaminate samples (e.g., the uppermost exposed soil in the auger barrel). The sampling method, combined with the prevalent silts and clays, resulted in strong auger borehole structural integrity, as well as a high-integrity sample collection protocol. Sample material was removed from the auger and placed into a stainless steel bowl, and then placed into appropriate containers provided by the laboratory. Samples for volatile analyses were collected first by transferring approximately 20-25 grams of material into a tared 4-ounce

February 2012 7 Revision 1

container. Methanol preservative (provided by the laboratory) was immediately poured over the soil sample, and the container was sealed tightly. The remaining analyses were collected after the volatile samples. All samples were placed into a chilled sample cooler and then transferred to the sample refrigerator until shipment to the laboratory. New disposable nitrile gloves were used for each sample, and the auger and bowl were decontaminated between each sample. Decontamination procedures consisted of an Alconox® wash followed by a double rinse of tap water and deionized water. Brushes were used during the initial wash to aid in the removal of solid particles. Sample locations were marked with laths and surveyed by ECO-LAND, LLC. The samples were shipped via Bering Air to Nome, and then from Nome to TestAmerica Laboratories, Inc., in Tacoma, Washington, under chain-of-custody procedures. Field activities are shown in a photograph log included in Appendix A. Sample information and field observations were recorded on field forms included in Appendix B. Boring logs are provided in Appendix C.

Samples were analyzed for petroleum hydrocarbons (benzene, toluene, ethylbenzene, and total xylenes [BTEX]; gasoline-range organics [GRO]; DRO/RRO; and PAHs), PCBs, and the Resource Conservation and Recovery Act (RCRA) 8 metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) plus nickel and vanadium. Analyses also included silica gel cleanup of DRO/RRO extracts and total organic carbon (TOC) for a biogenic interference evaluation following the Alaska Department of Environmental Conservation (ADEC) Technical Memorandum 06-001 (ADEC, 2006). Duplicate samples were collected at a rate of one per 10 samples or 10 percent, and matrix spike/matrix spike duplicate (MS/MSD) analyses samples were collected at a rate of one for every 20 primary samples or 5 percent. Analytical results are discussed in Section 4.0.

3.4 BACKGROUND SAMPLES

Background samples were collected from a nearby drainage to evaluate biogenic interference or naturally occurring organic material. The background drainage was located approximately 1 mile east of Site 28 and was outside of the impact areas from the former military installations at NE Cape (Figure 3). The selected background drainage had similar topography and vegetation to Site 28, and the soil and sediment material were similar to Site 28 in character. Background samples were collected using the same procedures as the

February 2012 8 Revision 1

Site 28 Technical Memorandum Contract No. W911KB-06-D-0007

Site 28 samples; the samples were collected at three different depths from four sample locations, for a total of 12 primary samples.

Background samples were analyzed for DRO/RRO and DRO/RRO with silica gel cleanup, and TOC. Duplicate samples were collected at a rate of one per 10 samples or 10 percent, and MS/MSD analyses samples were collected at the rate of one for every 20 primary samples or 5 percent. Analytical results are discussed in Section 4.0.

3.5 TOPOGRAPHIC SURVEY

A topographic survey of Site 28 was performed by licensed professional surveyors at ECO-LAND, LLC. The survey (1.0-foot primary and 0.5-foot secondary contours) encompassed the entire Site 28 drainage basin, approximately 29 acres, and centered west-east on the western, middle, and eastern drainages. The present-day edges of water, including standing water within vegetated areas as well as open water, were recorded during the survey and are noted in Figure 4. The raw topographic survey information is provided in the supplemental data files to this report.

(Intentionally blank)

4.0 SITE CHARACTERIZATION RESULTS

Analytical results were compared to site-specific cleanup levels specified in the decision document (USACE, 2009). If a cleanup level was not specified in the decision document for a particular analyte, soil results were compared to Title 18 Alaska Administrative Code, Chapter 75, Tables B1 and B2 *Migration to Groundwater* (ADEC, 2008); and sediment results were compared to NOAA SQuiRT threshold effects level (TEL) and probable effects level (PEL) screening values (Buchman, 2008). Some analytes did not have sediment cleanup levels listed in either the 2009 Decision Document or the NOAA SQuiRT tables.

Many of the samples submitted to the laboratory had high moisture content due to the saturated conditions in Site 28, which affected the analytical reporting limits. Laboratory-stated detection limit (DL), limit of detection (LOD), and limit of quantitation (LOQ) values are based on analyzing and reporting samples with no moisture present. High moisture content in a sample elevates the DL, LOD, and LOQ proportionately when the sample's dry weight is calculated. Some samples collected had up to 89 percent moisture, which elevates non-detect reporting limits approximately 9 times greater than a sample with no moisture present. When target analytes such as DRO, PCBs, and PAHs were present in high concentrations, dilutions were necessary to bring analytes within calibration range. The dilutions resulted in some target analytes being reported non-detect above site-specific cleanup levels. Additionally, some samples analyzed using U.S. Environmental Protection Agency Solid Waste Test Method (SW) SW8270SIM [selective ion monitoring] and SW8082 were submitted with insufficient sample mass, which resulted in an elevated LOD. If an analyte was not detected but the LOD was greater than the cleanup level, the analyte was considered not to have met project quality objectives. Samples with positive results exceeded cleanup levels for one or more analytes in 102 of the 210 primary Site 28 samples. The 210 primary samples included 22 sediment samples.

The Site 28 analytical results for sediment are presented in tables 1 and 2; soil results are presented in tables 3 and 4. Table 1 contains all sediment results, and Table 2 contains sediment results exceeding cleanup levels. Table 3 contains all soil results, and Table 4 contains soil results exceeding cleanup levels. The Site 28 laboratory Level IV data reports are provided electronically along with electronic data deliverables. Figure 5 shows sample

February 2012 11 Revision 1

locations that exceed cleanup levels for any analyte. Analytical results are discussed in more detail in the following sections.

4.1 HISTORICAL SAMPLE LOCATIONS AND CURRENT ANALYTICAL SAMPLE RESULTS

The transect locations and discrete sample points were chosen to confirm the sample results from 1994, 1996, and 2001 and to assess the current COC concentrations. Discrete samples were collected at six locations that historically contained elevated PCB concentrations. A brief review of data collected in 2001 shows that concentrations of DRO and RRO throughout the drainage basin are similar to the concentration detected in 2011. The following table presents a comparison of historical PCB and DRO results with the sample results from the 2011 investigation.

Sample ID	Sample Depth (feet bgs)	Aroclor-1254 Concentration (mg/kg)	Aroclor-1260 Concentration (mg/kg)	DRO Concentration (mg/kg)
94NE28SW/SD110	Unknown	5.16	1.35	11,500
11NC28SS049-1_5	1.5	ND (0.024)	ND (0.024)	32,000
94NE28BH10-2	Unknown	2.17	ND	104,000
11NC28SS068-1	1	0.029 J	ND (0.034)	29,000
96NE28SW/SD101	Unknown	ND	1.4	19,000
11NC28SS027-0_75*	0.75	ND (0.066)	ND (0.066)	4,400
11NC28SS028-0_5*	0.5	0.230 Q	0.500 Q	59,000
01NE28SD119	0.5	0.34	0.39	36,000
11NC28SS075-1_5**	1.5	ND (0.074)	ND (0.074)	930
01NE28SD155	0.5	1.7	0.7	88,000
11NC28SS066-0_75	0.75	2	1	97,000
01NE28SD156	1.5	0.52	0.23	85,000
11NC28SS066-1_25	1.25	0.79	0.42	46,000
01NE28SD167	0.5	ND	5.43	17,000
11NC28SS067-0_5	0.5	0.14	0.22	1,800

Sample ID	Sample Depth (feet bgs)	Aroclor-1254 Concentration (mg/kg)	Aroclor-1260 Concentration (mg/kg)	DRO Concentration (mg/kg)
01NE28SD168	1.5	ND	0.68	8,200
11NC28SS067-1_5	1.5	ND (0.120)	1.8	16,000

Notes:

The first sample in each group (shaded in gray) is the historical sample; the subsequent sample(s) shown in white are the corresponding 2011 samples.

bgs = below ground surface

J = result is an estimate

mg/kg = milligrams per kilogram

ND = non-detect

Q = one or more laboratory quality control criteria was outside of limits

4.2 FUEL CONSTITUENTS ANALYTICAL RESULTS

The fuel-related analytes that most frequently exceeded cleanup levels include DRO, RRO, 1-Methylnaphthalene, 2-Methylnaphthalene, and naphthalene. The most prevalent COC at Site 28 is DRO, with almost half of the samples collected in 2011 exceeding DRO cleanup levels. Thirty-nine of the 210 primary samples collected exceeded cleanup criteria for GRO, and eight samples exceeded cleanup levels for ethylbenzene, toluene and/or total xylenes. Benzene did not exceed site-specific cleanup levels in any of the samples. Results for 67 primary samples exceeded cleanup levels for PAHs. Nine samples had non-detect results for PAHs, with the reported LOD exceeding cleanup levels.

The most concentrated areas of fuel contamination are located in the southern portion of Site 28 near the MOC, particularly in the western and middle drainages. The fuel contamination extends from the southern edge of Site 28 along low-lying areas and drainage channels in a northwestern direction, and a northerly direction along the drainage channel. Figure 6 shows the sample locations that exceed cleanup levels for fuel constituents (GRO, DRO, RRO, toluene, ethylbenzene, xylenes, and PAHs).

4.2.1 Biogenic Components

Site 28 is a low-lying area with some standing water and a drainage that empties into the Suqi River. The site contains lush vegetation with a thick organic mat and discontinuous

February 2012 13 Revision 1

^{*}Samples 11NC28SS027-0_75 and 11NC28SS028-0_5 are both located approximately 25 feet from historical sample 96NE28SW/SD101.

^{**}Sample 11NC28SS075-1_5 is located approximately 100 feet from historical sample 01NE28SD119.

permafrost underlying the site. Because of the short summer season and saturated conditions, vegetative organic matter does not break down and decompose readily, which leads to deposition of natural organic matter (NOM). A portion of this NOM is extracted when soil samples are analyzed for DRO/RRO and PAHs. PAH sample concentrations are not affected by NOM, but the instrument capability is affected as non-target interference, which in some cases necessitates the dilution of sample extracts. When samples are analyzed for DRO and RRO, there is no way to directly distinguish between natural and petrogenic DRO and RRO. The inability to distinguish between natural and petrogenic compounds is termed "biogenic interference." Silica gel treatment of sample extracts removes medium and high polarity compounds from both natural and petrogenic sources. Unweathered fuel mainly comprises non-polar compounds (i.e., straight chain hydrocarbons), so the silica gel treatment does not remove the fuel component from the extract. A review of DRO/RRO sample chromatograms with fuel present at various sample locations shows that straight chain hydrocarbons are present in the chromatograms and are likely attributed to diesel fuel in the diesel range.

Site 28 samples were also analyzed for TOC in accordance with ADEC requirements when evaluating samples for biogenic interference (ADEC Technical Memorandum 06-001). The TOC results varied with a range from 8,700 to 450,000 mg/kg, with an average of 112,000 mg/kg. The TOC analysis also does not distinguish between NOM and POL, and there is no extraction or cleanup method to separate natural and POL components for TOC analysis. The sample with the lowest TOC result did not show any POL in the chromatogram. The sample with the highest TOC result, Sample 11NC28SS063-0.75 (located in Transect 11), had a distinct fuel pattern and a DRO result of 58,000 mg/kg (Figure 7). The DRO result for Sample 11NC28SS063-0.75 did not decrease with silica gel cleanup; the result actually increased by 8 percent with silica gel cleanup. This increase is possibly due to a greater instrument response when polar compounds are removed, or due to instrument calibration variability within method control limits.

4.2.2 DRO/RRO Sample Results with Silica Gel Cleanup

The current ADEC approach for the use of silica gel-treated DRO and RRO sample results is to allow silica gel-treated results to demonstrate that site cleanup goals have been met when no discernable fuel pattern is present in chromatograms, and biogenics are present in the

February 2012 14 Revision 1

sample chromatograms. Per Technical Memorandum 06-001 (ADEC, 2006), in order to use silica gel-treated sample data, a single soil sample is extracted once and an aliquot of the extract is analyzed for DRO and RRO by Alaska Test Methods AK102 and AK103 without any further alteration or treatment. A second aliquot of the same extract is passed through an activated silica gel column, and the extract is analyzed with the same analytical methods as the untreated samples. Additionally, the same soil is analyzed for TOC content as part of the requirements stated in Technical Memorandum 06-001. For future confirmation sampling at this site, a qualified person within the ADEC will review sample results and chromatograms to determine whether the sample results adequately demonstrate that site cleanup goals have been met either with untreated results or silica gel-treated results. In order to use the silica gel-treated results, the presence of biogenics must be clearly demonstrated in the silica gel-treated and untreated results and sample chromatograms.

The main POL contaminant identified at Site 28 is DRO and is likely arctic diesel or #1 diesel, though no arctic or #1 diesel standards were analyzed concurrently with Site 28 samples for comparison.

4.2.2.1 <u>Eastern Drainage</u>

Transect 1, located in the eastern drainage, showed concentrations of DRO exceeding site-specific cleanup levels in all sampled depths at sample location 11NC28SS001 (0.5, 1 foot, and 2 feet bgs), and at sample location 11NC28SS002 at 2 feet bgs. Samples collected at 2.5 and 3 feet bgs at sample location 11NC28SS002 had DRO concentrations below site-specific cleanup levels (5800 mg/kg and 5100 mg/kg, respectively), though they exceeded cleanup levels for 1-Methylnaphthalene and 2-Methylnaphthalene. PAHs 1-Methylnaphthalene and 2-Methylnaphthalene are hydrophobic and tend to adsorb onto soil and fine mineral particles.

In samples 11NC28SS001-0.5, 11NC28SS001-1, and 11NC28SS002-2, DRO concentrations were reduced less than 20 percent with silica gel cleanup, but the RRO concentrations were reduced by 50 percent or more with silica gel.

Figure 8 shows a chromatogram of sample 11NCSS28007-1.5 (located in Transect 2) with fuel present below cleanup levels, as well as biogenics in the residual range. Figure 9 is a

February 2012 15 Revision 1

chromatogram of sample 11NC28SS005-1 with no silica gel, showing a typical biogenic pattern and no distinguishable POL present.

4.2.2.2 Western and Middle Drainages

The western drainage, located adjacent to and north of the former manhole and culvert, contained significant DRO concentrations that ranged from 2,800 to 150,000 mg/kg without silica gel cleanup and RRO concentrations that ranged from 1,500 to 21,000 mg/kg without silica gel cleanup. Silica gel treatment did not reduce the DRO concentrations in the majority of samples, but reduced the RRO concentrations in samples that exhibited both POL and NOM characteristics in the sample chromatograms. This suggests that the NOM signature occurs mostly in the residual range on chromatograms.

The middle drainage is separated from the western drainage by a topographically high area. A 32-foot culvert, believed to allow storm water and snow melt to pass under the perimeter road, was removed in 2010. The western and middle drainages were characterized by discrete samples collected at historical locations that showed COC exceedances and also by samples collected along Transect 4 as shown in Figures 4 and 18. The middle drainage contained more sediment than the western drainage, but both had sample results for DRO at similar concentrations along Transect 4. Silica gel treatment of DRO/RRO samples collected in the middle and western drainages did not reduce DRO concentrations but did reduce RRO concentrations to varying degrees.

The majority of sample chromatograms with DRO above cleanup levels display the typical fuel "hump" in the light diesel range (Figure 7). Several chromatograms also showed a hump in the residual range with motor oil-like characteristics, which is likely attributed to POL as shown below:

Sample 11NC28SSSS017-2, collected in the middle drainage on Transect 4, shows both diesel and motor oil-like patterns in the chromatograms (Figure 10). DRO concentrations were above cleanup levels with a result of 23,000 mg/kg in the untreated sample and a result of 20,000 mg/kg in the silica gel-treated sample. Silica gel cleanup only reduced the RRO result for 11NC28SSSS017-2 by 15 percent, from 3,200 to 2,700 mg/kg.

Sample 11NC28SS071-1, collected downgradient from Transect 4, exhibits both fuel and motor oil patterns in the chromatograms (Figure 11). Sample results for DRO and RRO exceeded cleanup levels with and without silica gel treatment: 26,000 mg/kg DRO and 14,000 mg/kg RRO without silica gel treatment, and 31,000 mg/kg DRO and 13,000 mg/kg RRO with silica gel treatment.

4.2.2.3 Main Channel

Transect 11 was located in the flowing water of the main channel area, approximately halfway between the MOC and the confluence with the Suqi River. The sample matrix was a combination of soil and sediment. Sample results showed DRO concentrations exceeding cleanup levels in 5 of the 6 sample locations, with several PAHs exceeding cleanup levels at the same locations that also have DRO present above cleanup levels. RRO exceeded the cleanup level at a single location, 11NC28SS062, at a depth of 0.75 feet bgs. Chromatographic interpretation of Transect 11 samples indicate that POL as DRO is present with little biogenic contribution.

4.2.3 Background Organic Analysis

Twelve primary background samples were collected as part of the site characterization to determine the magnitude of biogenic contribution to DRO and RRO results. The background sample location was selected in an area that had a minimal likelihood of POL contamination present, and had similar topography and hydrology as Site 28. The background location was approximately 1 mile east of Site 28 (Figure 3); sample locations are shown in Figure 12.

Background samples were analyzed for DRO and RRO by AK102 and AK103 with and without silica gel cleanup, and TOC. Based on chromatographic interpretation (Figures 13 and 14, sample 11NC28SS079-3 with and without silica gel treatment) and observations by field personnel, there was no evidence of any petrogenic sources in the background samples. The samples contained varying concentrations of NOM in the diesel and residual ranges. None of the background samples exceeded site-specific cleanup levels for DRO. Background DRO concentrations ranged from 74 to 2,400 mg/kg without silica gel treatment, and 50 to 1,500 mg/kg with silica gel treatment. The silica gel reduced the average DRO concentrations by approximately 45 percent. The untreated RRO sample results ranged from

February 2012 17 Revision 1

670 to 24,000 mg/kg, and from 420 to 7,700 mg/kg with silica gel treatment. More than half of the background samples exceeded site cleanup levels for RRO before silica gel treatment, but they were all below soil cleanup levels following silica gel treatment. Silica gel treatment reduced the average RRO concentrations by more than 72 percent. Background sample analytical results are presented in Table 1.

4.2.4 Evaluation of Biogenic Components

Site 28 is highly organic with POL analytes present above site-specific cleanup levels. Samples that did not show fuel-like patterns in chromatograms, such as the background samples, had the average DRO concentrations reduced by approximately 45 percent with the silica gel cleanup, and the RRO concentrations reduced by more than 70 percent with silica gel cleanup. However, most of the Site 28 samples did not show any appreciable reduction of DRO concentrations with silica gel treatment and, in some instances, the DRO concentration slightly increased following silica gel treatment.

Still, due to the presence of NOM, any additional samples collected at Site 28 should be silica gel treated to minimize biogenic interference. The value of analyzing samples for TOC appears to be minimal, other than meeting ADEC requirements to demonstrate that biogenics are present.

4.3 PCB ANALYTICAL RESULTS

PCBs exceeded cleanup levels in 11 of the primary Site 28 samples. PCBs were not detected above cleanup levels in samples collected from Transects 2, 4, 7, 8, 9, 10, and 11. Eleven primary samples exceeded cleanup levels for Aroclor-1254, Aroclor-1260, or the sum of Aroclor-1254 and Aroclor-1260. The samples that exceeded PCB cleanup levels were located in Transects 1, 3, 5, and 6, as well as three of the 12 discrete sample locations. With the exception of discrete sample 11NC28SS073, the samples with PCBs exceeding the cleanup level were located near the MOC, within approximately 600–700 feet of the pad.

Table 1 shows complete analytical results, and Figure 15 highlights sample locations that exceed the PCB cleanup level.

February 2012 18 Revision 1

4.4 METALS ANALYTICAL RESULTS

Arsenic and chromium were the primary metals detected above cleanup levels at Site 28. Chromium was detected above the cleanup level in 22 samples, and arsenic was detected above the cleanup level in 14 samples. Selenium was also detected above the cleanup level in four samples. Discrete Sample 11NC28SS066-0_75, located near the former manhole at the western drainage and collected at historical hotspot sample location 01NE28SD155, exceeded the cleanup levels for cadmium and lead, as well as arsenic and chromium. The samples that exceeded one or more of the metals cleanup levels are scattered throughout the entire Site 28 drainage basin, and not confined to one particular area. Table 1 shows complete analytical results, and Figure 16 highlights sample locations that exceed the cleanup level of one or more metals.

4.5 DATA VERIFICATION

Sample results submitted for the Site 28 Technical Memorandum were reviewed by Bristol personnel for completeness and accuracy. Data verification of all samples submitted for certified laboratory analysis was performed by a third-party review by AECOM, as described in the NE Cape 2011 Quality Assurance Project Plan (QAPP). The Chemical Data Verification Report and the ADEC checklists are provided in Appendix D.

4.6 NATURE AND EXTENT OF CONTAMINATION

The point sources of contamination that have impacted Site 28 appear to originate from several locations of the MOC, including the former ASTs near the eastern drainage, and from two former culverts that terminated in the western and middle drainages.

Contaminants exceeding ADEC and site-specific cleanup levels at the site include DRO, RRO, toluene, ethylbenzene, total xylenes, PAHs, PCBs, arsenic, cadmium, chromium, lead, and selenium. Based on the total number of exceedances, DRO is the COC that is most frequently observed.

The estimated volumes of contamination at Site 28 are based on an evaluation of the 2011 sample locations and depths, and the 2010 UVOST area near the MOC pad.

February 2012 19 Revision 1

Figure 17 shows potential sediment removal areas, along with removal depths and estimated areas and volumes. The areas delineated for sediment removal are confined to the drainage area, with standing and flowing water where sediment may be present. Removal areas bordered in black show sediment that is known to be contaminated based on the 2011 investigation results. Removal areas bordered in pink were not investigated during 2011, but are areas where contaminated sediment may potentially be present. Bristol recommends further investigation to better define and map areas where sediment is present at Site 28, and sampling of those areas to determine whether the sediment is contaminated. Remediation decisions will need to take into consideration whether aggressive sediment removal would cause more harm than good.

Figure 18 shows three areas of potential soil removal, along with removal depths and estimated areas and volumes for each zone.

The Zone 1 soil removal estimate incorporates the area from the 2010 UVOST investigation above the DRO cleanup level in Site 28 but does not take into account the depths of potential contamination interpreted from the 2010 UVOST results. The depth used to calculate the volume of soil to be removed from Zone 1 is based only on the 2011 transect results. The estimated soil removal area for Zone 1 is 119,801 square feet, with a recommended removal depth of 3 feet. The estimated soil removal volume for Zone 1 is 13,311 cubic yards.

The area delineated for the Zone 2 soil removal estimate was based on the contamination being confined to the drainage area with standing and flowing water. The western boundary of the zone follows the bank that is topographically higher than the drainage basin, and the eastern boundary loosely follows some ponds and the stream channel. The estimated soil removal area for Zone 2 is 47,391 square feet, with a recommended removal depth of 4 feet. The estimated soil removal volume for Zone 2 is 7,021 cubic yards.

There are no estimated removal volumes for Zone 3 because there are only a few analytes above cleanup levels, and those analytes were only slightly above the cleanup level. Arsenic was detected in sample 11NC28SS076 at the cleanup value of 11 mg/kg, and chromium was detected in samples 11NC28SS075 and 11NC28SS076 at 26 mg/kg and 30 mg/kg respectively, just above the cleanup value of 25 mg/kg. The chromium results are for total

February 2012 20 Revision 1

Site 28 Technical Memorandum Contract No. W911KB-06-D-0007

chromium and did not distinguish between trivalent and hexavalent chromium. Hexavalent chromium, which is more toxic than trivalent chromium, is generally associated with industrial manufacturing and is unlikely to occur at a non-industrial setting such as NE Cape. Chromium is not considered a COC at NE Cape.

February 2012 21 Revision 1

(Intentionally blank)

5.0 RECOMMENDATIONS

The cleanup of Site 28 will require processing and handling of large volumes of water to recover the contaminated sediment and soil. Bristol estimates that the process water volumes will be in excess of 50,000 gallons per day. Dewatering of the entire site is not a realistic option. In 2001, Bristol performed processing and treatment of water and sludge from sewage lagoons contaminated with PCB on Amchitka Island. The project was similar to Site 28 as it required processing and handling of large volumes of water (approximately 18,000 gallons per day) to recover the sediments and particulates contaminated with PCBs. A similar process will likely be required at Site 28. Sediment, soil, and organic matter will need to be dewatered and possibly heated to reduce the moisture content to levels acceptable to the disposal facility. Possible solutions include the use of settling tanks, a filter press or decanter centrifuge, and a thermal processor to reduce moisture content. The procedure would also require sampling, filtration, and treatment of the process water prior to discharge. The dewatering facility could be located at the MOC. Many of the locations within Site 28 are too wet to allow heavy equipment access; therefore, a proposed road that parallels Site 28 is shown in Figures 17 and 18, which would allow heavy equipment access to areas in the downstream contaminated sections near the Suqi River. Crane pads, silt fencing, and coir logs would also be required. The proposed heavy equipment includes the use of a vacuum truck, suction dredge, or similar piece of equipment to recover the contaminated sediments.

(Intentionally blank)

6.0 REFERENCES

- Alaska Department of Environmental Conservation. 2008. 18 AAC 75. *Oil and Other Hazardous Substances Pollution Control*. Revised October 9, 2008.
- Alaska Department of Environmental Conservation. 2006. Technical Memorandum 06-001: *Biogenic Interference and Silica Gel Cleanup*. Division of Spill Prevention and Response, Contaminated Sites Program. May.
- Bristol Environmental Remediation Services, LLC (Bristol). 2011b. *Northeast Cape HTRW Remedial Actions Work Plan*. Contract No. W911KB-06-D-0007. F10AK096903_07.04_0502_p. May.
- Buchman, M.F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic & Atmospheric Administration.
- Montgomery Watson. 1996. Draft Phase II Remedial Investigation/Feasibility Study, Northeast Cape, Alaska. December 6.
- Montgomery Watson. 1999. Final Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Volume I: Report Body. August.
- Montgomery Watson Harza. 2003. *Phase III, Phase III Remedial Investigation Northeast Cape, St. Lawrence Island, Alaska. Final.* Prepared by MWH.
- Shannon & Wilson, Inc. 2005. Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Final. June.
- US Army Corps of Engineers (USACE), Alaska District. 2009 Decision Document Hazardous, Toxic, and Radioactive Waste (HTRW) Project #F10AK096903 Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska. January.

February 2012 25 Revision 1

(Intentionally blank)

TABLES

Table 1	Site 28 Sediment Analytical Results
Table 2	Site 28 Sediment Analytical Results Exceeding Cleanup Levels
Table 3	Site 28 Soil Analytical Results
Table 4	Site 28 Soil Analytical Results Exceeding Cleanup Levels

Site 28 Sediment Analytical Results (all results in mg/kg)

										_								_				
Sample ID 11NC28SS011-0_5 1	11NC28SS012-0_5	11NC28SS013-0_5	11NC28SS018-0_5	_	11NC28SS020-0_5	11NC28SS021-0_5	11NC28SS026-0_5	11NC28SS028-0_5	11NC28SS029-0_5	11NC28SS034-0_5	11NC28SS035-0_5	_	_	11NC28SS058-0_5	11NC28SS059-0_5	11NC28SS060-0_5	_	11NC28SS062-0_25	11NC28SS063-0_25	11NC28SS064-0_25		_
Sample Depth (feet bgs) 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.5
Matrix Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Location ID 28-3-2-0.5 Lab ID 580-28053-23	28-3-3-0.5 580-28053-27	28-3-4-0.5 580-28053-31	28-4-2-0.5 580-28112-5	28-4-3-0.5 580-28112-8	28-4-4-0.5 580-28112-11	28-4-5-0.5 580-28112-13	28-5-2-0.5 580-28112-28	28-5-4-0.5 580-28112-35	28-5-5-0.5 580-28112-38	28-6-3-0.5 580-28112-54	28-6-4-0.5 580-28112-57	28-6-5-0.5 580-28112-60	28-9-3-0.5 580-28198-54	28-10-2-0.5 580-28198-66	28-10-3-0.5 580-28198-70	28-11-1-0.5 580-28198-73	28-11-2-0.25 580-28198-77	28-11-3-0.25 580-28198-80	28-11-4-0.25 580-28198-82	28-11-5-0.25 580-28198-85	28-11-5-0.25 580-28198-86	28-DIS-02-0.5 580-28198-96
Date Collected 8/14/11	8/14/11	8/14/11	8/15/11	8/15/11	8/15/11	8/15/11	8/16/11	8/16/11	8/16/11	8/16/11	8/16/11	8/16/11	8/18/11	8/18/11	8/18/11	8/19/11	8/19/11	8/19/11	8/19/11	8/19/11	8/19/11	8/19/11
Sediment NOAA NOAA																						
Analyte Method Cleanup SQuiRT SQuiRT Transect 3 Level TEL PEL	Transect 3	Transect 3	Transect 4	Transect 4	Transect 4	Transect 4	Transect 5	Transect 5	Transect 5	Transect 6	Transect 6	Transect 6	Transect 9	Transect 10	Transect 10	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Discrete
Percent Moisture (%) EPA Moisture 41	56	63	55	33	42	53	47	37	53	51	58	74	66	62	53	32	62	59	68	68	66	19
DRO AK102 3500 1 8100	4600	2000	100000	70000	80000	92000	36000	57000	58000	410	57000	7200	26000	540	210	20000	6300	4800	5300	4000 QN	8100 QN	1700
DRO with Silica Gel AK102 3500 1 6600 RRO AK103 3500 1 5600	3600 5100	1400 6300	90000	75000 6700	81000 11000	96000 12000	38000 19000	59000 21000	62000 17000	150 3000	59000 33000 QL	6800 9900	34000 8800	390 2000	83 1500	22000 1600	7000 670	5300 710	5900 830	4500 QN 620	8800 QN 970	1800 2500
RRO with Silica Gel AK103 3500 3600	1200	2000	2900	5200	7700	8400	18000	20000	18000	730	29000	5700	8300	440	440	820	280 MH	520	510	370	520	2500
Total Organic Carbon EPA 9060-Quad 68000	160000	180000	150000	40000	96000	87000	63000	52000	89000	160000	160000	150000	150000	54000	43000	14000	27000	27000	50000	48000	41000	14000
GRO AK101 9.7 B	12 B	4.3 J B	460	280	280	470	260	240	60	ND (2.4)	9.4 J	6.6 J	40	ND (2.2)	2.4 J B	510	54 J ML	15 B	12 B	7.8 QN B	14 QN B	21 B
Benzene EPA 8260B 0.011 J	0.012 J	0.042 J	0.88	0.029 QH	0.42	0.11	ND (0.023)	ND (0.016)	0.064	ND (0.022) QL	ND (0.024) QL	ND (0.041) QL	ND (0.19) QL	ND (0.12)	ND (0.10)	ND (0.073)	ND (0.13)	ND (0.12)	ND (0.14)	ND (0.16)	ND (0.15)	ND (0.063)
Ethylbenzene	ND (0.071)	ND (0.083)	8.1	0.078 QH	2.5	0.091 J	0.077 J	0.029 J	0.84	ND (0.065) QL	0.067 J QL	ND (0.12) QL	0.17 J QL	ND (0.12)	ND (0.10)	0.080 J QH	ND (0.13)	ND (0.12)	ND (0.14)	ND (0.16)	ND (0.15)	ND (0.063)
Total Xylenes	0.084 J	0.98	69	1.36 QH	21.3	7.9	1.65	3.4	6.4	ND (0.13) QL	1.18 QL	0.172 J QL B	1.13 J QL	ND (0.35)	ND (0.31)	ND (0.123)	ND (0.39)	ND (0.36)	ND (0.41)	ND (0.48)	ND (0.44)	ND (0.193)
Toluene EPA 8260B ND (0.039)	ND (0.071)	0.17	0.9	ND (0.043)	0.13	0.042 J	0.04 J	0.019 J	0.1	ND (0.065) QL	ND (0.073) QL	ND (0.12) QL	ND (0.22) QL	ND (0.14)	ND (0.13)	ND (0.087)	ND (0.16)	ND (0.14)	ND (0.16)	ND (0.19)	ND (0.18)	ND (0.076)
PCB-1016	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.019)	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.026)	ND (0.02)	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)	ND (0.011) QL
PCB-1221	ND (0.052)	ND (0.096)	ND (0.044) QL	ND (0.028) QL	ND (0.034) QL	ND (0.041) QL	ND (0.140) QL	ND (0.120) QL	ND (0.170) QL	ND (0.039)	ND (0.190) QL	ND (0.075)	ND (0.056) QL	ND (0.052)	ND (0.041)	ND (0.027)	ND (0.049)	ND (0.047)	ND (0.06)	ND (0.061)	ND (0.056)	ND (0.023) QL
PCB-1232	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.019)	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.026)	ND (0.02)	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)	ND (0.011) QL
PCB-1242	ND (0.026)	ND (0.048) ND (0.048)	ND (0.022) QL ND (0.022) QL	ND (0.014) QL ND (0.014) QL	ND (0.017) QL ND (0.017) QL	ND (0.020) QL ND (0.020) QL	ND (0.071) QL ND (0.071) QL	ND (0.061) QL ND (0.061) QL	ND (0.083) QL ND (0.083) QL	ND (0.019) ND (0.019)	ND (0.093) QL ND (0.093) QL	ND (0.037) ND (0.037)	ND (0.028) QL ND (0.028) QL	ND (0.026)	ND (0.02) ND (0.02)	ND (0.013)	ND (0.024) ND (0.024)	ND (0.023) ND (0.023)	ND (0.03) ND (0.03)	ND (0.031) ND (0.031)	ND (0.028) ND (0.028)	ND (0.011) QL ND (0.011) QL
PCB-1248	ND (0.026) ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	0.310 QL	0.230 QL	0.530 J QL	ND (0.019)	0.45 QL	0.29 MN	ND (0.028) QL	ND (0.026) ND (0.026)	ND (0.02)	ND (0.013) ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)	0.14 QL
PCB-1260 EPA 8082A 0.7 0.085	0.008 J	ND (0.048)	ND (0.022) QL	0.26 QL	0.067 QL	0.054 J QL	0.650 QL	0.500 QL	0.970 QL	ND (0.019)	0.49 QL	0.26 MN	0.05 J QL	ND (0.026)	ND (0.02)	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)	0.14 QL 0.22 QL
PCBs-Total EPA 8082A 0.7 1 0.195	0.008 J	ND (0.096)	ND (0.044) QL	0.26 QL	0.067 QL	0.054 J QL	0.96 QL	0.73 QL	1.5 J QL	ND (0.039)	0.94 QL	0.55	0.05 J QL	ND (0.052)	ND (0.041)	ND (0.027)	ND (0.049)	ND (0.047)	ND (0.06)	ND (0.061)	ND (0.056)	0.36 QL
Arsenic EPA 6020 93 ¹ 3.2	3.7	4.9	3.8	4.8	6.5	8.7	7.4	6.2	6.9	4.5	8.5	6.9	8.3	7.5	7.6	3.3	80	73	77	72	67	5
Barium EPA 6020 68	98	120	100	78	110	160	90	91	110	100	150	110	110	100	98	47	140	130	110	120	120	36
Cadmium EPA 6020 596 3530 0.43	0.30 J	0.32 J	0.3	0.74	0.53	1	1.1	1.2 QN	1.2 QN	0.23 J	2.3	0.59 J	0.36	0.32 J	0.26 J	0.090 J	0.12 J	0.099 J	0.11 J QN	0.12 J QN	0.076 J QN	0.23 QN
Chromium EPA 6020 270 ¹ 15	16	19	14	20	24	35	28 ML	25	27	16	32	20	14	19	17	11	8.1	6.5	6.9	7.6	9.2	11
Lead EPA 6020 530 ¹ 30	19	14	17	72	50	79	78 MH	81	140	9.3	260	21	15	13	10	7.2	4.2	3.8	5.3 QN	6.1 QN	6 QN	22 QN
Nickel EPA 6020 18000 36000 9.2	11	12	9.2	14	17	24	18 QN	16	17	10	22	15	9.4	13	12	5.9	3.5	2.9	3.1	3.7	4.4	10
Selenium	0.92 J	1.2 J	1.5	0.64 J	1.1	1.6	1	0.85	1.1 J	1.4	1.8	1.4 J	1.4	1.4 J	1.2	0.50 J	0.81 J	0.64 J	ND (1.2)	ND (1.2)	0.63 J	0.37 J
Silver EPA 6020 0.089 J Vanadium EPA 6020 22	0.097 J 26	0.11 J 31	0.086 J 25	0.10 J 29	0.12 J 35	0.23 J 51	0.25 J 35	0.18 J 30	0.22 J 33	0.080 J 28	0.29 J 44	0.15 J 31	0.09 J 25	0.080 J 32	0.063 J 29	0.034 J 19	ND (0.047) 15	ND (0.046)	ND (0.059) 14	ND (0.061) 16	0.034 J 18	0.031 J 20
Mercury EPA 7471A 174 486 0.078	0.073	0.09	0.071	0.072	0.14	0.13	0.13	0.22	0.3	0.090	0.33	0.12	0.088	0.045	0.035	0.019 J	ND (0.021)	ND (0.016)	ND (0.025)	ND (0.025)	0.025 J	0.016
1-Methylnaphthalene EPA 8270 SIM 0.21 J	7.6	0.24 J	390	ND (1.5)	94	26	1.8	78	150	0.032 J	57	0.75 J	9.7	0.0033 J	ND (0.025)	3	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
2-Methylnaphthalene EPA 8270 SIM 0.6 ¹ 0.34	13	0.38	740	ND (1.5)	84	19	2.1	95	270	0.04 J B	86	0.86 J	13	0.004 J	ND (0.025)	3	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Acenaphthene EPA 8270 SIM 0.5 ¹ ND (0.13)	ND (0.19)	ND (0.18)	11 J	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	5.7	5.4	ND (0.051)	ND (2.4)	ND (0.48)	1.6	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Acenaphthylene EPA 8270 SIM 0.00587 0.128 ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	0.19 J	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Anthracene EPA 8270 SIM 0.0469 0.245 ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	1.5	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Benzo[a]anthracene EPA 8270 SIM 0.0317 0.385 ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Benzo[a]pyrene EPA 8270 SIM 0.0319 0.782 0.041 J	ND (0.19)	0.055 J	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Benzo[b]fluoranthene EPA 8270 SIM ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Benzo[g,h,i]perylene	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Benzo[k]fluoranthene	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.42)
Chrysene EPA 8270 SIM 0.0571 0.862 ND (0.13) Dibenz(a,h)anthracene EPA 8270 SIM 0.00622 0.135 ND (0.13)	ND (0.19) ND (0.19)	ND (0.18) ND (0.18)	ND (8.9) ND (8.9)	ND (1.5) ND (1.5)	ND (1.7) ND (1.7)	ND (1.1) ND (1.1)	0.35 J ND (0.46)	ND (1.5) ND (1.5)	ND (2.1) ND (2.1)	ND (0.051) ND (0.051)	ND (2.4) ND (2.4)	ND (0.48) ND (0.48)	ND (0.33) ND (0.33)	ND (0.031) ND (0.031)	ND (0.025) ND (0.025)	ND (0.68) ND (0.68)	ND (0.31) ND (0.31)	ND (0.11) ND (0.11)	ND (0.19) ND (0.19)	ND (0.072) ND (0.072)	ND (0.18) ND (0.18)	ND (0.042) ND (0.042)
Fluoranthene EPA 8270 SIM 2.0 - V.00622 0.135 ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	0.61 J	ND (1.7)	ND (1.1)	ND (0.46)	0.62 J	ND (2.1)	ND (0.051)	1.2 J	ND (0.48)	0.33 J	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Fluorene EPA 8270 SIM 0.8 ND (0.13)	0.78	ND (0.18)	24	3.3	13	5.4	0.71 J	9.2	11	0.0097 J	9.1	0.2 J	2.3	ND (0.031)	ND (0.025)	0.78 J	0.11 J	ND (0.11)	0.06 J	ND (0.072)	ND (0.18)	ND (0.042)
Indeno[1,2,3-cd]pyrene EPA 8270 SIM 3.2 1 ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (0.051)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Naphthalene	2.9	0.19 J	340	ND (1.5)	32	ND (1.1)	ND (0.46)	26	100	0.044 J B	27	0.44 J	3.8	0.0045 J	ND (0.025)	2.1	0.18 J	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Phenanthrene EPA 8270 SIM 4.8 ¹ ND (0.13)	0.75	ND (0.18)	15 J	ND (1.5)	6.6	2.7	ND (0.46)	4.3	5.2	ND (0.051)	5.4	ND (0.48)	1.4	ND (0.031)	ND (0.025)	0.35 J	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	ND (0.042)
Pyrene EPA 8270 SIM 0.053 0.875 0.14 J	ND (0.19)	0.094 J	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	0.39 J	0.7 J	ND (2.1)	ND (0.051)	1.2 J	ND (0.48)	0.32 J	ND (0.031)	ND (0.025)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)	0.024 J
Sum LPAHs 7.8 ¹ 0.67	25.03	0.81	1520	3.3	229.6	53.1	4.61	218.2	541.6	0.126	184.5	2.25	33.49	0.0118	0	9.23	0.29	0	0.06	0	0	0
Sum HPAHs 9.6 ¹ 0.181	0	0.149	0	0.61	0	0	0.39	1.32	0	0	2.4	0	0.65	0	0	0	0	0	0	0	0	0.024

¹ Site-specific cleanup levels established in 2009 Decision Document

NOAA SQuiRT sediment cleanup values (2008) only shown for analytes that have no established site-specific cleanup criteria

-- = No value specified AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics

EPA = U.S. Environmental Protection Agency GRO = gasoline range organics

HPAHs = high molecular weight ponynuclear aromatic hydrocarbons J = result is an estimated value between the detection limit and the limit of quantitation

LPAHs = low molecular weight ponynuclear aromatic hydrocarbons mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects MN = result is an estimated value with an uncertain bias due to matrix effects

ND = not detected, limit of detection (LOD) shown in parentheses NOAA = National Oceanic and Atmospheric Administration

PCBs = polychlorinated biphenyls PEL = probable effects level

QH = result is an estimated value with a high bias due to a quality control failure QL = result is an estimated value with a low bias due to a quality control failure

QN = result is an estimated value with an uncertain bias due to a quality control failure

RRO = residual range organics SIM = selective ion monitoring TEL = threshold effects level

> Table 1 - Site 28 **Sediment Analytical Results**

Table 2 Site 28 Sediment Analytical Results Exceeding Cleanup Levels (all results in mg/kg)

			Sample ID	11NC28SS011-0 5	11NC28SS012-0_5	11NC2888012.0.5	111102000010 0 5	11NC2055010.0.5	11NC2955020 0 5	11NC2088021 0 5	11NC2888026.0.5	11NC28SS028-0_5	11NC28SS029-0_5	11NC28SS035-0_5	11NC28SS036-0_5	11NC28SS054-0_5	1111020000000	11NC2955061 0 25	11NC2088062 0 25	11NC28SS063-0_25	11NC28SS064-0_25	11NC28SS064-0_5
		Sam	ple Depth (feet bgs)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.25
		Saili	Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
			Location ID	28-3-2-0.5	28-3-3-0.5	28-3-4-0.5	28-4-2-0.5	28-4-3-0.5	28-4-4-0.5	28-4-5-0.5	28-5-2-0.5	28-5-4-0.5	28-5-5-0.5	28-6-4-0.5	28-6-5-0.5	28-9-3-0.5	28-11-1-0.5	28-11-2-0.25	28-11-3-0.25	28-11-4-0.25	28-11-5-0.25	28-11-5-0.25
				580-28053-27	580-28053-31	580-28112-5	580-28112-8	580-28112-11	580-28112-13	580-28112-28	580-28112-35	580-28112-38	580-28112-57	580-28112-60	580-28198-54	580-28198-73	580-28198-77	580-28198-80	580-28198-82	580-28198-85	580-28198-86	
			8/14/11	8/14/11	8/15/11	8/15/11	8/15/11	8/15/11	8/16/11	8/16/11	8/16/11	8/16/11	8/16/11	8/18/11	8/19/11	8/19/11	8/19/11	8/19/11	8/19/11	8/19/11		
	Sediment NOAA NOAA		0/14/11	0/14/11	0/14/11	6/15/11	0/13/11	6/15/11	0/13/11	6/10/11	6/10/11	0/10/11	0/10/11	0/10/11	0/10/11	6/19/11	6/19/11	0/19/11	6/19/11	0/19/11	0/19/11	
	Analysis	Cleanup		Transect 3	Transect 3	Transect 3	Transect 4	Transect 4	Transect 4	Transect 4	Transect 5	Transect 5	Transect 5	Transect 6	Transect 6	Transect 9	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11
Analyte	Method	Level	TEL PEL																			
Percent Moisture (%)	EPA Moisture			41	56	63	55	33	42	53	47	37	53	58	74	66	32	62	59	68	68	66
DRO	AK102	3500 ¹		8100	4600	2000	100000	70000	80000	92000	36000	57000	58000	57000	7200	26000	20000	6300	4800	5300	4000 QN	8100 QN
DRO with Silica Gel	AK102	3500 ¹		6600	3600	1400	90000	75000	81000	96000	38000	59000	62000	59000	6800	34000	22000	7000	5300	5900	4500 QN	8800 QN
RRO	AK103	3500 ¹		5600	5100	6300	6800	6700	11000	12000	19000	21000	17000	33000 QL	9900	8800	1600	670	710	830	620	970
RRO with Silica Gel	AK103	3500 ¹		3600	1200	2000	2900	5200	7700	8400	18000	20000	18000	29000	5700	8300	820	280 MH	520	510	370	520
Total Organic Carbon	EPA 9060-Quad			68000	160000	180000	150000	40000	96000	87000	63000	52000	89000	160000	150000	150000	14000	27000	27000	50000	48000	41000
GRO	AK101			9.7 B	12 B	4.3 J B	460	280	280	470	260	240	60	9.4 J	6.6 J	40	510	54 J ML	15 B	12 B	7.8 QN B	14 QN B
Benzene	EPA 8260B			0.011 J	0.012 J	0.042 J	0.88	0.029 QH	0.42	0.11	ND (0.023)	ND (0.016)	0.064	ND (0.024) QL	ND (0.041) QL	ND (0.19) QL	ND (0.073)	ND (0.13)	ND (0.12)	ND (0.14)	ND (0.16)	ND (0.15)
Ethylbenzene	EPA 8260B			0.015 J	ND (0.071)	ND (0.083)	8.1	0.078 QH	2.5	0.091 J	0.077 J	0.029 J	0.84	0.067 J QL	ND (0.12) QL	0.17 J QL	0.08 J QH	ND (0.13)	ND (0.12)	ND (0.14)	ND (0.16)	ND (0.150)
Total Xylenes	EPA 8260B			0.12 J	0.084 J	0.98	69	1.36 QH	21.3	7.9	1.65	3.4	6.4	1.18 QL	0.172 J QL B	1.13 J QL	ND (0.123)	ND (0.39)	ND (0.36)	ND (0.41)	ND (0.48)	ND (0.44)
Toluene	EPA 8260B			ND (0.039)	ND (0.071)	0.17	0.9	ND (0.043)	0.13	0.042 J	0.04 J	0.019 J	0.1	ND (0.073) QL	ND (0.12) QL	ND (0.22) QL	ND (0.087)	ND (0.16)	ND (0.14)	ND (0.16)	ND (0.19)	ND (0.18)
PCB-1016	EPA 8082A	0.7 ¹		ND (0.016)	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCB-1221	EPA 8082A	0.7 ¹		ND (0.032)	ND (0.052)	ND (0.096)	ND (0.044) QL	ND (0.028) QL	ND (0.034) QL	ND (0.041) QL	ND (0.140) QL	ND (0.120) QL	ND (0.170) QL	ND (0.190) QL	ND (0.075)	ND (0.056) QL	ND (0.027)	ND (0.049)	ND (0.047)	ND (0.06)	ND (0.061)	ND (0.056)
PCB-1232	EPA 8082A	0.7 ¹		ND (0.016)	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCB-1242	EPA 8082A	0.7 ¹		ND (0.016)	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCB-1248	EPA 8082A	0.7 ¹		ND (0.016)	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	ND (0.071) QL	ND (0.061) QL	ND (0.083) QL	ND (0.093) QL	ND (0.037)	ND (0.028) QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCB-1254	EPA 8082A	0.7 ¹		0.11	ND (0.026)	ND (0.048)	ND (0.022) QL	ND (0.014) QL	ND (0.017) QL	ND (0.020) QL	0.310 QL	0.230 QL	0.530 J QL	0.45 QL	0.29 MN	ND (0.028) QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCB-1260	EPA 8082A	0.7 ¹		0.085	0.008 J	ND (0.048)	ND (0.022) QL	0.26 QL	0.067 QL	0.054 J QL	0.650 QL	0.500 QL	0.970 QL	0.49 QL	0.26 MN	0.05 J QL	ND (0.013)	ND (0.024)	ND (0.023)	ND (0.03)	ND (0.031)	ND (0.028)
PCBs-Total	EPA 8082A	0.7 ¹		0.195	0.008 J	ND (0.096)	ND (0.044) QL	0.26 QL	0.067 QL	0.054 J QL	0.96 QL	0.73 QL	1.5 J QL	0.94 QL	0.55	0.05 J QL	ND (0.027)	ND (0.049)	ND (0.047)	ND (0.06)	ND (0.061)	ND (0.056)
Arsenic	EPA 6020	93 ¹		3.2	3.7	4.9	3.8	4.8	6.5	8.7	7.4	6.2	6.9	8.5	6.9	8.3	3.3	80	73	77	72	67
Barium	EPA 6020			68	98	120	100	78	110	160	90	91	110	150	110	110	47	140	130	110	120	120
Cadmium	EPA 6020		596 3530	0.43	0.30 J	0.32 J	0.3	0.74	0.53	1	1.1	1.2 QN	1.2 QN	2.3	0.59 J	0.36	0.090 J	0.12 J	0.099 J	0.11 J QN	0.12 J QN	0.076 J QN
Chromium	EPA 6020	270 ¹		15	16	19	14	20	24	35	28 ML	25	27	32	20	14	11	8.1	6.5	6.9	7.6	9.2
Lead	EPA 6020	530 ¹		30	19	14	17	72	50	79	78 MH	81	140	260	21	15	7.2	4.2	3.8	5.3 QN	6.1 QN	6 QN
Nickel	EPA 6020		18000 36000	9.2	11	12	9.2	14	17	24	18 QN	16	17	22	15	9.4	5.9	3.5	2.9	3.1	3.7	4.4
Selenium	EPA 6020			0.58 J	0.92 J	1.2 J	1.5	0.64 J	1.1	1.6	1	0.85	1.1 J	1.8	1.4 J	1.4	0.50 J	0.81 J	0.64 J	ND (1.2)	ND (1.2)	0.63 J
Silver	EPA 6020			0.089 J	0.097 J	0.11 J	0.086 J	0.10 J	0.12 J	0.23 J	0.25 J	0.18 J	0.22 J	0.29 J	0.15 J	0.09 J	0.034 J	ND (0.047)	ND (0.046)	ND (0.059)	ND (0.061)	0.034 J
Vanadium	EPA 6020			22	26	31	25	29	35	51	35	30	33	44	31	25	19	15	13	14	16	18
Mercury	EPA 7471A		174 486	0.078	0.073	0.09	0.071	0.072	0.14	0.13	0.13	0.22	0.30	0.33	0.12	0.088	0.019 J	ND (0.021)	ND (0.016)	ND (0.025)	ND (0.025)	0.025 J
1-Methylnaphthalene	EPA 8270 SIM			0.21 J	7.6	0.24 J	390	ND (1.5)	94	26	1.8	78	150	57	0.75 J	9.7	3	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
2-Methylnaphthalene	EPA 8270 SIM	0.6 ¹		0.34	13	0.38	740	ND (1.5)	84	19	2.1	95	270	86	0.86 J	13	3	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Acenaphthene	EPA 8270 SIM	0.5 ¹		ND (0.13)	ND (0.19)	ND (0.18)	11 J	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	5.7	5.4	ND (2.4)	ND (0.48)	1.6	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Acenaphthylene	EPA 8270 SIM		0.00587 0.128	ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	0.19 J	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Anthracene	EPA 8270 SIM		0.0469 0.245	ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	1.5	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Benzo[a]anthracene	EPA 8270 SIM		0.0317 0.385	ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Benzo[a]pyrene	EPA 8270 SIM		0.0319 0.782	0.041 J	ND (0.19)	0.055 J	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Benzo[b]fluoranthene	EPA 8270 SIM			ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Benzo[g,h,i]perylene	EPA 8270 SIM	1.7 ¹		ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Benzo[k]fluoranthene	EPA 8270 SIM			ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Chrysene	EPA 8270 SIM		0.0571 0.862	ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	0.35 J	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Dibenz(a,h)anthracene			0.0062 0.135	ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Fluoranthene	EPA 8270 SIM	2.0 1		ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	0.61 J	ND (1.7)	ND (1.1)	ND (0.46)	0.62 J	ND (2.1)	1.2 J	ND (0.48)	0.33 J	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Fluorene	EPA 8270 SIM	0.8 1		ND (0.13)	0.78	ND (0.18)	24	3.3	13	5.4	0.71 J	9.2	11	9.1	0.2 J	2.3	0.78 J	0.11 J	ND (0.11)	0.06 J	ND (0.072)	ND (0.18)
Indeno[1,2,3-cd]pyrene		3.2 1		ND (0.13)	ND (0.19)	ND (0.18)	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	ND (0.46)	ND (1.5)	ND (2.1)	ND (2.4)	ND (0.48)	ND (0.33)	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Naphthalene	EPA 8270 SIM	1.7 1		0.12 J	2.9	0.19 J	340	ND (1.5)	32	ND (1.1)	ND (0.46)	26	100	27	0.44 J	3.8	2.1	0.18	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Phenanthrene	EPA 8270 SIM	4.8 ¹		ND (0.13)	0.75	ND (0.18)	15 J	ND (1.5)	6.6	2.7	ND (0.46)	4.3	5.2	5.4	ND (0.48)	1.4	0.35 J	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Pyrene	EPA 8270 SIM		0.053 0.875	0.14 J	ND (0.19)	0.094 J	ND (8.9)	ND (1.5)	ND (1.7)	ND (1.1)	0.39 J	0.7 J	ND (2.1)	1.2 J	ND (0.48)	0.32 J	ND (0.68)	ND (0.31)	ND (0.11)	ND (0.19)	ND (0.072)	ND (0.18)
Sum LP	AHs	7.8 ¹		0.67	25.03	0.81	1520	3.3	229.6	53.1	4.61	218.2	541.6	184.5	2.25	33.49	9.23	0.29	0	0.06	0	0
Sum HP	PAHs	9.6 ¹		0.181	0	0.149	0	0.61	0	0	0.39	1.32	0	2.4	0	0.65	0	0	0	0	0	0

Color Codes:

Positive Result Exceeds Cleanup Level

Non-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

¹ Site-specific cleanup levels established in 2009 Decision Document

NOAA SQuiRT sediment cleanup values (2008) only shown for analytes that have no established site-specific cleanup criteria -- = No value specified

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

HPAHs = high molecular weight ponynuclear aromatic hydrocarbons

J = result is an estimated value between the detection limit and the limit of quantitation LPAHs = low molecular weight ponynuclear aromatic hydrocarbons

mg/kg = milligrams per kilogram MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects MN = result is an estimated value with an uncertain bias due to matrix effects

ND = not detected, limit of detection (LOD) shown in parentheses NOAA = National Oceanic and Atmospheric Administration

PCBs = polychlorinated biphenyls

PEL = probable effects level

QH = result is an estimated value with a high bias due to a quality control failure

QL = result is an estimated value with a low bias due to a quality control failure QN = result is an estimated value with an uncertain bias due to a quality control failure

RRO = residual range organics SIM = selective ion monitoring

TEL = threshold effects level

Table 2 - Site 28 Sediment Analytical Results Exceeding Cleanup Criteria

		Sample ID	11NC28SS001-0_5	11NC28SS001-1	11NC28SS002-2	11NC28SS002-2_5	11NC28SS002-3	11NC28SS003-2_5	11NC28SS003-3	11NC28SS003-3_5	11NC28SS004-2_5	11NC28SS005-0	_5 11NC28SS005-1	11NC28SS006-0_5	11NC28SS006-1	11NC28SS006-2	11NC28SS007-1_5	11NC28SS008-0_5	11NC28SS008-1	11NC28SS009-0_5	11NC28SS009-1	11NC28SS010-0_5	11NC28SS010-1	11NC28SS010-1_5	11NC28SS011-1	11NC28SS011-2	11NC28SS011-1_5	5 11NC28SS012-1
	Sample	e Depth (feet bgs)	0.5	1	2	2.5	3	2.5	3	3.5	2.5	0.5	1	0.5	1	1	1.5	0.5	1	0.5	1	0.5	1	1.5	1	1	1.5	1
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-1-1-0.5	28-1-1-1	28-1-2-2	28-1-2-2.5	28-1-2-3	28-1-3-2.5	28-1-3-3	28-1-3-3.5	28-1-4-2.5	28-1-5-0.5	28-1-5-1	28-2-1-0.5	28-2-1-1	28-2-1-1	28-2-2-1.5	28-2-3-0.5	28-2-3-1	28-2-4-0.5	28-2-4-1	28-3-1-0.5	28-3-1-1	28-3-1-1.5	28-3-2-1	28-3-2-1	28-3-2-1.5	28-3-3-1
		Lab ID	580-28053-1	580-28053-2	580-28053-3	580-28053-4	580-28053-5	580-28053-6	580-28053-7	580-28053-8	580-28053-9	580-28053-10	580-28053-11	580-28053-12	580-28053-13	580-28053-14	580-28053-15	580-28053-16	580-28053-17	580-28053-18	580-28053-19	580-28053-20	580-28053-21	580-28053-22	580-28053-24	580-28053-25	580-28053-26	580-28053-28
		Date Collected	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/13/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011
Analyta	Analysis Method	Soil Cleanup	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3
Percent Moisture (%)	EPA Moisture		73	74	63	46	30	28	36	17	46	70	67	56	64	70	60	69	70	70	47	18	28	21	48	53	55	50
DRO	AK102	9200 ¹	56000	57000	11000	5800	1500	460	1800	210	170	110	360	67000	39000	57000	7700	13000	15000	2800	290	540	64	1300	11000 QN	30000 QN	75000	5600
DRO with Silica Gel	AK102	9200 ¹	45000	44000	12000	5100	3.6 J	270	1400	60	47	46 J	110	60000	34000	47000	6900	13000	13000	2300	200	440	7.2 J	1100	10000 QN	23000 QN	60000	4700
RRO	AK103	9200 ¹	2600	2700	3000	2300	1300	1800	2600	1500	1900	1100	4000	4000 QH	3200	3700	4400	2500	4800 MH	4000	560	2500	630	730	4700	5300	5300	3000
RRO with Silica Gel	AK103	9200 ¹	1300	730	550	380	ND (44)	220	520	310	360	190	560	990	730	770	760	1100	1700	950	75 J	1800	170	200	2400	1800	1500	1000
Total Organic Carbon	EPA 9060-Quad		130000	130000	140000	130000	87000	44000	40000	26000	120000	340000	180000	290000	180000	240000	230000	310000	310000	310000	55000	19000	30000	18000	110000	110000	170000	150000
GRO	AK101	300 ²	9.2 J B	120	110 J ML	140	56	9.6	19	1.8 J B	ND (1.8)	ND (3.3)	ND (3.0)	51	18 QN B	52 QN	60	ND (4.4)	ND (4.8) ML	ND (4.7)	ND (2.6)	ND (1.4)	ND (1.6)	34	90	110	240	40
Benzene	EPA 8260B	2.0 ¹	ND (0.071)	ND (0.021)	0.18	0.19	0.1	0.017	0.017 J	0.023	ND (0.016)	ND (0.030)	ND (0.027)	ND (0.011)	ND (0.029)	ND (0.041)	ND (0.031)	ND (0.040)	ND (0.044)	ND (0.043)	ND (0.024)	ND (0.013)	ND (0.015)	ND (0.013)	0.093	0.12	0.28	0.056
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.210)	ND (0.064)	2.1	1.6	0.8	0.042 J	0.043 J	0.081	ND (0.048)	ND (0.089)	ND (0.081)	ND (0.032)	ND (0.088)	ND (0.120)	0.078 J	ND (0.120)	ND (0.130)	ND (0.130)	ND (0.071)	ND (0.039)	ND (0.044)	ND (0.039)	0.35	0.5	3.2	0.059 J
Total Xylenes	EPA 8260B	63 ²	ND (0.410)	ND (0.128)	12.5	8.5	4.4	0.28	0.29	0.41	ND (0.096)	ND (0.178)	ND (0.162)	ND (0.064)	ND (0.176)	ND (0.240)	0.43	ND (0.240)	ND (0.260)	ND (0.260)	ND (0.142)	ND (0.078)	ND (0.088)	0.015 J	4.2	6.3	35	0.61
Toluene	EPA 8260B	6.5 ²	ND (0.210)	ND (0.064)	ND (0.071)	ND (0.047)	ND (0.037)	ND (0.032)	ND (0.038)	ND (0.021)	ND (0.048)	ND (0.089)	ND (0.081)	ND (0.032)	ND (0.088)	ND (0.120)	ND (0.093)	ND (0.120)	ND (0.130)	ND (0.130)	ND (0.071)	ND (0.039)	ND (0.044)	ND (0.039)	ND (0.060)	ND (0.068)	0.052 J	ND (0.060)
PCB-1016	EPA 8082A	1 ¹	ND (0.052)	ND (0.050)	ND (0.028) QL	ND (0.440)	ND (0.019) QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	ND (0.029)	ND (0.041) QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	ND (0.054)	ND (0.027)	ND (0.012) QL	ND (0.014)	ND (0.012)	ND (0.024)	ND (0.029)	ND (0.027)	ND (0.027)
PCB-1221	EPA 8082A	1 ¹	ND (0.100)	ND (0.099)	ND (0.056) QL	ND (0.890)	ND (0.038) QL	ND (0.032) QL	ND (0.034) QL	ND (0.028)	ND (0.050) QL	ND (0.110)	ND (0.078)	ND (0.058)	ND (0.083) QL	ND (0.130)	ND (0.099) QL	ND (0.140)	ND (0.120)	ND (0.110)	ND (0.055)	ND (0.024) QL	ND (0.028)	ND (0.025)	ND (0.048)	ND (0.057)	ND (0.055)	ND (0.054)
PCB-1232	EPA 8082A	1 1	ND (0.052)	ND (0.050)	ND (0.028) QL	ND (0.440)	ND (0.019) QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	ND (0.029)	ND (0.041) QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	ND (0.054)	ND (0.027)	ND (0.012) QL	ND (0.014)	ND (0.012)	ND (0.024)	ND (0.029)	ND (0.027)	ND (0.027)
PCB-1242	EPA 8082A	11	ND (0.052)	ND (0.050)	ND (0.028) QL	ND (0.440)	ND (0.019) QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	ND (0.029)	ND (0.041) QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	ND (0.054)	ND (0.027)	ND (0.012) QL	ND (0.014)	ND (0.012)	ND (0.024)	ND (0.029)	ND (0.027)	ND (0.027)
PCB-1248	EPA 8082A	11	ND (0.052)	ND (0.050)	ND (0.028) QL	ND (0.440)	ND (0.019) QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	ND (0.029)	ND (0.041) QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	ND (0.054)	ND (0.027)	ND (0.012) QL	ND (0.014)	ND (0.012)	ND (0.024)	ND (0.029)	ND (0.027)	ND (0.027)
PCB-1254	EPA 8082A	1 1	0.81	0.150 J	ND (0.028) QL	ND (0.440)	ND (0.019) QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	0.15	0.046 J QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	0.059 J	ND (0.027)	0.21 QL	ND (0.014)	ND (0.012)	0.041 J	0.027 J	ND (0.027)	ND (0.027)
PCB-1260	EPA 8082A	1 '	0.32	ND (0.050)	0.053 J QL	3.4	0.15 QL	ND (0.016) QL	ND (0.017) QL	ND (0.014)	ND (0.025) QL	ND (0.056)	ND (0.039)	0.082 J	0.027 J QL	ND (0.064)	ND (0.049) QL	ND (0.068)	ND (0.061)	0.042 J	ND (0.027)	0.15 QL	ND (0.014)	ND (0.012)	0.032 J	0.018 J	ND (0.027)	0.0093 J
PCBs-Total	EPA 8082A	1 1	1.13	0.15 J	0.053 J QL	3.4	0.15 QL	ND (0.032) QL	ND (0.034) QL	ND (0.028)	ND (0.050) QL	ND (0.110)	ND (0.078)	0.232 J	0.073 J QL	ND (0.130)	ND (0.099) QL	ND (0.140)	ND (0.120)	0.11 J	ND (0.055)	0.36 QL	ND (0.028)	ND (0.025)	0.073 J	0.045 J	ND (0.055)	0.0093 J
Arsenic	EPA 6020	11	1.7 61	0.93 J	6	3.8	3.4 67	4.2	5.9 82	5.5 82	94	3.7	4.2 87	1.9 57	1.5 QN 77	3.4 QN	3.6	2.3	4.5 J	2.3 67	1.3	3.6 52	5.2 88	5 92	3.4 87	3.6 110	3	4.3
Cadmium	EPA 6020 EPA 6020	1100 2	0.8	58 0.88	74 0.78	70 0.44	0.28	76 0.36	0.36	0.35	0.35	52 0.16 J	0.71	0.48	0.36 J	0.56 J	0.36 J	0.22 J	92 J 0.41 J	0.33 J	0.055 J	0.34	0.15	0.14 J	0.37	0.35 J	93 0.16 J	0.33
Cadmium	EPA 6020	25 ²	10 ML	8.8 ML	13 ML	14 ML	18 ML	15 ML	18 ML	20 ML	0.33 11 ML	7.4 ML	13 ML	10 ML	0.36 J	22 ML	6.6 ML	10 ML	24 ML	12 ML	7.3 ML	16 ML	0.15	19	81 QN	23 QN	17	19
Lead	EPA 6020	400 ²	21	0.0 IVIL	13 WL	21	27	13 ML	22	20 IVIL	14	7.4 IVIL	13 IVIL	10 WL	14 ML	22 IVIL	8.1	14	51.I	12 IVIL 22	7.5 WL	10 WIL	19	16	25	23 QN 27	12	17
Nickel	EPA 6020	86 ²	8.1	7.5	11	9.2	8.8	9.8	12	13	7.7	5.6	9.9	7.4	7.3 QN	14 QN	7.2	6.5	14 J	6.8	3	11	14	12	13	13	8.4	13
Selenium	EPA 6020	3.4 ²	1.1 J	1.3 J	1.9	1.4	1	1.1	1.1	0.89	1.2	1.8 J	1.9	2.3	3.2	3	1.7	2.0 J	1.2 J	2.3	1.2	0.37 J	0.64	0.59 J	0.74 J	1.0 J	1.3	0.96 J
Silver	EPA 6020	11.2 2	0.15 J	0.17 J	0.16 J	0.16 J	0.17 J	0.13 J	0.15 J	0.17	0.14 J	0.16 J	0.16 J	0.15 J	0.25 J	0.27 J	0.14 J	0.11 J	0.17 J	0.15 J	0.20 J	0.11 J	0.11 J	0.10 J	0.082 J	0.11 J	0.11 J	0.11 J
Vanadium	EPA 6020	3400 ²	12	13	29	28	28	27	33	35	27	27	29	16	17 QN	29 QN	23	21	38 J	18	16	21	32	31	23	30	29	29
Mercury	EPA 7471A	1.4 ²	0.081	ND (0.030)	0.082	0.043	0.046	0.044	0.046	0.056	0.047	0.085	0.066	0.072	0.096	0.11	0.046	0.034 J	0.041 J	0.091	0.069	0.11	0.061	0.044	0.083	0.11	0.088	0.093
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	0.23 J	3	32	15	3.7	0.21	0.89	0.0038 J QH	ND (0.031)	0.0026 J QH	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	8.3	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.0046 J	ND (0.013)	0.096	11	10	220	7000
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	ND (1.4)	ND (1.4)	57 J	25	6.4	0.37	1.6	0.0064 J QH	ND (0.031)	0.0047 J QH	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	10	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.0059 J	ND (0.013)	0.12	20	18	400	12
Acenaphthene	EPA 8270 SIM	180 ²	ND (1.4)	ND (1.4)	0.99	0.48	0.12	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.0093 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.0021 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Anthracene	EPA 8270 SIM	3000 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.025 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.043 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.039 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Benzo[b]fluoranthene	EPA 8270 SIM	12 2	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.07	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.027 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Benzo[k]fluoranthene	EPA 8270 SIM	120 2	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.018 J	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Chrysene	EPA 8270 SIM	360 2	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.069	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Dibenz(a,h)anthracene	EPA 8270 SIM	4-	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	ND (0.029) 0.087	ND (0.013)	ND (0.025)	ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Fluoranthene	EPA 8270 SIM EPA 8270 SIM	1400 ²	ND (1.4)	ND (1.4)	ND (0.15) 1.7	ND (0.11) 0.95	ND (0.027) 0.24	ND (0.019) 0.0066 J	ND (0.044) 0.055 J	ND (0.0037) 0.0029 J	ND (0.031) 0.0096 J	ND (0.017) 0.0063 J	ND (0.1) 0.019 J	ND (1.3)	ND (1.1) ND (1.1)	ND (1.8) ND (1.8)	ND (0.7)	ND (0.82) ND (0.82)	ND (0.33) ND (0.33)	ND (0.15) ND (0.15)	ND (0.072) ND (0.072)	0.087 0.013 J	ND (0.013) 0.0026 J	ND (0.025) 0.021 J	ND (0.23) 0.75	ND (0.28) 0.68	ND (2.6)	ND (0.15) 0.56
Fluorene Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	44 2	ND (1.4)	ND (1.4)	ND (0.15)	0.95 ND (0.11)	ND (0.027)	0.0066 J ND (0.019)	0.055 J ND (0.044)	0.0029 J ND (0.0037)	0.0096 J ND (0.031)	0.0063 J ND (0.017)	0.019 J ND (0.1)	ND (1.3)	ND (1.1) ND (1.1)	ND (1.8)	1.2 J ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15) ND (0.15)	ND (0.072)	0.013 J 0.031 J	0.0026 J ND (0.013)	ND (0.025)	0.75 ND (0.23)	ND (0.28)	ND (2.6)	ND (0.15)
Naphthalene	EPA 8270 SIM	120 ¹	0.57 J	ND (1.4)	24	6.5	2.6	0.29	0.75	0.014 QH	ND (0.031)	0.0024 J QH	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	4.5	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.031 J	ND (0.013)	ND (0.025)	5.7	5.5	140	2.8
Phenanthrene	EPA 8270 SIM	3000 ²	ND (1.4)	1.9 J	1.5	0.73	0.16	ND (0.019)	0.03 J	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	0.56 J	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.004 3	ND (0.013)	ND (0.025)	0.77	0.75	9.6	0.77
Pyrene	EPA 8270 SIM	1000 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (0.019)	ND (0.044)	ND (0.0037)	ND (0.031)	ND (0.017)	ND (0.1)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	ND (0.15)	ND (0.072)	0.092	ND (0.013)	ND (0.025)	0.13 J	ND (0.28)	ND (2.6)	ND (0.15)
. 3.3		1000	()	1 (1.4)	(0.10)	(0.11)	(0.021)	(0.010)	(0.011)	(0.0001)	(0.001)	. 15 (0.017)	112 (0.1)	. 1.5 (1.0)	()	.15 (1.0)	.15 (0.1)	(0.02)	(0.00)	1 (0.10)	(0.012)	1 0.002	(0.010)	(0.020)	0.100	(0.20)	(2.0)	(0.10)

Color Codes:

Non-Detect Result Exceeds Cleanup Level
Duplicate of Previous Sample

to Groundwater (Revised October 9, 2008)

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects
ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls

QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control failure
QN = result is an estimated value with an uncertain bias due to a quality

control failure
R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

		Sample ID ²	11NC28SS012-1_5	11NC28SS012-2	11NC28SS013-1	11NC28SS013-1_5	11NC28SS014-1	11NC28SS014-1_5	11NC28SS014-2	11NC28SS015-1_5	11NC28SS015-2	11NC28SS016-0_5	11NC28SS016-1	11NC28SS017-0_5	11NC28SS017-2	11NC28SS017-1	11NC28SS017-1_	5 11NC28SS018-1	11NC28SS018-1_5	11NC28SS019-1	11NC28SS019-1_5	11NC28SS020-1	11NC28SS021-1	11NC28SS021-1_5	11NC28SS022-1	11NC28SS022-1_5	5 11NC28SS022-2
	Sample	e Depth (feet bgs)	1.5	1.5	1	1.5	1	1.5	2	1.5	2	0.5	1	0.5	0.5	1	1.5	1	1.5	1	1.5	1	1	1.5	1	1.5	2
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-3-3-1.5	28-3-3-1.5	28-3-4-1	28-3-4-1.5	28-3-5-1	28-3-5-1.5	28-3-5-2	28-3-6-1.5	28-3-6-2	28-3-7-0.5	28-3-7-1	28-4-1-0.5	28-4-1-0.5	28-4-1-1	28-4-1-1.5	28-4-2-1	28-4-2-1.5	28-4-3-1	28-4-3-1.5	28-4-4-1	28-4-5-1	28-4-5-1.5	28-4-6-1	28-4-6-1.5	28-4-6-2
		Lab ID	580-28053-29	580-28053-30	580-28053-32	580-28053-33	580-28053-34	580-28053-35	580-28053-36	580-28053-37	580-28053-38	580-28053-39	580-28053-40	580-28112-1	580-28112-2	580-28112-3	580-28112-4	580-28112-6	580-28112-7	580-28112-9	580-28112-10	580-28112-12	580-28112-14	580-28112-15	580-28112-16	580-28112-17	580-28112-18
		Date Collected	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/14/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011
Analyto	Analysis Method	Soil Cleanup	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4
Percent Moisture (%)	EPA Moisture		57	60	58	60	70	61	64	83	79	73	73	23	19	56	45	52	52	40	53	53	54	57	50	51	52
DRO	AK102	9200 ¹	3600	4400	460	2700	990	520	1400 J ML	12000	9900	2400	9800	30000	23000	99000	37000 J	110000	47000	70000	89000	110000	63000	150000	29000	28000	49000
DRO with Silica Gel	AK102	9200 ¹	2400	3300	160	2100	310	130	740 J ML	8800	6800	1700	8800	30000	20000	93000	38000 J	120000	49000	70000	89000	110000	69000	160000	30000	28000	48000
RRO	AK103	9200 ¹	4000	3000	3600	4800	8300	5000	7000	7600	9000	3500	6200	3000	3200	7000 QH	4200	5800	5500	4000	5500	14000 QH	10000	7200	5500	6100	7700 QH
RRO with Silica Gel	AK103	9200 ¹	800	640	740	1100	1500	950	1600	1600	2200	1000	1000	2700	2700	2700	1200	2200	2600	1600	1600	7700	4100	3900	1800	2200	2500
Total Organic Carbon	EPA 9060-Quad		180000	180000	180000	180000	270000	180000	180000	370000	380000	210000	410000	18000	18000	170000	110000	190000	110000	130000	180000	160000 J	150000	160000	120000	120000	140000
GRO	AK101	300 ²	37	47	8.0 J B	19	3.3 J B	4.8 J B	9.5 J B	63	48	16 J B	280	370	320	900	310 J ML	550	550	390	450	330	240	420	400	160	350
Benzene	EPA 8260B	2.0 ¹	0.073	0.096	0.075	0.083	0.034 J	0.043	0.039 J	ND (0.067)	ND (0.060)	ND (0.048)	ND (0.022)	0.02 J QH	ND (0.014)	0.34	0.160 J ML	1.3	0.67	0.83	1.2	0.9	0.35	0.82	0.3	0.3	0.49
Ethylbenzene	EPA 8260B	6.9 ²	0.13	0.16	0.18	0.13	0.058 J	0.31	1.0	0.44	0.28	ND (0.140)	ND (0.066)	0.22 QH	0.13 QH	10	4.4 J ML	9.8	6.9	6.2	8.3	6.2	2.9	8.6	1.6	2.8	6.3
Total Xylenes	EPA 8260B	63 ²	1.05	1.28	1.42	1.08	0.390 J	0.63	1.8 J	0.64	0.42	ND (0.280)	ND (0.132)	1.66 QH	1.090 QH	80	28.3 J	88	52	59	76	29	24.7	70	21.1	22.4	45
Toluene	EPA 8260B	6.5 ²	ND (0.072)	ND (0.076)	ND (0.064)	ND (0.061)	ND (0.100)	ND (0.078)	ND (0.085)	ND (0.200)	ND (0.180)	ND (0.140)	ND (0.066)	ND (0.039)	ND (0.041)	0.097 J	0.037 J ML	0.68	0.27	0.12	0.14	0.4	0.39	1	0.030 J	0.028 J	0.060 J
PCB-1016	EPA 8082A	1 ¹	ND (0.032)	ND (0.031)	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	ND (0.027)	ND (0.057)	ND (0.056)	ND (0.055)	ND (0.069)	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)
PCB-1221	EPA 8082A	1 ¹	ND (0.064)	ND (0.062)	ND (0.098)	ND (0.067)	ND (0.065)	ND (0.062)	ND (0.054)	ND (0.110)	ND (0.110)	ND (0.110)	ND (0.140)	ND (0.026) QL	ND (0.023) QL	ND (0.042) QL	ND (0.036)	ND (0.040) QL	ND (0.043) QL	ND (0.033) QL	ND (0.041) QL	ND (0.040) QL	ND (0.041) QL	ND (0.045) QL	ND (0.038) QL	ND (0.041)	ND (0.042)
PCB-1232	EPA 8082A	1 1	ND (0.032)	ND (0.031)	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	ND (0.027)	ND (0.057)	ND (0.056)	ND (0.055)	ND (0.069)	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)
PCB-1242	EPA 8082A	1 ¹	ND (0.032)	ND (0.031)	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	ND (0.027)	ND (0.057)	ND (0.056)	ND (0.055)	ND (0.069)	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)
PCB-1248	EPA 8082A	1 ¹	ND (0.032)	ND (0.031)	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	ND (0.027)	ND (0.057)	ND (0.056)	ND (0.055)	ND (0.069)	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)
PCB-1254	EPA 8082A	11	ND (0.032)	0.049 J	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	0.026 J	0.062 J	ND (0.056)	0.88	ND (0.069)	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)
PCB-1260	EPA 8082A	1 1	ND (0.032)	ND (0.031)	ND (0.049)	ND (0.033)	ND (0.033)	ND (0.031)	ND (0.027)	0.032 J	ND (0.056)	0.34	ND (0.069)	0.0084 J QL	0.016 J QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	0.0065 J QL	ND (0.017) QL	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	0.012 J	ND (0.021)
PCBs-Total	EPA 8082A	1'	ND (0.064)	ND (0.062)	ND (0.098)	ND (0.067)	ND (0.065)	ND (0.062)	ND (0.054)	0.094 J	ND (0.110)	1.22	ND (0.140)	0.0084 J QL	0.016 J QL	ND (0.042) QL	ND (0.036)	ND (0.040) QL	0.0065 J QL	ND (0.033) QL	ND (0.041) QL ML	, ,	ND (0.041) QL	ND (0.045) QL	ND (0.038) QL	0.012 J	ND (0.042)
Arsenic	EPA 6020	11 '	4.5	4.7	5.5	4.6	3.4	2.3	3.1	5.7	3.3	5.1	5.4	4.7	4.6	5	2.8 J	2.5	3.1	2.7	2.3	3.7	6.2	4.2	5.8	6.7	4.4
Cadmium	EPA 6020 EPA 6020	1100 2	130	140 0.32 J	150	0.4	120	120	120	98	63	110	150	65 0.36	0.42	120	80 J	0.24 1	110	80	69	99	150	89 0.44	120	0.43	140
Cadmium	EPA 6020	3F ²	0.33 J	0.32 J	0.39 J 23	20	0.63	0.61	0.57	0.34 J 11	0.33 J 6.5	0.36 J 19	0.49	15	0.42	0.34 J 18	0.15 J 11	0.24 J	0.34 J 20	0.22 J	0.17 J 8.3	0.28 J 15	0.4	12	0.33 J	26	0.37 22 ML
Lead	EPA 6020	400 ²	14	13	14	13	10	9.7	11	14	0.3 8 3	19	15	36	47	14	9.4	12	19	12	0.5	16	17	15	17	24	14 MH
Nickel	EPA 6020	86 ²	13	13	15	13	11	9.9	11	5.7	4.6	10	11	11	11	11	5.9	7	11	7.4	4.8	9.7	14	9.2	13	17	14 QN
Selenium	EPA 6020	3.4 2	1.5	1.5	1.3 J	1.3	1.9	1.9	1.7	1.2 J	1.3 J	1.3 J	2.5	0.57 J	0.50 J	1.6	1.1 J	1.7	1.4	1.1	1.8	1.6	1.6	1.8	1.4	1.6	1.7
Silver	EPA 6020	11.2 2	0.13 J	0.12 J	0.14 J	0.12 J	0.14 J	0.12 J	0.12 J	0.12 J	0.069 J	0.12 J	0.14 J	0.079 J	0.074 J	0.087 J	0.058 J	0.086 J	0.097 J	0.064 J	0.077 J	0.094 J	0.11 J	0.10 J	0.10 J	0.12 J	0.10 J
Vanadium	EPA 6020	3400 ²	35	35	37	34	30	28	28	21	16	27	38	22	21	30	19	23	29	20	22	27	38	26	32	39	35
Mercury	EPA 7471A	1.4 ²	0.093	0.095	0.1	0.097	0.083	0.073	0.065	0.12	0.064	0.18	0.12	0.044	0.054	0.076	0.052	0.056	0.066	0.050	0.056	0.068	0.091	0.068	0.083	0.089	0.094
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	4.4	4.2	0.030 J QH	6.1	0.39	0.068 QH	0.330 J	4.7	7.6	ND (0.12)	ND (0.45)	8.3 QN	3.5 QN	300	110	380	140 J	240	330	390	96	400	54	78	170
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	7.9	7.5	0.047 J QH	11	0.56	0.067 QH	0.430 J	2.5	8.9	ND (0.12)	ND (0.45)	6.6 QN	2.9 QN	540	190	710	260 J	450	630	720	130	740	92	150	330
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	0.74	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	8.7 J	3.1 J	10 J	4.4 J	6.2 J	8.7 J	11 J	ND (1.6)	13 J	1.6 J	2.0 J	4.8 J
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	0.12 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Chrysene	EPA 8270 SIM	360 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	0.13 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Dibenz(a,h)anthracene	EPA 8270 SIM	42	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	0.14 J	0.16 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Fluorene	EPA 8270 SIM	220 ²	0.39	0.39	ND (0.043)	0.4	0.062	ND (0.033)	0.081 J	2.5	3.2	ND (0.12)	ND (0.45)	1.4 QN	0.720 QN	18	5.7	23	9.5 J	14 J	18 J	24 ND (40)	7.8	25 ND (40)	3.4 J	4.6 J	11
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)
Naphthalene	EPA 8270 SIM	120 ¹	2.7	2.3	0.380 QH	4.5	0.71	0.085 QH	0.430 J	3.9	4.3	ND (0.12)	ND (0.45)	ND (0.32)	ND (0.31)	200	66	340	120 J	210	310	310	32	300	34	72	160
Phenanthrene	EPA 8270 SIM	3000 ²	0.29 J	0.36	ND (0.043)	0.240 J	ND (0.13)	ND (0.033)	0.031 J	0.28 J	0.17 J	ND (0.12)	ND (0.45)	0.07 1	ND (0.31)	9.3 J	3.5 J	15 J	6.3 J	8.1 J	10 J	12 J	4.3	16 J	0.99 J	1.3 J	3.8 J
Pyrene	EPA 8270 SIM	1000 ²	ND (0.16)	ND (0.15)	ND (0.043)	ND (0.16)	ND (0.13)	ND (0.033)	ND (0.035)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.45)	0.27 J	0.37 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)

Color Codes:

on-Detect Result Exceeds Cleanup Level

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified
AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics
EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of quantitation

mg/kg = milligrams per kilogram
MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a high bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed

ND = not detected, limit of detection (LOD) shown in parentheses PCBs = polychlorinated biphenyls

PCBs = polychlorinated biphenyls

QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery RRO = residual range organics

SIM = selective ion monitoring

Table 3 - Site 28
Soil Analytical Results

		Sample ID	11NC28SS023-1	11NC28SS023-2_	_5 11NC28SS023-1_5	11NC28SS023-2	11NC28SS024-1	11NC28SS024-1_5	11NC28SS025-0_5	11NC28SS025-1	11NC28SS025-1_5	11NC28SS026-1	11NC28SS026-1_	11NC28SS026-2	11NC28SS027-0_75	11NC28SS027-1_2	11NC28SS027-1_7	75 11NC28SS028-1	11NC28SS028-1_5	11NC28SS029-1	11NC28SS029-1_5	11NC28SS030-1	11NC28SS030-1_5	11NC28SS030-2	11NC28SS030-2_5	11NC28SS031-0_5	11NC28SS031-1	11NC28SS031-1_5
	Sample	Depth (feet bgs)	1	1	1.5	2	1	1.5	0.5	1	1.5	1	1.5	1.5	0.75	1.25	1.75	1	1.5	1	1.5	1	1.5	2	2	0.5	1	1.5
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-4-7-1	28-4-7-1	28-4-7-1.5	28-4-7-2	28-4-8-1	28-4-8-1.5	28-5-1-0.5	28-5-1-1	28-5-1-1.5	28-5-2-1	28-5-2-1.5	28-5-2-1.5	28-5-3-0.75	28-5-3-1.25	28-5-3-1.75	28-5-4-1	28-5-4-1.5	28-5-5-1	28-5-5-1.5	28-5-6-1	28-5-6-1.5	28-5-6-2	28-5-6-2	28-5-7-0.5	28-5-7-1	28-5-7-1.5
			580-28112-19	580-28112-20	580-28112-21	580-28112-22	580-28112-23	580-28112-24	580-28112-25	580-28112-26	580-28112-27	580-28112-29	580-28112-30	580-28112-31	580-28112-32	580-28112-33	580-28112-34	580-28112-36	580-28112-37	580-28112-39	580-28112-40	580-28112-41	580-28112-42	580-28112-43	580-28112-44	580-28112-45	580-28112-46	580-28112-47
		Date Collected Soil Cleanup	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011
Analyte	Analysis Method	Level	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5				
Percent Moisture (%)	EPA Moisture		59	57	59	60	26	29	26	29	54	30	50	50	40	56	58	30	56	38	30	35	56	35	56	56	55	56
DRO	AK102	9200 ¹	55000	50000	43000	13000	2800	4200	53000	57000	110000	55000	110000	110000	4300	2000 ML	960	24000	11000	38000	2700	29000	70000	38000	56000	740	540	520
DRO with Silica Gel	AK102	9200 ¹	58000	53000	48000	13000	3100	4200	54000	56000	110000	58000	21000	24000	4400	1900 ML	790	25000	14000	40000	2800	30000	72000	35000	57000	370	150	150
RRO	AK103	9200 ¹	7400	6200 QH	7000 QH	5500 QH	3000	1900 QH	9600	5100	13000	11000	7300 QH	7600 QH	2900	3700 MH	3000	8400	4800	9000	1500	2400	5000	4100 QH	5300	4200 QH	4400 QH	3900 QH
RRO with Silica Gel	AK103	9200 ¹	3000	2600	3600	1500	2400	500	10000	4800	10000	11000	3700	4300	1800	1500	1100	8000	2800	7700	880	1700	2200	1500	2100	1200	1200	1100
Total Organic Carbon	EPA 9060-Quad		160000	170000	160000	190000	53000	60000	48000	53000	170000	72000	170000	150000	39000	140000	160000	41000	150000	62000	39000	53000	140000	130000	160000	170000	160000	160000
GRO	AK101	300 ²	190	170	350	260	13	130	92	710	520	490	180	120	28	4.2 J	5.4 J	220	120	160	63	440	510	160 QN	300 QN	12	1.0 J	ND (2.5)
Benzene	EPA 8260B	2.0 1	0.14	0.12	0.34	0.22	ND (0.013)	0.045	ND (0.014)	0.49 QH	1.2	0.053 QH	0.12	0.11	ND (0.015)	0.011 J	0.011 J	0.013 J	0.057	0.020 J	0.0076 J	0.38 QH	0.57	0.38 QN	0.65 QN	ND (0.028)	ND (0.022)	ND (0.023) ML
Ethylbenzene	EPA 8260B	6.9 2	0.86 QN	1.5 QN	6.5	4.3	ND (0.038)	0.35	ND (0.041)	3.2 QH	9.3	0.32 QH	1.5	1.3	ND (0.046)	ND (0.070)	ND (0.070)	0.19	1.9	0.68	0.12	5 QH	6.2	3.8 QN	6.4 QN	0.072 J	ND (0.065)	ND (0.068) ML
Total Xylenes	EPA 8260B	63 ²	2.36 QN	5.090 QN	41	29.5	0.046 J B	2.9	0.016 J	30 QH	66	7.5 QH	12.3	10.3	0.053 J B	0.067 J B	0.099 J B	4.4	12.8	5.2	1.35	33.1 QH	38	23.5 QN	42 QN	0.275 J B	0.037 J B	ND (0.136) ML
Toluene	EPA 8260B	6.5 ²	ND (0.079)	ND (0.072)	0.037 J	0.027 J	ND (0.038)	ND (0.043)	ND (0.041)	0.27 QH	0.21	0.028 J QH	ND (0.066)	ND (0.063)	ND (0.046)	ND (0.070)	ND (0.070)	ND (0.042)	ND (0.068)	0.030 J	ND (0.043)	0.29 QH	0.094 J	0.051 J	0.11	ND (0.083)	ND (0.065)	ND (0.068) ML
PCB-1016	EPA 8082A	· .	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL	ND (0.075) QL	ND (0.076) QL	ND (0.066) QL	ND (0.085) QL ML	ND (0.094) QL	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.022) QL	ND (0.036) QL	ND (0.021) QL
PCB-1221	EPA 8082A	-	ND (0.047) QL	ND (0.043) QL	ND (0.047) QL	ND (0.049) QL	ND (0.026)	ND (0.025)	ND (0.026) QL	ND (0.028) QL	ND (0.042) QL	ND (0.110) QL	ND (0.150) QL	ND (0.150) QL	ND (0.130) QL	ND (0.170) QL ML	ND (0.190) QL	ND (0.110) QL	ND (0.180) QL	ND (0.130) QL	ND (0.100) QL	ND (0.029)	ND (0.043)	ND (0.030)	ND (0.045)	ND (0.043) QL	ND (0.072) QL	ND (0.041) QL
PCB-1232	EPA 8082A	-	ND (0.024) QL ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013) ND (0.013)	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL ND (0.054) QL	ND (0.075) QL ND (0.075) QL	ND (0.076) QL	(,	ND (0.085) QL ML	ND (0.094) QL ND (0.094) QL	ND (0.053) QL ND (0.053) QL	ND (0.089) QL ND (0.089) QL	ND (0.063) QL ND (0.063) QL	ND (0.052) QL ND (0.052) QL	ND (0.015) ND (0.015)	ND (0.021) ND (0.021)	ND (0.015) ND (0.015)	ND (0.022) ND (0.022)	ND (0.022) QL ND (0.022) QL	ND (0.036) QL ND (0.036) QL	ND (0.021) QL ND (0.021) QL
PCB-1242 PCB-1248	EPA 8082A EPA 8082A		ND (0.024) QL	ND (0.021) QL ND (0.021) QL	ND (0.024) QL ND (0.024) QL	ND (0.025) QL ND (0.025) QL	ND (0.013)	ND (0.013) ND (0.013)	ND (0.013) QL ND (0.013) QL	ND (0.014) QL ND (0.014) QL	ND (0.021) QL ND (0.021) QL	ND (0.054) QL	ND (0.075) QL	ND (0.076) QL	(/	ND (0.085) QL ML ND (0.085) QL ML	(,	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.022) QL	ND (0.036) QL	ND (0.021) QL
PCB-1254	EPA 8082A		ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	0.190 QL	ND (0.075) QL	ND (0.076) QL	, ,	ND (0.085) QL ML	, ,	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	0.031 J MN	0.057 J MN	0.032 J MN	ND (0.022)	0.035 J QL	ND (0.036) QL	ND (0.021) QL
PCB-1260	EPA 8082A	1 1	0.013 J QL	0.027 J QL	ND (0.024) QL	ND (0.025) QL	0.025 J	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	0.400 QL	ND (0.075) QL	ND (0.076) QL	(/	ND (0.085) QL ML	(,	0.024 J QL	ND (0.089) QL	0.140 J QL	0.038 J QL	0.031 J MN	0.068 J MH	0.032 J MN	0.026 J MN	ND (0.022) QL	ND (0.036) QL	ND (0.021) QL
PCBs-Total	EPA 8082A	1 1	0.013 J QL	0.027 J QL	ND (0.024) QL	ND (0.049) QL	0.025 J	ND (0.025)	ND (0.026) QL	ND (0.028) QL	ND (0.042) QL	0.400 QL	ND (0.150) QL	ND (0.150) QL	(/	ND (0.170) QL ML	ND (0.190) QL	0.024 J QL	ND (0.180) QL	0.140 J QL	0.038 J QL	0.066 J MN	0.125 J MH	0.068 J MN	0.026 J MN	0.035 J QL	ND (0.072) QL	ND (0.021) QL
Arsenic	EPA 6020	11 1	6.2	5.6	5.2	4.8	2.9	3.4	5	4.6	4.1	3.8	4.1	4.4	4.5	4.8	5.7	4.8	4.6	8.9	6	9	5.1	3.7	5.3	5.1	5.3	6.8
Rarium	EPA 6020	1100 ²	140	150	150	130	73	97	91	99	120	81	110	100	96	130	120	85	120	150	110	140	130	96	140	120	120	170
Cadmium	EPA 6020	5 ²	0.68	0.56	0.36 J	0.34 J	0.36	0.38	0.27	0.52	0.31 J	0.77	0.28 J	0.37	0.36	0.35 J	0.31 J	0.55 QN	0.35 J QN	0.68 QN	0.34 QN	0.62 QN	0.38 QN	0.3 QN	0.34 J QN	0.17 J QN	0.23 J QN	0.4 QN
Chromium	EPA 6020	25 ²	22 ML	23 ML	23 ML	19 ML	18 ML	21 ML	19 ML	22 ML	18 ML	20 ML	17 ML	17 ML	20 ML	31 ML	19 ML	19	19	36	28	34	22	16	21	19	19	25
Lead	EPA 6020	400 ²	16 MH	17 MH	15 MH	11 MH	24 MH	19 MH	23 MH	53 MH	13 MH	59 MH	15 MH	19 MH	23 MH	17 MH	14 MH	39	14	68	29	51	18	14	14	11	11	13
Nickel	EPA 6020	86 ²	17 QN	16 QN	15 QN	12 QN	12 QN	16 QN	13 QN	15 QN	11 QN	13 QN	10 QN	10 QN	16 QN	18 QN	11 QN	14	12	26	21	26	15	10	14	12	12	16
Selenium	EPA 6020	3.4 ²	1.9	1.8	1.8	2	0.83	1.1	0.87	0.94	1.7	0.67	1.7	1.5	0.99	1.6	2	0.90 J	1.6	1.9	1.2	1.7	1.5	1.1	1.7	1.7	1.7	1.9
Silver	EPA 6020	11.2 ²	0.12 J	0.14 J	0.12 J	0.11 J	0.083 J	0.11 J	0.088 J	0.12 J	0.099 J	0.17 J	0.10 J	0.10 J	0.11 J	0.11 J	0.11 J	0.11 J	0.094 J	0.23 J	0.14 J	0.21	0.10 J	0.075 J	0.10 J	0.084 J	0.095 J	0.11 J
Vanadium	EPA 6020	3400 ²	36	37	38	34	23	30	29	33	32	26	32	30	29	36	34	29	31	50	36	50	32	25	34	31	32	39
Mercury	EPA 7471A	1.4 ²	0.096	0.090	0.10	0.10	0.053	0.046	0.052	0.19	0.087	0.15	0.11	0.095	0.049	0.11	0.11	0.097	0.10	0.13	0.047	0.14	0.096	0.072	0.10	0.13	0.10	0.11 J
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	68	56	120	62	ND (0.17)	8.3	1.3	130	120	31	30	29	1.2	0.42 J	0.14	32	47	97	7	54	230	78	120	0.33	0.025 J B	0.010 J B
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	87	71	230	84	0.022 J	12	0.78	74	130	42	50	50	1.1	0.41 J	0.13	39	83	160	8.8	110	430	140	220	0.56	0.044 J B	0.018 J B
Acenaphthene	EPA 8270 SIM	180 ²	ND (1.2)	4.4	3.5	1.7	ND (0.17)	0.29 J	ND (0.34)	4.7	3.8	3.2	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	2.0 J	3.8	0.23	ND (0.77)	12	5.1	8.2	ND (0.028)	ND (0.027)	0.0028 J
Acenaphthylene	EPA 8270 SIM	180 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	0.037 J	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Anthracene	EPA 8270 SIM	3000 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Chrysene	EPA 8270 SIM	360 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	0.29 J	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 2	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	0.13 J	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Fluorene	EPA 8270 SIM	220 ²	9	6.2	8	3.8	ND (0.17)	0.58	ND (0.34)	6.9	7.9	5	2.7	2.7	0.34 J	0.095 J	0.048 J	3.3	3.3	9.7	0.52	4.8	16	6.8	11	0.035 J	0.0091 J	0.011 J
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)
Naphthalene	EPA 8270 SIM	120 1	32	24	120	64	ND (0.17)	6	ND (0.34)	15	88	14	22	22	ND (0.21)	0.17 J	0.057 J	12	42	68	4.3	47	120	49	77	0.19	0.014 J B	0.0064 J B
Phenanthrene	EPA 8270 SIM	3000 2	3.6	2.4	3.3	1.3	ND (0.17)	0.24 J	ND (0.34)	3.1	4.3	2.2	0.93 J	0.95 J	0.19 J	ND (0.11)	ND (0.059)	1.5	1.0 J	4.2	0.24	2.5	11	5.1	7.3	0.026 J	ND (0.027)	ND (0.028)
Pyrene	EPA 8270 SIM	1000 ²	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.17)	0.26 J	ND (0.7)	ND (1.1)	0.37 J	ND (0.49)	ND (0.5)	ND (0.21)	ND (0.11)	ND (0.059)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.027)	ND (0.028)

Color Codes:

on-Detect Result Exceeds Cleanup Level

Notes:

Site-specific cleanup levels established in 2009 Decision Document
 Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method
B = analyte was also detected in the method blank or trip blank

be a liarlyte was also detected in the method brank of trip bit bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects
ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls

QH = result is an estimated value with a high bias due to a quality control failure
QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

		Sample ID 1	11NC28SS032-0_5	11NC28SS032-1	11NC28SS032-1_5	11NC28SS033-0_5	11NC28SS033-1	11NC28SS033-1_5	11NC28SS034-1	11NC28SS034-1_5	11NC28SS035-1	11NC28SS035-1_5	11NC28SS036-1	11NC28SS036-2	11NC28SS036-1_5	11NC28SS037-2	11NC28SS037-2_5	5 11NC28SS037-3	11NC28SS038-1_7	11NC28SS038-2_2	11NC28SS038-2_7	11NC28SS039-1	11NC28SS039-1_5	11NC28SS039-2	11NC28SS040-0_5	11NC28SS040-1	11NC28SS040-1_5	_5 11NC28SS041-1
	Sample	e Depth (feet bgs)	0.5	1	1.5	0.5	1	1.5	1	1.5	1	1.5	1	1	1.5	2	2.5	3	1.75	2.25	2.75	1	1.5	1.5	0.5	1	1.5	1
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-6-1-0.5	28-6-1-1	28-6-1-1.5	28-6-2-0.5	28-6-2-1	28-6-2-1.5	28-6-3-1	28-6-3-1.5	28-6-4-1	28-6-4-1.5	28-6-5-1	28-6-5-1	28-6-5-1.5	28-6-6-2	28-6-6-2.5	28-6-6-3	28-6-7-1.75	28-6-7-2.25	28-6-7-2.75	28-6-8-1	28-6-8-1.5	28-6-8-1.5	28-7-1-0.5	28-7-1-1	28-7-1-1.5	28-7-2-1
		Lab ID		580-28112-49	580-28112-50	580-28112-51	580-28112-52	580-28112-53	580-28112-55	580-28112-56	580-28112-58	580-28112-59	580-28112-61	580-28112-62	580-28112-63	580-28198-1	580-28198-2	580-28198-3	580-28198-4	580-28198-5	580-28198-6	580-28198-7	580-28198-8	580-28198-9	580-28198-10	580-28198-11	580-28198-12	580-28198-13
		Date Collected	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011
Analyte	Analysis Method	Soil Cleanup Level	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 7	Transect 7	Transect 7	Transect 7
Percent Moisture (%)	EPA Moisture		67	33	27	24	28	28	37	34	46	44	62	64	62	46	55	54	66	66	58	60	67	80	22	48	62	77
DRO	AK102	9200 ¹	1300	500	390	100	250	460	290	450	84000	8800	3100	2600	3400	330	420	300	5100	3100	970	410	980	1300	440	510	310	27000
DRO with Silica Gel	AK102	9200 ¹	330	110	85	49	58	97	71	110	87000	8500	2700	2200	1700	73	77	80	3500	2300	390	97	310	440	81	120	110	21000
RRO	AK103	9200 ¹	10000 QH	3100 QH	2400	440	1600	3200	2400	3000 QH	21000	4500 QH	8300 QH	7900 QH	12000 QH	4300 QH	4800 QH	3300	8300 QH	9200 QH	7400 QH	5100	12000	16000 QH	2800	5000 QH	3600 QH	17000
RRO with Silica Gel	AK103	9200 ¹	2400	790	630	120	360	820	580	790	22000	1500	2400	2100	1900	530	570	560	990	1500	1200	530	2000	2400	560 QH	990	980	7400
Total Organic Carbon	EPA 9060-Quad		270000	68000 MH	64000	10000	27000	75000	94000	67000	130000	88000	130000	140000	240000	120000	100000	93000	140000	180000	260000	220000	230000	270000	30000	140000	190000	350000
GRO	AK101	300 ²	ND (2.0)	ND (1.6)	ND (1.5)	ND (1.5)	ND (1.3)	1.5 J	ND (1.8)	ND (1.7)	120	120	13 QN	27 QN	26	4.4 B	5.9 B	3.6 J B	2.0 J B	3.3 J B	2.9 J B	ND (2.5)	ND (3.1)	ND (5.6)	0.90 J B	ND (1.6)	ND (2.8)	6.8 J B
Benzene	EPA 8260B	2.0 1	ND (0.018)	ND (0.015)	ND (0.014)	ND (0.013)	ND (0.012) QL	ND (0.012) QL	ND (0.016) QL	ND (0.015) QL	0.037	0.045	ND (0.027)	ND (0.028)	ND (0.028)	ND (0.089) QL	ND (0.110)	ND (0.110) QL	ND (0.150) QL	ND (0.150)	ND (0.120)	ND (0.150)	ND (0.180) QL	ND (0.310) QL	ND (0.063) QL	ND (0.098) QL	ND (0.170) QL	ND (0.270) QL
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.055)	ND (0.044)	ND (0.041)	ND (0.040)	ND (0.035) QL	ND (0.035) QL	ND (0.049) QL	ND (0.046) QL	1.1	1	0.065 J	0.092 J	0.14	ND (0.089) QL	ND (0.110)	ND (0.110) QL	ND (0.150) QL	ND (0.150)	ND (0.120)	ND (0.150)	ND (0.180) QL	ND (0.310) QL	ND (0.063) QL	ND (0.098) QL	ND (0.170) QL	ND (0.270) QL
Total Xylenes	EPA 8260B	63 2	ND (0.110)	ND (0.088)	ND (0.082)	ND (0.080)	ND (0.070) QL	ND (0.070) QL	ND (0.098) QL	ND (0.092) QL	14.4	11.1	0.44 B	0.6	0.95	ND (0.269) QL	ND (0.330) QL	ND (0.320) QL	ND (0.440) QL	ND (0.440) QL	ND (0.350) QL	ND (0.450) QL	ND (0.550) QL	ND (0.930) QL	ND (0.193) QL	ND (0.298) QL	ND (0.510) QL	ND (0.810) QL
Toluene	EPA 8260B	6.5 2	ND (0.055)	ND (0.044)	ND (0.041)	ND (0.040)	ND (0.035) QL	ND (0.035) QL	ND (0.049) QL	ND (0.046) QL	0.024 J	ND (0.053)	ND (0.082)	ND (0.085)	ND (0.084)	1.1 QL	0.43 J QL B	0.52 J QL B	ND (0.180) QL	ND (0.180)	0.12 J QL MH B	ND (0.180) QL	0.160 J QL B	ND (0.370)	ND (0.076) QL	ND (0.120) QL	0.130 J QL B	ND (0.320) QL
PCB-1016	EPA 8082A	1 '	ND (0.042) ND (0.084)	ND (0.014)	ND (0.013) ND (0.026)	ND (0.013)	ND (0.013) ND (0.026)	ND (0.013)	ND (0.016) ND (0.031)	ND (0.014)	ND (0.018) QL ND (0.036) QL	ND (0.017)	ND (0.026) ND (0.052)	ND (0.055)	ND (0.080) ND (0.160)	ND (0.018)	ND (0.020) ND (0.041)	ND (0.020)	ND (0.040)	ND (0.066)	ND (0.022) ND (0.044)	ND (0.022) ND (0.045)	ND (0.030)	ND (0.055)	ND (0.012) QL ND (0.025) QL	ND (0.018) QL ND (0.037) QL	ND (0.025) ND (0.050)	ND (0.042) QL ND (0.084) QL
PCB-1221 PCB-1232	EPA 8082A EPA 8082A	1 1	ND (0.084) ND (0.042)	ND (0.027) ND (0.014)	ND (0.026) ND (0.013)	ND (0.025) ND (0.013)	ND (0.026) ND (0.013)	ND (0.026) ND (0.013)	ND (0.031) ND (0.016)	ND (0.028) ND (0.014)	ND (0.036) QL ND (0.018) QL	ND (0.033) ND (0.017)	ND (0.052) ND (0.026)	ND (0.110) ND (0.055)	ND (0.160) ND (0.080)	ND (0.036) ND (0.018)	ND (0.041) ND (0.020)	ND (0.040) ND (0.020)	ND (0.079) ND (0.040)	ND (0.130) ND (0.066)	ND (0.044) ND (0.022)	ND (0.045) ND (0.022)	ND (0.060) ND (0.030)	ND (0.110) ND (0.055)	ND (0.025) QL ND (0.012) QL	ND (0.037) QL ND (0.018) QL	ND (0.050) ND (0.025)	ND (0.084) QL ND (0.042) QL
PCB-1232	EPA 8082A	1 1	ND (0.042)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.018) QL	ND (0.017)	ND (0.026)	ND (0.055)	ND (0.080)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.022)	ND (0.030)	ND (0.055)	ND (0.012) QL	ND (0.018) QL	ND (0.025)	ND (0.042) QL
PCB-1248	EPA 8082A	1 1	ND (0.042)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.018) QL	ND (0.017)	ND (0.026)	ND (0.055)	ND (0.080)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.022)	ND (0.030)	ND (0.055)	ND (0.012) QL	ND (0.018) QL	ND (0.025)	ND (0.042) QL
PCB-1254	EPA 8082A	1 1	ND (0.042)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.018) QL	ND (0.017)	ND (0.026)	ND (0.055)	ND (0.080)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.022)	ND (0.030)	ND (0.055)	ND (0.012) QL	ND (0.018) QL	ND (0.025)	0.23 QL
PCB-1260	EPA 8082A	1 ¹	ND (0.042)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	0.068 J QL	ND (0.017)	ND (0.026)	ND (0.055)	ND (0.080)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.022)	ND (0.030)	ND (0.055)	ND (0.012) QL	ND (0.018) QL	ND (0.025)	0.23 QL
PCBs-Total	EPA 8082A	1 ¹	ND (0.084)	ND (0.027)	ND (0.026)	ND (0.025)	ND (0.026)	ND (0.026)	ND (0.031)	ND (0.028)	0.068 J QL	ND (0.033)	ND (0.052)	ND (0.110)	ND (0.160)	ND (0.036)	ND (0.041)	ND (0.040)	ND (0.079)	ND (0.130)	ND (0.044)	ND (0.045)	ND (0.060)	ND (0.110)	ND (0.025) QL	ND (0.037) QL	ND (0.050)	0.46 QL
Arsenic	EPA 6020	11 ¹	0.95	8.3	12	1.5	2.5	5.1	4.2	4.1	6.6	3.2	4	3.9	3.1	4.3	3.7	7.2	3	3.6	6	2.3	4.4	6.4	2.6	6.5	33	16
Barium	EPA 6020	1100 ²	72	160	150	53	69	140	90	100	130	110	130	120	140	100	89	140	110	150	150	74	130	190	120	130	140	120
Cadmium	EPA 6020	5 ²	0.23 J QN	0.3 QN	0.29 QN	0.079 J QN	0.11 J	0.21	0.18 J	0.13 J	1.2	0.23 J	0.5	0.49	0.52	0.69	0.32 J	0.66	0.29 J	0.40 J	0.67	0.16 J	0.50 J	0.71 J	0.15 J	1.8	4.3	0.57 J
Chromium	EPA 6020	25 ²	4	22	22	8.9	9.8	21	15	18	28	18	19	19	16	22	16	23	18	25	25	9.5	24	39	25	15	44	18
Lead	EPA 6020	400 ²	1.9	11	11	4.7	5.3	10	8.2	9.2	73	11	15	13	13	17	12	15	9.9	14	19	7.7	13	21	12	11	38	31
Nickel	EPA 6020	86 ²	6	16	15	8.4	8.2	15	8.4	8.6	20	12	13	13	15	14	11	17	9.7	14	17	4.9	11	16	12	16	44	16
Selenium	EPA 6020	3.4 2	1.6	1.2	1.1	0.24 J	0.43 J	0.92	1.0 J	0.83	1.4	0.90 J	1.2 J	1.3	1.6	1.3	1.2 J	1.3 J	1.3 J	1.7 J	1.9	1.1 J	2	3.2	0.75	1.9	6.5	1.7 J
Silver	EPA 6020	11.2 2	0.055 J	0.090 J	0.077 J	0.036 J	0.042 J	0.091 J	0.060 J	0.067 J	0.18 J	0.07 J	0.099 J	0.094 J	0.11 J	0.16 J B	0.12 J B	0.17 J B	0.11 J B	0.13 J B	0.24 J B	0.067 J B	0.14 J B	0.24 J B	0.10 J B	0.16 J B	0.36 J B	0.19 J B
Vanadium	EPA 6020 EPA 7471A	3400 2	7.2 0.18	40	37 0.075	12	0.039	34	26 0.060	30	0.36	26 0.057	30 0.083	29 0.087	0.079	33	30 0.050	0.078	0.074	39	42 0.076	18	0.000	0.13	35 0.064	45 0.066	120	39 0.13
Mercury 1-Methylnaphthalene	EPA 747 IA EPA 8270 SIM	6.2 2	0.010 J B	0.078 0.0020 J B	0.0022 J B	0.020 J 0.0042 J QH B	0.100 QH	0.065 0.013 J B	0.0051 J B	0.070 0.011 J B	200	0.037	2.1	2.2	1.6 J	0.060 0.0025 J	0.0027 J QH	0.0027 J QH	9.6	0.10 4.8	0.69 J	0.047 0.062 QH	0.090 0.080 QH	0.120 QH	ND (0.012)	ND (0.018)	0.13 0.0016 J	0.13 0.57 J
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	0.017 J B	0.0030 J B	0.0022 J B	0.0042 0 QH B	0.220 QH B	0.026 J B	0.0031 J B	0.011 J B	360	50	3.9	4.2	3.3 J	0.0029 J	0.0027 J QH	ND (0.021)	9.4	5.1	0.91 J	0.093 QH	0.120 QH	0.190 QH	ND (0.012)	ND (0.018)	0.0010 J	0.47 J
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	8.6 J	0.71 J	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Chrysene	EPA 8270 SIM	360 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 2	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
Fluorene	EPA 8270 SIM	220 2	0.035 J	0.0090 J	0.0073 J	0.0021 J	0.0058 J	0.0086 J	ND (0.019)	ND (0.019)	9.7 J	0.59 J	0.17 J	0.2 J	0.19 J	ND (0.017)	ND (0.021)	ND (0.021)	0.77 ND (0.24)	0.29 J	0.045 J	0.011 J	0.023 J	0.033 J	0.0041 J	ND (0.018)	ND (0.0062)	ND (0.41)
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM EPA 8270 SIM	120 ¹	ND (0.076)	ND (0.018) ND (0.018)	ND (0.017) ND (0.017)	ND (0.0032) ND (0.0032)	ND (0.0035) 0.043 QH B	ND (0.017)	ND (0.019) ND (0.019)	ND (0.019)	ND (7.3) 91	ND (0.45) 19	ND (0.13) 1.9	ND (0.14)	ND (0.13)	ND (0.017) ND (0.017)	ND (0.021) ND (0.021)	ND (0.021) ND (0.021)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049) 0.099 QH	ND (0.012) ND (0.012)	ND (0.018) ND (0.018)	ND (0.0062)	ND (0.41) 0.48 J
Naphthalene Phenanthrene	EPA 8270 SIM	3000 2	0.010 J B ND (0.076)	ND (0.018) ND (0.018)	ND (0.017) ND (0.017)	ND (0.0032) ND (0.0032)	0.043 QH B ND (0.0035)	0.012 J B ND (0.017)	ND (0.019) ND (0.019)	0.011 J B ND (0.019)	4.7 J	0.21 J	0.1 J	0.12 J	2.1 J 0.11 J	ND (0.017) ND (0.017)	ND (0.021) ND (0.021)	ND (0.021) ND (0.021)	0.32 J	0.13 J	0.59 J 0.017 J	0.03 J QH ND (0.024)	0.063 QH ND (0.029)	0.099 QH ND (0.049)	ND (0.012) ND (0.012)	ND (0.018) ND (0.018)	0.0016 J ND (0.0062)	0.48 J ND (0.41)
Pyrene	EPA 8270 SIM	1000 ²	ND (0.076)	ND (0.018)	ND (0.017)	ND (0.0032)	ND (0.0035)	ND (0.017)	ND (0.019)	ND (0.019)	4.7 J ND (7.3)	0.21 J ND (0.45)	ND (0.13)	ND (0.14)	0.113 ND (0.13)	ND (0.017)	ND (0.021)	ND (0.021)	0.32 J ND (0.24)	ND (0.17)	ND (0.03)	ND (0.024)	ND (0.029)	ND (0.049)	ND (0.012)	ND (0.018)	ND (0.0062)	ND (0.41)
1 yrene	LI A UZI U SIIVI	1000	ואף (0.070)	(סוטיס) שאו	(טיטון) מאו	(סייסק)	(ניניטיט) אווי	(ווטיט) מאו	(פוטיס) חזיו	(פוטיט) שאו	(נ.ז) שאו	(0.45)	(ט. וטיו (ט. וט)	ND (0.14)	(ט.וט) שאו	(ווט,ט) שוּוּ	ואט (ט.טבו)	IND (0.021)	140 (0.24)	ואט (ט.וו)	(פטיט) חאו	140 (0.024)	(0.029)	ND (0.048)	(ס.טוב)	(סוטיס) שאו	(0.000Z)	140 (0.41)

to Groundwater (Revised October 9, 2008)

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

> Table 3 - Site 28 Soil Analytical Results Bristol

		Sample ID	11NC28SS041-1_3	11NC28SS042-1	1 11NC28SS042-1_5	11NC28SS042-2_5	11NC28SS042-2	11NC28SS043-1_5	11NC28SS043-2	11NC28SS043-2_5	11NC28SS044-2	11NC28SS044-2_5	11NC28SS044-3	11NC28SS045-1	11NC28SS045-1_5	11NC28SS046-0_7	11NC28SS046-1_2	2 : 11NC28SS046-1_7	11NC28SS047-2	11NC28SS047-2_5	11NC28SS047-3	11NC28SS048-1	11NC28SS048-1_5	11NC28SS048-2	11NC28SS048-2_5	11NC28SS049-1_5	11NC28SS049-2	1NC28SS049-3 DU
	Sampl	le Depth (feet bgs)	1.33	1	1.5	1.5	2	1.5	2	2.5	2	2.5	3	1	1.5	0.75	1.25	1.75	2	2.5	3	1	1.5	2	2	1.5	2	2
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-7-2-1.33	28-7-3-1	28-7-3-1.5	28-7-3-1.5	28-7-3-2	28-7-4-1.5	28-7-4-2	28-7-4-2.5	28-7-5-2	28-7-5-2.5	28-7-5-3	28-7-6-1	28-7-6-1.5	28-8-1-0.75	28-8-1-1.25	28-8-1-1.75	28-8-2-2	28-8-2-2.25	28-8-2-3	28-8-3-1	28-8-3-1.5	28-8-3-2	28-8-3-2	28-8-4-1.5	28-8-4-2	28-8-4-2
			580-28198-14	580-28198-15	580-28198-16	580-28198-17	580-28198-18	580-28198-19	580-28198-20	580-28198-21	580-28198-22	580-28198-23	580-28198-24	580-28198-25	580-28198-26	580-28198-27	580-28198-28	580-28198-29	580-28198-30	580-28198-31	580-28198-32	580-28198-33	580-28198-34	580-28198-35	580-28198-36	580-28198-37	580-28198-38	580-28198-39
		Date Collected	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011
Analyte	Analysis Method	Soil Cleanup	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8
Percent Moisture (%)	EPA Moisture		64	88	30	32	31	81	76	70	84	72	89	51	63	41	36	30	66	41	55	66	47	27	28	61	60	59
DRO	AK102	9200 ¹	30000	1300	390	300	360	95000	84000	39000	96000	31000	59000 J	390	380	380	300	230	6200	4200	990	4300	1900	410	330	27000	4200	5500
DRO with Silica Gel	AK102	9200 ¹	23000	1100	360 QN	160 QN	310	96000	70000	40000	110000	34000	64000 J	110	79	96	57	46	6600	4200	620	4500	1900	310	190	32000	4900	6200
RRO	AK103	9200 ¹	9500 QH	3700	360	290	390	10000	7000	4500	9700	5700	10000	4200	4200	2500	2100	1900	380	370	3700	680	1600	1300	1300	3900	2300	2200
RRO with Silica Gel	AK103	9200 ¹	4600	1500	71 QN	41 QN	78	2300 J	1400	960	3000	1100	1800	500	410	330	300	330	100	72	800	270	310	330	330	1300	740	610
Total Organic Carbon	EPA 9060-Quad		120000	140000	9800	8700	14000	450000	300000	210000	240000	230000	65000	130000	150000	57000	34000	68000	260000	130000	150000	46000	57000	29000	27000	150000	140000	130000
GRO	AK101	300 ²	51	63	35	30	13 B	260	290	220	1600	440	2800 J	4.4 ML B	2.5 J B	2.3 J B	3.2 B	1.0 J B	1600	2300	150	14 B	5.7 B	8.9 QN B	32 QN	840	95 QN	170 QN
Benzene	EPA 8260B	2.0 ¹	ND (0.170) QL	ND (0.510)	ND (0.300) QL	ND (0.070) QL	ND (0.058) QL	ND (0.034)	ND (0.0240)	ND (0.200)	ND (0.380) QL	ND (0.190) QL	ND (0.430) QL	ND (0.100) QL	ND (0.160)	ND (0.087) QL	ND (0.083) QL	ND (0.063) QL	ND (0.180) QL	ND (0.410)	ND (0.120)	ND (0.160) QL	ND (0.086)	ND (0.058)	ND (0.066)	ND (0.150)	ND (0.120)	ND (0.140)
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.170) QL	ND (0.510)	ND (0.300) QL	ND (0.070) QL	ND (0.058) QL	0.980 J QL	1.0 J QL	1.3 QL	5.0 QL	1.7 QL	7.6 J QL	ND (0.100) QL	ND (0.160) QL	ND (0.087) QL	ND (0.083) QL	ND (0.063) QL	12 QL	2.9 QL	0.81 QL	ND (0.160) QL	ND (0.086)	ND (0.058)	ND (0.066)	0.410 J	ND (0.120)	ND (0.140)
Total Xylenes	EPA 8260B	63 ²	ND (0.520) QL	ND (1.510) QL	ND (0.910) QL	ND (0.210) QL	ND (0.178) QL	8.8 QL	9.8 QN	10.3 QN	44 QL	12.4 QL	55 J ML	ND (0.310) QL	ND (0.470) QL	ND (0.257) QL	ND (0.253) QL	ND (0.193) QL	83 QL	26.3 QL	4.5 QL	ND (0.480) QL	0.310 J	ND (0.178) QL	0.130 J	4.7	0.930 J	1.23
Toluene	EPA 8260B	6.5 ²	ND (0.210) QL	0.490 J QL B	ND (0.360) QL	0.054 J QL B	0.050 J QL B	ND (0.400)	ND (0.290)	ND (0.240)	0.390 J QL B	0.220 J QL B	0.970 J QL B	0.120 J QL B	0.120 J QL B	0.082 J QL B	ND (0.100) QL	ND (0.076) QL	0.84 J QL B	0.180 J QL B	0.180 J QL B	0.240 J QL B	ND (0.100)	ND (0.069)	ND (0.079)	ND (0.180)	ND (0.150)	ND (0.170)
PCB-1016	EPA 8082A	1 ¹	ND (0.025) QL	ND (0.081)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCB-1221	EPA 8082A	11	ND (0.051) QL	ND (0.160)	ND (0.027)	ND (0.027)	ND (0.028)	ND (0.099)	ND (0.078)	ND (0.066) QL	ND (0.120) QL	ND (0.066) QL	ND (0.170) ML	ND (0.040) QL	ND (0.053) QL	ND (0.032)	ND (0.030)	ND (0.027)	ND (0.055)	ND (0.033)	ND (0.041)	ND (0.055)	ND (0.037)	ND (0.027)	ND (0.027)	ND (0.049)	ND (0.049)	ND (0.047)
PCB-1232	EPA 8082A	11	ND (0.025) QL	ND (0.081)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCB-1242	EPA 8082A	11	ND (0.025) QL	ND (0.081)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCB-1248	EPA 8082A	1'	ND (0.025) QL	ND (0.081)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCB-1254	EPA 8082A	1'	0.089 QL	ND (0.081)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCB-1260	EPA 8082A	1 1	0.069 J QL	0.027 J MN	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.020) QL	ND (0.026) QL	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.028)	ND (0.016)	ND (0.021)	ND (0.027)	ND (0.018)	ND (0.013)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)
PCBs-Total	EPA 8082A	1 1	0.158 J QL	0.027 J MN	ND (0.027)	ND (0.027)	ND (0.028)	ND (0.099)	ND (0.078)	ND (0.066)	ND (0.120) QL	ND (0.066) QL	ND (0.170) ML	ND (0.040) QL 3.7	ND (0.053) QL	ND (0.032)	ND (0.030)	ND (0.027)	ND (0.055)	ND (0.033)	ND (0.041)	ND (0.055)	ND (0.037)	ND (0.027)	ND (0.027)	ND (0.049)	ND (0.049)	ND (0.047)
Arsenic	EPA 6020 EPA 6020	1100°2	5.1 66	69 210	1.8 42	1.5	48	3.4	2.9	3.3	9.5 130	4.2 70	340	3.7 94	4.5 81	3.6 130	3.7 130	3.2 80	3.5 120	4.4 130	4.2 110	64 120	8.9 120	2.6 120	2.7	2.2 100	110	2.3
Cadmium	EPA 6020	1100 F ²	0.19 J	0.69 J	0.059 J	0.063 J	0.11 J	0.28 J	0.27 J	0.33 J	0.78 J	0.50 J	1.2 J	0.47	0.56	0.22 J	0.19 J	0.16 J	0.21 J	0.27	0.34	0.12 J	0.21 J	0.17 J	0.20 J	0.15 J	0.23 J	0.21 J
Chromium	FPA 6020	25 ²	8.7	15	10	0.003 3	9.4	9.5	9.7	10	17	8.1	1.2 3	13	12	18	0.193	11	13	17	15	6.8	15	23	0.20 3	14	14	13
Lead	FPA 6020	400 ²	8	25	5.5	5.3	6	7.4	7.6	10	18	7.5	49	12	10	9.3	8.8	6.3	7.4	11	12	4.6	9.1	9.9	10	9.4	9.3	8.7
Nickel	EPA 6020	86 ²	5.2	15	6.3	6	5.9	6.3	4.6	5	11	5.3	38	7.7	7.9	11	12	8	9.1	10	11	3.5	10	15	15	8.9	9.5	8.8
Selenium	EPA 6020	3.4 2	0.90 J	1.8 J	ND (0.49)	ND (0.50)	0.34 J	2.9	2.5	2.7	4.1	2.4	5.1	1.7	2.2	1.2	1	0.87	1.6	1.5	2	0.88 J	1.0 J	0.46 J	0.48 J	0.96 J	1.3 J	1.1 J
Silver	EPA 6020	11.2 ²	0.084 J B	0.34 J B	0.042 J B	0.038 J B	0.022 J	0.12 J	0.086 J	0.078 J	0.19 J	0.11 J	0.34 J	0.10 J	0.11 J	0.074 J	0.069 J	0.051 J	0.060 J	0.098 J	0.14 J	ND (0.058)	0.070 J	0.094 J	0.10 J	0.085 J	0.093 J	0.087 J
Vanadium	EPA 6020	3400 ²	17	35	15	14	11	16	15	26	46	30	110	25	27	28	29	19	25	29	25	15	29	36	39	26	31	28
Mercury	EPA 7471A	1.4 ²	0.073	0.16	0.014 J	0.019 J	0.010 J QN	0.16 QN	0.098 QN	0.075 QN	0.12 QN	0.067 QN	0.14 QN	0.060 QN	0.057 QN	0.064 QN	0.057 QN	0.043 QN	0.069	0.069	0.084 QN	0.027 J QN	0.051	0.048 QN	0.056 QN	0.058	0.067	0.10
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	1.6	0.100 J	0.44	0.48	0.67	100	190	120	270	110	240 J	0.0076 J B	0.020 J	0.81	0.42	0.037	140	9.1	1.4	4.2	2.4	1	0.8	25	6.9	7.5
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	1.4	0.055 J	0.77	0.86	1.2	140	320	160	350	210	450 J	0.012 J B	0.038 J	1.6	0.71	0.072	180	18	1.6	7.5	4	1.5	1.3	42	12	13
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.51)	ND (0.079)	0.022 J	0.022 J	0.020 J	ND (2.6)	ND (5.9)	4.4	7.8	2.8	6.8 J	ND (0.023)	ND (0.033)	0.017 J	ND (0.018)	ND (0.017)	2.8 J	0.38 J	ND (0.11)	ND (0.13)	ND (0.088)	0.041	0.033	ND (0.64)	ND (0.29)	0.32 J
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Benzo[b]fluoranthene	EPA 8270 SIM	12 2	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Chrysene	EPA 8270 SIM	360 2	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (0.51)	ND (0.079)	ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)
Fluorene	EPA 8270 SIM	220 2	0.96 J	0.059 J	0.03 J	0.032 J	0.024 J	11 ND (2.6)	16 ND (5.0)	12 ND (1.6)	18 ND (2.0)	6.6	15.000 J	0.019 J	0.023 J	0.035 J	0.018 J	0.009 J	3.3 ND (1.4)	0.46 J	0.079 J	0.24 J	0.120 J	0.064 ND (0.016)	0.053	2.1 ND (0.64)	0.61	0.67
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM EPA 8270 SIM	120 1	ND (0.51) 1.5	ND (0.079) 0.120 J	ND (0.016)	ND (0.017) 0.37	ND (0.017)	ND (2.6) 36	ND (5.9) 81	ND (1.6)	ND (2.9)	ND (0.86) 110	ND (2.1) 210 J	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018) 0.31	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	ND (0.016) 0.44	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28) 3.8
Naphthalene Phenanthrene	EPA 8270 SIM	2000 2	0.88 J	0.120 J ND (0.079)	0.32 ND (0.016)	0.37 ND (0.017)	0.5 ND (0.017)	7.2	9.1 J	6.5	8.1	2.7	6.4	0.016 J B ND (0.023)	0.018 J B ND (0.033)	0.22 ND (0.02)	0.31 ND (0.018)	0.015 J B ND (0.017)	92 1.0 J	0.17 J	0.4 ND (0.11)	1.8 ND (0.13)	1.3 ND (0.088)	0.44 0.02 J	0.36 0.016 J	0.87 J	3.3 0.24 J	0.26 J
_	EPA 8270 SIM	1000 ²	0.88 J ND (0.51)	ND (0.079)	ND (0.016) ND (0.016)	ND (0.017)	ND (0.017)	ND (2.6)	9.1 J ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (0.023)	ND (0.033)	ND (0.02)	ND (0.018)	ND (0.017)	ND (1.4)	ND (0.39)	ND (0.11)	ND (0.13)	ND (0.088)	0.02 J ND (0.016)	ND (0.016)	0.87 J ND (0.64)	0.24 J ND (0.29)	ND (0.28)
Pyrene	LI A OZIO SIIVI	1000	(וניס) חאו	(0.079)	(טוט.ט) שוּיו	(0.017)	(ט.טוו)	ND (2.0)	ואט (אט)	(ו.ט) (ווי)	14D (2.8)	140 (0.00)	IND (2.1)	IND (0.023)	(פנטיט) מאו	14D (U.UZ)	(סוטיס) שאו	(ווט.ט) שאו	110 (1.4)	(פניס) חוזי	(וויס) פאו	(ט. וט) שוּו	(0.000) שוּיו	(טוט.ט) שאו	(0.010)	ND (0.04)	ND (0.23)	140 (0.20)

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery RRO = residual range organics

SIM = selective ion monitoring

Table 3 - Site 28 Soil Analytical Results Bristol

		Sample ID	11NC28SS049-2_5	11NC28SS050-0_7	11NC28SS050-1_2	2511NC28SS050-1_7	11NC28SS051-0_5	11NC28SS051-1	11NC28SS051-1_5	11NC28SS052-0_5	11NC28SS052-1	11NC28SS052-1_5	11NC28SS053-1	11NC28SS053-1_5	11NC28SS053-2_5	11NC28SS053-2	11NC28SS054-1	11NC28SS054-1_5	11NC28SS055-1_5	11NC28SS055-2	11NC28SS055-2_5	11NC28SS056-0_75	11NC28SS056-1_2	11NC28SS056-1_7	11NC28SS057-1_5	11NC28SS057-2	11NC28SS057-2_5
	Sampl	e Depth (feet bgs)	2.5	0.75	1.25	1.75	0.5	1	1.5	0.5	1	1.5	1	1.5	1.5	2	1	1.5	1.5	2	2.5	0.75	1.25	1.75	1.5	2	2.5
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-8-4-2.5	28-8-5-0.75	28-8-5-1.25	28-8-5-1.75	28-8-6-0.5	28-8-6-1	28-8-6-1.5	28-9-1-0.5	28-9-1-1	28-9-1-1.5	28-9-2-1	28-9-2-1.5	28-9-2-1.5	28-9-2-2	28-9-3-1	28-9-3-1.5	28-9-4-1.5	28-9-4-2	28-9-4-2.5	28-9-5-0.75	28-9-5-1.25	28-9-5-1.75	28-10-1-1.5	28-10-1-2	28-10-1-2.5
		Lab ID	580-28198-40	580-28198-41	580-28198-42	580-28198-43	580-28198-44	580-28198-45	580-28198-46	580-28198-47	580-28198-48	580-28198-49	580-28198-50	580-28198-51	580-28198-52	580-28198-53	580-28198-55	580-28198-56	580-28198-57	580-28198-58	580-28198-59	580-28198-60	580-28198-61	580-28198-62	580-28198-63	580-28198-64	580-28198-65
		Date Collected	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011
Amaluta	Amahasia Mathad	Soil Cleanup	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 9	Transect 10	Transect 10	Transect 10
Percent Moisture (%)	Analysis Method EPA Moisture	Level 	57	65	28	50	20	19	19	66	52	57	70	62	61	54	56	30	46	32	37	33	37	28	64	41	15
DRO	AK102	9200 ¹	1900	1300	2700	600	74	67	67	470	340	360	7500	1400	1000	1300 ML	1400	370	650	220	210	230	260	150	530	270	28
DRO with Silica Gel	AK102	9200 ¹	2000	1100	3000	510	23	30	23 B	200	100	110	8300	1300	990	1100	1500	220	330	96	98	67	83	52	370	230	18
RRO	AK103	9200 ¹	2000	2000	720	1800	340	320	390	3500	2900	3500	4500	2800	2300	3000 ML	2300	2200	5300 ML	2100	1600	2300	2500	1300	2000	870	150
RRO with Silica Gel	AK103	9200 ¹	400	400	170	420	110	150	110 B	680	600	600	1600	600	530	740 MH	810	650	1900	700	330	570	660	300	820	350	44
Total Organic Carbon	EPA 9060-Quad		86000	120000	26000	110000	12000	11000	15000	200000	150000	180000	180000	150000	140000	110000	120000	57000	94000	68000	72000	110000	100000	55000	59000	30000	20000
GRO	AK101	300 ²	110	7.5 B	17 B	4.8 B	1.6 B	1.9 B	2.2 B	1.9 J B	1.6 J B	1.5 J B	91	95 QN	27 QN B	33 J ML	26 B	6.8 B	5.3 B	3.9 B	6.8 B	3.4 B	4.6 B	2.9 B	2.3 J B	3.9 B	2.8 B
Benzene	EPA 8260B	2.0 ¹	ND (0.130)	ND (0.150)	ND (0.060)	ND (0.094)	ND (0.050)	ND (0.060)	ND (0.059)	ND (0.190)	ND (0.110)	ND (0.120) QL	ND (0.300) QL	ND (0.120) QL	ND (0.140) QL	ND (0.098) QL	ND (0.140)	ND (0.077)	ND (0.087)	ND (0.063)	ND (0.099)	ND (0.034)	ND (0.080) QL	ND (0.063) QL	ND (0.110) QL	ND (0.080)	ND (0.058)
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.130)	ND (0.150)	ND (0.060)	ND (0.094)	ND (0.050)	ND (0.060)	ND (0.059)	ND (0.190)	ND (0.110)	ND (0.120) QL	ND (0.300) QL	ND (0.120) QL	ND (0.140) QL	ND (0.098) QL	ND (0.140)	0.054 J	ND (0.087)	ND (0.063)	ND (0.099)	ND (0.034)	ND (0.080) QL	ND (0.063) QL	ND (0.110) QL	ND (0.080)	ND (0.058)
Total Xylenes	EPA 8260B	63 ²	0.550 J	ND (0.450)	ND (0.180)	ND (0.284)	ND (0.149)	ND (0.180)	ND (0.179)	ND (0.570)	ND (0.330)	ND (0.360) QL	ND (0.900) QL	0.500 J QL	0.380 J QL	0.230 J QL	0.740 J	ND (0.127)	ND (0.257)	ND (0.193)	ND (0.299)	ND (0.102)	ND (0.240) QL	ND (0.193) QL	ND (0.330) QL	ND (0.240)	ND (0.178)
Toluene	EPA 8260B	6.5 ²	ND (0.160)	ND (0.180)	ND (0.072)	ND (0.110)	ND (0.060)	ND (0.071)	ND (0.071)	ND (0.230)	ND (0.130)	ND (0.150) QL	0.240 J QL	ND (0.150) QL	ND (0.170) QL	ND (0.120) QL	ND (0.170)	ND (0.093)	ND (0.100)	ND (0.076)	ND (0.120)	ND (0.041)	ND (0.096) QL	ND (0.075) QL	ND (0.130) QL	ND (0.096)	ND (0.069)
PCB-1016	EPA 8082A	1 ¹	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	ND (0.025)	ND (0.016)	ND (0.011)
PCB-1221	EPA 8082A	1 ¹	ND (0.043)	ND (0.056)	ND (0.026)	ND (0.039)	ND (0.024)	ND (0.024)	ND (0.023)	ND (0.058)	ND (0.040)	ND (0.045)	ND (0.094)	ND (0.049)	ND (0.048)	ND (0.041)	ND (0.044)	ND (0.027)	ND (0.034)	ND (0.028)	ND (0.029)	ND (0.028)	ND (0.031)	ND (0.027)	ND (0.051)	ND (0.032)	ND (0.023)
PCB-1232	EPA 8082A	1 ¹	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	ND (0.025)	ND (0.016)	ND (0.011)
PCB-1242	EPA 8082A	1 1	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	ND (0.025)	ND (0.016)	ND (0.011)
PCB-1248	EPA 8082A	1 ¹	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	ND (0.025)	ND (0.016)	ND (0.011)
PCB-1254	EPA 8082A	1 1	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	ND (0.025)	ND (0.016)	ND (0.011)
PCB-1260	EPA 8082A	1 1	ND (0.022)	ND (0.028)	ND (0.013)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.029)	ND (0.020)	ND (0.022)	ND (0.047)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.014)	ND (0.017)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.013)	0.27	ND (0.016)	ND (0.011)
PCBs-Total	EPA 8082A	11	ND (0.043)	ND (0.056)	ND (0.026)	ND (0.039)	ND (0.024)	ND (0.024)	ND (0.023)	ND (0.058)	ND (0.040)	ND (0.045)	ND (0.094)	ND (0.049)	ND (0.048)	ND (0.041)	ND (0.044)	ND (0.027)	ND (0.034)	ND (0.028)	ND (0.029)	ND (0.028)	ND (0.031)	ND (0.027)	0.27	ND (0.032)	ND (0.023)
Arsenic	EPA 6020	11 1	2.8	3.1	2.5	3.9	5.2	4.5	4.1	2.7	2.5	4.2	15	3.2	3.4	3.8	7.2	2.2	2.3	2.1	3.2	3	3.7	3.8	9.2	6.6	9
Barium	EPA 6020	1100 2	94	100	65	110	150	130	120	110	110	110	140	120	110	100	100	130	170	130	110	170	140	170	82	65	62
Chromium	EPA 6020	5 2	0.20 J	0.21 J	0.10 J	0.36	0.2	0.19	0.17	0.12 J	0.20 J	0.31 J	0.31 J	0.23 J	0.23 J	0.24 J	0.21 J	0.27	0.53	0.26	0.33	0.29	0.34	0.32	0.20 J	0.21 J	0.25
Chromium	EPA 6020	25 ²	9.5	15	6.9	14 8.6	12	23	20	9.8	13 7.8	13	14	13 8.6	8.2	11	9.7	17	22	18	18	10	18	22	12	16 15	22
Nickel	EPA 6020	86 ²	6.8	11	9.1	12	19	16	15	8.7	8.5	10	9.5	7.8	7.4	6.8	7.4	10	13	9.5	11	12	12	17	8.7	13	20
Selenium	EPA 6020	3.4 ²	0.8 0.94 J	1.3	0.50 J	1.1	0.52	0.54 J	0.54	1.4 J	1.5	1.8	1.7 J	1.6	1.6	1.3	1.3 J	1.1	1.3	1.1	1.1	1.2	1.5	1.1	1.1 J	1.1	0.96
Silver	EPA 6020	11.2 ²	0.073 J	0.098 J	0.053 J	0.094 J	0.13	0.12 J	0.097 J	0.093 J	0.061 J	0.080 J	0.088 J	0.074 J	0.072 J	0.066 J	0.074 J	0.081 J	0.086 J	0.065 J	0.095 J	0.080 J	0.083 J	0.097 J	0.070 J	0.081 J	0.093 J
Vanadium	EPA 6020	3400 ²	25	31	25	30	41	37	34	28	26	30	28	28	25	23	20	26	32	26	29	30	31	34	21	25	36
Mercury	EPA 7471A	1.4 2	0.049	0.069	0.032	0.058	0.054	0.057	0.045	0.092	0.055	0.067	0.094	0.067	0.066	0.053	0.068	0.055	0.075	0.051	0.049	0.074	0.061	0.065	0.049	0.033	0.025
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	1.2	0.056 J	ND (0.17)	0.016 J	0.00086 J	ND (0.0029)	0.00058 J	ND (0.036)	0.0049 J	0.0030 J	1.9 J	0.85 J	1.9	0.46	0.85	0.029	0.013	0.00052 J	ND (0.18)	ND (0.17)	ND (0.019)	0.0027 J	0.0046 J	ND (0.08)	0.002 J
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	2	0.077 J	ND (0.17)	0.015 J	0.0012 J	ND (0.0029)	0.00087 J	0.0047 J	0.0068 J	ND (0.029)	2.6	1.0 J	2.4	0.620 J	1.1	0.04	0.015	0.0015 J	ND (0.18)	ND (0.17)	0.0030 J	0.0023 J	0.0064 J	ND (0.08)	0.002 J
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	0.35 J	0.13 J	0.11 J	0.046 J	0.082 J	0.0044 J	0.0045 J	0.0012 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	0.00021 J	ND (0.0029)	0.00024 J	ND (0.036)	ND (0.026)	0.0032 J	0.089 J	0.072 J	0.016 J	0.0058 J	0.0087 J	0.00029 J	0.0013 J	0.00039 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	0.00098 J	ND (0.0029)	0.0014 J	ND (0.036)	ND (0.026)	ND (0.029)	0.38 J	ND (0.65)	0.092 J	0.017 J	0.042 J	0.0073	0.0056 J	0.0033 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	0.0012 J	ND (0.0046)	0.0012 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	0.00097 J	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	ND (0.0033)	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	ND (0.0033)	0.0038 J	0.0022 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	ND (0.0033)	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Chrysene	EPA 8270 SIM	360 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	ND (0.0033)	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	0.016 J	ND (1.1)	ND (0.65)	ND (0.13)	0.016 J	ND (0.054)	0.0052 J	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	0.0016 J	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	0.027 J	ND (0.08)	ND (0.014)
Fluorene	EPA 8270 SIM	220 ²	0.15 J	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	0.00067	0.011 J	0.011 J	0.017 J	0.54 J	0.21 J	0.2 J	0.082	0.13	0.0076	0.0011 J	0.0071	ND (0.18)	ND (0.17)	0.0089 J	0.0048 J	0.0099 J	ND (0.08)	ND (0.014)
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.003)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	ND (0.0033)	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	ND (0.033)	ND (0.08)	ND (0.014)
Naphthalene	EPA 8270 SIM	120 1	0.6	0.041 J	ND (0.17)	ND (0.048)	0.0008 J	ND (0.0029)	0.00053 J	ND (0.036)	ND (0.026)	ND (0.029)	0.76 J	0.55 J	1.5	0.35	0.62	0.013	0.0055 J	0.0011 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	0.0065 J	ND (0.08)	ND (0.014)
Phenanthrene	EPA 8270 SIM	3000 ²	0.071 J	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	0.079 J	0.042 J	0.062 J	0.0061 J	0.0046 J	0.0028 J	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	0.026 J	ND (0.08)	ND (0.014)
Pyrene	EPA 8270 SIM	1000 ²	ND (0.11)	ND (0.13)	ND (0.17)	ND (0.048)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.036)	ND (0.026)	ND (0.029)	ND (1.1)	ND (0.65)	ND (0.13)	ND (0.026)	ND (0.054)	0.0015 J	ND (0.0046)	ND (0.0034)	ND (0.18)	ND (0.17)	ND (0.019)	ND (0.016)	0.021 J	ND (0.08)	ND (0.014)

Color Codes:

Duplicate of Previous Sample

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified
AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics
EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics
J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects
ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls
QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery RRO = residual range organics

SIM = selective ion monitoring

Table 3 - Site 28
Soil Analytical Results

Bristol

		Sample ID	11NC28SS058-1	11NC28SS058-2	11NC28SS058-1_5	11NC28SS059-1	11NC28SS059-1_5	11NC28SS060-1	11NC28SS060-2	11NC28SS060-1_5	11NC28SS061-1_5	11NC28SS061-2	11NC28SS062-0_7	11NC28SS063-0_7	/t11NC28SS063-1_75	11NC28SS064-1_75	11NC28SS064-2_2	11NC28SS064-2_	5 11NC28SS065-2	2 11NC28SS065-2_5	11NC28SS065-3	11NC28SS066-0_7	7:11NC28SS066-1_2	25 11NC28SS066-2	11NC28SS067-1	11NC28SS067-1_	11NC28SS068-1	11NC28SS069-1_5
	Sample	Depth (feet bgs)	1	1	1.5	1	1.5	1	1	1.5	1.5	2	0.75	0.75	1.75	1.75	2.25	2.25	2	2.5	3	0.75	1.25	1.25	1	1.5	1	1.5
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-10-2-1	28-10-2-1	28-10-2-1.5	28-10-3-1	28-10-3-1.5	28-11-1-1	28-11-1-1	28-11-1-1.5	28-11-2-0.5	28-11-2-2	28-11-3-0.75	28-11-4-0.75	28-11-4-1.75	28-11-5-1.75	28-11-5-2.25	28-11-5-2.25	28-11-6-2	28-11-6-2.5	28-11-6-3	28-DIS-01-0.75	28-DIS-01-1.25	28-DIS-01-1.25	28-DIS-02-1	28-DIS-02-1.5	28-DIS-03-1	28-DIS-04-1.5
		Lab ID		580-28198-68	580-28198-69	580-28198-71	580-28198-72	580-28198-74	580-28198-75	580-28198-76	580-28198-78	580-28198-79	580-28198-81	580-28198-83	580-28198-84	580-28198-87	580-28198-88	580-28198-89	580-28198-90	580-28198-91	580-28198-92	580-28198-93	580-28198-94	580-28198-95	580-28198-97	580-28198-98	580-28198-99	580-28198-100
		Date Collected Soil Cleanup	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/20/2011
Analyte	Analysis Method	Level	Transect 10	Transect 10	Transect 10	Transect 10	Transect 10	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
Percent Moisture (%)	EPA Moisture		51	51	33	59	54	31	30	47	73	33	65	89	53	85	49	45	67	51	44	53	41	35	22	17	71	46
DRO	AK102	9200 ¹	7200	4500	200	370	460	32000	23000	5400	18000	500	110000	58000	22000	23000	2500 QN	4800 QN	4600	1000	550 MH	94000	42000 QN	24000 QN	6700	13000	280000	21000
DRO with Silica Gel	AK102	9200 ¹	7900 QN	4600 QN	130	260	360	35000	26000	5300	18000	390	120000	63000	22000	25000	2400 QN	4900 QN	4800	900	450 MH	97000	46000 QN	24000 QN	7100	16000	290000	26000
RRO	AK103	9200 ¹	2500	2100	870	1500	1300	2500	1800	5100	5400	1700	22000	8700	3300	6500	3900	3800	3300	2700	1800 MH	14000	7100	4900	10000	8000 QL	3800 J	3500
RRO with Silica Gel	AK103	9200 ¹	1400	1000	220	450	410	1400	1100	1400	2000	690	19000	2500	1100	4300	1200	1300	1500	950	540 MH	12000	5900 QN	3300 QN	10000 QL	9000	2200	740
Total Organic Carbon	EPA 9060-Quad		41000	43000	42000	60000	41000	29000	27000	130000	110000	34000	120000	450000	120000	130000	93000	130000	110000	74000	62000	100000	58000	53000	35000	17000	220000	57000 QL
GRO	AK101	300 ²	12 QN B	6.4 QN B	2.3 J B	2.3 J B	1.9 J B	320	410	230	550	38	310	160	690	69	43 QN	76 QN	56	40	24 J ML B	490	720	1100	33	77	1300	650
Benzene	EPA 8260B	2.0 '	ND (0.120)	ND (0.120) QL	ND (0.074)	ND (0.120)	ND (0.120) QL	ND (0.077)	ND (0.073)	ND (0.093)	ND (0.180)	ND (0.078)	ND (0.180)	ND (0.590)	ND (0.100)	ND (0.430)	ND (0.100)	ND (0.089)	ND (0.150)	ND (0.100)	ND (0.088)	ND (0.140)	ND (0.084)	ND (0.079) QL	ND (0.067) QL	ND (0.060)	ND (0.110)	0.150 J QH
Ethylbenzene Total Yvlanas	EPA 8260B EPA 8260B	6.9 ²	ND (0.120) ND (0.360)	ND (0.120) QL ND (0.350) QL	ND (0.074) ND (0.224)	ND (0.120) ND (0.350)	ND (0.120) QL ND (0.370) QL	0.085 J QH ND (0.127)	0.120 J QH ND (0.123)	ND (0.093) 0.160 J QH	3 QH 10.3 QH	0.070 J	ND (0.180) ND (0.540)	ND (0.590) ND (1.790)	0.210 J QH 3.9 QH	ND (0.430) ND (1.290)	0.140 J	0.120 J 0.710 J	0.280 J	0.220 J 1.84	0.190 J 1.17	ND (0.140)	0.130 J 1.77	0.150 J QL 1.740 QL	ND (0.067) QL ND (0.197) QL	ND (0.060) ND (0.180)	ND (0.110) ND (0.330)	4.2 QH 31 QH
Total Xylenes	EPA 8260B	6.5 ²	ND (0.360)	ND (0.350) QL ND (0.140) QL	ND (0.224) ND (0.089)	ND (0.350) ND (0.140)	ND (0.370) QL ND (0.150) QL	ND (0.127) ND (0.093)	ND (0.123) ND (0.087)	0.160 J QH ND (0.110)	ND (0.220)	0.68 ND (0.093)	ND (0.540) ND (0.210)	ND (1.790) ND (0.710)	3.9 QH ND (0.120)	ND (1.290) ND (0.520)	0.630 J ND (0.120)	0.710 J ND (0.110)	2.14 ND (0.180)	ND (0.120)	ND (0.110)	ND (0.410) ND (0.160)	0.280 J	0.300 J QL	ND (0.197) QL ND (0.080) QL	ND (0.180) ND (0.071)	0.190 J	ND (0.190)
PCB-1016	EPA 8082A	0.5 1 ¹	ND (0.020)	ND (0.140) QL ND (19)	ND (0.089)	ND (0.023)	ND (0.130) QL	ND (0.093)	ND (0.087)	ND (0.110)	ND (0.036)	ND (0.093)	ND (0.027) QL	ND (0.086)	ND (0.120)	ND (0.062)	ND (0.120)	ND (0.110)	ND (0.029)	ND (0.020)	ND (0.110)	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL
PCB-1221	EPA 8082A	1 1	ND (0.040)	ND (0.037)	ND (0.029)	ND (0.046)	ND (0.041)	ND (0.014) QL	ND (0.027)	ND (0.037)	ND (0.072)	ND (0.029)	ND (0.054) QL	ND (0.170)	ND (0.040)	ND (0.120)	ND (0.037)	ND (0.034)	ND (0.059)	ND (0.041)	ND (0.033) QL	ND (0.400)	ND (0.160)	ND (0.120) QL	ND (0.240)	ND (0.230)	ND (0.069) QL	ND (0.034) QL
PCB-1232	EPA 8082A	1 1	ND (0.020)	ND (0.019)	ND (0.014)	ND (0.023)	ND (0.020)	ND (0.014) QL	ND (0.014)	ND (0.019)	ND (0.036)	ND (0.014)	ND (0.027) QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL
PCB-1242	EPA 8082A	1 1	ND (0.020)	ND (0.019)	ND (0.014)	ND (0.023)	ND (0.020)	ND (0.014) QL	ND (0.014)	ND (0.019)	ND (0.036)	ND (0.014)	ND (0.027) QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL
PCB-1248	EPA 8082A	1 ¹	ND (0.020)	ND (0.019)	ND (0.014)	ND (0.023)	ND (0.020)	ND (0.014) QL	ND (0.014)	ND (0.019)	ND (0.036)	ND (0.014)	ND (0.027) QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL
PCB-1254	EPA 8082A	1 ¹	ND (0.020)	ND (0.019)	ND (0.014)	ND (0.023)	ND (0.020)	ND (0.014) QL	ND (0.014)	ND (0.019)	0.14 MN	ND (0.014)	0.14 QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	2 MN	0.790 MN	0.600 QL	ND (0.120)	ND (0.120)	0.029 J QL	ND (0.017) QL
PCB-1260	EPA 8082A	1 ¹	ND (0.020)	ND (0.019)	ND (0.014)	ND (0.023)	ND (0.020)	ND (0.014) QL	ND (0.014)	ND (0.019)	0.053 J MN	ND (0.014)	0.11 QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	1 MN	0.420 MN	0.320 QL	1.5 MN	1.8 MN	ND (0.034) QL	ND (0.017) QL
PCBs-Total	EPA 8082A	1 ¹	ND (0.040)	ND (0.037)	ND (0.029)	ND (0.046)	ND (0.041)	ND (0.014) QL	ND (0.014)	ND (0.019)	0.193 J MN	ND (0.014)	0.25 QL	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.029)	ND (0.020)	ND (0.016) QL	3 MN	1.21 MN	0.92 QL	1.5 MN	1.8 MN	ND (0.069) QL	ND (0.034) QL
Arsenic	EPA 6020	11 ¹	5.3	5	6.4	6.1	5.3	3.9	3.5	0.19	22	4.7	9.2	33	12	27	4.6	4.3	7.2	4.5	3.7	23	8	5.9	4.7	4.3	8.6	3.5
Barium	EPA 6020	1100 ²	83	74	91	69	74	61	51	8.7	150	100	84	100	89	120	130	140	79	140	120	480	270 QN	92 QN	39	51	130	110
Cadmium	EPA 6020	5 ²	0.25 J	0.23 J	0.29	0.22 J	0.27 J	0.13 J	0.11 J	0.018 J	0.29 J	0.14 J	0.41 J	0.24 J QN	0.26 J QN	0.32 J QN	0.21 J QN	0.22 J QN	0.14 J QN	0.26 J QN	0.23 J QN	5.9 QN	1.8 QN	0.78 QN	0.41 QN	0.66 QN	1.3	0.33
Chromium	EPA 6020	25 ²	16	14	23	13	14	14	12	1.4	25	23	13	5.9	12	19	20	22	10	23	20	74	24	19	15	24	11	14
Lead	EPA 6020	400 ²	15	13	14	12	14	8.3	7.4	1.0	14	11	22	9.4 QN	8.3 QN	19 QN		10 QN	8.2 QN	10 QN	9.3 QN	790 QN	280 QN	130 QN	48 QN	87 QN	29	16
Nickel	EPA 6020	86 ²	11	10	17	8.5	9.5	7.7	6.3	0.57	14	13	8.7	6.9	6	13	14	15	7.1	15	14	18	13	11	12	12	12	8
Selenium	EPA 6020 EPA 6020	3.4 2	1.3	1.1 J	1	1.1 J	1.3 0.064 J	0.60 J	0.60 J	0.16 0.0063 J	1.6 J 0.11 J	0.85 J	1.4 J	ND (3.6) ND (0.18)	0.89 J	1.1 J	1.1 J	1.1 J	0.95 J	1.2 J	1.0 J	1.1 J	0.84 J	0.90 J	0.42 J	0.42 J	0.32 1	1.5
Vanadium	EPA 6020	11.2 ²	0.077 J 28	0.070 J 26	0.096 J 37	0.057 J 22	23	0.044 J 23	0.034 J 20	1.1	51	0.066 J 42	0.11 J 23	25	0.065 J 21	0.096 J 39	0.080 J 35	0.080 J	0.059 J 23	0.088 J 41	0.079 J 33	1.3	0.23 J 24	0.11 J 24	0.062 J 20	0.13 J 22	0.32 J 17	0.12 J 30
Mercury	EPA 7471A	1.4 ²	0.052	0.043	0.033	0.062	0.036	0.033	0.023	0.063	0.089	0.044	0.073	ND (0.077)	0.030 J	0.061 J	0.068	0.071	0.040 J	0.053	0.033	0.64	0.84	0.57	0.039	0.065	0.054	0.046
1-Methylnaphthalene	EPA 8270 SIM	6.2 2	0.17 J	0.11 J	0.027 J	ND (0.029)	0.0055 J	5.8	4.9	0.31 J	14	0.25	ND (2.7)	4.1	41	0.99	3.9	5.1	1.4	0.85	3.0 J	3.8 J	15	11	ND (0.88)	ND (0.42)	30	42
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	0.16 J	0.11 J	0.018 J	ND (0.029)	0.0049 J	6.3	5.4	0.16 J	15	0.27	ND (2.7)	4.7	79	1.5	6.4	9	2.3	1.6	4.6 J	ND (2.1)	15 QN	7.1 QN	ND (0.88)	ND (0.42)	26	77
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	1.8	ND (0.072)	ND (2.7)	ND (1.2)	2.2	ND (0.16)	0.19 J	0.22 J	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	0.83 J	0.21 J	0.22 J	0.31 J	0.14 J	ND (1.7)	ND (1.7)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Chrysene	EPA 8270 SIM	360 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	0.98 J	ND (0.58)	ND (0.54)	0.78 J	0.22 J	ND (1.7)	ND (1.7)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 2	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Fluoranthene	EPA 8270 SIM	1400 2	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	0.33	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	0.22 J	0.39 J	ND (0.42)	ND (1.7)	ND (1.7)
Fluorene	EPA 8270 SIM	220 2	0.049 J	ND (0.25)	0.0072 J	ND (0.029)	ND (0.027)	1.0 J	1.0 J	0.14 J	1.8	0.027 J	ND (2.7)	0.49 J	1.9 J	0.15 J	0.23 J	0.28 J	0.12 J	0.06 J	0.053 J	1.9 J	1.6	1.6	0.25 J	ND (0.42)	7.3	2.7 J
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)
Naphthalene Phenanthrene	EPA 8270 SIM EPA 8270 SIM	120 ¹	0.05 J ND (0.26)	0.045 J ND (0.25)	0.017 J ND (0.034)	ND (0.029) ND (0.029)	0.0046 J ND (0.027)	2.8 0.52 J	2.7 0.51 J	0.22 J ND (0.23)	1.5	0.31 ND (0.072)	ND (2.7) ND (2.7)	ND (1.2) ND (1.2)	18 0.78 J	ND (0.16) 0.27 J	1.2 0.074 J	1.9 ND (0.17)	0.64 0.045 J	0.58 ND (0.051)	3.000 J ND (0.100)	ND (2.1) ND (2.1)	6.5 QN 0.93 J	3.6 QN 0.94 J	ND (0.88) ND (0.88)	ND (0.42) ND (0.42)	ND (1.7) 4.5	28 1.8 J
Pyrene	EPA 8270 SIM	1000 ²	ND (0.26)	ND (0.25)	ND (0.034)	ND (0.029)	ND (0.027)	0.52 J ND (0.7)	ND (0.66)	ND (0.23)	ND (0.45)	ND (0.072)	ND (2.7)	ND (1.2) ND (1.2)	ND (0.98)	0.27 J	ND (0.12)	ND (0.17)	ND (0.072)	ND (0.051)	ND (0.100)	ND (2.1)	ND (0.58)	0.94 J	0.78 J	0.3 J	4.5 ND (1.7)	ND (1.7)
i yiciic	LI A 0270 SINI	1000	ואט (ט.בט)	ND (0.23)	(0.034)	ואט (ט.טבא)	(ווט (ט.טבו)	(ט.וי) שויו	(0.00)	IND (0.23)	(ט+ט) שאו	ואט (ט.טוב)	IND (4.1)	140 (1.2)	IND (0.30)	U.ZU J	14D (0.12)	ND (0.17)	140 (0.012)	(וונט.ט) שאו	(0.100)	IND (2.1)	(סניס) חויו	0.20 J	0.703	0.5 J	(ו.ו)	14D (1.1)

Color Codes:

Ion-Detect Result Exceeds Cleanup Level
Outlicate of Previous Sample

to Groundwater (Revised October 9, 2008)

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration

-- = No value specified
AAC = Alaska Administrative Code

AAC = Alaska Administrative Cod AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects
ML = result is an estimated value with a low bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects
MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls
QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

		Sample ID	11NC28SS069-2	11NC28SS069-2_	511NC28SS070-0_7	11NC28SS070-1_2	11NC28SS070-1_7	11NC28SS071-1	11NC28SS071-2_5	11NC28SS071-1_5	11NC28SS071-2	11NC28SS072-1_2	11NC28SS072-1_7	11NC28SS072-2_2	25 11NC28SS072-2_5	11NC28SS073-1_5	11NC28SS073-2	11NC28SS073-2_	5 11NC28SS074-1	11NC28SS074-1_5	11NC28SS074-2	11NC28SS075-1_5	11NC28SS075-2	11NC28SS075-2_5	11NC28SS076-1_5	11NC28SS076-2	11NC28SS076-2_5	11NC28SS077-1_5
	Sample	Depth (feet bgs)	2	2	0.75	1.25	1.75	1	1	1.5	2	1.25	1.75	2.25	2.25	1.5	2	2.5	1	1.5	2	1.5	2	2.5	1.5	2	2.5	1.5
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-DIS-04-2	28-DIS-04-2	28-DIS-05-0.75	28-DIS-05-1.25	28-DIS-05-1.75	28-DIS-06-1	28-DIS-06-1	28-DIS-06-1.5	28-DIS-06-2	28-DIS-07-1.25	28-DIS-07-1.75	28-DIS-07-2.25	28-DIS-07-2.25	28-DIS-08-1.5	28-DIS-08-2	28-DIS-08-2.5	28-DIS-09-1	28-DIS-09-1.5	28-DIS-09-2	28-DIS-10-1.5	28-DIS-10-2	28-DIS-10-2.5	28-DIS-11-1.5	28-DIS-11-2	28-DIS-11-2.5	28-DIS-12-1.5
		Lab ID		580-28198-102	580-28198-103	580-28198-104	580-28198-105	580-28198-106	580-28198-107	580-28198-108	580-28198-109	580-28198-110	580-28198-111	580-28198-112	580-28198-113	580-28198-114	580-28198-115	580-28198-116	580-28198-117	580-28198-118	580-28198-119	580-28198-120	580-28198-121	580-28198-122	580-28198-123		580-28198-125	580-28198-126
	1	Date Collected	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011
Analyte	Analysis Method	Soil Cleanup Level	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
Percent Moisture (%)	EPA Moisture		57	42	72	65	64	58	61	62	60	80	76	43	41	64	74	67	58	62	67	87	47	44	51	33	27	61
DRO	AK102	9200 ¹	23000	17000	2300	840	820	26000	28000	34000	1400 MN	6200	7500	36000	27000	8000	9400	2700	450	870	8300	930	360	300 J	570	310	230	2000
DRO with Silica Gel	AK102	9200 ¹	28000	20000	1900	380	630	31000	35000	42000	1600 ML	7000	8800	44000	34000	9300	10000	2800	370	780	8000	440	210	230	310	150	91	2300
RRO	AK103	9200 ¹	3400	2400	7700	5400	4200	14000	13000	5300	3500 ML	6000	4500	4000	3500	3800	6200	4300	1700	2500	4200	5400	1600	1600 J MH	3200	2000	1600	2600
RRO with Silica Gel	AK103	9200 ¹	1200	750	3700	1200	1600	13000	12000	2300	1200	1200	1100	1300	930	2400	3300	1400	510	740	1100	1200	420	560 J MH	680	480	380	1200
Total Organic Carbon	EPA 9060-Quad		49000 QL	53000 QL	270000 QL	170000 QL	160000 QL	95000 QL	34000 QL	110000 QL	170000 QL	310000 QL	230000	150000 QL	110000	140000	150000	170000	120000	94000	130000	240000	49000	57000	73000	39000	51000	120000
GRO	AK101	300 ²	3500 QN	770 QN	13 B	7.1 B	5.4 J B	200	220	670	12 B	150	640	770	990	14 B	43	33	6.7 B	7.7 B	7.7 B	18 B	2.4 J B	1.6 J B	5.6 B	3.9 B	2.4 B	28 B
Benzene	EPA 8260B	2.0 ¹	ND (0.190)	ND (0.530) QL	ND (0.210) QL	ND (0.320) QL	ND (0.170)	ND (0.150) QL	ND (0.160)	ND (0.160) QL	ND (0.150)	ND (0.340) QL	ND (0.250) QL	ND (0.089)	ND (0.099)	ND (0.160)	ND (0.260)	ND (0.180) QL	ND (0.140) QL	ND (0.160)	ND (0.170) QL	ND (0.360)	R	ND (0.067)	ND (0.100) QL	ND (0.076) QL	ND (0.067) QL	ND (0.130) QL
Ethylbenzene	EPA 8260B	6.9 ²	3.9	2.6 QL	0.180 J QL	0.220 J QL	0.170 J QN	1.0 QL	ND (0.160)	2.6 QL	0.610 J	0.97 J QL	3.0 QL	4.5	6.6	ND (0.160)	ND (0.260)	ND (0.180) QL	ND (0.140) QL	ND (0.160)	ND (0.170) QL	ND (0.360)	R	ND (0.067)	ND (0.100) QL	ND (0.076) QL	ND (0.067) QL	ND (0.130) QL
Total Xylenes	EPA 8260B	63 ²	31	18.8 QL	ND (0.640) QL	0.490 J QL	0.520 J QH	0.87 QL	0.94	23.5 QL	0.730 J	8.7 QL	23.1 QL	30	43	0.800 J	0.390 J	0.220 J QL	0.140 J QL	0.120 J QH	ND (0.520) QL	ND (1.090)	R	ND (0.197)	ND (0.310) QL	ND (0.226) QL	ND (0.197) QL	0.770 J QL
Toluene	EPA 8260B	6.5 ²	ND (0.230)	ND (0.640) QL	ND (0.260) QL	0.150 J QL	0.220 J QN	ND (0.180) QL	ND (0.190)	ND (0.190) QL	ND (0.180)	ND (0.410) QL	ND (0.300) QL	ND (0.110)	ND (0.120)	ND (0.190)	ND (0.310)	ND (0.210) QL	ND (0.170) QL	ND (0.190)	ND (0.210) QL	ND (0.440)	R	ND (0.081)	ND (0.120) QL	ND (0.091) QL	ND (0.081) QL	ND (0.160) QL
PCB-1016	EPA 8082A	1 ¹	ND (0.022) QL	ND (0.016) QL	ND (0.035) QL	ND (0.027) QL	ND (0.027)	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.025) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL	ND (0.150)	ND (0.024)	ND (0.025)	ND (0.028)	ND (0.074)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.014)	ND (0.013)	ND (0.024)
PCB-1221	EPA 8082A	1 1	ND (0.043) QL	ND (0.032) QL	ND (0.070) QL	ND (0.053) QL	ND (0.053)	ND (0.044) QL	ND (0.049) QL	ND (0.052) QL	ND (0.050) QL	ND (0.099) QL	ND (0.081) QL	ND (0.032)	ND (0.033) QL	ND (0.055) QL	ND (0.072) QL	ND (0.300)	ND (0.047)	ND (0.050)	ND (0.055)	ND (0.150)	ND (0.036)	ND (0.033)	ND (0.041)	ND (0.028)	ND (0.027)	ND (0.049)
PCB-1232	EPA 8082A	1 '	ND (0.022) QL	ND (0.016) QL	ND (0.035) QL	ND (0.027) QL	ND (0.027)	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.025) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL	ND (0.150)	ND (0.024)	ND (0.025)	ND (0.028)	ND (0.074)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.014)	ND (0.013)	ND (0.024)
PCB-1242	EPA 8082A	1 '	ND (0.022) QL	ND (0.016) QL	ND (0.035) QL	ND (0.027) QL	ND (0.027)	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.025) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL	ND (0.150)	ND (0.024)	ND (0.025)	ND (0.028)	ND (0.074)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.014)	ND (0.013)	ND (0.024)
PCB-1248	EPA 8082A	1 '	ND (0.022) QL	ND (0.016) QL ND (0.016) QL	ND (0.035) QL	ND (0.027) QL	ND (0.027)	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL ND (0.026) QL	ND (0.025) QL ND (0.025) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL	ND (0.150)	ND (0.024) ND (0.024)	ND (0.025)	ND (0.028)	ND (0.074)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.014)	ND (0.013)	ND (0.024)
PCB-1254	EPA 8082A EPA 8082A	1 1	ND (0.022) QL 0.032 J QL	0.016 J QL	ND (0.035) QL 0.031 J QL	ND (0.027) QL ND (0.027) QL	0.036 J 0.019 J	0.32 QL 0.31 QL	0.23 QL 0.24 QL	()	ND (0.025) QL ND (0.025) QL ML	ND (0.050) QL ND (0.050) QL	ND (0.040) QL ND (0.040) QL	ND (0.016)	ND (0.017) QL ND (0.017) QL	0.080 J QL 0.056 J QL	0.052 J QL 0.034 J QL	1.7 MN 0.99 MN	ND (0.024)	ND (0.025) ND (0.025)	ND (0.028) ND (0.028)	ND (0.074) ND (0.074)	ND (0.018) ND (0.018)	ND (0.017) ND (0.017)	ND (0.020) ND (0.020)	ND (0.014) ND (0.014)	ND (0.013) ND (0.013)	ND (0.024) ND (0.024)
PCB-1260 PCBs-Total	EPA 8082A	1 1	0.032 J QL	0.016 J QL	0.031 J QL	ND (0.027) QL ND (0.053) QL	.055 J	0.63 QL	0.24 QL 0.47 QL		ND (0.050) QL ML	ND (0.099) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL ND (0.033) QL	0.036 J QL	0.034 J QL	2.69 MN	ND (0.024)	ND (0.025)	ND (0.028)	ND (0.150)	ND (0.018)	ND (0.017)	ND (0.020)	ND (0.014)	ND (0.013)	ND (0.024)
Arsenic	EPA 6020	1 11 1	3.8	0.0103 QL	5.9	3.8	3.4	6.5	7.4	4.5	4.7	11	7.5	3.5	3.3	7.5	13	6.6	4.8	9.7	11	9.5	4.2	4.3	7.9	11	7.4	2.1
Rarium	EPA 6020	1100 ²	100	68	140	130	74	120	140	130	130	160	83	130	130	120	170	170	130	120	160	120	78	150	150	120	100	92
Cadmium	EPA 6020	5 ²	0.29 J	0.25 J	0.58	0.41 J	0.38	1	1.2	0.41	0.36 J	0.56 J	0.28 J	0.26 J	0.27 J	0.24 J	0.57	0.6	0.26 J	0.16 J	0.41 J	0.29 J	0.21 J	0.39	0.41	0.42	0.24 J	0.15 J
Chromium	EPA 6020	25 ²	13	9.2	23	19	11	26	29	18	18	24	4.9	15	16	16	18 MH	16 MH	16 MH	15 MH	16 MH	14 MH	14 MH	26 MH	30 MH	28 MH	18 MH	10 MH
Lead	EPA 6020	400 ²	15	12	31	14	13	71	81	16	12	21	4.5	8.8	9.8	10	14	9.6	9.3	8.8	9.7	9.6	10	16	16	24	12	7.6
Nickel	EPA 6020	86 ²	7.2	5.7	15	11	7.6	18	21	13	11	14	5.8	9.1	9.8	10	14	14	12	10	13	9.6	11	21	21	18	14	7.3
Selenium	EPA 6020	3.4 ²	1.4	0.92 J	2.1	2.1	1.0 J	1.5	1.5 J	1.7	1.8	3	1.8 J	1.2	1.2	1.8	1.9	1.9	1.8	1.5	1.7 J	2.2 J	0.79 J	1.1	1.2	1.4	0.92 J	0.92 J
Silver	EPA 6020	11.2 ²	0.13 J	0.086 J	0.14 J	0.10 J	0.067 J	0.18 J	0.21 J	0.11 J	0.093 J	0.17 J	0.053 J	0.075 J	0.073 J	0.081 J	0.11 J	0.086 J	0.080 J	0.066 J	0.089 J	ND (0.14)	0.064 J	0.11 J	0.13 J	0.13 J	0.085 J	0.049 J
Vanadium	EPA 6020	3400 ²	27	18	38	32	19	37	39	31	29	52	23	30	31	30	37	32	29	27	31	28	21	37	58	51	32	19
Mercury	EPA 7471A	1.4 ²	0.060 QN	0.033 QN	0.14	0.087	0.053	0.26	0.30	0.13	0.090	0.16	0.058	0.067	0.063	0.078	0.079	0.073	0.066	0.069	0.062	0.061 J	0.071	0.042	0.061	0.035	0.031	0.021 J
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	57	46	2.4	0.39	0.3	30 QN	51 QN	100	3.1	1.2	26	120 QN	2.4 QN	4.7	4.4	0.77	0.033 J	0.16	0.047 J	0.068 J	0.034 J	0.0055 J	0.027 J	0.0029 J	0.0028 J	1.2
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	95	80	3.6	0.6	0.42	51	85	200	5.8 J	1.7	48	210 QN	2.9 QN	6	6	0.8	0.042 J	0.21	0.061 J	0.088 J	0.053	0.0075 J	0.021 J	0.0024 J	ND (0.017)	1.9
Acenaphthene	EPA 8270 SIM	180 ²	ND (1.7)	ND (1.2)	ND (0.13)	0.020 J	ND (0.065)	ND (1.1)	ND (1.3)	4.5 J	0.17 J	ND (0.37)	1.7 J	5.8	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Anthracene	EPA 8270 SIM	3000 2	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Benzo[a]anthracene	EPA 8270 SIM	3.6 2	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Benzo[a]pyrene	EPA 8270 SIM	2.1 2	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	0.037 J	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Benzo[b]fluoranthene	EPA 8270 SIM EPA 8270 SIM	12 2	ND (1.7) ND (1.7)	ND (1.2) ND (1.2)	ND (0.13) ND (0.13)	ND (0.069) ND (0.069)	ND (0.065) ND (0.065)	ND (1.1) ND (1.1)	ND (1.3) ND (1.3)	ND (2.4) ND (2.4)	ND (0.089) ND (0.089)	ND (0.37) ND (0.37)	ND (1.0) ND (1.0)	ND (2.1) ND (2.1)	ND (0.12) ND (0.12)	ND (0.2) ND (0.2)	ND (0.27) ND (0.27)	ND (0.14) ND (0.14)	ND (0.047) ND (0.047)	ND (0.062) ND (0.062)	ND (0.058) ND (0.058)	ND (0.075) ND (0.075)	ND (0.023) ND (0.023)	ND (0.021) ND (0.021)	ND (0.025) ND (0.025)	ND (0.017) ND (0.017)	ND (0.017) ND (0.017)	ND (0.059) ND (0.059)
Benzo[g,h,i]perylene Benzo[k]fluoranthene	EPA 8270 SIM	38700 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Chrysene	EPA 8270 SIM	360 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	0.05 J	ND (0.37)	ND (1.0)	ND (2.1)	0.083 J	0.13 J	0.19 J	0.065 J	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	0.047 J
Fluorene	EPA 8270 SIM	220 ²	3.9	2.8	0.37	0.054 J	0.059 J	3.1	4.9	5.6	0.24 J	ND (0.37)	1.6 J	5.9 QN	0.4 QN	0.72	0.87	0.25 J	ND (0.047)	0.034 J	0.022 J	0.031 J	0.018 J	0.0054 J	0.0078 J	ND (0.017)	ND (0.017)	0.16
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.089)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)	ND (0.14)	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	ND (0.059)
Naphthalene	EPA 8270 SIM	120 ¹	32	29	3.5	0.64	0.43	10 QN	17 QN	85	2.0 J	2.7	28	86 QN	1.3 QN	2.4	1.6	0.18 J	0.029 J	0.12	0.029 J	0.037 J	0.013 J	0.0033 J	0.011 J	0.0025 J	ND (0.017)	0.65
Phenanthrene	EPA 8270 SIM	3000 ²	2.6 J	1.9 J	ND (0.13)	ND (0.069)	ND (0.065)	1.6 J	2.6	1.6 J	0.13 J	ND (0.37)	0.6 J	2.8 J	0.28	0.48	0.65	0.18 J	ND (0.047)	0.037 J	0.025 J	ND (0.075)	0.013 J	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	0.13
Pyrene	EPA 8270 SIM	1000 ²	ND (1.7)	ND (1.2)	ND (0.13)	ND (0.069)	ND (0.065)	ND (1.1)	ND (1.3)	ND (2.4)	0.047 J	ND (0.37)	ND (1.0)	ND (2.1)	0.083 J	0.13 J	0.19 J	0.065 J	ND (0.047)	ND (0.062)	ND (0.058)	ND (0.075)	ND (0.023)	ND (0.021)	ND (0.025)	ND (0.017)	ND (0.017)	0.040 J
			. ,	, ,	. ,	. , ,	. , ,	. ,	. ,	` ′		. ,	. , ,	. ,				1	` '	` '	. , ,	, ,	, ,	, ,	` '	. , ,	<u>`</u>	

Color Codes:

Non-Detect Result Exceeds Cleanup Level
Duplicate of Previous Sample

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration

-- = No value specified

to Groundwater (Revised October 9, 2008)

AAC = Alaska Administrative Code AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

QH = result is an estimated value with a high bias due to a quality control

QL = result is an estimated value with a low bias due to a quality control failure

QN = result is an estimated value with an uncertain bias due to a quality control failure
R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

PCBs = polychlorinated biphenyls

Background Average 1071

684

3283

Background Range 74-2400

50-1500

670-24000

420-7700

395833 24000-480000

		-	11NC28SS077-2			11NC28SS078-2				11NC28SS079-3								11NC28SS081-2.5
	Samp	le Depth (feet bgs)	2	2.5	1.5	2	2.5	2.5	2.5	3	3.5	2.75	3.25	3.75	1.25	1.75	2.25	2.25
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-DIS-12-2	28-DIS-12-2.5	28-BG-1-1.5	28-BG-1-2	28-BG-1-2.5	28-BG-1-2.5	28-BG-2-2.5	28-BG-2-3	28-BG-2-3.5	28-BG-3-2.75	28-BG-3-3.25	28-BG-3-3.75	28-BG-4-1.25	28-BG-4-1.75	28-BG-4-2.25	28-BG-4-2.25
		Lab ID	580-28198-127	580-28198-128	580-28198-129	580-28198-130	580-28198-131	580-28198-132	580-28198-133	580-28198-134	580-28198-135	580-28198-136	580-28198-137	580-28198-138	580-28198-139	580-28198-140	580-28198-141	580-28198-142
		Date Collected Soil Cleanup	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011
Analyte	Analysis Method	Level	Discrete	Discrete	Background													
Percent Moisture (%)	EPA Moisture		60	60	77	78	28	22	75	75	79	80	80	79	82	75	78	79
DRO	AK102	9200 ¹	2000	2800	1100	1400	74	110	1300	2400	2400	710	580	500	1600	720	1100	1000
DRO with Silica Gel	AK102	9200 ¹	2500	3400	700	680	50 B	63 B	630	1500	1500	270	230	210	970	300	680	540
RRO	AK103	9200 ¹	2600	3100	12000	15000	670 QN	1200 QN	14000	24000	23000	8400	5900	6000 J ML	15000 QH	7400 QH	11000 QH	11000 QH
RRO with Silica Gel	AK103	9200 ¹	1600	2100	4700	4400	420	640	4500	7700	7100	2800	2200	1700	3200	1100	2800	2700
Total Organic Carbon	EPA 9060-Quad		92000	85000	460000 QL	480000 QL	24000 QL	34000 QL	410000 QL	410000 QL	360000 QL	440000 QL	450000 QL	410000 J QL	360000 QL	260000 QL	350000 QL	360000 QL
GRO	AK101	300 ²	21 B	15 B	NA													
Benzene	EPA 8260B	2.0 ¹	ND (0.120) QL	ND (0.130) QL	NA													
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.120) QL	ND (0.130) QL	NA													
Total Xylenes	EPA 8260B	63 ²	0.800 J QL	0.420 J QL	NA													
Toluene	EPA 8260B	6.5 ²	ND (0.150) QL	ND (0.150) QL	NA													
PCB-1016	EPA 8082A	11	ND (0.023) QL	ND (0.023) QL	NA													
PCB-1221	EPA 8082A	11	ND (0.049) QL	ND (0.047) QL	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA						
PCB-1232	EPA 8082A	11	ND (0.023) QL	ND (0.023) QL	NA	NA NA	NA	NA NA										
PCB-1242	EPA 8082A	11	ND (0.023) QL	ND (0.023) QL	NA	NA NA	NA	NA										
PCB-1248	EPA 8082A	1 1	ND (0.023) QL	ND (0.023) QL	NA NA													
PCB-1254	EPA 8082A	1 1	ND (0.023) QL	ND (0.023) QL	NA NA													
PCB-1260 PCBs-Total	EPA 8082A EPA 8082A	1 1	0.0097 J QL 0.0097 J QL	ND (0.023) QL ND (0.047) QL	NA NA													
	EPA 602A	1 11 ¹	2.8	2.8	NA NA													
Arsenic Barium	EPA 6020	1100 ²	95	94	NA NA													
Cadmium	EPA 6020	5 ²	0.16 J	0.21 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	EPA 6020	25 ²	10 MH	11 MH	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lead	FPA 6020	400 ²	7.5	7.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA							
Nickel	EPA 6020	86 ²	7.8	7.8	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Selenium	EPA 6020	3.4 2	0.82 J	0.86 J	NA													
Silver	EPA 6020	11.2 ²	0.059 J	0.055 J	NA													
Vanadium	EPA 6020	3400 ²	21	21	NA													
Mercury	EPA 7471A	1.4 ²	0.030 J	0.035	NA													
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	0.72	0.54	NA													
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	1.1	0.86	NA													
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.061)	ND (0.06)	NA													
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.061)	ND (0.06)	NA													
Anthracene	EPA 8270 SIM	3000 ²	ND (0.061)	ND (0.06)	NA													
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.061)	ND (0.06)	NA													
Benzo[a]pyrene	EPA 8270 SIM	2.1 2	ND (0.061)	ND (0.06)	NA													
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.061)	ND (0.06)	NA													
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.061)	ND (0.06)	NA	NA	NA	NA 	NA									
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.061)	ND (0.06)	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA
Chrysene	EPA 8270 SIM	360 ²	ND (0.061)	ND (0.06)	NA	NA NA	NA	NA										
Dibenz(a,h)anthracene	EPA 8270 SIM	4 2	ND (0.061)	ND (0.06)	NA NA													
Fluoranthene	EPA 8270 SIM	1400 ²	0.040 J	0.039 J	NA NA													
Fluorene	EPA 8270 SIM	220 ²	0.12 ND (0.061)	0.088 J	NA NA													
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM EPA 8270 SIM	120 ¹	ND (0.061) 0.37	ND (0.06)	NA NA													
Naphthalene Phenanthrene	EPA 8270 SIM	3000 ²	0.37 0.094 J	0.32 0.076 J	NA NA													
_	EPA 8270 SIM		0.094 J 0.037 J	0.076 J							1						+	
Pyrene	EPA 82/U SIIVI	1000 ²	U.U3/ J	0.039 J	NA													

Color Codes:

Non-Detect Result Exceeds Cleanup Level
Duplicate of Previous Sample

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration

to Groundwater (Revised October 9, 2008)
-- = No value specified

AAC = Alaska Administrative Code
AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics

EPA = U.S. Environmental Protection Agency
GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of quantitation

mg/kg = milligrams per kilogram
MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects
MN = result is an estimated value with an uncertain bias due to matrix

NA = not analyzed

ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls

QH = result is an estimated value with a high bias due to a quality control failure

QL = result is an estimated value with a low bias due to a quality control failure
QN = result is an estimated value with an uncertain bias due to a quality

control failure
R = data rejected due to exceedingly low surrogate recovery

RRO = residual range organics SIM = selective ion monitoring

Table 4 Site 28 Soil Analytical Results Exceeding Cleanup Levels (all results in mg/kg)

Fig. 19												1		1		1			1						
Fig. 19			-		5 11NC28SS001-1	11NC28SS002-2		11NC28SS002-3	_	11NC28SS006-1	11NC28SS006-2	_		11NC28SS008-1	11NC28SS011-1	11NC28SS011-2		11NC28SS012-1	_		_		11NC28SS015-2	_	11NC28SS016-1
Second		Sample	e Depth (feet bgs)		1 1	2		3	0.10	1	1	1.10		1	1	1	1.0	1					2		1
1988 1988			Matrix							33															
Part																									
March Marc																									
March Marc																									
Fig. 19	Analyte	Analysis Method	· ·	Transect 1	Transect 1	Transect 1	Transect 1	Transect 1	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 2	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3	Transect 3
The color of the	Percent Moisture (%)	EPA Moisture		73	74	63	46	30	56	64	70	60	69	70	48	53	55	50	57	60	60	83	79	73	73
Fig.	DRO	AK102	9200 ¹	56000	57000	11000	5800	1500	67000	39000	57000	7700	13000	15000	11000 QN	30000 QN	75000	5600	3600	4400	2700	12000	9900	2400	9800
Month Mont	DRO with Silica Gel	AK102	9200 ¹	45000		12000	5100	3.6 J		34000	47000	6900	13000		10000 QN	23000 QN	60000	4700	2400	3300	2100	8800	6800	1700	
Margaretine	RRO															5300	5300		4000						
No. 1967 1978 1979	RRO with Silica Gel		9200 ¹			+		` '						<u> </u>							-				
Property	Total Organic Carbon					+								<u> </u>						100000	 			-	
Part	GRO					+							` ,	` ,				1.7	_	.,	 				
	Benzene			, ,	` ,	+			,	` '	, ,	` ′	` ,	` ,							 	,	, ,	` ,	` ,
Part	Ethylbenzene			` ,	` '	+			` ,	` '	, ,		` ,	` ,		0.5								` '	, ,
Part				(/	` '				` ,	` '	, ,		` ,	` ,		6.3								` ,	` ′
March Marc			6.5 4	, ,	` ,	` '	, ,	` ′	` ,	` '		` '	` '	` ′	, ,	, ,		` ′	` ′	, ,	` ′	` '	` ,	` ′	` ,
19 19 19 19 19 19 19 19			1 1	, ,	` '	· ' '	, ,	` '	` ′	` ′		` '	` ,	` ′	, ,	` ,	` ′	` ,	` ′	` ,	` ′	` ′	, ,	` '	` ,
Control Cont			'		` '	· ` ′		` ′	` ′	` ′		` ′	, ,	` '	` ,	` ,	` ′	` ′	` ′		` '	` '	,	` '	` ′
Proceedings			1	, ,	` '	· ` ′		` '	` '	` ′		` ′	` ,	` ′	` ,	` ,	` ′	` '	` ′	` ,	` ′	` ,	, ,	` '	` '
PATENDAY 1			1 1	, ,	` '	· ' '	, ,	, ,	` ′	` ,		` ′	` '	` ′	` ,	` ,	` ,	` ,	` ′	` ,	` ′	` ′	` ,	` '	` ,
Company Comp			1 1	` ,	` ,	· ` ′		` '	` ,	` ′		` ′	` ,	` ′	` ,	` ,	` ′	` '	` ′	` ,	` ′	` ′	, ,	` ′	` '
Company Comp			1 1			` ′	3.4	` ′			• • •	` ,	` '	` ′			` ′	` ′	` ,		` ′		, ,		` ′
Section Proc. No. Proc.	PCBs-Total		1 1		` /		3.4				, ,	` '	, ,	` ,			` '		, ,	, ,	` ′		(/		, ,
Name FARFOR 1907 51 58 74 70 67 57 70 58 58 77 88 58 70 70 70 70 70 70 70 7	Arsenic		11 ¹			6	3.8	3.4			, ,	` ,	, ,	` ,	3.4	3.6	3		· · ·	,	` ′		, ,		, ,
Second Paragraph Paragra	Barium		1100 ²	61	58	74	70	67	57		96	48	60	92 J	87	110	93	110	130	140	140	98	63	110	150
PARCO 601 21 15 77 21 27 19 9 31 51 14 51 25 27 14 13 13 14 15 15 15 15 15 15 15	Cadmium	EPA 6020		0.8	0.88	0.78	0.44	0.28	0.48	0.36 J	0.56 J	0.36 J	0.22 J	0.41 J	0.37	0.35 J	0.16 J	0.33	0.33 J	0.32 J	0.4	0.34 J	0.33 J	0.36 J	0.49
14 15 15 15 15 15 15 15	Chromium	EPA 6020	25 ²	10 ML	8.8 ML	13 ML	14 ML	18 ML	10 ML	14 ML	22 ML	6.6 ML	10 ML	24 ML	81 QN	23 QN	17	19	20	21	20	11	6.5	19	20
### ### ### ### ### ### ### ### ### ##	Lead	EPA 6020	400 ²	21	15	17	21	27	18	19	31	8.1	14	51 J	25	27	12	17	14	13	13	14	8.3	18	15
Silver (PA 6000) 11 2	Nickel	EPA 6020	86 ²	8.1	7.5	11	9.2	8.8	7.4	7.3 QN	14 QN	7.2	6.5	14 J	13	13	8.4	13	13	13	13	5.7	4.6	10	11
PARAGE P	Selenium	EPA 6020	3.4 ²	1.1 J	1.3 J	1.9	1.4	1	2.3	3.2	3	1.7	2.0 J	1.2 J	0.74 J	1.0 J	1.3	0.96 J	1.5	1.5	1.3	1.2 J	1.3 J	1.3 J	2.5
Separation Sep	Silver	EPA 6020	11.2 ²	0.15 J	0.17 J	0.16 J	0.16 J	0.17 J	0.15 J	0.25 J	0.27 J	0.14 J	0.11 J	0.17 J	0.082 J	0.11 J	0.11 J	0.11 J	0.13 J	0.12 J	0.12 J	0.12 J	0.069 J	0.12 J	0.14 J
Methylaphtheline PA 8270 SM 10.24 1.00 1.	Vanadium	EPA 6020	3400 ²	12	13	29	28	28	16	17 QN	29 QN	23	21	38 J	23	30	29	29	35	35	34	21	16	27	38
Methylandphilatione PR AR77 SIM 6,1	Mercury			0.081	ND (0.03)	0.082	0.043	0.046		0.096	0.11	0.046	0.034 J	+	0.083	0.11	0.088	0.093	0.093	0.095	0.097	0.12	0.064	0.18	
No.			_		3	32	15	3.7	` ′	` ,			` ,	` ′	11	10	220	7	4.4		6.1		7.6	` ′	` ′
Compositivity Compositivit				. ,	` ,		25		` ,	` ,	,	. 0	` ,	` ,				12						` ,	` '
Valtracene EPA 8270 SIM 3000 - ND (1.4) ND (1.4) ND (1.4) ND (1.4) ND (0.15) ND (0.11) ND (0.027) ND (1.3) ND (1.1) ND (0.027) ND (1.3) ND (1.1) ND (0.027) ND (1.3) ND (1.1) ND (0.027) ND (0.3) ND (0.2) ND (0.3) ND (0.2) ND (0.3) ND (0.2) ND (0.2	•			, ,	` '				` ,	` ,	,	` '	` ,	` ,	, ,	` ,	` '	` ,	` ,	,	` '	, ,		` '	` ,
Renzo[alpanthracene EPA 8270 SIM 3.6 ND (1.4) ND (1.4) ND (1.4) ND (0.15) ND (0.11) ND (0.27) ND (1.3) ND (1.1) ND (1.8) ND (0.7) ND (0.82) ND (0.23) ND (0.28) ND (0.				` ,	` '	` ,	, ,	` ,	` ,	, ,	,	` '	` ,	` <u>'</u>	` ,	` ,	` '	, ,	· · ·	, ,	` /	` ,	` ,	` '	` ,
Serzoglapyrene EPA 8270 SIM 2,1				, ,	` '	` '	, ,	, ,	` ,	` ,	,	` '	` ,	` '	` '	` ,	, ,	` ,	` '	,	` '	, ,	,	` ′	` ,
Senzelo fluoranthene EPA 8270 SIM 12 ND (1.4) ND (0.14) ND (0.15) ND (0.11) ND (0.027) ND (1.3) ND (1.1) ND (0.027) ND (1.3) ND (0.1) ND (0.027) ND (1.3) ND (0.2) ND (0.3) ND (0.2) ND (0.3) ND (0.2) ND (0.3) ND (0.2) ND (0.15) N			_	. ,	` '	` ,	, ,	` ,	` ,	` ,	,	` '	` ,	` <u>'</u>	` '	` ,	, ,	` ,	` '	, ,	` /	` ,	` ,	` ,	` '
Senzolg, illiperylene EPA 8270 SIM 3870 2 ND (1.4) ND (1.4) ND (1.4) ND (1.5) ND (0.11) ND (0.027) ND (1.3) ND (1.1) ND (1.8) ND (0.7) ND (0.82) ND (0.33) ND (0.23) ND (0.23) ND (0.28) ND (0.15) ND (0.16) N				. ,	` '	` '	, ,	` '	` ,	` ,		` '	, ,	` '	` ,	` ,	` /	` '	` ,	,	` ′	, ,	` ,	` ′	` ′
Service Serv			_	` ,	` ,	` '	. ,	` ,	` '	` ,	. ,	` ′	` '	` ′	, ,	` '	` ′	` ′	` '	, ,	` '	` ,	` ,	` '	` '
Chrysene EPA 8270 SIM 360 ND (1.4) ND (1.4) ND (1.4) ND (0.15) ND (0.11) ND (0.027) ND (1.3) ND (1.1) ND (1.8) ND (0.7) ND (0.82) ND (0.33) ND (0.23) ND (0.28) ND (0.28) ND (0.28) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.16) ND (0.15) ND (0.16) ND (0.15) ND (0.16) ND (0.			_	` ,	` ,	· · · · · ·	` ,	` ,	` ,	` ,		` '	` '	` ′	, ,	` '	` '	` ′	` '	,	` '	` ,	` ,	` '	` ′
Diberz(a,h)anthracene EPA 8270 SIM 4 2 ND (1.4) ND (1.4) ND (0.15) ND (0.11) ND (0.027) ND (1.3) ND (0.11) ND (0.027) ND (1.3) ND (0.13) ND (0.28) ND (0.15) ND (0.16)					<u> </u>	· · · · · ·	. ,	` ′	` '	` ,	. ,	` '	` '	· · · · · · · · · · · · · · · · · · ·	` '	` '	` '	` ′	` '	,	` ′	` '	` '	` '	` '
Fluoranthene EPA 8270 SIM 1400 2 ND (1.4) ND (0.15) ND (Dibenz(a,h)anthracene			` ,	` ,	` '	. ,	` ′	` ′	` ,	. ,	` ′	` '	` ′	, ,	` ,	` ′	` ′	` '	,	` '	` ,	` ,	` ′	` ,
Fluorene EPA 8270 SIM 220	Fluoranthene			` ,	` ,	` '	. ,	` ′	` '	` ,	. ,	` ′	` '	` ′	` '	` '	` '	` ′	` '	, ,	` ′	` ,	, ,	` '	` ′
Indeno[1,2,3-cd]pyrene EPA 8270 SIM 41 ² ND (1.4) ND (1.4) ND (0.15) ND (0.12) ND (0.12) ND (0.45) Naphthalene EPA 8270 SIM 120 ¹ 0.57 J ND (1.1) ND (1.1) ND (1.8) 4.5 ND (0.33) 5.7 5.5 140 2.8 2.7 2.3 4.5 3.9 4.3 ND (0.45) Phenanthrene EPA 8270 SIM 3000 ² ND (1.4) 1.9 J 1.5 0.73 0.16 ND (1.1) ND (1.1) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND (0.82) ND	Fluorene			` ,	3	` '	` '	` ,	` '	` ,	. ,	` '	` '	` ′	` '	,	. ,	` ,	, ,	, ,	` ′	` ,	` ,	` ′	` ′
Naphthalene EPA 8270 SIM 120 1 0.57 J ND (1.4) 24 6.5 2.6 ND (1.3) ND (1.8) 4.5 ND (0.82) ND (0.45) ND (0.	Indeno[1,2,3-cd]pyrene			` ,	ND (1.4)	ND (0.15)			` ′	` ,	. ,		` '	` ′			ND (2.6)			ND (0.15)	ND (0.16)			` ′	` ′
Phenanthrene EPA 8270 SIM 3000 ND (1.4) 1.9 J 1.5 0.73 0.16 ND (1.3) ND (1.8) 0.56 J ND (0.45) ND (0.45)	Naphthalene	EPA 8270 SIM	120 ¹	. ,	` ,	` '	, ,	` ,	` ,	` ,	ND (1.8)	` '	, ,	` ,	` '	,	` ,	2.8	` '	, ,	` ′	, ,	, ,	ND (0.12)	` ,
Pyrene EPA 8270 SIM 1000 ² ND (1.4) ND (0.15) ND (0.15	Phenanthrene	EPA 8270 SIM	3000 ²	ND (1.4)	1.9 J	1.5	0.73		` ,	ND (1.1)	ND (1.8)	0.56 J	ND (0.82)	ND (0.33)	0.77	0.75	9.6	0.77	0.29 J	0.36	0.24 J	0.28 J	0.17 J	ND (0.12)	, ,
	Pyrene	EPA 8270 SIM	1000 ²	ND (1.4)	ND (1.4)	ND (0.15)	ND (0.11)	ND (0.027)	ND (1.3)	ND (1.1)	ND (1.8)	ND (0.7)	ND (0.82)	ND (0.33)	0.13 J	ND (0.28)	ND (2.6)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.16)	ND (0.29)	ND (0.32)	ND (0.12)	ND (0.450)

Color Codes: Positive Result Exceeds Cleanup Level Non-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank

bgs = below ground surface DRO = diesel range organics

EPA = U.S. Environmental Protection Agency
GRO = gasoline range organics

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation

mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls

QH = result is an estimated value with a high bias due to a quality control failure

QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality

control failure RRO = residual range organics

RRO = residual range organics SIM = selective ion monitoring

Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria

Site 28 Soil Analytical Results Exceeding Cleanup Levels (continued) (all results in mg/kg)

		Sample ID 1	1NC2855017.0.5	11NC2855017.2	11NC2055017.1	11NC2955017.1 E	11NC2055010 1	11NC2000010 1 E	11NC200010 1	11NC2855010 1 F	11NC2855020.1	11NC20000111	111102000011 1 5	11NC2088022 1	11NC2055022 1 E	14NC2000022	11NC2055022 1	14NC2055022.2	1110200002 1 1	5 11NC28SS023-2	11NC2000011 F	11NC29CC02E 0 E	11NC29CC025 1	11NC28SS025-1 5	11NC28SS026-1
	Samnl	le Depth (feet bgs)	0.5	0.5	11NC28SS017-1	11NC28SS017-1_5	11NC28SS018-1	1.5	11NC2855019-1	1.5	11NC28SS020-1	111002855021-1	1 5	11102855022-1	1.5	11NC2855022-2	11NC28SS023-1	111002855023-2_5	1.5	2	1 5	0.5	1 11NC2855025-1	1.5	11NC28SS026-1
	Janipi	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-4-1-0.5	28-4-1-0.5	28-4-1-1	28-4-1-1.5	28-4-2-1	28-4-2-1.5	28-4-3-1	28-4-3-1.5	28-4-4-1	28-4-5-1	28-4-5-1.5	28-4-6-1	28-4-6-1.5	28-4-6-2	28-4-7-1	28-4-7-1	28-4-7-1.5	28-4-7-2	28-4-8-1.5	28-5-1-0.5	28-5-1-1	28-5-1-1.5	28-5-2-1
		Lab ID	580-28112-1	580-28112-2	580-28112-3	580-28112-4	580-28112-6	580-28112-7	580-28112-9	580-28112-10	580-28112-12	580-28112-14	580-28112-15	580-28112-16	580-28112-17	580-28112-18	580-28112-19	580-28112-20	580-28112-21	580-28112-22	580-28112-24	580-28112-25	580-28112-26	580-28112-27	580-28112-29
		Date Collected	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/15/2011	8/16/2011
		Soil Cleanup	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 4	Transect 5	Transect 5	Transect 5	Transect 5
Analyte	Analysis Method	Level	22	100001		170,100001						71411000t 1	57		77d1000t 1			57			00	00			
Percent Moisture (%)	EPA Moisture		23	19	56	45	52	52	40	53	53	54	31	50	51	52	59	5/	59	60	29	26	29	54	30
DRO with Cilian Cal	AK102	9200 1	30000	23000	99000	37000 J	110000	47000	70000	89000	110000	63000	150000	29000	28000	49000	55000	50000	43000	13000	4200	53000	57000	110000	55000
DRO with Silica Gel	AK102 AK103	9200 ¹	30000	20000 3200	93000 7000 QH	38000 J 4200	120000 5800	<u>49000</u> 5500	70000 4000	89000 5500	110000 14000 QH	69000 10000	7200	30000 5500	28000 6100	48000 7700 QH	58000 7400	53000 6200 QH	48000 7000 QH	13000 5500 QH	4200 1900 QH	54000	56000 5100	110000	58000 11000
RRO with Silica Gel	AK103 AK103	9200 ¹	2700	2700	2700	1200	2200	2600	1600	1600	7700	4100	3900	1800	2200	2500	3000	2600 2600	3600	1500 QH	500 QH	10000	4800	10000	11000
Total Organic Carbon	EPA 9060-Quad	9200	18000	18000	170000	110000	190000	110000	130000	180000	160000 J	150000	160000	120000	120000	140000	160000	170000	160000	190000	60000	48000	53000	170000	72000
GRO	AK101	300 ²	370	320	900	310 J ML	550	550	390	450	330	240	420	400	160	350	190	170	350	260	130	92	710	520	490
Renzene	EPA 8260B	2.0 ¹	0.02 J QH	ND (0.014)	0.34	0.160 J ML	1.3	0.67	0.83	1.2	0.9	0.35	0.82	0.3	0.3	0.49	0.14	0.12	0.34	0.22	0.045	ND (0.014)	0.49 QH	1.2	0.053 QH
Ethylbenzene	EPA 8260B	6.9 ²	0.02 J QH 0.22 QH	0.13 QH	10	4.4 J ML	9.8	6.9	6.2	8.3	6.2	2 9	8.6	1.6	2.8	6.3	0.14 0.86 QN	1.5 QN	6.5	4.3	0.35	ND (0.041)	3.2 QH	9.3	0.033 QH
Total Xylenes	EPA 8260B	6.9 63 ²	1.66 QH	1.09 QH	80	28.3 J	88	52	59	76	29	24.7	70	21.1	22.4	45	2.36 QN	5.090 QN	41	29.5	2.9	0.016 J	30 QH	9.3 66	7.5 QH
Toluene	EPA 8260B	6.5 ²	ND (0.039)	ND (0.041)	0.097 J	0.037 J ML	0.68	0.27	0.12	0.14	0.4	0.39	1	0.030 J	0.028 J	0.060 J	ND (0.079)	ND (0.072)	0.037 J	0.027 J	ND (0.043)	ND (0.041)	0.27 QH	0.21	0.028 J QH
PCB-1016	EPA 8082A		ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL
PCB-1221	EPA 8082A		ND (0.026) QL	ND (0.023) QL	ND (0.042) QL	ND (0.036)	ND (0.040) QL	ND (0.043) QL	ND (0.033) QL	ND (0.041) QL	ND (0.040) QL	ND (0.041) QL	ND (0.045) QL	ND (0.038) QL	ND (0.041)	ND (0.042)	ND (0.047) QL	ND (0.043) QL	ND (0.047) QL	ND (0.049) QL	ND (0.025)	ND (0.026) QL	ND (0.028) QL	ND (0.042) QL	ND (0.110) QL
PCB-1232	EPA 8082A		ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	` ,	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL
PCB-1242	EPA 8082A	1 ¹	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL
PCB-1248	EPA 8082A	1 1	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	ND (0.054) QL
PCB-1254	EPA 8082A	1 1	ND (0.013) QL	ND (0.012) QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	ND (0.021) QL	ND (0.017) QL	ND (0.021) QL	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	ND (0.020)	ND (0.021)	ND (0.024) QL	ND (0.021) QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	0.190 QL
PCB-1260	EPA 8082A	1 1	0.0084 J QL	0.016 J QL	ND (0.021) QL	ND (0.018)	ND (0.020) QL	0.0065 J QL	ND (0.017) QL	ND (0.021) QL ML	ND (0.020) QL	ND (0.021) QL	ND (0.023) QL	ND (0.019) QL	0.012 J	ND (0.021)	0.013 J QL	0.027 J QL	ND (0.024) QL	ND (0.025) QL	ND (0.013)	ND (0.013) QL	ND (0.014) QL	ND (0.021) QL	0.400 QL
PCBs-Total	EPA 8082A	1 ¹	0.0084 J QL	0.016 J QL	ND (0.042) QL	ND (0.036)	ND (0.040) QL	0.0065 J QL	ND (0.033) QL	ND (0.041) QL ML	ND (0.040) QL	ND (0.041) QL	ND (0.045) QL	ND (0.038) QL	0.012 J	ND (0.042)	0.013 J QL	0.027 J QL	ND (0.047) QL	ND (0.049) QL	ND (0.025)	ND (0.026) QL	ND (0.028) QL	ND (0.042) QL	0.59 QL
Arsenic	EPA 6020	11 ¹	4.7	4.6	5	2.8 J	2.5	3.1	2.7	2.3	3.7	6.2	4.2	5.8	6.7	4.4	6.2	5.6	5.2	4.8	3.4	5	4.6	4.1	3.8
Barium	EPA 6020	1100 ²	65	54	120	80 J	86	110	80	69	99	150	89	120	140	140	140	150	150	130	97	91	99	120	81
Cadmium	EPA 6020	5 ²	0.36	0.42	0.34 J	0.15 J	0.24 J	0.34 J	0.22 J	0.17 J	0.28 J	0.4	0.44	0.33 J	0.43	0.37	0.68	0.56	0.36 J	0.34 J	0.38	0.27	0.52	0.31 J	0.77
Chromium	EPA 6020	25 ²	15	18	18	11	11	20	12	8.3	15	24	12	20	26	22 ML	22 ML	23 ML	23 ML	19 ML	21 ML	19 ML	22 ML	18 ML	20 ML
Lead	EPA 6020	400 ²	36	47	14	9.4 J	12	19	12	9.4	16	17	15	17	24	14 MH	16 MH	17 MH	15 MH	11 MH	19 MH	23 MH	53 MH	13 MH	59 MH
Nickel	EPA 6020	86 ²	11	11	11	5.9	7	11	7.4	4.8	9.7	14	9.2	13	17	14 QN	17 QN	16 QN	15 QN	12 QN	16 QN	13 QN	15 QN	11 QN	13 QN
Selenium	EPA 6020	3.4 2	0.57 J	0.50 J	1.6	1.1 J	1.7	1.4	1.1	1.8	1.6	1.6	1.8	1.4	1.6	1.7	1.9	1.8	1.8	2	1.1	0.87	0.94	1.7	0.67
Silver	EPA 6020	11.2 2	0.079 J	0.074 J	0.087 J	0.058 J	0.086 J	0.097 J	0.064 J	0.077 J	0.094 J	0.11 J	0.10 J	0.10 J	0.12 J	0.10 J	0.12 J	0.14 J	0.12 J	0.11 J	0.11 J	0.088 J	0.12 J	0.099 J	0.17 J
Vanadium	EPA 6020	3400 ²	22	21	30	19	23	29	20	22	27	38	26	32	39	35	36	37	38	34	30	29	33	32	26
Mercury	EPA 7471A	1.4 2	0.044	0.054	0.076	0.052	0.056	0.066	0.050	0.056	0.068	0.091	0.068	0.083	0.089	0.094	0.096	0.090	0.10	0.10	0.046	0.052	0.19	0.087	0.15
1-Methylnaphthalene	EPA 8270 SIM	6.2 2	8.3 QN	3.5 QN	300	110	380	140 J	240	330	390	96	400	<u> </u>	78	170	00	74	120	02	8.3	1.3	130	120	43
2-Methylnaphthalene Acenaphthene	EPA 8270 SIM EPA 8270 SIM	6.1 ²	6.6 QN ND (0.32)	2.9 QN ND (0.31)	540 8.7 J	190 3.1 J	71 0 10 J	260 J 4.4 J	450 6.2 J	630 8.7 J	720 11 J	130 ND (1.6)	740 13 J	92 1.6 J	150 2.0 J	330 4.8 J	ND (1.2)	4.4	3.5	1.7	12 0.29 J	0.78 ND (0.34)	4.7	3.8	3.2
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Anthracene	EPA 8270 SIM	3000 2	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.32)	0.12 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Benzo[a]pyrene	EPA 8270 SIM	2.1 2	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Benzo[b]fluoranthene	EPA 8270 SIM	12 2	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Chrysene	EPA 8270 SIM	360 ²	ND (0.32)	0.13 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	0.29 J
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Fluoranthene	EPA 8270 SIM	1400 ²	0.14 J	0.16 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	0.13 J	ND (0.7)	ND (1.1)	ND (0.68)
Fluorene	EPA 8270 SIM	220 ²	1.4 QN	0.72 QN	18	5.7	23	9.5 J	14 J	18 J	24	7.8	25	3.4 J	4.6 J	11	9	6.2	8	3.8	0.58	ND (0.34)	6.9	7.9	5
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 ²	ND (0.32)	ND (0.31)	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	ND (0.34)	ND (0.7)	ND (1.1)	ND (0.68)
Naphthalene	EPA 8270 SIM	120 ¹	ND (0.32)	ND (0.31)	200	66	340	120 J	210	310	310	32	300	34	72	160	32	24	120	64	6	ND (0.34)	15	88	14
Phenanthrene	EPA 8270 SIM	3000 ²	1	ND (0.31)	9.3 J	3.5 J	15 J	6.3 J	8.1 J	10 J	12 J	4.3	16 J	0.99 J	1.3 J	3.8 J	3.6	2.4	3.3	1.3	0.24 J	ND (0.34)	3.1	4.3	2.2
Pyrene	EPA 8270 SIM	1000 ²	0.27 J	0.37 J	ND (9.0)	ND (1.8)	ND (8.2)	ND (3.1)	ND (8.4)	ND (10)	ND (10)	ND (1.6)	ND (12)	ND (2.0)	ND (2.5)	ND (3.1)	ND (1.2)	ND (0.86)	ND (0.61)	ND (0.63)	ND (0.17)	0.26 J	ND (0.7)	ND (1.1)	0.37 J

Color Codes: Non-Detect Result Exceeds Cleanup Level
Duplicate of Previous Sample

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank

bgs = below ground surface DRO = diesel range organics

EPA = U.S. Environmental Protection Agency GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation

mg/kg = milligrams per kilogram MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed

ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls QH = result is an estimated value with a high bias due to a quality control

failure QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

RRO = residual range organics SIM = selective ion monitoring

> Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria

Table 4 Site 28 Soil Analytical Results Exceeding Cleanup Levels (continued) (all results in mg/kg)

			11NC28SS026-1_5	11NC28SS026-2	11NC28SS027-1_25	11NC28SS028-1	11NC28SS028-1_5	11NC28SS029-1	11NC28SS029-1_5	11NC28SS030-1	11NC28SS030-1_5	11NC28SS030-2	11NC28SS030-2_5	11NC28SS031-1_5	11NC28SS032-0_5	11NC28SS032-1_5	11NC28SS035-1	11NC28SS035-1_5	11NC28SS036-1_5	11NC28SS038-1_75	11NC28SS038-2_25	11NC28SS038-2_75	11NC28SS039-1_5	11NC28SS039-2
	Sample	e Depth (feet bgs)	1.5	1.5	1.25	1	1.5	1	1.5	1	1.5	2	2	1.5	0.5	1.5	1	1.5	1.5	1.75	2.25	2.75	1.5	1.5
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-5-2-1.5	28-5-2-1.5	28-5-3-1.25	28-5-4-1	28-5-4-1.5	28-5-5-1	28-5-5-1.5	28-5-6-1	28-5-6-1.5	28-5-6-2	28-5-6-2	28-5-7-1.5	28-6-1-0.5	28-6-1-1.5	28-6-4-1	28-6-4-1.5	28-6-5-1.5	28-6-7-1.75	28-6-7-2.25	28-6-7-2.75	28-6-8-1.5	28-6-8-1.5
		Lab ID Date Collected		580-28112-31	580-28112-33	580-28112-36	580-28112-37	580-28112-39	580-28112-40	580-28112-41	580-28112-42	580-28112-43	580-28112-44	580-28112-47	580-28112-48	580-28112-50	580-28112-58	580-28112-59	580-28112-63	580-28198-4	580-28198-5	580-28198-6	580-28198-8	580-28198-9
		Soil Cleanup	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011
Analyte	Analysis Method	Level	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 5	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6	Transect 6
Percent Moisture (%)	EPA Moisture		50	50	56	30	56	38	30	35	56	35	56	56	67	27	46	44	62	66	66	58	67	80
DRO	AK102	9200 ¹	110000	110000	2000 ML	24000	11000	38000	2700	29000	70000	38000	56000	520	1300	390	84000	8800	3400	5100	3100	970	980	1300
DRO with Silica Gel	AK102	9200 ¹	21000	24000	1900 ML	25000	14000	40000	2800	30000	72000	35000	57000	150	330	85	87000	8500	1700	3500	2300	390	310	440
RRO	AK103	9200 1	7300 QH	7600 QH	3700 MH	8400	4800	9000	1500	2400	5000	4100 QH	5300	3900 QH	10000 QH	2400	21000	4500 QH	12000 QH	8300 QH	9200 QH	7400 QH	12000	16000 QH
RRO with Silica Gel	AK103	9200 ¹	3700	4300	1500	8000	2800	7700	880	1700	2200	1500	2100	1100	2400	630	22000	1500	1900	990	1500	1200	2000	2400
Total Organic Carbon	EPA 9060-Quad		170000	150000	140000	41000	150000	62000	39000	53000	140000	130000	160000	160000	270000	64000	130000	88000	240000	140000	180000	260000	230000	270000
GRU	AK101	300 ²	180	120	4.2 J	220	120	160	63	440	510	160 QN	300 QN	ND (2.5)	ND (2.0)	ND (1.5)	120	120	26	2.0 J B	3.3 J B	2.9 J B	ND (3.1)	ND (5.6)
Benzene	EPA 8260B EPA 8260B	2.0 ¹ 6.9 ²	0.12	0.11	0.011 J ND (0.070)	0.013 J 0.19	0.057	0.020 J	0.0076 J 0.12	0.38 QH 5 QH	0.57 6.2	0.38 QN 3.8 QN	0.65 QN 6.4 QN	ND (0.023) ML ND (0.068) ML	ND (0.018) ND (0.055)	ND (0.014) ND (0.041)	0.037	0.045	ND (0.028) 0.14	ND (0.150) QL ND (0.150) QL	ND (0.150) ND (0.150)	ND (0.120) ND (0.120)	ND (0.180) QL ND (0.180) QL	ND (0.310) QL ND (0.310) QL
Ethylbenzene Total Xylenes	EPA 8260B	6.9 ⁻	1.5 12.3	10.3	0.067 J B	4.4	1.9 12.8	0.68 5.2	1.35	33.1 QH	38	23.5 QN	6.4 QN 42 QN	ND (0.088) ML	ND (0.055)	ND (0.041)	14.4	11.1	0.14	ND (0.150) QL ND (0.440) QL	ND (0.150) ND (0.440) QL	ND (0.120) ND (0.350) QL	ND (0.180) QL ND (0.550) QL	ND (0.930) QL
Toluene	EPA 8260B	6.5 ²	ND (0.066)	ND (0.063)	ND (0.070)	ND (0.042)	ND (0.068)	0.030 J	ND (0.043)	0.29 QH	0.094 J	0.051 J	0.11	ND (0.068) ML	ND (0.110)	ND (0.041)	0.024 J	ND (0.053)	ND (0.084)	ND (0.440) QL ND (0.180) QL	ND (0.440) QL ND (0.180)	0.12 J QL MH B	0.160 J QL B	ND (0.930) QL
PCB-1016	EPA 8082A	1 1	ND (0.000)	ND (0.076) QL	ND (0.085) QL ML	ND (0.042)	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.021) QL	ND (0.042)	ND (0.013)	ND (0.018) QL	ND (0.033)	ND (0.084)	ND (0.040)	ND (0.186)	ND (0.022)	ND (0.030)	ND (0.055)
PCB-1221	EPA 8082A	1 1	ND (0.150) QL	, ,	` '	` ,	ND (0.180) QL	ND (0.130) QL	ND (0.100) QL	ND (0.029)	ND (0.043)	ND (0.030)	ND (0.045)	ND (0.041) QL	ND (0.084)	ND (0.026)	ND (0.036) QL	ND (0.033)	ND (0.160)	ND (0.079)	ND (0.130)	ND (0.044)	ND (0.060)	ND (0.110)
PCB-1232	EPA 8082A	1 1	ND (0.075) QL	ND (0.076) QL	ND (0.085) QL ML	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.021) QL	ND (0.042)	ND (0.013)	ND (0.018) QL	ND (0.017)	ND (0.080)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.030)	ND (0.055)
PCB-1242	EPA 8082A	1 1	ND (0.075) QL	ND (0.076) QL	` ′	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.021) QL	ND (0.042)	ND (0.013)	ND (0.018) QL	ND (0.017)	ND (0.080)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.030)	ND (0.055)
PCB-1248	EPA 8082A	1 ¹	ND (0.075) QL	ND (0.076) QL	ND (0.085) QL ML	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	ND (0.015)	ND (0.021)	ND (0.015)	ND (0.022)	ND (0.021) QL	ND (0.042)	ND (0.013)	ND (0.018) QL	ND (0.017)	ND (0.080)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.030)	ND (0.055)
PCB-1254	EPA 8082A	1 ¹	ND (0.075) QL	ND (0.076) QL	ND (0.085) QL ML	ND (0.053) QL	ND (0.089) QL	ND (0.063) QL	ND (0.052) QL	0.031 J MN	0.057 J MN	0.032 J MN	ND (0.022)	ND (0.021) QL	ND (0.042)	ND (0.013)	ND (0.018) QL	ND (0.017)	ND (0.080)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.030)	ND (0.055)
PCB-1260	EPA 8082A	1 ¹	ND (0.075) QL	ND (0.076) QL	ND (0.085) QL ML	0.024 J QL	ND (0.089) QL	0.140 J QL	0.038 J QL	0.035 J MN	0.068 J MH	0.036 J MN	0.026 J MN	ND (0.021) QL	ND (0.042)	ND (0.013)	0.068 J QL	ND (0.017)	ND (0.080)	ND (0.040)	ND (0.066)	ND (0.022)	ND (0.030)	ND (0.055)
PCBs-Total	EPA 8082A	1 ¹	ND (0.150) QL	ND (0.150) QL	ND (0.170) QL ML	0.024 J QL	ND (0.180) QL	0.140 J QL	0.038 J QL	0.066 J MN	0.125 J MH	0.068 J MN	0.026 J MN	ND (0.041) QL	ND (0.084)	ND (0.026)	0.068 J QL	ND (0.033)	ND (0.160)	ND (0.079)	ND (0.130)	ND (0.044)	ND (0.060)	ND (0.110)
Arsenic	EPA 6020	11 ¹	4.1	4.4	4.8	4.8	4.6	8.9	6	9	5.1	3.7	5.3	6.8	0.95	12	6.6	3.2	3.1	3	3.6	6	4.4	6.4
Barium	EPA 6020	1100 ²	110	100	130	85	120	150	110	140	130	96	140	170	72	150	130	110	140	110	150	150	130	190
Cadmium	EPA 6020	5 ²	0.28 J	0.37	0.35 J	0.55 QN	0.35 J QN	0.68 QN	0.34 QN	0.62 QN	0.38 QN	0.3 QN	0.34 J QN	0.4 QN	0.23 J QN	0.29 QN	1.2	0.23 J	0.52	0.29 J	0.40 J	0.67	0.50 J	0.71 J
Chromium	EPA 6020	25 ²	17 ML	17 ML	31 ML	19	19	36	28	34	22	16	21	25	4	22	28	18	16	18	25	25	24	39
Lead	EPA 6020	400 2	15 MH	19 MH	17 MH	39	14	68	29	51	18	14	14	13	1.9	11	73	11	13	9.9	14	19	13	21
Nickel	EPA 6020	86 ²	10 QN	10 QN	18 QN	14	12	26	21	26	15	10	14	16	6	15	20	12	15	9.7	14	17	11	16
Selenium	EPA 6020	3.4 2	1.7	1.5	1.6	0.90 J	1.6	1.9	1.2	1.7	1.5	1.1	1.7	1.9	1.6	1.1	1.4	0.90 J	1.6	1.3 J	1.7 J	1.9	0.44 LD	3.2
Vanadium	EPA 6020 EPA 6020	11.2 ²	0.10 J 32	0.10 J	0.11 J	0.11 J 29	0.094 J	0.23 J 50	0.14 J 36	0.21 50	0.10 J 32	0.075 J 25	0.10 J 34	0.11 J 39	0.055 J 7.2	0.077 J 37	0.18 J 38	0.07 J 26	0.11 J 24	0.11 J B 30	0.13 J B 39	0.24 J B 42	0.14 J B 40	0.24 J B
Mercury	EPA 7471A	1.4 2	0.11	0.095	0.11	0.097	0.10	0.13	0.047	0.14	0.096	0.072	0.10	0.11 J	0.18	0.075	0.36	0.057	0.079	0.074	0.10	0.076	0.090	0.13
1-Methylnaphthalene	EPA 8270 SIM	6.2 2	30	29	0.42 J	32	47	97	7	54	230	78	120	0.010 J B	0.010 J B	0.0022 J B	200	26	1.6 J	9.6	4.8	0.69 J	0.080 QH	0.120 QH
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	50	50	0.41 J	39	83	160	8.8	110	430	140	220	0.018 J B	0.017 J B	0.0036 J B	360	50	3.3 J	9.4	5.1	0.91 J	0.120 QH	0.190 QH
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	2.0 J	3.8	0.23	ND (0.77)	12	5.1	8.2	0.0028 J	ND (0.076)	ND (0.017)	8.6 J	0.71 J	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Chrysene	EPA 8270 SIM	360 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Fluorene	EPA 8270 SIM	220 2	2.7	2.7	0.095 J	3.3	3.3	9.7	0.52	4.8	16	6.8	11	0.011 J	0.035 J	0.0073 J	9.7 J	0.59 J	0.19 J	0.77	0.29 J	0.045 J	0.023 J	0.033 J
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)
Naphthalene	EPA 8270 SIM	120 1	22	22	0.17 J	12	42	68	4.3	47	120	49	77	0.0064 J B	0.010 J B	ND (0.017)	91	19	2.1 J	1.2	1	0.59 J	0.063 QH	0.099 QH
Phenanthrene	EPA 8270 SIM	3000 ²	0.93 J	0.95 J	ND (0.11)	1.5	1.0 J	4.2 ND (1.6)	0.24 ND (0.073)	2.5	11 ND (2.2)	5.1	7.3	ND (0.028)	ND (0.076)	ND (0.017)	4.7 J	0.21 J	0.11 J	0.32 J	0.13 J	0.017 J	ND (0.029)	ND (0.049)
Pyrene	EPA 8270 SIM	1000 ²	ND (0.49)	ND (0.5)	ND (0.11)	ND (0.69)	ND (1.1)	ND (1.6)	ND (0.072)	ND (0.77)	ND (2.2)	ND (1.5)	ND (2.3)	ND (0.028)	ND (0.076)	ND (0.017)	ND (7.3)	ND (0.45)	ND (0.13)	ND (0.24)	ND (0.17)	ND (0.03)	ND (0.029)	ND (0.049)

Color Codes: Positive Result Exceeds Cleanup Level Non-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

Notes:

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or tr

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

NA = not analyzed ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls
QH = result is an estimated value with a high bias due to a quality control

failure

QL = result is an estimated value with a low bias due to a quality control

failure

QN = result is an estimated value with an uncertain bias due to a quality

control failure RRO = residual range organics

SIM = selective ion monitoring

Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria

Table 4 Site 28 Soil Analytical Results Exceeding Cleanup Levels (continued) (all results in mg/kg)

		01-10	441100000000000000	441000000404	441100000004444	L4N00000044 4 00	44110000000404	4410000000404	4411000000040	44110000000000000000	44110000000440	4411000000044.0.5	44100000044.0	441100000017.0	141100000047.0.5	44110000000404	144100000000000000	441100000004044	4411000000040	LANGO 000 40 0 DU	1441000000010 5	44110000000004	44NG00000000		- h (N) 000 000 0 0 0
	Camp	Sample ID 1	11NC28SS040-0_5	_	11NC28SS041-1	11NC28SS041-1_33	11NC28SS042-1	_	11NC28SS043-2		11NC28SS044-2	_	11NC28SS044-3	11NC28SS047-2	11NC28SS047-2_5	11NC28SS048-1	11NC28SS048-2_5		11NC28SS049-2	1NC28SS049-3 DU		11NC28SS060-1	11NC28SS060-2	_	5 11NC28SS062-0_7
	Samp	le Depth (feet bgs) Matrix	Soil	1.5 Soil	Soil	1.33 Soil	Soil	1.5 Soil	Soil	2.5 Soil	Soil	2.5 Soil	3 Soil	Soil	2.5 Soil	Soil	Soil	1.5 Soil	Soil	Soil	0.5 Soil	Soil	Soil	1.5 Soil	0.75 Soil
		Location ID	28-7-1-0.5	28-7-1-1.5	28-7-2-1	28-7-2-1.33	28-7-3-1	28-7-4-1.5	28-7-4-2	28-7-4-2.5	28-7-5-2	28-7-5-2.5	28-7-5-3	28-8-2-2	28-8-2-2.25	28-8-3-1	28-8-3-2	28-8-4-1.5	28-8-4-2	28-8-4-2	28-8-6-0.5	28-11-1-1	28-11-1-1	28-11-2-0.5	28-11-3-0.75
		Lab ID	580-28198-10	580-28198-12	580-28198-13	580-28198-14	580-28198-15	580-28198-19	580-28198-20	580-28198-21	580-28198-22	580-28198-23	580-28198-24	580-28198-30	580-28198-31	580-28198-33	580-28198-36	580-28198-37	580-28198-38	580-28198-39	580-28198-44	580-28198-74	580-28198-75	580-28198-78	580-28198-81
		Date Collected	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/18/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011
		Soil Cleanup	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 7	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 8	Transect 11	Transect 11	Transect 11	Transect 11
Analyte	Analysis Method	Level	20					04								20	00	04			Transcot o	31	00		
Percent Moisture (%)	EPA Moisture		22	62	77	64	88	81	76	70	84	72	89	66	41	66	28	61	60	59	20	31	30	73	65
DRO with Cilian Cal	AK102	9200 1	440	310	27000	30000	1300	95000	84000	39000	96000	31000	59000 J	6200	4200	4300	330	27000	4200	5500	74	32000	23000	18000	110000
DRO with Silica Gel	AK102	9200 1	2000	110	21000	23000	1100	96000	70000	40000	110000	34000	64000 J	6600	4200	4500	190	32000	4900	6200	23	35000	26000	18000	120000
RRO with Silica Gel	AK103 AK103	9200 1	2800	3600 QH	17000 7400	9500 QH 4600	3700	10000	7000	4500	9700	5700	10000	380 100	370 72	680	1300	3900 1300	2300	2200	340	2500	1800	5400	22000
	EPA 9060-Quad	9200 1	560 QH	980 190000	350000	120000	1500 140000	2300 J 450000	1400 300000	960 210000	3000 240000	1100 230000	1800 65000	260000	130000	270	330		740 140000	610 130000	110	1400 29000	27000	2000 110000	19000 120000
Total Organic Carbon	AK101	300 2	0.90 J B	ND (2.8)	6.8 J B	120000	63	260	290	210000	1600	230000	2800 J	1600	2300	46000 14 B	27000 32 QN	150000 840	95 QN	130000 170 QN	12000 1.6 B	320	410	550	310
Bonzono	EPA 8260B	2.0 1	ND (0.063) QL	ND (0.170) QL	ND (0.270) QL	ND (0.170) QL	ND (0.510)	ND (0.034)	ND (0.0240)	ND (0.200)	ND (0.380) QL	ND (0.190) QL	ND (0.430) QL	ND (0.180) QL	ND (0.410)	ND (0.160) QL	ND (0.066)	ND (0.150)	95 QN ND (0.120)	ND (0.140)	ND (0.050)	ND (0.077)	ND (0.073)	ND (0.180)	ND (0.180)
Benzene Ethylhonzono	EPA 8260B	6.9 ²	ND (0.063) QL	ND (0.170) QL	ND (0.270) QL	ND (0.170) QL	ND (0.510)	0.980 J QL	1.0 J QL	1.3 QL	5.0 QL	1.7 QL	, , ,		2.9 QL	ND (0.160) QL	ND (0.066)	0.410 J	ND (0.120)	ND (0.140)	ND (0.050)	0.085 J QH	0.120 J QH	3 QH	ND (0.180)
Ethylbenzene Total Xylenes	EPA 8260B	6.9 ⁻	ND (0.063) QL ND (0.193) QL	ND (0.170) QL ND (0.510) QL	ND (0.270) QL ND (0.810) QL	ND (0.170) QL ND (0.520) QL	ND (0.510) ND (1.510) QL	8.8 QL	9.8 QN	1.3 QL 10.3 QN	5.0 QL 44 QL	1.7 QL 12.4 QL	7.6 J QL 55 J ML	12 QL 83 QL	2.9 QL 26.3 QL	ND (0.180) QL ND (0.480) QL	0.130 J	4.7	0.930 J	1.23	ND (0.050) ND (0.149)	0.085 J QH ND (0.127)	ND (0.123)	10.3 QH	ND (0.180) ND (0.540)
Toluene	EPA 8260B	6.5 2	ND (0.193) QL ND (0.076) QL	0.130 J QL B	ND (0.320) QL	ND (0.320) QL	0.490 J QL B	ND (0.400)	9.8 QN ND (0.290)	ND (0.240)	0.390 J QL B	0.220 J QL B	0.970 J QL B	0.84 J QL B	0.180 J QL B	0.240 J QL B	ND (0.079)	4.7 ND (0.180)	0.930 J ND (0.150)	ND (0.170)	ND (0.149) ND (0.060)	ND (0.127) ND (0.093)	ND (0.123)	ND (0.220)	ND (0.340)
PCB-1016	EPA 8280B	0.5	ND (0.076) QL ND (0.012) QL	ND (0.025)	ND (0.042) QL	ND (0.210) QL ND (0.025) QL	0.490 J QL B ND (0.081)	ND (0.440)	ND (0.290)	ND (0.240)	0.390 J QL B ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.180)	ND (0.130)	ND (0.170)	ND (0.060)	ND (0.093) ND (0.014) QL	ND (0.087)	ND (0.220)	ND (0.27) QL
PCB-1221	EPA 8082A	1 1	ND (0.025) QL	ND (0.050)	ND (0.084) QL	ND (0.051) QL	ND (0.160)	ND (0.099)	ND (0.078)	ND (0.066) QL	ND (0.120) QL	ND (0.066) QL	ND (0.170) ML	ND (0.055)	ND (0.033)	ND (0.055)	ND (0.027)	ND (0.049)	ND (0.049)	ND (0.047)	ND (0.024)	ND (0.027) QL	ND (0.027)	ND (0.072)	ND (0.054) QL
PCB-1232	EPA 8082A	1 1	ND (0.012) QL	ND (0.025)	ND (0.042) QL	ND (0.025) QL	ND (0.081)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.049)	ND (0.025)	ND (0.024)	ND (0.012)	ND (0.014) QL	ND (0.014)	ND (0.036)	ND (0.027) QL
PCB-1242	EPA 8082A	1 1	ND (0.012) QL	ND (0.025)	ND (0.042) QL	ND (0.025) QL	ND (0.081)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.012)	ND (0.014) QL	ND (0.014)	ND (0.036)	ND (0.027) QL
PCB-1248	EPA 8082A	1 1	ND (0.012) QL	ND (0.025)	ND (0.042) QL	ND (0.025) QL	ND (0.081)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.012)	ND (0.014) QL	ND (0.014)	ND (0.036)	ND (0.027) QL
PCB-1254	EPA 8082A	1 1	ND (0.012) QL	ND (0.025)	0.23 QL	0.089 QL	ND (0.081)	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.012)	ND (0.014) QL	ND (0.014)	0.14 MN	0.14 QL
PCB-1260	EPA 8082A	1 1	ND (0.012) QL	ND (0.025)	0.23 QL	0.069 J QL	0.027 J MN	ND (0.049)	ND (0.039)	ND (0.033) QL	ND (0.061) QL	ND (0.033) QL	ND (0.083) ML	ND (0.028)	ND (0.016)	ND (0.027)	ND (0.014)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.012)	ND (0.014) QL	ND (0.014)	0.053 J MN	0.11 QL
PCBs-Total	EPA 8082A	1 1	ND (0.025) QL	ND (0.050)	0.46 QL	0.158 J QL	0.027 J MN	ND (0.099)	ND (0.078)	ND (0.066)	ND (0.120) QL	ND (0.066) QL	ND (0.170) ML	ND (0.055)	ND (0.033)	ND (0.055)	ND (0.027)	ND (0.049)	ND (0.049)	ND (0.047)	ND (0.024)	ND (0.014) QL	ND (0.014)	0.193 J MN	0.25 QL
Arsenic	EPA 6020	11 1	2.6	33	16	5.1	69	3.4	2.9	3.3	9.5	4.2	16	3.5	4.4	64	2.7	2.2	3	2.3	5.2	3.9	3.5	22	9.2
Barium	EPA 6020	1100 ²	120	140	120	66	210	97	74	77	130	70	340	120	130	120	140	100	110	100	150	61	51	150	84
Cadmium	EPA 6020	5 ²	0.15 J	4.3	0.57 J	0.19 J	0.69 J	0.28 J	0.27 J	0.33 J	0.78 J	0.50 J	1.2 J	0.21 J	0.27	0.12 J	0.20 J	0.15 J	0.23 J	0.21 J	0.2	0.13 J	0.11 J	0.29 J	0.41 J
Chromium	EPA 6020	25 ²	25	44	18	8.7	15	9.5	9.7	10	17	8.1	56	13	17	6.8	25	14	14	13	26	14	12	25	13
Lead	EPA 6020	400 ²	12	38	31	8	25	7.4	7.6	10	18	7.5	49	7.4	11	4.6	10	9.4	9.3	8.7	12	8.3	7.4	14	22
Nickel	EPA 6020	86 ²	12	44	16	5.2	15	6.3	4.6	5	11	5.3	38	9.1	10	3.5	15	8.9	9.5	8.8	19	7.7	6.3	14	8.7
Selenium	EPA 6020	3.4 ²	0.75	6.5	1.7 J	0.90 J	1.8 J	2.9	2.5	2.7	4.1	2.4	5.1	1.6	1.5	0.88 J	0.48 J	0.96 J	1.3 J	1.1 J	0.52	0.60 J	0.60 J	1.6 J	1.4 J
Silver	EPA 6020	11.2 2	0.10 J B	0.36 J B	0.19 J B	0.084 J B	0.34 J B	0.12 J	0.086 J	0.078 J	0.19 J	0.11 J	0.34 J	0.060 J	0.098 J	ND (0.058)	0.10 J	0.085 J	0.093 J	0.087 J	0.13	0.044 J	0.034 J	0.11 J	0.11 J
Vanadium	EPA 6020	3400 ²	35	120	39	17	35	16	15	26	46	30	110	25	29	15	39	26	31	28	41	23	20	51	23
Mercury	EPA 7471A	1.4 ²	0.064	0.13	0.13	0.073	0.16	0.16 QN	0.098 QN	0.075 QN	0.12 QN	0.067 QN	0.14 QN	0.069	0.069	0.027 J QN	0.056 QN	0.058	0.067	0.10	0.054	0.033	0.023	0.089	0.073
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	ND (0.012)	0.0016 J	0.57 J	1.6	0.100 J	100	190	120	270	110	240 J	140	9.1	4.2	0.8	25	6.9	7.5	0.00086 J	5.8	4.9	14	ND (2.7)
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	ND (0.012)	0.0021 J	0.47 J	1.4	0.055 J	140	320	160	350	210	450 J	180	18	7.5	1.3	42	12	13	0.0012 J	6.3	5.4	15	ND (2.7)
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	4.4	7.8	2.8	6.8 J	2.8 J	0.38 J	ND (0.13)	0.033	ND (0.64)	ND (0.29)	0.32 J	ND (0.0031)	ND (0.7)	ND (0.66)	1.8	ND (2.7)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	0.00021 J	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Anthracene	EPA 8270 SIM	3000 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	0.00098 J	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Benzo[a]pyrene	EPA 8270 SIM	2.1 2	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Chrysene	EPA 8270 SIM	360 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 2	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Fluoranthene	EPA 8270 SIM	1400 2	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Fluorene	EPA 8270 SIM	220 2	0.0041 J	ND (0.0062)	ND (0.41)	0.96 J	0.059 J	11	16	12	18	6.6	15.000 J	3.3	0.46 J	0.24 J	0.053	2.1	0.61	0.67	ND (0.0031)	1.0 J	1.0 J	1.8	ND (2.7)
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)
Naphthalene	EPA 8270 SIM	120 1	ND (0.012)	0.0016 J	0.48 J	1.5	0.120 J	36	81	42	160	110	210 J	92	/	1.8	0.36	11	3.3	3.8	0.0008 J	2.8	2.7	11	ND (2.7)
Phenanthrene	EPA 8270 SIM	3000 2	ND (0.012)	ND (0.0062)	ND (0.41)	0.88 J	ND (0.079)	7.2	9.1 J	6.5	8.1	2.7	6.4 ND (3.4)	1.0 J	0.17 J	ND (0.13)	0.016 J	0.87 J	0.24 J	0.26 J	ND (0.0031)	0.52 J	0.51 J	1.5	ND (2.7)
Pyrene	EPA 8270 SIM	1000 ²	ND (0.012)	ND (0.0062)	ND (0.41)	ND (0.51)	ND (0.079)	ND (2.6)	ND (5.9)	ND (1.6)	ND (2.9)	ND (0.86)	ND (2.1)	ND (1.4)	ND (0.39)	ND (0.13)	ND (0.016)	ND (0.64)	ND (0.29)	ND (0.28)	ND (0.0031)	ND (0.7)	ND (0.66)	ND (0.45)	ND (2.7)

Color Codes: Positive Result Exceeds Cleanup Level Non-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

Notes:

 Site-specific cleanup levels established in 2009 Decision Document
 Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank

bgs = below ground surface DRO = diesel range organics

EPA = U.S. Environmental Protection Agency GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation

mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects

ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix

effects NA = not analyzed

ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls
QH = result is an estimated value with a high bias due to a quality control

failure

QL = result is an estimated value with a low bias due to a quality control

failure

QN = result is an estimated value with an uncertain bias due to a quality control failure

RRO = residual range organics SIM = selective ion monitoring

> Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria

Site 28 Soil Analytical Results Exceeding Cleanup Levels (continued) (all results in mg/kg)

		Sample ID	11NC28SS063-0_75	11NC28SS063-1_7	11NC28SS064-1_75	11NC28SS064-2_2	5 11NC28SS064-2_5	11NC28SS066-0_75	511NC28SS066-1_25	11NC28SS066-2	11NC28SS067-1	11NC28SS067-1_5	11NC28SS068-1	11NC28SS069-1_5	11NC28SS069-2	11NC28SS069-2_5	11NC28SS071-1	11NC28SS071-2_5	11NC28SS071-1_5	11NC28SS072-1_2	11NC28SS072-1_75	11NC28SS072-2_25	11NC28SS072-2_5	11NC28SS073-1_5	11NC28SS073-2
	Samp	le Depth (feet bgs)	0.75	1.75	1.75	2.25	2.25	0.75	1.25	1.25	1	1.5	1	1.5	2	2	1	1	1.5	1.25	1.75	2.25	2.25	1.5	2
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Location ID	28-11-4-0.75	28-11-4-1.75	28-11-5-1.75	28-11-5-2.25	28-11-5-2.25	28-DIS-01-0.75	28-DIS-01-1.25	28-DIS-01-1.25	28-DIS-02-1	28-DIS-02-1.5	28-DIS-03-1	28-DIS-04-1.5	28-DIS-04-2	28-DIS-04-2	28-DIS-06-1	28-DIS-06-1	28-DIS-06-1.5	28-DIS-07-1.25	28-DIS-07-1.75	28-DIS-07-2.25	28-DIS-07-2.25	28-DIS-08-1.5	28-DIS-08-2
		Lab ID	580-28198-83	580-28198-84	580-28198-87	580-28198-88	580-28198-89	580-28198-93	580-28198-94	580-28198-95	580-28198-97	580-28198-98	580-28198-99	580-28198-100	580-28198-101	580-28198-102	580-28198-106	580-28198-107	580-28198-108	580-28198-110	580-28198-111	580-28198-112	580-28198-113	580-28198-114	580-28198-115
		Date Collected	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/19/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011	8/20/2011
Analyte	Analysis Method	Soil Cleanup Level	Transect 11	Transect 11	Transect 11	Transect 11	Transect 11	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
Percent Moisture (%)	EPA Moisture		89	53	85	49	45	53	41	35	22	17	71	46	57	42	58	61	62	80	76	43	41	64	74
DRO	AK102	9200 ¹	58000	22000	23000	2500 QN	4800 QN	94000	42000 QN	24000 QN	6700	13000	280000	21000	23000	17000	26000	28000	34000	6200	7500	36000	27000	8000	9400
DRO with Silica Gel	AK102	9200 ¹	63000	22000	25000	2400 QN	4900 QN	97000	46000 QN	24000 QN	7100	16000	290000	26000	28000	20000	31000	35000	42000	7000	8800	44000	34000	9300	10000
RRO	AK103	9200 ¹	8700	3300	6500	3900	3800	14000	7100	4900	10000	8000 QL	3800 J	3500	3400	2400	14000	13000	5300	6000	4500	4000	3500	3800	6200
RRO with Silica Gel	AK103	9200 ¹	2500	1100	4300	1200	1300	12000	5900 QN	3300 QN	10000 QL	9000	2200	740	1200	750	13000	12000	2300	1200	1100	1300	930	2400	3300
Total Organic Carbon	EPA 9060-Quad		450000	120000	130000	93000	130000	100000	58000	53000	35000	17000	220000	57000 QL	49000 QL	53000 QL	95000 QL	34000 QL	110000 QL	310000 QL	230000	150000 QL	110000	140000	150000
GRO	AK101	300 ²	160	690	69	43 QN	76 QN	490	720	1100	33	77	1300	650	3500 QN	770 QN	200	220	670	150	640	770	990	14 B	43
Benzene	EPA 8260B	2.0 ¹	ND (0.590)	ND (0.100)	ND (0.430)	ND (0.100)	ND (0.089)	ND (0.140)	ND (0.084)	ND (0.079) QL	ND (0.067) QL	ND (0.060)	ND (0.110)	0.150 J QH	ND (0.190)	ND (0.530) QL	ND (0.150) QL	ND (0.160)	ND (0.160) QL	ND (0.340) QL	ND (0.250) QL	ND (0.089)	ND (0.099)	ND (0.160)	ND (0.260)
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.590)	0.210 J QH	ND (0.430)	0.140 J	0.120 J	ND (0.140)	0.130 J	0.150 J QL	ND (0.067) QL	ND (0.060)	ND (0.110)	4.2 QH	3.9	2.6 QL	1.0 QL	ND (0.160)	2.6 QL	0.97 J QL	3.0 QL	4.5	6.6	ND (0.160)	ND (0.260)
Total Xylenes	EPA 8260B	63 ²	ND (1.790)	3.9 QH	ND (1.290)	0.630 J	0.710 J	ND (0.410)	1.77	1.740 QL	ND (0.197) QL	ND (0.180)	ND (0.330)	31 QH	31	18.8 QL	0.87 QL	0.94	23.5 QL	8.7 QL	23.1 QL	30	43	0.800 J	0.390 J
Toluene	EPA 8260B	6.5 ²	ND (0.710)	ND (0.120)	ND (0.520)	ND (0.120)	ND (0.110)	ND (0.160)	0.280 J	0.300 J QL	ND (0.080) QL	ND (0.071)	0.190 J	ND (0.190)	ND (0.230)	ND (0.640) QL	ND (0.180) QL	ND (0.190)	ND (0.190) QL	ND (0.410) QL	ND (0.300) QL	ND (0.110)	ND (0.120)	ND (0.190)	ND (0.310)
PCB-1016	EPA 8082A	1 1	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL	ND (0.022) QL	ND (0.016) QL	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL
PCB-1221	EPA 8082A	1 ¹	ND (0.170)	ND (0.040)	ND (0.120)	ND (0.037)	ND (0.034)	ND (0.400)	ND (0.160)	ND (0.120) QL	ND (0.240)	ND (0.230)	ND (0.069) QL	ND (0.034) QL	ND (0.043) QL	ND (0.032) QL	ND (0.044) QL	ND (0.049) QL	ND (0.052) QL	ND (0.099) QL	ND (0.081) QL	ND (0.032)	ND (0.033) QL	ND (0.055) QL	ND (0.072) QL
PCB-1232	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL	ND (0.022) QL	ND (0.016) QL	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL
PCB-1242	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL	ND (0.022) QL	ND (0.016) QL	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL
PCB-1248	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	ND (0.200)	ND (0.081)	ND (0.058) QL	ND (0.120)	ND (0.120)	ND (0.034) QL	ND (0.017) QL	ND (0.022) QL	ND (0.016) QL	ND (0.022) QL	ND (0.025) QL	ND (0.026) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	ND (0.028) QL	ND (0.036) QL
PCB-1254	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	2 MN	0.790 MN	0.600 QL	ND (0.120)	ND (0.120)	0.029 J QL	ND (0.017) QL	ND (0.022) QL	ND (0.016) QL	0.32 QL	0.23 QL	ND (0.026) QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	0.080 J QL	0.052 J QL
PCB-1260	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	1 MN	0.420 MN	0.320 QL	1.5 MN	1.8 MN	ND (0.034) QL	ND (0.017) QL	0.032 J QL	0.016 J QL	0.31 QL	0.24 QL	0.0096 J QL	ND (0.050) QL	ND (0.040) QL	ND (0.016)	ND (0.017) QL	0.056 J QL	0.034 J QL
PCBs-Total	EPA 8082A	1 ¹	ND (0.086)	ND (0.020)	ND (0.062)	ND (0.018)	ND (0.017)	3 MN	1.21 MN	0.92 QL	1.5 MN	1.8 MN	ND (0.069) QL	ND (0.034) QL	0.032 J QL	0.016 J QL	0.63 QL	0.47 QL	0.0096 J QL	ND (0.099) QL	ND (0.081) QL	ND (0.032)	ND (0.033) QL	0.136 J QL	0.086 J QL
Arsenic	EPA 6020	11 ¹	33	12	27	4.6	4.3	23	8	5.9	4.7	4.3	8.6	3.5	3.8	2.7	6.5	7.4	4.5	11	7.5	3.5	3.3	7.5	13
Barium	EPA 6020	1100 ²	100	89	120	130	140	480	270 QN	92 QN	39	51	130	110	100	68	120	140	130	160	83	130	130	120	170
Cadmium	EPA 6020	5 ²	0.24 J QN	0.26 J QN	0.32 J QN	0.21 J QN	0.22 J QN	5.9 QN	1.8 QN	0.78 QN	0.41 QN	0.66 QN	1.3	0.33	0.29 J	0.25 J	1	1.2	0.41	0.56 J	0.28 J	0.26 J	0.27 J	0.24 J	0.57
Chromium	EPA 6020	25 ²	5.9	12	19	20	22	74	24	19	15	24	11	14	13	9.2	26	29	18	24	4.9	15	16	16	18 MH
Lead	EPA 6020	400 ²	9.4 QN	8.3 QN	19 QN	10 QN	10 QN	790 QN	280 QN	130 QN	48 QN	87 QN	29	16	15	12	71	81	16	21	4.5	8.8	9.8	10	14
Nickel	EPA 6020	86 ²	6.9	6	13	14	15	18	13	11	12	12	12	8	7.2	5.7	18	21	13	14	5.8	9.1	9.8	10	14
Selenium	EPA 6020	3.4 ²	ND (3.6)	0.89 J	1.1 J	1.1 J	1.1 J	1.1 J	0.84 J	0.90 J	0.42 J	0.42 J	5.6	1.5	1.4	0.92 J	1.5	1.5 J	1.7	3	1.8 J	1.2	1.2	1.8	1.9
Silver	EPA 6020	11.2 2	ND (0.18)	0.065 J	0.096 J	0.080 J	0.080 J	1.3	0.23 J	0.11 J	0.062 J	0.13 J	0.32 J	0.12 J	0.13 J	0.086 J	0.18 J	0.21 J	0.11 J	0.17 J	0.053 J	0.075 J	0.073 J	0.081 J	0.11 J
Vanadium	EPA 6020	3400 ²	25	21	39	35	38	27	24	24	20	22	17	30	27	18	37	39	31	52	23	30	31	30	37
Mercury	EPA 7471A	1.4 2	ND (0.077)	0.030 J	0.061 J	0.068	0.071	0.64	0.84	0.57	0.039	0.065	0.054	0.046	0.060 QN	0.033 QN	0.26	0.30	0.13	0.16	0.058	0.067	0.063	0.078	0.079
1-Methylnaphthalene	EPA 8270 SIM	6.2 ²	4.1	41	0.99	3.9	5.1	3.8 J	15	11	ND (0.88)	ND (0.42)	30	42	57	46	30 QN	51 QN	100	1.2	26	120 QN	2.4 QN	4.7	4.4
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	4.7	79	1.5	6.4	9	ND (2.1)	15 QN	7.1 QN	ND (0.88)	ND (0.42)	26	77	95	80	51	85	200	1.7	48	210 QN	2.9 QN	6	6
Acenaphthene	EPA 8270 SIM	180 ²	ND (1.2)	2.2	ND (0.16)	0.19 J	0.22 J	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	4.5 J	ND (0.37)	1.7 J	5.8	ND (0.12)	ND (0.2)	ND (0.27)
Acenaphthylene	EPA 8270 SIM	180 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Anthracene	EPA 8270 SIM	3000 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	0.83 J	0.21 J	0.22 J	0.31 J	0.14 J	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Chrysene	EPA 8270 SIM	360 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	0.98 J	ND (0.58)	ND (0.54)	0.78 J	0.22 J	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Fluoranthene	EPA 8270 SIM	1400 ²	ND (1.2)	ND (0.98)	0.33	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	0.22 J	0.39 J	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	0.083 J	0.13 J	0.19 J
Fluorene	EPA 8270 SIM	220 ²	0.49 J	1.9 J	0.15 J	0.23 J	0.28 J	1.9 J	1.6	1.6	0.25 J	ND (0.42)	7.3	2.7 J	3.9	2.8	3.1	4.9	5.6	ND (0.37)	1.6 J	5.9 QN	0.4 QN	0.72	0.87
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 ²	ND (1.2)	ND (0.98)	ND (0.16)	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	ND (0.54)	ND (0.88)	ND (0.42)	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	ND (0.12)	ND (0.2)	ND (0.27)
Naphthalene	EPA 8270 SIM	120 ¹	ND (1.2)	18	ND (0.16)	1.2	1.9	ND (2.1)	6.5 QN	3.6 QN	ND (0.88)	ND (0.42)	ND (1.7)	28	32	29	10 QN	17 QN	85	2.7	28	86 QN	1.3 QN	2.4	1.6
Phenanthrene	EPA 8270 SIM	3000 ²	ND (1.2)	0.78 J	0.27 J	0.074 J	ND (0.17)	ND (2.1)	0.93 J	0.94 J	ND (0.88)	ND (0.42)	4.5	1.8 J	2.6 J	1.9 J	1.6 J	2.6	1.6 J	ND (0.37)	0.6 J	2.8 J	0.28	0.48	0.65
Pyrene	EPA 8270 SIM	1000 ²	ND (1.2)	ND (0.98)	0.20 J	ND (0.12)	ND (0.17)	ND (2.1)	ND (0.58)	0.26 J	0.78 J	0.3 J	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.2)	ND (1.1)	ND (1.3)	ND (2.4)	ND (0.37)	ND (1.0)	ND (2.1)	0.083 J	0.13 J	0.19 J
																									

Color Codes: Non-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics

EPA = U.S. Environmental Protection Agency GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of quantitation

mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects MN = result is an estimated value with an uncertain bias due to matrix

effects NA = not analyzed

ND = not detected, limit of detection (LOD) shown in parentheses

PCBs = polychlorinated biphenyls QH = result is an estimated value with a high bias due to a quality control

failure QL = result is an estimated value with a low bias due to a quality control

QN = result is an estimated value with an uncertain bias due to a quality control failure

RRO = residual range organics

SIM = selective ion monitoring

Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria

Site 28 Soil Analytical Results Exceeding Cleanup Levels (continued) (all results in mg/kg)

		Commis ID	44NC00CC070 0 F	44NC0000074.0	44NC0000075 0 5	144N000000704	44NC0000070 0	44NC00000070.4.5	44NC00CC070.0	14NC0000070 0.5	44NC00000070 0	141000000070 0.5	44NC0000070	44NC00000070 0.5	144100000000000000	C1411C20CC000 2 20	44NC00000000 0 75	44NC000C004 4 05	44NC20CC024 4 75	44NC0000004 0 05	44NC0000004 0 5		
	Comp			11NC28SS074-2			11NC28SS076-2		11NC28SS078-2				11NC28SS079-3						11NC28SS081-1.75				
	Samp	ole Depth (feet bgs) Matrix	2.5 Soil	Soil	2.5 Soil	1.5 Soil	Soil	1.5 Soil	Soil	2.5 Soil	2.5 Soil	2.5 Soil	Soil	3.5 Soil	2.75 Soil	3.25 Soil	3.75 Soil	1.25 Soil	1.75 Soil	2.25 Soil	2.25 Soil		
		Location ID	28-DIS-08-2.5	28-DIS-09-2	28-DIS-10-2.5	28-DIS-11-1.5	28-DIS-11-2	28-BG-1-1.5	28-BG-1-2	28-BG-1-2.5	28-BG-1-2.5	28-BG-2-2.5	28-BG-2-3	28-BG-2-3.5	28-BG-3-2.75	28-BG-3-3.25	28-BG-3-3.75	28-BG-4-1.25	28-BG-4-1.75	28-BG-4-2.25	28-BG-4-2.25		
		Lab ID		580-28198-119	580-28198-122	580-28198-123	580-28198-124	580-28198-129	580-28198-130	580-28198-131	580-28198-132	580-28198-133	580-28198-134	580-28198-135	580-28198-136	580-28198-137	580-28198-138	580-28198-139	580-28198-140	580-28198-141	580-28198-142	Background Sample Average	Background
		Date Collected	8/20/2011	8/20/2011	8/20/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	8/21/2011	Sample Average	Sample Range
		Soil Cleanup	Discrete	Discrete	Discrete	Discrete	Discrete	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background		
Analyte	Analysis Method	Level		67				- C	•	ŭ	ŭ	Ü			•	•		J. Company		•	Ů		
Percent Moisture (%) DRO	EPA Moisture AK102		67	0,	300 1	51	33	77	78	28 74	22	75	75	79	80	80	79	82	75 720	78	79	1071	74-2400
DRO with Silica Gel	AK102 AK102	9200 ¹ 9200 ¹	2700 2800	8300 8000	300 J 230	570 310	310 150	1100 700	1400 680	50 B	110 63 B	1300 630	2400 1500	2400 1500	710 270	580 230	500 210	1600 970	720 300	1100 680	1000 540	1071 684	50-1500
RRO	AK102 AK103	9200 ¹	4300	4200	1600 J MH	3200	2000	12000	15000	670 QN	1200 QN	14000	24000	23000	8400	5900	6000 J ML	15000 QH	7400 QH	11000 QH	11000 QH	12725	670-24000
RRO with Silica Gel	AK103	9200 ¹	1400	1100	560 J MH	680	480	4700	4400	420	640	4500	7700	7100	2800	2200	1700	3200	1100	2800	2700	3283	420-7700
Total Organic Carbon	EPA 9060-Quad	9200	170000	130000	57000	73000	39000	460000 QL	480000 QL	24000 QL	34000 QL	410000 QL	410000 QL	360000 QL	440000 QL	450000 QL	410000 J QL	360000 QL	260000 QL	350000 QL	360000 QL	395833	24000-480000
GRO	AK101	300 ²	33	7.7 B	1.6 J B	5.6 B	3.9 B	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA		21000 100000
Benzene	EPA 8260B	2.0 ¹	ND (0.180) QL	ND (0.170) QL	ND (0.067)	ND (0.100) QL	ND (0.076) QL	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Ethylbenzene	EPA 8260B	6.9 ²	ND (0.180) QL	ND (0.170) QL	ND (0.067)	ND (0.100) QL	ND (0.076) QL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Total Xylenes	EPA 8260B	63 ²	0.220 J QL	ND (0.520) QL	ND (0.197)	ND (0.310) QL	ND (0.226) QL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Toluene	EPA 8260B	6.5 ²	ND (0.210) QL	ND (0.210) QL	ND (0.081)	ND (0.120) QL	ND (0.091) QL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1016	EPA 8082A	1 1	ND (0.150)	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1221	EPA 8082A	1 ¹	ND (0.300)	ND (0.055)	ND (0.033)	ND (0.041)	ND (0.028)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1232	EPA 8082A	1 1	ND (0.150)	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1242	EPA 8082A	1 ¹	ND (0.150)	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1248	EPA 8082A	1 1	ND (0.150)	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1254	EPA 8082A	1 ¹	1.7 MN	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCB-1260	EPA 8082A	1 ¹	0.99 MN	ND (0.028)	ND (0.017)	ND (0.020)	ND (0.014)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PCBs-Total	EPA 8082A	1 ¹	2.69 MN	ND (0.055)	ND (0.033)	ND (0.041)	ND (0.028)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Arsenic	EPA 6020	11 1	6.6	11	4.3	7.9	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Barium	EPA 6020	1100 ²	170	160	150	150	120	NA 	NA 	NA 	NA 	NA 	NA 	NA 	NA 	NA 	NA 	NA 	NA	NA	NA		
Cadmium	EPA 6020	52	0.6	0.41 J	0.39	0.41	0.42	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA		
Chromium	EPA 6020	25 ²	16 MH	16 MH	26 MH	30 MH	28 MH	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Lead Nickel	EPA 6020 EPA 6020	400 ²	9.6 14	9.7	16 21	16 21	24	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Selenium	EPA 6020	3.4 2	1.9	1.7 J	1.1	1.2	18 1.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Silver	EPA 6020	11.2 2	0.086 J	0.089 J	0.11 J	0.13 J	0.13 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Vanadium	EPA 6020	3400 ²	32	31	37	58	51	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Mercury	EPA 7471A	1.4 2	0.073	0.062	0.042	0.061	0.035	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA		
1-Methylnaphthalene	EPA 8270 SIM	6.2 2	0.77	0.047 J	0.0055 J	0.027 J	0.0029 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2-Methylnaphthalene	EPA 8270 SIM	6.1 ²	0.8	0.061 J	0.0075 J	0.021 J	0.0024 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Acenaphthene	EPA 8270 SIM	180 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Acenaphthylene	EPA 8270 SIM	180 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Anthracene	EPA 8270 SIM	3000 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzo[a]anthracene	EPA 8270 SIM	3.6 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzo[a]pyrene	EPA 8270 SIM	2.1 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzo[b]fluoranthene	EPA 8270 SIM	12 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzo[g,h,i]perylene	EPA 8270 SIM	38700 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Benzo[k]fluoranthene	EPA 8270 SIM	120 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Chrysene	EPA 8270 SIM	360 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Dibenz(a,h)anthracene	EPA 8270 SIM	4 ²	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Fluoranthene	EPA 8270 SIM	1400 2	0.065 J	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Fluorene	EPA 8270 SIM	220 2	0.25 J	0.022 J	0.0054 J	0.0078 J	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	41 2	ND (0.14)	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Naphthalene	EPA 8270 SIM	120 1	0.18 J	0.029 J	0.0033 J	0.011 J	0.0025 J	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA		
Phenanthrene	EPA 8270 SIM	3000 2	0.18 J	0.025 J	ND (0.021)	ND (0.025)	ND (0.017)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA		
Pyrene	EPA 8270 SIM	1000 ²	0.065 J	ND (0.058)	ND (0.021)	ND (0.025)	ND (0.017)	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		

Color Codes: on-Detect Result Exceeds Cleanup Level Duplicate of Previous Sample

¹ Site-specific cleanup levels established in 2009 Decision Document ² Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater (Revised October 9, 2008)

-- = No value specified AAC = Alaska Administrative Code

AK = Alaska Test Method

B = analyte was also detected in the method blank or trip blank bgs = below ground surface

DRO = diesel range organics

EPA = U.S. Environmental Protection Agency GRO = gasoline range organics

J = result is an estimated value between the detection limit and the limit of

quantitation mg/kg = milligrams per kilogram

MH = result is an estimated value with a high bias due to matrix effects ML = result is an estimated value with a low bias due to matrix effects

MN = result is an estimated value with an uncertain bias due to matrix effects

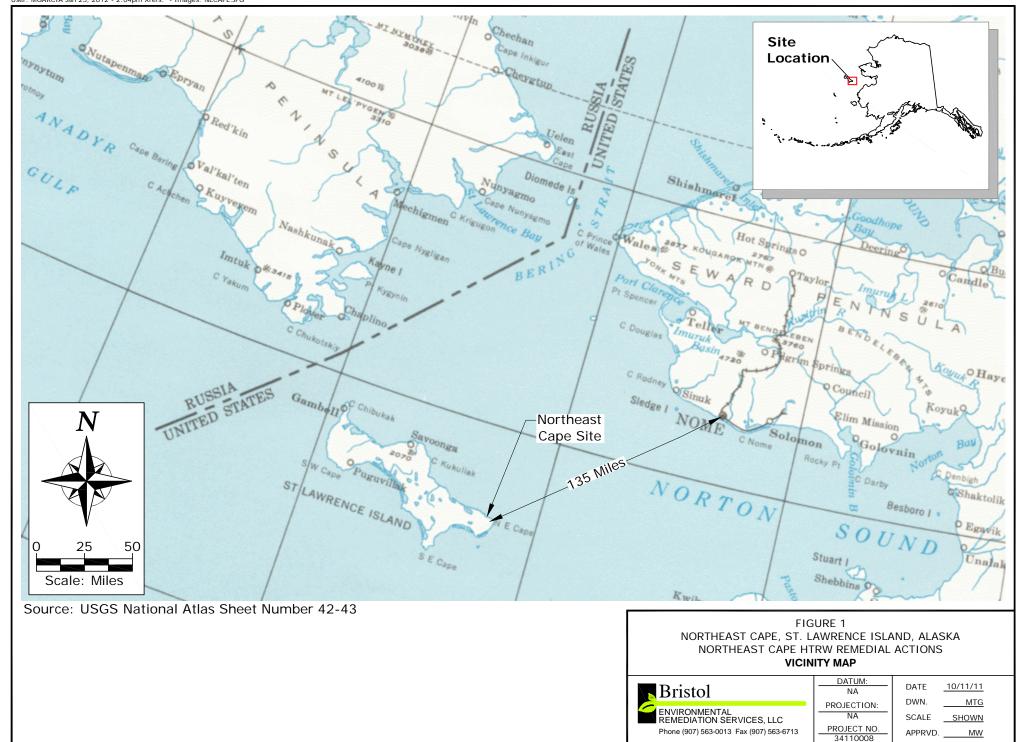
NA = not analyzed

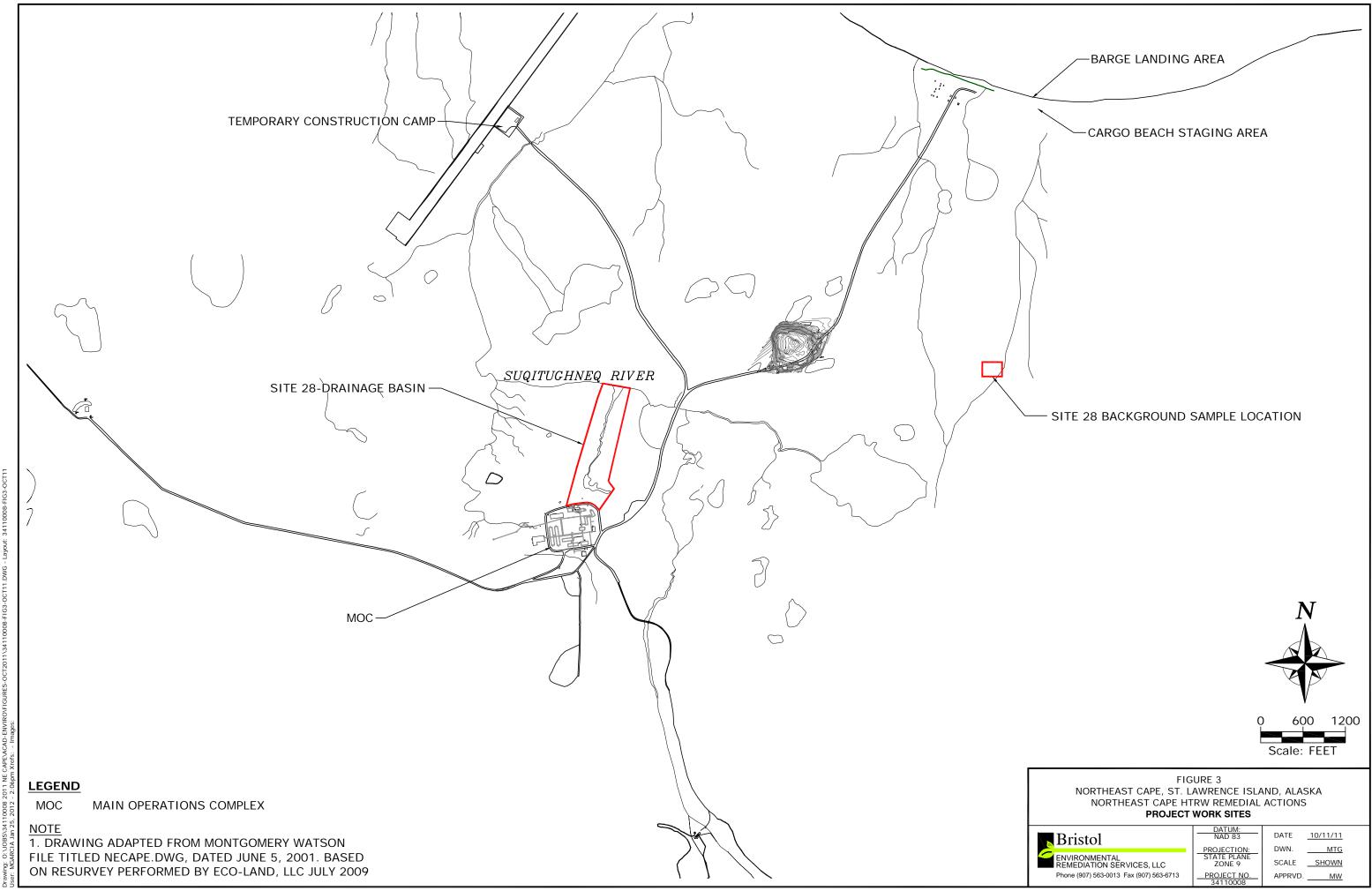
ND = not detected, limit of detection (LOD) shown in parentheses PCBs = polychlorinated biphenyls

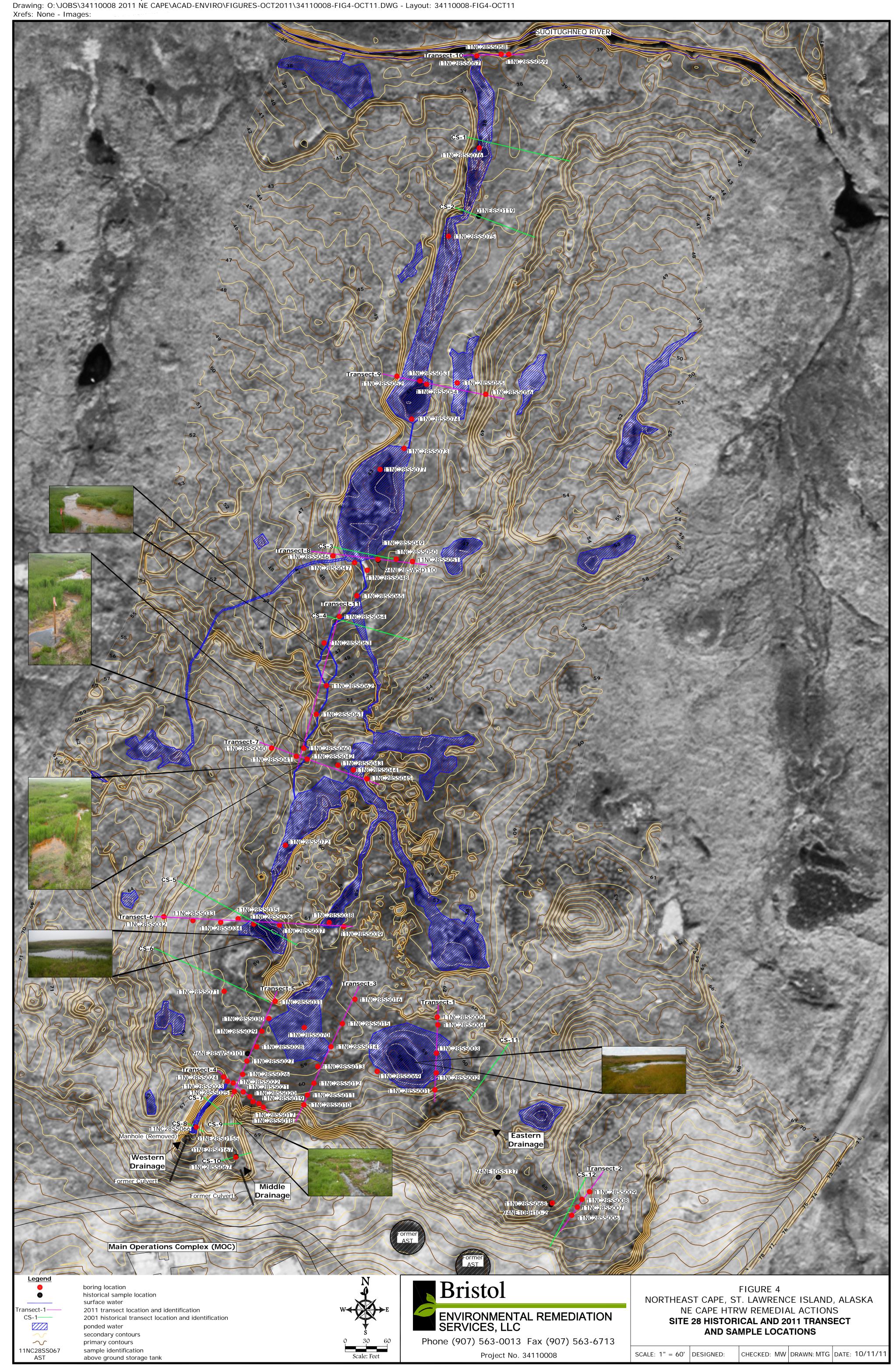
QH = result is an estimated value with a high bias due to a quality control failure

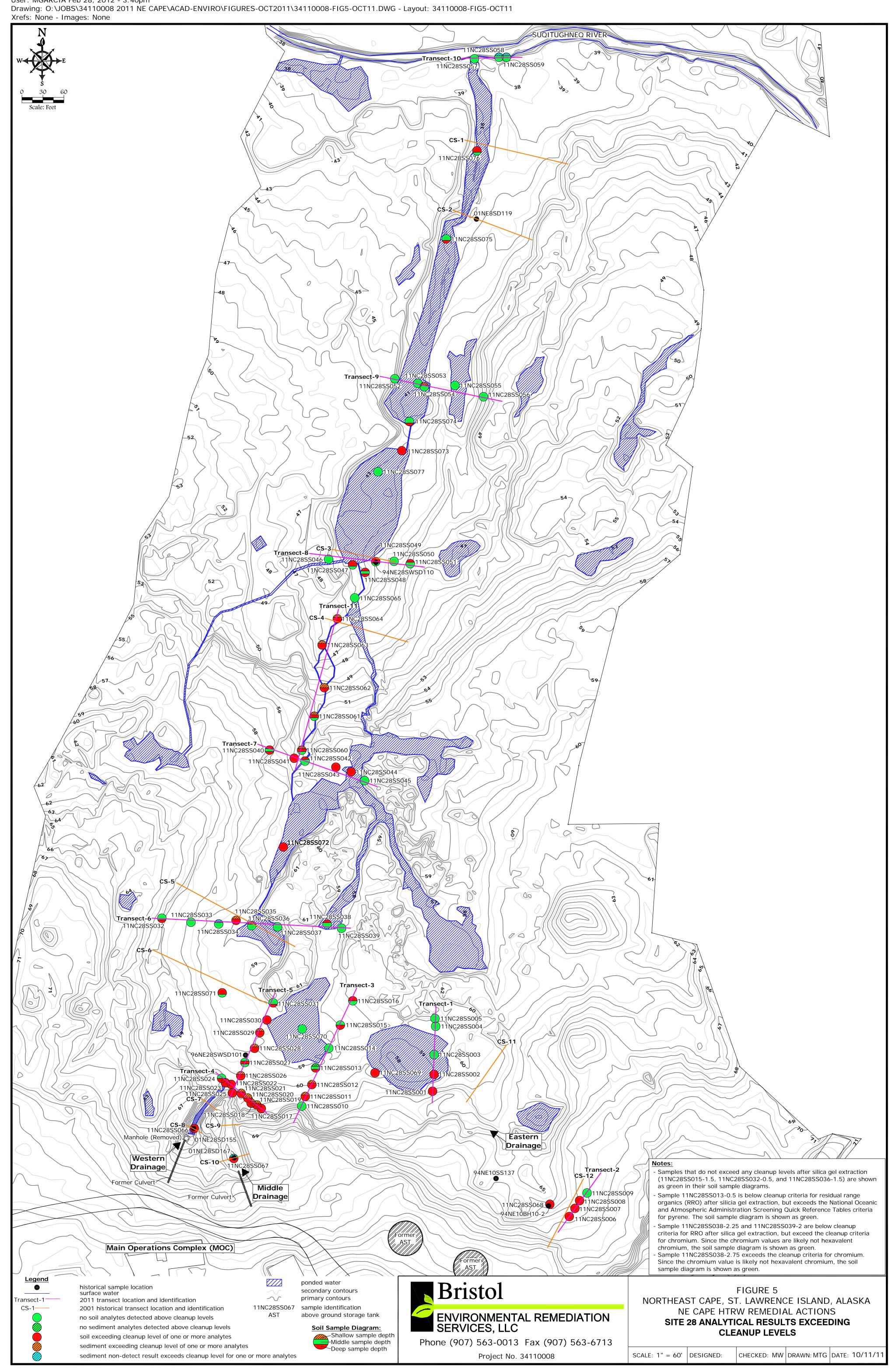
QL = result is an estimated value with a low bias due to a quality control

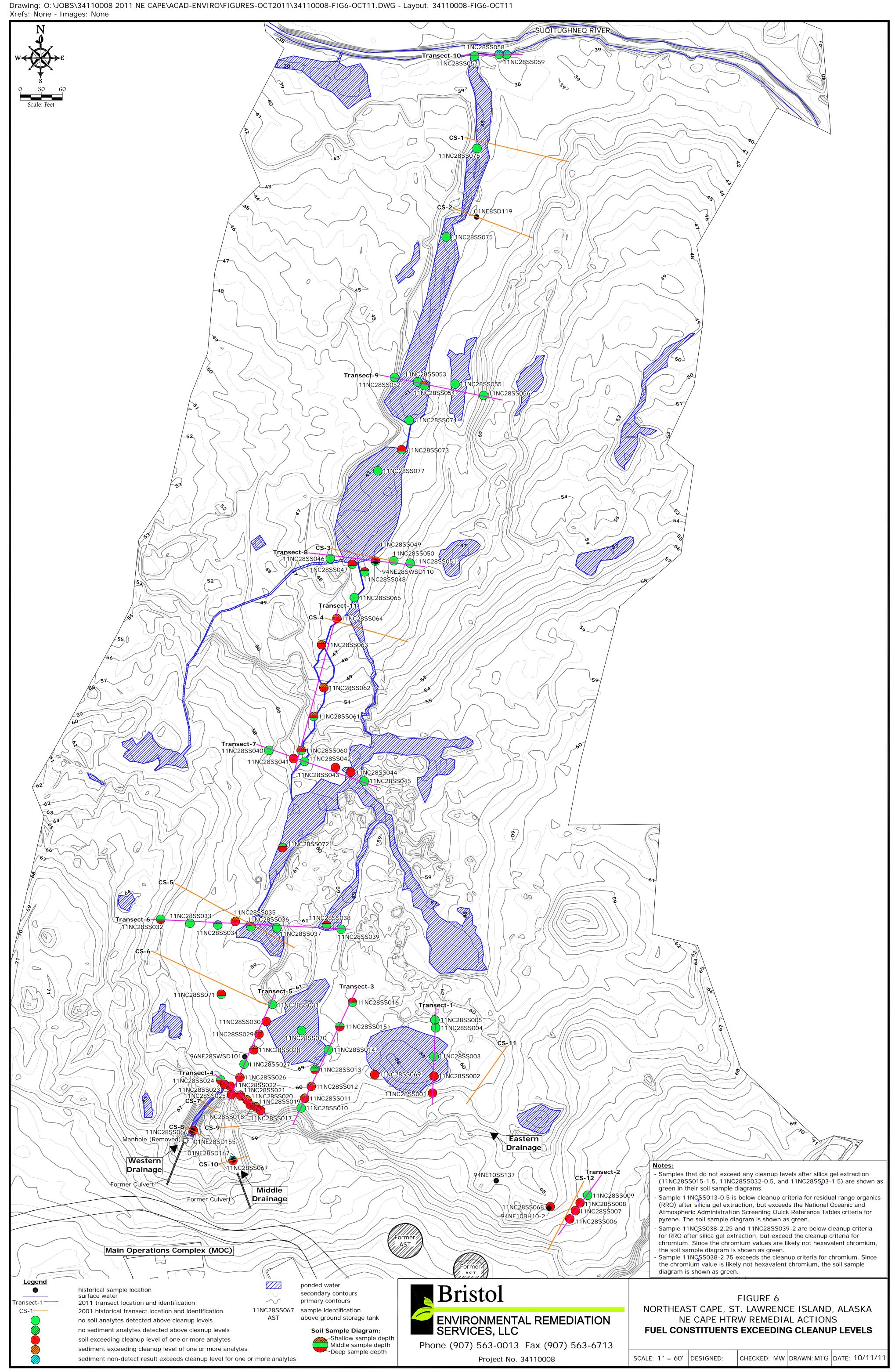
QN = result is an estimated value with an uncertain bias due to a quality control failure


RRO = residual range organics SIM = selective ion monitoring

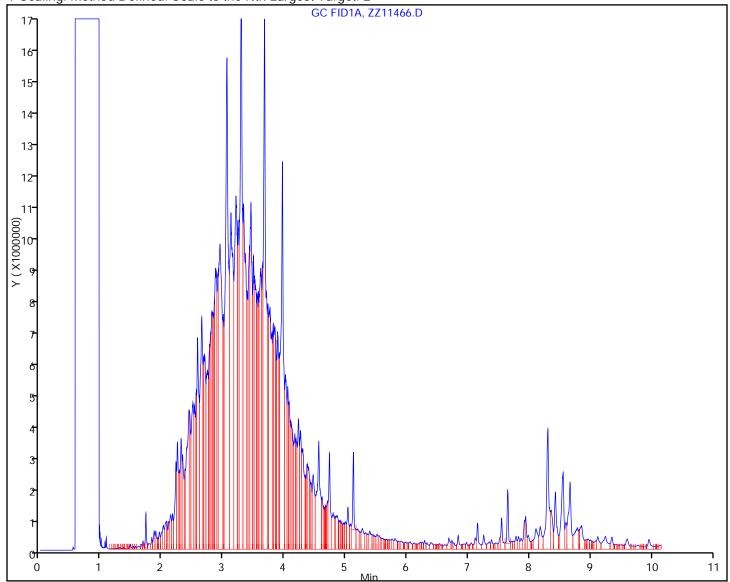

> Table 4 - Site 28 Soil Analytical Results Exceeding Cleanup Criteria




FIGURES


Figure 1	Vicinity Map
Figure 2	Location Map
Figure 3	Project Work Sites
Figure 4	Site 28 Historical and 2011 Transect and Sample Locations
Figure 5	Site 28 Analytical Results Exceeding Cleanup Levels
Figure 6	Fuel Constituents Exceeding Cleanup Levels
Figure 7	Sample 11NC28SS063-0.75 – Without Silica Gel
Figure 8	Sample 11NC28SS007-1.5 – Without Silica Gel
Figure 9	Sample 11NC28SS005-1 – Without Silica Gel
Figure 10	Sample 11NC28SS017-2 – Without Silica Gel
Figure 11	Sample 11NC28SS071-1 – Without Silica Gel
Figure 12	Background Sample Locations
Figure 13	Sample 11NC28SS079-3 – Without Silica Gel
Figure 14	Sample 11NC28SS079-3 – With Silica Gel
Figure 15	PCBs Exceeding Cleanup Levels
Figure 16	Metals Exceeding Cleanup Levels
Figure 17	Site 28 Potential Sediment Removal Areas, Estimated Volumes and Potential Road Location
Figure 18	Site 28 Potential Soil Removal Areas, Estimated Volumes, and Potential Road Location

Report Date: 12-Sep-2011 09:21:15 Chrom Revision: 1.2 13-Jul-2011 10:43:06


Data File: \\tacsvr5\ChromData\TAC017\20110909-18760.b\ZZ11466.D

Injection Date: 09-Sep-2011 17:00:02 Limit Group: Ak 102 DRO AK103 RRO

Client ID: 11NC28SS063-0.75 Instrument ID: TAC017 Lims Batch ID: 94964 Lims Sample ID: 11

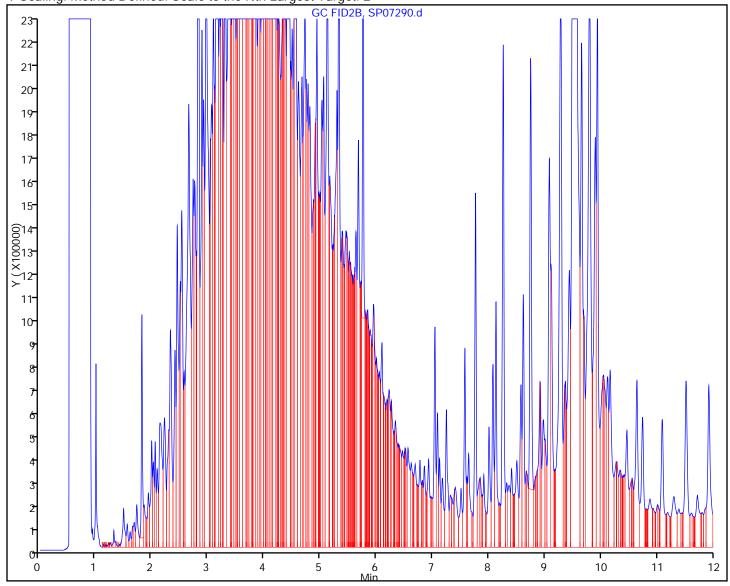
Operator ID: eks Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

DRO 58,000 mg/kg

RRO 8,700 mg/kg

TOC 450,000 mg/kg


Figure 7

Report Date: 31-Aug-2011 09:35:25 Chrom Revision: 1.2 13-Jul-2011 10:43:06

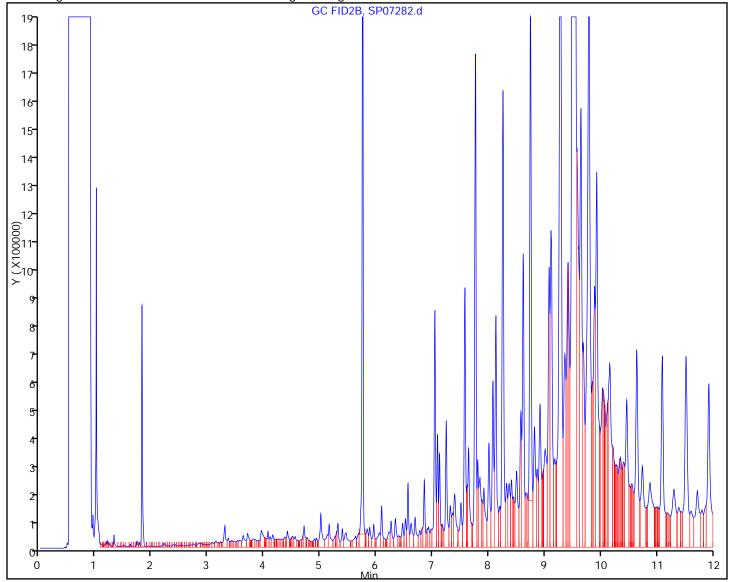
Injection Date: 31-Aug-2011 00:43:20 Limit Group: Ak 102 DRO AK103 RRO

Client ID: 11NC28SS007-1.5 Instrument ID: TAC015 Lims Batch ID: 94068 Lims Sample ID: 26 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

DRO 7,700 mg/kg

RRO 4,400 mg/kg


Figure 8

Northeast Cape, St. Lawrence Island, Alaska NE Cape HTRW Remedial Actions Sample 11NC28SS007-1.5 - Without Silica Gel Report Date: 31-Aug-2011 09:24:13 Chrom Revision: 1.2 13-Jul-2011 10:43:06

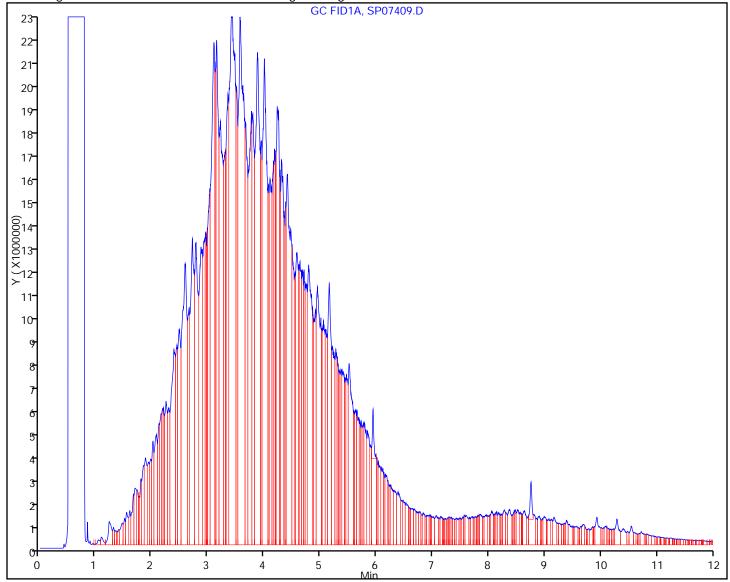
Injection Date: 30-Aug-2011 23:07:26 Limit Group: Ak 102 DRO AK103 RRO

Client ID: 11NC28SS005-1 Instrument ID: TAC015 Lims Batch ID: 94068 Lims Sample ID: 22 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

DRO 360 mg/kg

RRO 4,000 mg/kg


Figure 9

Northeast Cape, St. Lawrence Island, Alaska NE Cape HTRW Remedial Actions Sample 11NC28SS005-1 - Without Silica Gel Report Date: 01-Sep-2011 14:02:25 Chrom Revision: 1.2 13-Jul-2011 10:43:06

Injection Date: 01-Sep-2011 02:41:14 Limit Group: Ak 102 DRO AK103 RRO

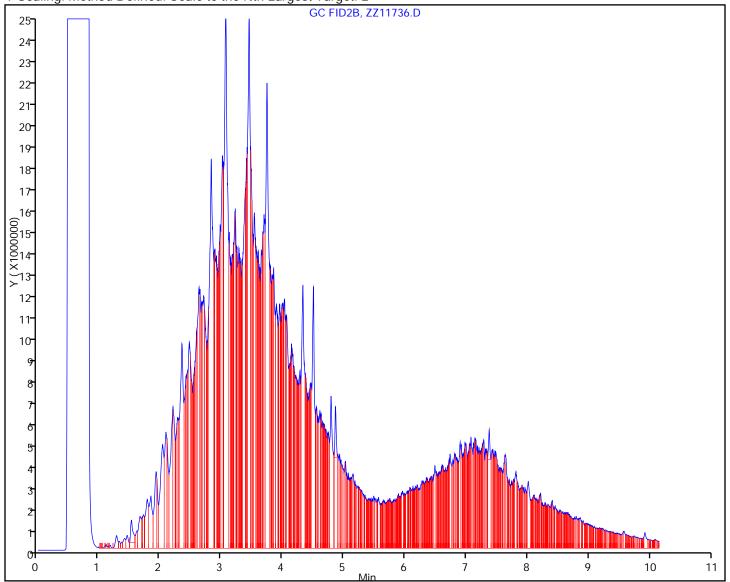
Client ID: 11NC28SS017-2 Instrument ID: TAC015 Lims Batch ID: 94186 Lims Sample ID: 38 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

DRO 23,000 mg/kg

RRO 3,200 mg/kg

Figure 10


Report Date: 15-Sep-2011 10:21:50 Chrom Revision: 1.2 13-Jul-2011 10:43:06

Data File: \\tacsvr5\ChromData\TAC017\20110914-18860.b\ZZ11736.D

Injection Date: 14-Sep-2011 22:28:11 Limit Group: Ak 102 DRO AK103 RRO

Client ID: 11NC28SS071-1 Instrument ID: TAC017 Lims Batch ID: 95330 Lims Sample ID: 24 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

DRO 26,000 mg/kg

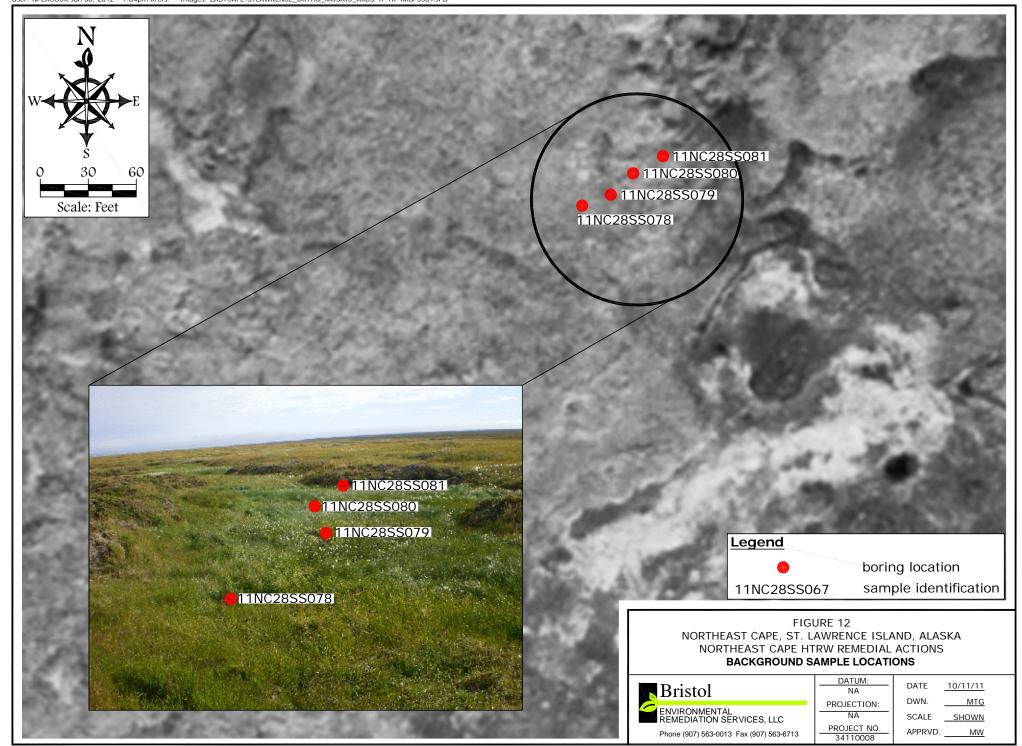
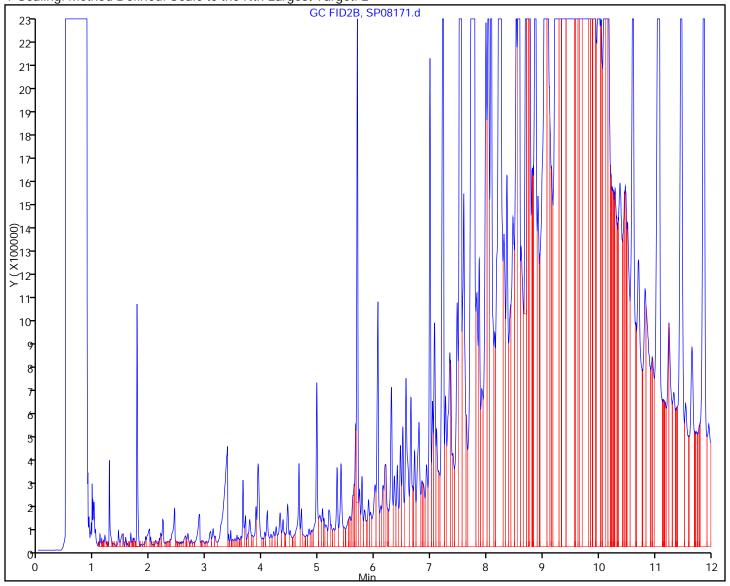

RRO 14,000 mg/kg

Figure 11

Northeast Cape, St. Lawrence Island, Alaska
NE Cape HTRW Remedial Actions

Sample 11NC28SS071-1 - Without Silica Gel


Report Date: 15-Sep-2011 10:04:30 Chrom Revision: 1.2 13-Jul-2011 10:43:06

Data File: \(\text{\tacsvr5\ChromData\TAC015\20110914-18870.b\SP08171.d}\)

Injection Date: 15-Sep-2011 04:30:04 Limit Group: Ak 102 DRO AK103 RRO

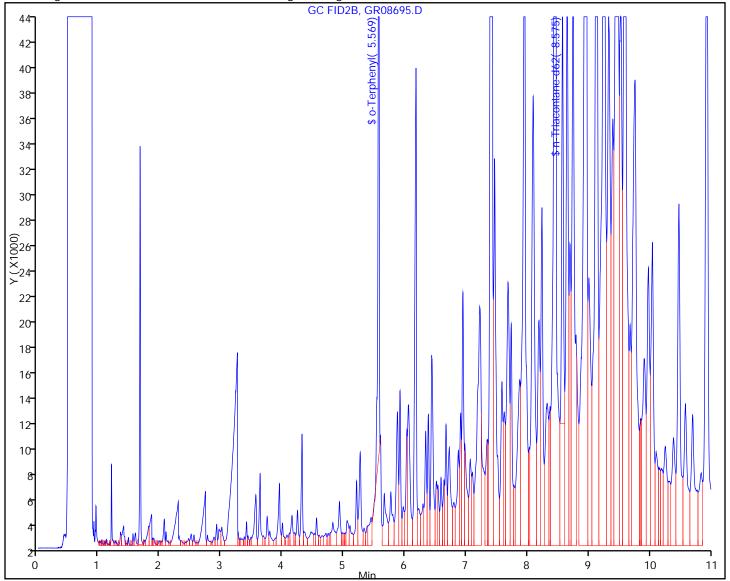
Client ID: 11NC28SS079-3 Instrument ID: TAC015 Lims Batch ID: 95375 Lims Sample ID: 31 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

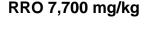
DRO 2,400 mg/kg

RRO 24,000 mg/kg

Figure 13

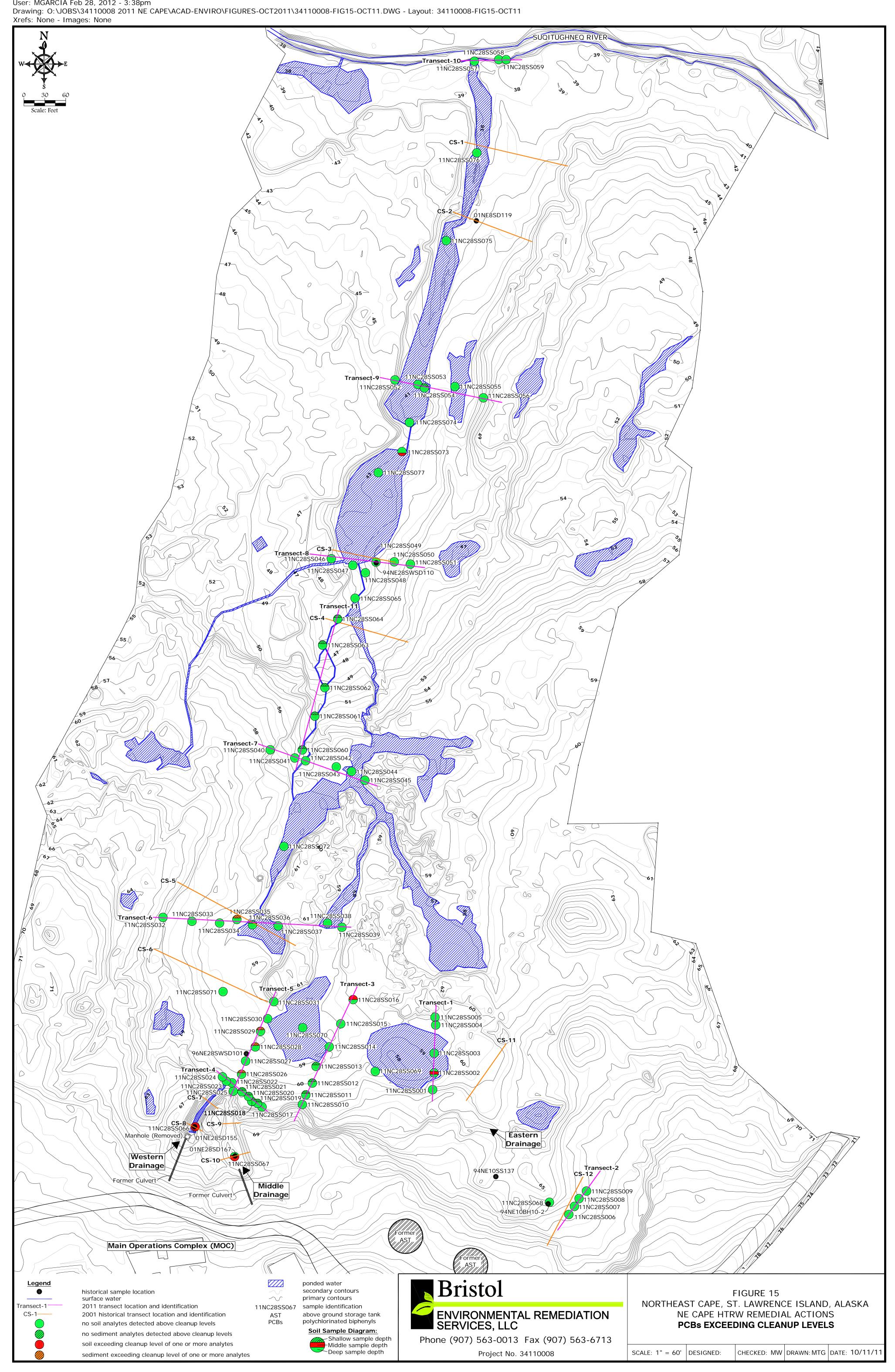

Northeast Cape, St. Lawrence Island, Alaska NE Cape HTRW Remedial Actions Sample 11NC28SS079-3 - Without Silica Gel Report Date: 15-Sep-2011 10:36:08 Chrom Revision: 1.2 13-Jul-2011 10:43:06

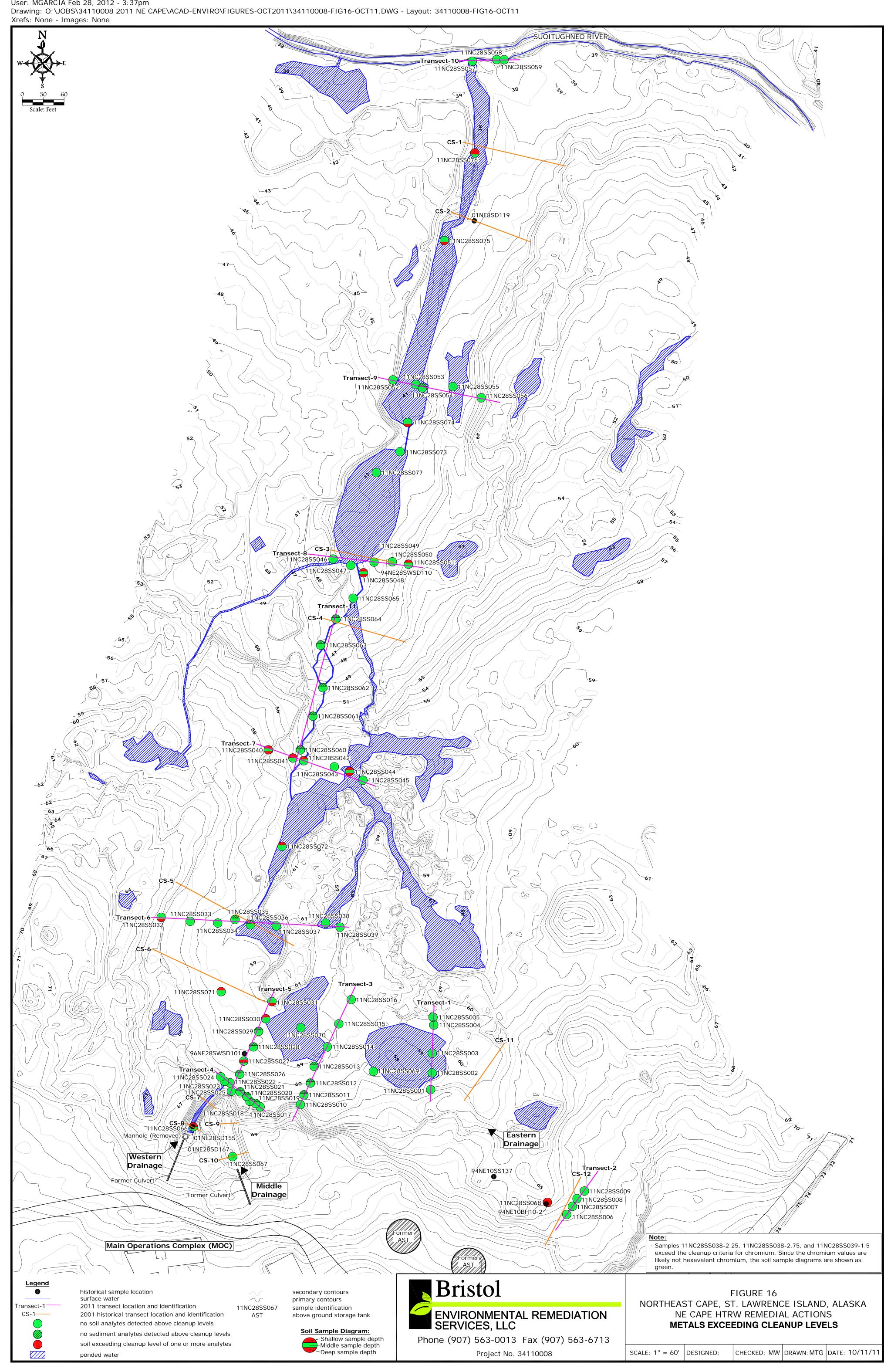
Data File: \\Tacsvr5\chromdata\TAC019\20110914-18864.b\GR08695.D


Injection Date: 15-Sep-2011 05:32:30 Limit Group: Ak 102 DRO AK103 RRO

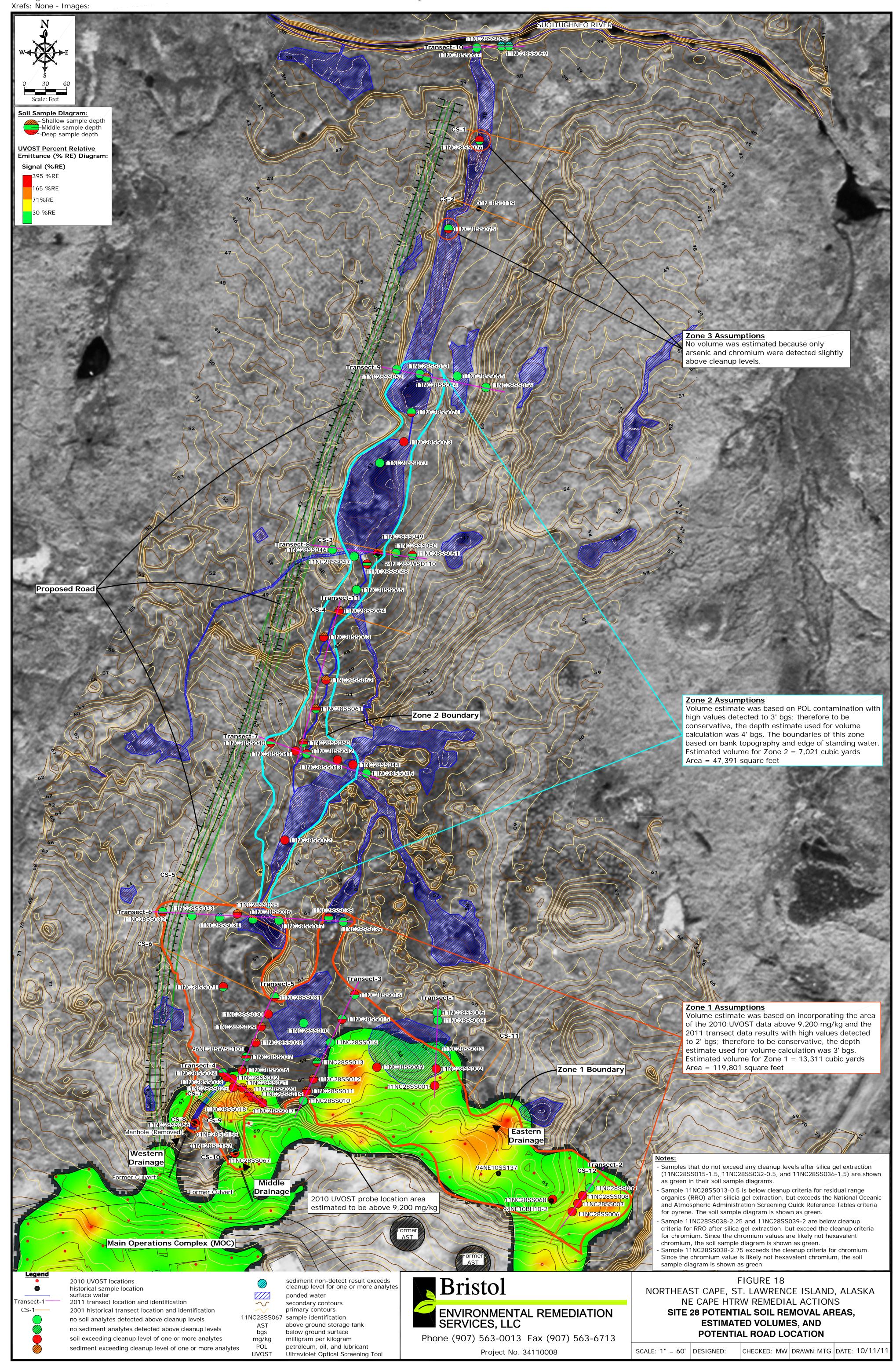
Client ID: 11NC28SS079-3 Instrument ID: **TAC019** Lims Batch ID: 95344 Lims Sample ID: 45 Operator ID: **EKK** Injection Vol: 1.00 ul Column Type: ZB-1 Column Dia: 0.25 mm

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2




DRO 1,500 mg/kg





Northeast Cape, St. Lawrence Island, Alaska NE Cape HTRW Remedial Actions Sample 11NC28SS079-3 - With Silica Gel

APPENDIX A

Photograph Log

PHOTOGRAPH LOG NORTHEAST CAPE SITE 28, 2011

DATE	IMAGE NUMBER/NAME	LOCATION	DESCRIPTION OF PHOTOGRAPH	VIEW DIRECTION	PHOTOGRAPHER/COMMENTS				
7/17/11	Photograph #1.JPG	Site 28	Typical marshy/pooled water area and dry bank in site 28	Northeast	Russell James				
8/18/11	Photograph #2.JPG	Site 28	Overview of site 28 from Suqui River toward MOC	South	Julie Clark				
8/14/11	Photograph #3.JPG	Site 28	Local hire Charles Kava obtaining sample material with a hand auger	South	Julie Clark				
8/16/11	Photograph #4.JPG	Site 28	Measuring the depth interval at a sample location	Northeast	Eric Barnhill				
8/18/11	Photograph #5.JPG	Site 28	Collecting a sediment sample where Site 28 drains into the Suqui River	East	Eric Barnhill				
8/13/11	Photograph #6.JPG	Site 28	Typical peaty /silty material	NA	Julie Clark				
8/16/11	Photograph #7.JPG	Site 28	Gray silty material beneath vegetative mat at sample location 11NC28SS033	NA	Julie Clark				
8/15/11	Photograph #8.JPG	Site 28	Placing sample into sample container	NA	Julie Clark				

PHOTOGRAPH LOG NORTHEAST CAPE SITE 28, 2011

DATE	IMAGE NUMBER/NAME	LOCATION	DESCRIPTION OF PHOTOGRAPH	VIEW DIRECTION	PHOTOGRAPHER/COMMENTS
8/15/11	Photograph #9.JPG	Site 28	Sample locations along a transect marked with lath	West	Julie Clark
8/13/11	Photograph #10.JPG	Site 28	Sample location in area of standing water	NA	Julie Clark
8/21/11	Photograph #11.JPG	Site 28 Background Area	Site 28 background sampling area	Northeast	Eric Barnhill
8/21/11	Photograph #12.JPG	Site 28	Collecting Site 28 background sample	South	Eric Barnhill

Photograph 1: Typical marshy/pooled water area with dry bank in Site 28.

Direction: Northeast.

Date: July 17, 2011.

Photograph 2: Overview of Site 28 from Suqi River toward MOC.

Direction: South.

Date: August 18, 2011.

October 2011 1 Revision 0

Photograph 3: Local hire Charles Kava obtaining sample material with a hand auger. Direction: South.

Date: August 14, 2011.

Photograph 4: Measuring the depth interval at a sample location.

Direction: Northeast.

Date: August 16, 2011.

Photograph 5: Collecting a sediment sample where Site 28 drains into the Suqi River. Direction: East.

Date: August 18, 2011.

Photograph 6: Typical peaty/silty sample material. Direction: N/A.

Date: August 13, 2011.

Photograph 7: Gray silty material beneath vegetative mat at sample location 11NC28SS033. Direction: N/A.

Date: August 16, 2011.

Photograph 8: Placing Site 28 sample into sample container.

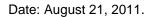
Direction: N/A.

Date: August 15, 2011.

Photograph 9: Sample locations along a transect marked with lath.

Direction: West.

Date: August 15, 2011.


Photograph 10: Sample location in area of standing water.

Direction: N/A.

Date: August 13, 2011.

Photograph 11: Site 28 background sampling area. Direction: Northeast.

Photograph 12: Collecting Site 28 background sample.

Direction: South. Date: August 21, 2011.

APPENDIX B

Field Notes

Name Julio Clark
Bristol Environmenta
Address III W. 16th Ave.
Address Address Afr. 99501
Anchorage AL 99501
Phone 907-563-0013
Project DOU NE Capo
Proj # 34110008
1100.11

Clear Vinyl Protective Slipcovers (Item No. 30) are available for this style of notebook. Helps protect your notebook from wear & tear. Contact your dealer or the J. L. Darling Corporation.

Ĺ

8/13/11	NE Cape-2011	34110008
or & Dala Saf	Petry meeting.	a
0705 Daily en 0725 Get same	vironmental meetin ple jars/equipment	t really for
5(16) 24	Campling.	L
0840 Meeting	w Jareny Cr	and (D. J.)
1 13000 1 2	and Ribbert Ja	
CQCSM)	about Site 28	50mplue 3
USACE	wants "clean" Sa	imples on the sampling
eather e	nd, and profere	of where
in the	middle of transe	to be
Centina	ination is likely	equipment
traction	getting supplies	
iozo Lettina	up at 1st to	ransect
on Hast	torn 5146 or 711	0 90.
1120 Refusal	a 11 bas at 181	Sample Politi
on trans	Sect # 1. Will alba	MICHON INC. S POLICE
for now), talk to Russel 3	James at lunch
to see	what to do	
1145 Trying to	a collect 2nd same	ple from 181
transed	in standing water	Lik be seed at
bringing	up sample. Will	1 de 25
lunch to	o see if he has a	
1300 Lunch	1.1.6	· · ·
	JC 8/13/11	

ĺ

8/13/11 NE Cape 2011 34110008 NE Cape 2011 8/14/11 B411 0008 : 0655 Daily safety meeting.
0705 Daily environmental meeting. Eric 1300 Back out at site 28 w/ Russell. He shows tips on how to loring up sediment bamples. Bamhill w/11 help at site 28 today. 1330 Sampling and point on 1st transact, 0715 Get supplies (equipment together for see field forms for info orso out at site 28, prepare to continue 1350 Will continue sampling along 1st transect, see field forms for details campling Transact 2. sas ficial Pons 1530 J. Craner (USACE QAR) at Site 28 to For sample information. Weather slight cheek things out. He & Russell discuss activities so far. rain, calm, ~ 40° F. 1550 Finished w/ 1st transact. Samples various. 0755 Finished It Transact 2, 4 locations transact. depths at 5. points along transact, see 1015 Setting up at Transact 3. Jareny field forms for details. Craner (USACE) on site 1600 Put samples in fridge. 1200 Lunch. 1630 Setting up at 2nd transact, further east 1370 Back out at site 28, Will continue of transect I, eastern-most transect. Exampling along transact 3. See field 1810 Have done 2 points along Transact 2. forms for sample details. Head back to camp to put samples in 1645 Finished W/ Transect 3. 7 points along refrigerator and do Cocs. the transact, with samples collected at Various depths at each point 1705 Back at camp for sample management COCs.

8/15/11 NE Cape-2011 34110008 8/15/11 NE Cape -2011 0655 Daily safety meeting. 34110008 Photolog Por 8/13/11, 8/14/11, 8/15/11. 0705 Daily environmental meeting Incosited: Augaring for sample in Transact 0730 Preparing sample coders For shipment. 1115 Have sample coolers ready to go Out at 3466: Peaty Scill From 1' logs in Transact Site 28 to continue sampling. Begin transect 1, position (3467: Augering in Transect 3, lathe 1200 Lunch. Marking other Transact 3 locations 1245 Quick meeting w/ Russell and Jeveny in background, view 5. Cramer about sample locations at Site 3468: Augering in Transact 3, view W. 28. Joverny has been corresponding 3469 Sample hole infiltrated w/ water. with Aavon Snewman and Cavey Cossaboom, 3470 Transect 3 looking NE. letting than know what has been going 3471: Standing water in Site 28 drainage on. Just reiterating that samples need to be skewed to be collected in 3472: Collading soil sample in Transet 4, sediment areas where contamination is likely to be. 1320 Back out at Site 28, continue sampling along Transport 4. 1640 Finished Sampling along Transact 4-8 sample locations along the transect, with samples collected at various depths at eachof the 8 points 1645 Start sampling Transact 5. 1720 Have sampled I point at Transect 5; leave site for dinner

8/16/11 NE Cape- 2011 0700 Daily safety meeting 34110008 0705 Daily environmental meeting. 07020 Prepare supplies/equipment for today's sampling. 0830 Out at Site 28, Prepare to continue sampling along Transect 5. Weather: overcast, calm, ~ 45°F 1140 Finished with Transect 5. Seven points along transact, Will head back to camp to put samples in refrigerator and get more sample containers. 1200 Lunch 1330 Setting up to begin Transact 6. See field Forms for sample information. 1600 Russell James, Matt Faust (Bristol), and Jaremy Craner (USACE) at Site 28. Walk remaining transects and decide where we could put romaining sample locations, Con roduce some transacts: 6 locations on T8, 5-6 locations on T9, remove T10, Collect samples at 3 spots right next to Sugi River, and add a transact in the stream stream transact will begin Just north of T8. ~ JC 8/16/11

8/16/11

NE Cape -2011

34/110008

1705, Finished walking / looking over remaining transects w/ Russell, Matt, & Jevery

1720 Finished for today; still several locations to go in Transect 6. Will Eat dinner and work on Cocs.

Charles Control

1

0700 Daily sixety meeting Byl10008 0705 Daily environmental meeting 0730 Prepare Samples from 8/15/11 and 8/16/11 For Shipment - Should lave a	Photolog for 8/16/11 & 8/17/11 (cont.) 3477: Gray silty material like correspond
Pepare Samples Ch. Olygu	
repaire samples than Quelling	2017 (cont.)
Par (1)	3477: Gray silty material like cornstarch in
	1 100 Sec 6 41 NC 20 Ce 22
000 Total of 4 coolers to ship.	3479:
ou at Ste 28 Costs of	34802 4
Weather: overcast, light wind from NE, ~ 400F.	3492: Getting sample material from auger
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
oc when,	3493 = Augering at eaplern side of Transect 7
15 Back out at Site 28 to continue sampling	(11NC28 SSOUS), View NW.
Tanget Control of the	
	3495: Colleting soil sample.
at various depths.	0 3011 3011/16
O Setting up to boais to	
Cancet - L	
Transect, with samples collected at various	
depths at each point.	Xeo.
Begin Transact & C.	
Begin Transect 8. 500 field forms for details.	7, 9
11.21 in incomons on iransect &	
tology for study of all 11.	
to log for sluff & 8/1/11: 23473: Soil collected from Transact 5 - clayey silt. 3474: Proparing to auger, Transact 5 Vie 1 NT	
2474 Pomos in Collected From Transact 5 - Chapay silt.	
2474: Preparing to auger, Transect 5 - Claydy silt. 2476: Measuring depth of auger hole, Transect 5. View NE.	
View NE.	

13

14	15
8/20/11 NE Cape-2011 34110008	8/20/11 NE Cape 2011 34110008
0700 Daily safety meeting.	8/18/11 photolog (cont.)
0705 Daily onviro mosting	3498: At transact 10, Sup River, Views
0800 At Site 28 W/ Matt Faust (Bristol Cacsn)	3500: 11, looking 5 to gite 31.
and Jevery Craner (USACE QAR) to Stake	3501: Sampling Transact 10, location 1, view E.
out remaining site 28 sample locations.	3502:
0850 Have selected 9 discrete sample locations.	3503
in site 28 to use up romaining	3504 : 11
ab samples.	
6905 Set up to start collecting discrete samples.	
Will start w discrete sample # of (because	
sampled 3 discrete historic hotspols	
yesterday), see field forms for details.	
0940 could not sample discrete point #4 in	
pond because of thick vegetative mat ovarlying	
rocks - Sampled as close as possible	
1140 Have collected 3 discrete sample points this	1 2
morning - head back to camp for lunch.	
1315 At site 28 to continue discrete sampling.	
Geo Field Forms For details.	
1745 Done Sampling for today. Head back to	
camp for dinner.	
Photolog Catchip - photos for 8/20/11:	
IMGP3496. At Transact 10 on Sugi River, View W	
3497; 1) , looking 153	
to Moc.	

4/24 (II NE Cape - 2011 34110008 0655 Daily Safety Meeting 0700 Daily environmental moeting. 0720 Get supplies together for Site 28 sampling 0836 At site 28 to continue and hopefully finish discrete sampling. 1000 Finished collecting Site 28 samples. Will make on to background samples. 7045 At background sample area. Will collect 4 samples samples at 4 locations, with three different depths lois, 1', 15) at each location. Samples will be analyzed for Dro/RRO, DRO/RRO silica gel, and TOC only 1230 Finished w/ background sampling. Head back to camp for lunch. 1345 Back out to background sampling location to mark sample points with lath, also show Jamie Allan (surviyor) where spot is so he can survey the sample locations at a later date. 1500 Back to camp - work on COCS while Eric Barnhill (Bristal) prepares samples for shipment tomorrow.

8/21/11 NE Cape-2011 34110008 Photolog for 8/21/11: 3505: Collecting Site 28 background samples, View 35065 , new N 3507= , VIEW E 3508 , rian E 3509: Site 28 background Sample area, view E 3510: , view SE 3511: Cellecting site 28 background samples, view S. 3512 Site 28 background sample area, view 65E 3513: Collecting site 28 background samples, view ssw 3514 % , viau E

0655 Daily solety meeting.	34110008	
Obss Daily soletus meeting. 0700 Daily enviro meeting. 0720 Pack coolers, will ship site 25 out today. 1400 On flight to Nome on Berine Site 28 sample coolers also flight and will be Goldstruto Test America Scattle.	Samples	

	Transect #:	Position:	:
	Sample ID: 11 NC 28 35001 - 65	Depth: 0.5 '	, Ĉ.
81110 @ 1110	Sample Description: Feat w/ Some silt, w (material type, moisture content,	noist, brown loose	
	vegetative mat present? \(\bigve{N} / N \)	Standing water? Y/N	
	Sampling tool: T-handle auger T-handle slu	udge sampler Sludge sampler w/ slide hammer	
* a	Photo info/comments: Proto 3465.	oùl.	
And the second			
. —	Transect #:	Position:	
Etá a	Sample ID: 11 NC 28 3500 (- 16)	Depth:	
© (130 P(13(1)	Sample Description: Peat w/ silt, mois (material type, moisture content,	t brown, mod loose	te ¹
	color, general density, etc.)		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vegetative mat present? (3/N	Standing water? Y/N)	
	Sampling tool: Thandle auger T-handle slu	ludge sampler W/ slide hammer	
	Photo info/comments: Photo 3466, 501	1. Glight fixel oder	6.6
	* 2 vials Mealt		•
	Transect #:	Position: 2	
	Sample ID: <u> UNC 2855002 - 2</u>	Depth: 2'	
6 13/11	Sample Description: Organic 511 unt (material type, moisture content, color, general density, etc.)	dark brown derre mod fuel	er er
500	Vegetative mat present? (Y)N	Standing water? (Ŷ)/N	
		ludge sampler w/slide hammer ce collected at ~2' bas - vegetative	: }
	mat 0-2 bgs. Sectiment samp		. %
\	V		

	Transect #: Position: 2
	Sample ID: 11NO 285650 3 - 2.5 Depth: 2.5
3/13/11	Sample Description: Organic Silt, Wot, dark brown, fairly donse, mod. (material type, moisture content, color, general density, etc.) It out
	Vegetative mat present? $(Y)/N$ Standing water? $(Y)/N$
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sample collected ~2.5' Egs (vegetative mat C-2')
	Transect #:Position:
	Sample ID: 11 NC28\$\$002-3 Depth: 3'
8/13/11 @1346	Sample Description: Organic SIIt, brown Mydyny, fairly dense, prossible (material type, moisture content, color, general density, etc.) Slight fuel odor
(12 / 13	Vegetative mat present? (Y)N Standing water? (Y)N
	Sampling tool: Thandle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment
	Transect #: Position: 3
اداما	Sample ID: 11 NC2855003 - 2.5 Depth: 2.5
(1/21) 1410	Sample Description: Organic silt, brown & gray, fairly dense, possible (material type, moisture content, color, general density, etc.) Slight fuel odor
	Vegetative mat present? $\bigcirc N$ Standing water? $\bigcirc N$
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gadiment. Vegetafive mat 0-2.5'.

Transect #:	Position:
Sample ID: 3 NC28 SS 003 - 3	Depth: 3
Sample Description: 5Hy Clay work-u (material type, moisture content, color, general density, etc.)	net, gray slight fuel oder? don
Vegetative mat present? (Y)/N	Standing water? N
Sampling tool: T-handle auger T-handle s	sludge sampler w/ slide hammer
Photo info/comments: Sediment, refusit	-3.50
(2nd depth 6 003)	
	y
Transect #:	Position: 3
Sample ID: 11 NC3 YSS 003 - 35	Depth:
Sample Description: Silty clay , wet, of (material type, moisture content, color, general density, etc.)	grayish brown, dense
Vegetative mat present? N	Standing water? (Y)N
Sampling tool: T-handle auger T-handle	sludge sampler Sludge sampler w/ slide hamme
Photo info/comments: 56diment	
(3rd depth @ point 0	<u>c3)</u>
Transect #:	Position: 4
Transect #:	Position: 4 Depth: 25'
Sample ID: (INCOSSOOU - 2 5	- i
Sample ID: (INCORSSORY - 2 5 Sample Description: Organic Sitt, wet, I (material type, moisture content,	Depth: 25'
Sample ID: (INCORSSORY - 2 5 Sample Description: Organic Sitt, wet, (material type, moisture content, color, general density, etc.)	Depth: 25'
Sample ID: (INCORSSORY - 2.5 Sample Description: Organic 5it, wet, 1 (material type, moisture content, color, general density, etc.) Vegetative mat present? (I/N)	Depth: 25' brown, moderately dense Standing water? DN
Sample ID: (INCORSSORY - 2 5 Sample Description: Organic Sitt, wet, 1 (material type, moisture content, color, general density, etc.) Vegetative mat present? (I/N) Sampling tool: T-handle auger T-handle	Depth: 25'

Transect #: Position: 5
Sample ID: 1 1 1 2 2 5 5 5 5 5 5 5 Depth: 6 5
Sample Description: Peat w/ Silty sai, moist, brown, mod danse, no odor (material type, moisture content, color, general density, etc.)
Vegetative mat present? (Y)/N Standing water? Y/I
Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: 501 matrix.
1st cepth at point 005
Transect #: Position:
Sample ID: 11 NC 2955 005-1 Depth: \(\sqrt{'} \)
Sample Description: Pest w/ 41t, moist, brown, dense, no oder,
(material type, moisture content, color, general density, etc.) 501 15. Cold - permafrost.
Vegetative mat present? (YN Standing water? (N)
Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Sal matrix
2nd depth at point 005
Refusal @ ~ 1'2" -> permafrost
1
Transect #: 2 Position:
Sample ID: 11 N C 28 S S 006 - 0 S Depth: 0.5'
Sample Description: Pear w/ silty soil, moist, brown, mod. dense, moderate
(material type, moisture content, color, general density, etc.) Fuel code/
Vegetative mat present? (1/N pretty) the Standing water? Y(N)
Sampling tool: A handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
 Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 501 matrix. (St depth at point 006

	Transect #:	Position:
8/13/11 1705	Sample ID: (NC3855 006 - 1	Depth:
	_	ilty soil, moist, brewn, mod.
	Vegetative mat present? (Ŷ) N	Standing water? Y/N
	Sampling tool: (I-handle auger) T-handle sluc	lge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil matrix. Refu	sol e ~ 1.25' - rock;
	2nd depth at point o	06
* .	DUPLICATE: 11NC 2855006-2	
	Transect #:	Position: 2
1.41	Sample ID: 11 Nc 28\$5007 - 1.5	Depth: 1.5 / log S
\$113 "	Sample Description: Peat w/ 51/ty 501	, moist, brown, med. dense,
1735	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present? N	Standing water? YN
		dge sampler w/ slide hammer
	Photo info/comments: Soil matrix Voget	ative mat 0-1-15', so first depth
9190	to sample was 1.5' bgs.	
•	Transect #:	Position: 3
41. db	Sample ID: 11 NC 28SS OOR -0.5	Depth: 0.5
G141 11 0900	Sample Description: teat w/sity = oil (material type, moisture content, color, general density, etc.)	, moist brown mech don't
	Vegetative mat present? (Y/N	Standing water? YN
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil matrix,	og sample or Meat container
	1 1000	008

		3
	Transect #:	Position:
	Sample ID: 11 102855008-1/	Depth:
5(14/11	Sample Description: Peat w Silty 601, moist (material type, moisture content, color, general density, etc.)	, brown, med dense, no oder
9920	Vegetative mat present? (N	Standing water? Y (N)
	Sampling tool: T-handle auger T-handle sludge	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gal matrix, Refusal	at 1'bgs-rock: 20 g material
	for Mooll samples. X NS/MSD	- triple volume of sample
	Transect #:	Position: 4
	Sample ID: 11 NC2855009 - 0.5	Depth: 05'
B/14/11	7	sand, moist, brown, med dense,
0935	(material type, moisture content, color, general density, etc.) NO Odor	
	Vegetative mat present? ()/N	Standing water? YN
	Sampling tool: T-handle auger T-handle sludger	ge sampler W/ slide hammer
	Photo info/comments: Goil matrix 30 g	material for Meoth Sample:
	1st depth at point	009
		. 1
•	Transect #:	Position: 4
	Sample ID: 11 Nc29 \$5009 - 1	Depth:
ح (نغل ال	Sample Description: Sultry Soul w/ peat, moist (material type, moisture content, color, general density, etc.)	, brown med dense, no oder
0950	Vegetative mat present? \(\frac{\frac{1}{2}}{N} \)	Standing water? Y(N)
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil Matrix, 20 9	material for Mooth sample.
	Refusal at 1'bgs-ve	ck. 2nd depth at point 009

Transect #: Position:
Sample ID: 11 NC23550(0-0-5 Depth: 0.5
Sample ID: 11 September 10.5 Depth: 0.5 Sample Description: Fill - grandly gand, Moist, brown, loose, no odo: (material type, moisture content, color, general density, etc.)
Vegetative mat present? (Y) N Way Hun Standing water? Y(N)
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hamme
Photo info/comments: Sal matrix. 1st depth at point 010.
Transect #: 5 Position:
Sample ID: 11NC28SSO10-1 Depth: 1' Sample Description: Silty clay, moist, mottled brown & gray, med. dense, no
(material type, moisture content, color, general density, etc.)
Vegetative mat present? Y/N & above thin Standing water? Y/N
Vegetative mat present? Y/N & Above the Standing water? Y/N Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hamm
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hamm
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hamm
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hamm
Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/slide hammed Photo info/comments: Soil matrix. 2nd clepth at Point 810. Transect #: 3 Position:
Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammed Photo info/comments: Soil matrix. 2 nd clepth at point 010. Transect #: 3 Position: 1 Sample ID: 11NC26SSC10 - 1.5 Depth: 1.5
Sampling tool: (I-handle auger) T-handle sludge sampler Sludge sampler w/slide hamm Photo info/comments: Soil matrix. 2 nd clepth at point 010. Transect #: 3 Position: Sample ID: 11NC28SSC10 - 1.5 Depth: 1.5 Sample Description: Sitty clay, pretty dry (crombly), mothed brown & gray, Mrd.
Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammed Photo info/comments: Soil matrix. 2 nd clepth at point 010. Transect #: 3 Position: 1 Sample ID: 11NC26SSC10 - 1.5 Depth: 1.5
Sampling tool: (T-handle auger) T-handle sludge sampler Sludge sampler w/slide hamm Photo info/comments: Soil matrix. 2 nd clepth at point 010. Transect #: 3 Position: Sample ID: 11NC28SSC10 - 1.5 Depth: 1.5 Sample Description: Sitty clay, pretty dry (crumbly), mothed brown & gry, Med.
Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammed Photo info/comments: Soil matrix. 2 nd clepth at point 010. Transect #: 3 Position: 1 Sample ID: 11NC26 SSC10 - 1.5 Depth: 1.5 Sample Description: Sitty clay, pretty dry (crembly), mothed brown e.gay, Mrd. (material type, moisture content, color, general density, etc.) Sight - moderate fivel adar

Transect #:	Position: 2
Sample ID: NC 7855 01 - 0.5	Depth: 0.5
Sample Description: 50/50 5110 w/ 4 cace gra	Depth: 0.5 (50%) and Esand, & seat (50%), maist, brown (
color, general density, etc.) W orching any mothers	(silty clay), med. dense, slight-med. Fue
Vegetative mat present? (Y/N picty thin	Standing water? Y/N
Sampling tool: T-handle auger T-handle sh	udge sampler w/ slide hammer
Photo info/comments: Galiment Matrix.	1st depth at point OII
	· · · · · · · · · · · · · · · · · · ·
	_
Transect #:	Position: 2
Sample ID: NC78SSO -	Depth: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Sample Description: Ganc Sity clay, mois (material type, moisture content, color, general density, etc.)	st, brown, moderately dense, fuel
Vegetative mat present? Y/N	Standing water? YN but it, o infiltrating in
Sampling tool: T-handle auger T-handle sl	udge sampler w/ slide hammer
Photo info/comments: Sediment matrix.	•
* DUPLICATE INC28	SS011-2 @ 1130
	· · · · · · · · · · · · · · · · · · ·
Transect #:3	Position:
Transect #: 3 Sample ID: 11NC 2855011-1.5	Position: 2 Depth: 1.5
Sample ID: 11NC 2655011-1.5 Sample Description: Ovganic silty clay Incis (material type, moisture content,	i . r
Sample ID: 11NC 2855011-1.5 Sample Description: Ovganic silty clay Incis	Depth: 1.5 St., brown, moderately dense, fuel Standing water? YN but the infiltrating is
Sample ID: INC 2855011-1.5 Sample Description: Ovganic silty clay Incis (material type, moisture content, color, general density, etc.) Vegetative mat present? Y/N	Depth: 1.5' St, brown, moderately dense, fuel

Transect #:	Position: 3
Sample ID: 11 NC 355012 - 0.5	Depth: 0.5
Sample Description: Gardy Silt w/ peat, 1	uet, clark brown, mod dense,
(material type, moisture content, color, general density, etc.)	
Vegetative mat present? (Y/N pretly thin Sampling tool:) T-handle auger T-handle sluce	Standing water? Y(N) But How percolating sample hole Ige sampler Sludge sampler w/ slide hammer
Photo info/comments: Galiment matrix. 13	t alepth at point 012.
Transect #:	Position: 3
Sample ID: 11 No 2855012 - 1	Depth:
Sample Description: Organic clayer 511t, Unaterial type, moisture content, color, general density, etc.)	upt, dark brown, mod dense,
Vegetative mat present? Y/N Lee aloce	Standing water? Y/N 4cc 760 x
Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
Photo info/comments: Sadiment Watrix	2nd depth at point 012.
· · · · · · · · · · · · · · · · · · ·	
Transect #:	Position: 3
Sample ID: 11 NC 2855012 -1.5	Depth: 1.5
Sample Description: <u>Cyganic Clayers 511t</u> , (material type, moisture content, color, general density, etc.)	moist, dark brown, slight fuel
Vegetative mat present? Y/N 500 above	Standing water? Y/N see a hove
Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
Photo info/comments: Sodiment Matrix	. 3rd depth at point 012
	12-2 0 1345

	Transect #:	Position:
	Sample ID: 11 NC38SS013 - 0.5	Depth: 0.5
3/14/1	Sample Description: Croganic 51H, Wet, da (material type, moisture content, color, general density, etc.)	rk brown, no odor
1400	Sampling tool: T-handle auger T-handle slud	
	Photo info/comments: Scaliment Matrix	: 1st depth at point 013
	Transect #:3	Position:
	Sample ID: 1/NC2855C13 -1	Depth:/
5/4/11 1410	Sample Description: Channe Silt, woist to we (material type, moisture content, color, general density, etc.)	ct, brown, no odor
	Vegetative mat present? Y/N 500 above	Standing water? Y/N See above
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
. •	Photo info/comments: Sediment matri	c 2nd depth at point 013
		<u>.</u>
	Transect #: 3	Position: 4
	Sample ID: 11NC28SSO(3-1.5	Depth: (.5'
1420	Sample Description: Organic 51H, moist to (material type, moisture content, color, general density, etc.)	wet, brown, possible slight
	Vegetative mat present? Y/N & alove	Standing water? Y/N See above
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Saliment matrix	. 3rd depth at point 013.
•		

	Transect #:	Position: 5
	Sample ID: NC28SSO14-	_ Depth: 1. (bolow ground lovel notwater leve
14/11	Sample Description: Reat and sift (~ (material type, moisture content, color, general density, etc.) Fuel Oder	50/50%), wet, dark brown, strong
40	Vegetative mat present? (Y)/N	Standing water? $(Y)N \sim 9-12''$
	Sampling tool: T-handle auger T-han	dle sludge sampler w/ slide hammer
	Photo info/comments: 15t Sample able h	o be adjusted ~1' bys instead of 0.5',
	bocause of Vegetative mat.	Sadiment matrix.
41		
	Transect #: 3	
	Sample ID: ILNO 2855014-1.5	
(4 N	Sample Description: Ova ance 511, moss (material type, moisture content, color, general density, etc.)	t to wet, dark brown, strong fuel odor
t45 .	Vegetative mat present? Y/N & above	Standing water? Y/N 500 above
	Sampling tool: (T-handle auger) T-han	ndle sludge sampler Sludge sampler w/ slide hammer
. •	Photo info/comments: Godiment Matrix	c. 2nd depth collected at point 014.
		· ·
	Transect #: 5	Position: 5
االي	Sample ID: 11NC 28 SSO14 - 2	_ Depth: 2 (bgs, net water level)
500	Sample Description: Urganic Silt, Moisi (material type, moisture content, color, general density, etc.)	, clark brown, slight fuel ador
	Vegetative mat present? Y/N 400 above	Standing water? Y/N See above
	Sampling tool: T-handle auger T-har	ndle sludge sampler Sludge sampler w/ slide hammer
٠	Photo info/comments: Scaliment matri	x. 3rd depth collected at point oil.
	1110/11100	

		osition: 6	÷
s/14/11 1530	.Mastia	wet, dark brown, moderate	
	Vegetative mat present? YN S	tanding water? Y/N, but water perceit	oting i
	Sampling tool: T-handle sludge	,	
-	Photo info/comments: Vegetative mat 0-1.5	2.7	
	Collect sample is 1.5' bgs. Sedime	nt matrix.	
	·	· 	
	Transect #: P	osition: 6	
8/14/11		Pepth: 3'	
1600	Sample Description: Mostly peat, w/ some Si (material type, moisture content, color, general density, etc.) Mostly peat, w/ some Si (material type, moisture content, color, general density, etc.)	Ity sal, wet, dark brown,	
	Vegetative mat present? YN S	tanding water? Y/N Water percolating sample hole	into
	Sampling tool: T-handle auger T-handle sludge	- · ·	
	Photo info/comments: Gediment matrix, Di	ind depth at point UIS	
	REFUSAL AT A - CITHER FOC	k or perma Prost	
	, , , , , , , , , , , , , , , , , , ,		
	Transect #: 3	osition:7	
3/14/11	Sample ID: 11 NC 2855016 - 0.5	Pepth: 0-5	
1615	Sample Description: Peat w/ Silty Scil, worst (material type, moisture content, color, general density, etc.)	-, brown,	
	Vegetative mat present? N S	tanding water? YN	
	Sampling tool: (I-handle auger T-handle sludge	sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Scil matrix	<u>-</u>	

	Transect #:	Position: 7
	Sample ID: 11NC28SS016-1	Depth:
8/14/11		moist, dark brown, slight
·	Vegetative mat present? (Y/N	Standing water? Y/N
	Sampling tool: T-handle auger T-handle slo	udge sampler w/ slide hammer
	Photo info/comments: 501 matrix . Representation of the Representation of the Photo info/comments: 501 matrix . Representation of the Representation of th	efusal at 1' bgs - rock.
	·	-
	Transect #: 4	Position:
A/15/11	Sample ID: 11 NC285 S 0 17 - 0-5	Depth: 0.5
1130	Sample Description: Gravelly Gard W 30Mc (material type, moisture content, color, general density, etc.)	organics, moist, gray mod ful odar
	Vegetative mat present? (YN Thin, = 6" Sampling tool: T-handle auger T-handle sl	Standing water? YN berwater in filtrating Gample hele udge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 501 Malrix.	
	* DUPLICATE IL NC285	5017-2 e 1125
	Transect #:	Position:
5/15/11	Sample ID: 11NC3955017-1	Depth:
135	Sample Description: Organic 51H, moist	brown moderate fuel adar
/(3	(material type, moisture content, color, general density, etc.)	orown, make the control of
	Vegetative mat present? Y/N 400 a bove	Standing water? Y/N 400 2 600 0
		udge sampler w/ slide hammer
	Photo info/comments: Scalings Matrix.	
	·	

	Transect #: Position:
ř.,	Sample ID: ((NC385So(7 - (.5 Depth: \.5')
(II)	Sample Description: 5:11, Moist, brown, Moderate fuel color (material type, moisture content, color, general density, etc.)
	Vegetative mat present? Y/N 466 above Standing water? Y/N 466 above
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Saliment Matrix.
	Transect #: Position:
s i u	Sample ID: 11\(\)C285\(SO13-0.5\) Depth: 0.5'
,0 ,1	Sample Description: Organic Sitt, Moist, brown Strong Fuel additional color, general density, etc.)
	Vegetative mat present? YN Standing water? (Y/N ~ 4")
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Godinant watrix
<u> </u>	
	Transect #: Position: 2
11	Sample ID: IF NC28550 K - 1' Depth: 1'
0	Sample Description: Organic Silt, moist, brown, Strong Fuel oder (material type, moisture content, color, general density, etc.)
	Vegetative mat present? YN Standing water? (Y/N
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix.

Transect #: Position: 2
Sample ID: 1.5 Depth: 1.5
Sample Description: Organic silt, brown, moist, strong fuel odor, organics
(material type, moisture content, color, general density, etc.) at 1.5 645
Vegetative mat present? Y/N Standing water? (Y/N
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: <u>Godinant matrix</u> .

Transect #: 4 Position: 3
Sample ID: 11 NC28SSO 19 - 0.5 Sample ID: 0.5 Depth: 0.5
Sample Description: Organic silt w most, gray, most, slight to moderate Fuel
(material type, moisture content, color, general density, etc.)
Vegetative mat present? Y(N) Standing water?
Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
1- Contraction
Photo info/comments:
Photo info/comments: Sadiment matrix:
Photo info/comments: 'SENTIMENT WATTER.
Photo info/comments: WATTE.
Transect #: Position: 3
Transect #: 4 Position: 3 Sample ID: 11NC28SS019-1 Depth: 1' Sample Description: Organic sitt, brown, Maist, Moderate Fuel adar
Transect #: 4 Position: 3 Sample ID: 11 NC 28 SS 019 - 1 Depth: 1'
Transect #: Position: 3 Sample ID: 11NC28SS019-1 Depth: 1' Sample Description: Organic sitt, brown, Moist, Moserate Fuel ador (material type, moisture content,
Transect #: Position: 3 Sample ID: IINCASSSO19-1 Depth: 1 Sample Description: Organic silt, brown, Moist, Moserate Fuel ador (material type, moisture content, color, general density, etc.)

		Position: 3
\(\)	Sample Description: 5th w some organics, mo (material type, moisture content, color, general density, etc.)	
	Vegetative mat present? Y(N)	Standing water? Y/N
	Sampling tool: T-handle auger T-handle sludge	sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix.	
	Transect #:	Position:
d	Sample ID: 11 NC 28 SS 020 - 0.5	Depth:
	Sample Description: Peat w sitty material, (material type, moisture content, color, general density, etc.) Strong fuel odor	moist, brown (prat) el gray (sut).
	\wedge	Standing water?(Y)N ~ 4 "
	Sampling tool: T-handle auger T-handle sludge	sampler Sludge sampler w/ slide hamme
	Photo info/comments: Endivent Matrix.	
	·	
		Position: 4
		Depth: \(\frac{1}{2}\)
ı	Sample Description: Silt W Some Organics, m (material type, moisture content, color, general density, etc.)	neist, brown, moderate fuel
	Vegetative mat present? YN	Standing water? (N
	Sampling tool: T-handle auger T-handle sludge	e sampler Sludge sampler w/ slide hamme
	Photo info/comments: Galiment matrix Ref	fisal of 1' rock
		, , , , , , , , , , , , , , , , , , ,

	Transect #:	Position: <u>5</u>
	Sample ID: 11 NC280218 - 0.5	Depth: 0.5
1440	Sample Description: Peat and silt, moist, (material type, moisture content, color, general density, etc.)	brown (peat) & gray (silt),
	Vegetative mat present? (Y)/N	Standing water? Y (N) but that infiltrating in
	Sampling tool: T-handle auger T-handle s	ludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matri	<u>x</u>
		<u> </u>
		·
•	Transect #:	Position: 6
4/15/11	Sample ID: 11NC 28SS021-1	Depth:
1445	Sample Description: Organic Silt, Moist (material type, moisture content, color, general density, etc.)	brown, slight fuel odor
	Vegetative mat present? ()/N	Standing water? YO 500 above
	Sampling tool: T-handle auger T-handle s	sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix	
	<i>n</i>	
	Transect #: 4	Position: 5
	Sample ID: II NCHSSON - 1.5	Depth: (.5'
8/16/11 1455	Sample Description: 51t, Moist, brown (material type, moisture content, color, general density, etc.)	1, slight fuel odor
	Vegetative mat present? \(\frac{\frac{1}{2}}{N} \)	Standing water? YN SEC 250V6
	Sampling tool: T-handle auger T-handle	sludge sampler w/ slide hammer
	Photo info/comments: Sediment matri	χ
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

		1
	Transect #: Position: 6	
*	Sample ID: Depth:	·
6/16/11	Sample Description: Peat & Silt, Moist, brown (peat) & gray (material type, moisture content, color, general density, etc.) Fuel odor	(silt), strong
1505	Vegetative mat present? (Y)N Standing water? Y/N	·
		mpler w/ slide hammer
* I	Photo info/comments: Gediment Matrix. 1St Sample Collected at	- 1 bgs because
	Vegetative mat 0-0.75	
	Transect #: 4 Position: 6	
. i	Sample ID: 11 NC 28 SSO 22 - 1.5 Depth: 1.5	·
8/15/11	Sample Description: <u>51t</u> , <u>moist</u> , <u>brown</u> , <u>moderate</u> fuel (material type, moisture content, color, general density, etc.)	odov
1515	Vegetative mat present? N Standing water? YN	
	Sampling tool: I-handle auger T-handle sludge sampler Sludge sam	mpler w/ slide hammer
•	Photo info/comments: Sediment matrix	
. * * * * * * * * * * * * * * * * * * *	2nd sample collected at point of	120
	Transect #: 4 Position: 6	
	Sample ID: [INC28SS022 -2 Depth: 2	
वाडीं।	Sample Description: Sitt, moist, brown, Moderate Guel ador (material type, moisture content, color, general density, etc.)	
1520	Vegetative mat present? YN Standing water? YN	
	Sampling tool: Thandle auger T-handle sludge sampler Sludge sa	mpler w/ slide hammer
	Photo info/comments: Sediment matrix.	
	3rd Sample collected at point	- 02-7

	Transect #: Position:
	Sample ID: Depth: 1
	Sample Description: Sit and organics, moist, dark brown, slight to (material type, moisture content, color, general density, etc.) moderate fiel odor
	Vegetative mat present? (Y) N Standing water? (Y) N $\sim 4^{e'}$
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Godinant matrix. 1st sample collected at 1 bgs
	because Vegetative mat 0-1'
	* DUPLICATE (INC) & SS003-2.5 @ 1535
-	Transect #: Position: 7
	Sample ID: 11 NC 26 SSO23 - 1.6 Depth: 1.5'
	Sample Description: Organic Silt, moist, brown, moderate to strong fuel (material type, moisture content, color, general density, etc.) Odo:
	Vegetative mat present? (N) 400 2000 Standing water? (Y) ~4"
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sodiment Matrix
	2nd depth at point 023
-	Transect #: Position: 7
•	Transect #: Position: 7 Sample ID: \(\)
	Sample ID: 11 NC 2856 23 - 2 Depth: 2' Sample Description: Silt w/ organics, moist, brown (material type, moisture content,
•	Sample ID: 11 NC 28550 23 - 2 Depth: 2' Sample Description: Silt w/ organics, moist, brown (material type, moisture content, color, general density, etc.)

	ansect #:	Position: 8	
Sa	mple ID: 1 NC28SS034-1	Depth:	
(ma	ample Description: Silt W Some Peat, Mo aterial type, moisture content, or, general density, etc.)	sist, brown, no noticible odor	
Ve	egetative mat present? 🕏/ N	Standing water? Y (N)	
Sa	ampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer	
Ph	noto info/comments: Soil Matrix 1st	sample collected at 1' bgs because	>
_\	legetative mar 0-1 bgs.	·	
	ransect #:	Position: C	
Sa	ample ID: 11 NC28SS 024 - 15	Depth: (,5'	-
		, moist, gray & brown, slight	
•	aterial type, moisture content, lor, general density, etc.)		76
COI			
	egetative mat present? (Y)N	Standing water? Y	. 5
V	egetative mat present? YN	Standing water? YN ge sampler Sludge sampler w/ slide hammer	. ?
V Sa	egetative mat present? YN ampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer),
V Sa	egetative mat present? (Y)N ampling tool: T-handle auger T-handle slud hoto info/comments: Soil matrix. 2 md	ge sampler Sludge sampler w/ slide hammer).
V Sa	egetative mat present? (Y)N ampling tool: (T-handle auger) T-handle slud hoto info/comments: Soil matrix. 2-nd	ge sampler Sludge sampler w/ slide hammer) .
V Sa	egetative mat present? (Y)N ampling tool: T-handle auger T-handle slud hoto info/comments: Soil matrix. 2 md	ge sampler Sludge sampler w/ slide hammer).
V Sa Pl	egetative mat present? (Y)N ampling tool: T-handle auger T-handle slud hoto info/comments: Soil matrix. 2 md	ge sampler Sludge sampler w/ slide hammer)
Vi Sa Ph —	egetative mat present? (V)N ampling tool: (T-handle auger) T-handle slud hoto info/comments: Soil matrix. 2 nd Refusal at 1.5' bas-rock ransect #: 5 ample ID: 11 NC 365505-0-5	ge sampler Sludge sampler w/ slide hammer Sample Collected at My point C Position: Depth: 0.5') <i>a</i>
Vi Sa Sa Pl	egetative mat present? (Y)N ampling tool: T-handle auger T-handle slud hoto info/comments: Soil mafrix. 2 nd Refusal at 1.5' bas-rock ransect #: 5	ge sampler Sludge sampler w/ slide hammer Sample Collected at My point C Position: Depth: 0.5') •
Volume Vo	egetative mat present? (V)N ampling tool: (T-handle auger) T-handle slud hoto info/comments: Soil matrix. 2nd Refusal at 1.5' bas-rock ransect #: 5 ample ID: 11 NC 255525-0.5 ample Description: Sandy Silt, Moist, Ginaterial type, moisture content,	ge sampler Sludge sampler w/ slide hammer Sample Collected at My point C Position: Depth: 0.5'	
Vi Si Si Si (m. co)	egetative mat present? (Y) N ampling tool: T-handle auger T-handle slud hoto info/comments: Soil matrix. 2nd Refusal at 1.5' bgs-rock ransect #: 5 ample ID: 11 NC 38 SSC3 5-0.5 ample Description: Sandy Silt, Moist, ginaterial type, moisture content, lor, general density, etc.)	ge sampler Sludge sampler w/slide hammer Sample Collected at MM point C Position: Depth: O.5' Ay, no colo' Standing water? Y(N)	

	Transect #: 5	Position:
	Sample ID: 11 NC 2835 025-1	Depth:
4/15/11 1700	Sample Description: Peat & Silty Soil, Some grange (material type, moisture content, color, general density, etc.) Gray (Gift), Strong	fuel oder
	Vegetative mat present? Y(N)	Standing water? Y/N
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 401 matvix	
-		
·	Transect #:	Position:
:	Sample ID: 11NC28SS025-1.5	Depth: 1.5
8/15/11	Sample Description: Deat & Sifty soil, Moist (material type, moisture content, color, general density, etc.)	, brown, Moderate fuel ador
	Vegetative mat present? YN	Standing water? YN
	Sampling tool: 1-handle auger T-handle sluc	lge sampler W/ slide hammer
	Photo info/comments: 5al matrix	
		· · · · · · · · · · · · · · · · · · ·
		·
*		
	Transect #: 5	Position: 2
	Sample ID: 11 NC 2855026 - 0.5	Depth: 0.5
76/14/11	Sample Description: 75% pat w 25% fine communication (material type, moisture content, color, general density, etc.) Moist, Strong Fue	1 odor
0822	Vegetative mat present? $(Y)N \sim 6^u$	Standing water? YO But the percolating no sample hale
	Sampling tool: T-handle auger T-handle sluce	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix	· · · · · · · · · · · · · · · · · · ·

	Transect #:	Position:
i tat	Sample ID: INCHES SORGE	Depth: /
16/11	Sample Description: Fine Silty 52nd w peat	, moist, brown (post) & gray,
840	(material type, moisture content, color, general density, etc.) 5trong fuel cde	
	Vegetative mat present? (Y/N +hin, ~6"	Standing water? Y/N
	Sampling tool: Thandle auger T-handle slu	dge sampler w/ slide hammer
	Photo info/comments: Sediment matrix.	20 g material for Mecit sample.
	Transect #:	Position: 2
lu Lu	Sample ID: 11NC28SSC26 -1.5	Depth: 1.5
16/11	Sample Description: Clausey 5/H w/ trace	
1850	(material type, moisture content, color, general density, etc.) fue cdc/	
	Vegetative mat present? (Y/N	Standing water? Y(1)
	Sampling tool: T-handle auger T-handle slu	idge sampler w/ slide hammer
	Photo info/comments: <u>Gediment matrix</u>	
÷	+ DUPLICATE IINCZ	8SS026-2 @ 08S5
	· · · · · · · · · · · · · · · · · · ·	
•	Transect #:	Position: 3
alud II	Sample ID: 11 NC 3555037-0.75	Depth: 0.75
0905	Sample Description: Silt w Mince Craanics, (material type, moisture content, color, general density, etc.)	moist, gray, Slight fuel oda
	Vegetative mat present Y/N	Standing water? Y/O But Had infiltrating into Sample hole
	Sampling tool: T-handle auger T-handle sla	idge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Section matrix 15	sample collected @ 0.75' bgs, vegetative
	mat 0-0.75'	
	•	

	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	7	
	Transect #:	Position: 3	
	Sample ID: 11NC2\$\$\$037 -1,25	Depth: 1.25'	
8/16/11	Sample Description: Clavery Gilt W/ MINER CIG	anics, moist, dark brown,	
0915	(material type, moisture content, color, general density, etc.) Slight Fuel odor		
	Vegetative mat present? (Ŷ/N	Standing water? Y/N See alove	
	Sampling tool: T-handle slud	ge sampler w/ slide hammer	
	Photo info/comments: Scaliment matrix. 2	nd depth at point 027.	
	X MS/MSD - triple volu	,	
		-	
	<u></u>		
	Transect #: 5	Position: 3	•
8/16/11	Sample ID: 11 NC28SS027-1.75	Depth: 1.75'	
0925	Sample Description: Clausey 511t, Frace organism (material type, moisture content, color, general density, etc.)	nics, moist, dark brown, no fuel	
	Vegetative mat present? YN	Standing water? Y的 sce こんい	
	Sampling tool: T-handle auger T-handle slud	lge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Schiment matrix 3	rd depth at point 027.	
v		<u> </u>	
	Transect #: 5	Position:	
0/16/11	Sample ID: 11 NC%55078 -0.5	Depth: 0.5	
~(12 6	Sample Description: GH w/ Fine G1nd, trace (material type, moisture content,	organics, moist, dare gray,	
09199	color, general density, etc.) <u>moderate</u> Fuel od		
	Vegetative mat present? (Y/N Thin, < 0.5'	Standing water? YN but the infiltrating	into
	Sampling tool: Thandle auger T-handle sluce	lge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Sediment matrix.		
	·		

		•
,	Transect #: 5	Position:
!	Sample ID: 1 NC 2535 028 - 1	Depth: /
,	Sample Description: Silt Wifine Sand, tra	ce organics, wet, dark gray,
((material type, moisture content, color, general density, etc.) Moderate Fuel cde	•
	Vegetative mat present? (Y/N	Standing water? Y/N 500 about
	Sampling tool: T-handle auger T-handle slu	idge sampler w/ slide hammer
	Photo info/comments: Schment matrix.	
	· · · · · · · · · · · · · · · · · · ·	·
•		
	Transect #: 5	Position: 4
	Sample ID: 11NC28SSC28-1.5	Depth: \\5'
	Or the brane and	and a nice dark brown
	Sample Description: Clayey Silt, trace ord	gavies, masi, aare orowing
	Sample Description: Clargey 511t, Trace ord (material type, moisture content, color, general density, etc.) Singht Ful odor	James, Masi, dare orani,
	(material type, moisture content,	Standing water? Y/N 400 above
	(material type, moisture content, color, general density, etc.) Slight Fuel odor Vegetative mat present? (Y/N	
-	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: F-handle auger T-handle sh	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer
-	(material type, moisture content, color, general density, etc.) Slight Fuel odor Vegetative mat present? (Y/N	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer
-	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: F-handle auger T-handle sh	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer
-	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: F-handle auger T-handle sh	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: F-handle auger T-handle sh	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: F-handle auger T-handle she Photo info/comments: Sediment matrix	Standing water? Y/N 400 2000000000000000000000000000000000
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: Fhandle auger T-handle slu Photo info/comments: Sediment matrix Transect #: 5 Sample ID: 11NC28555029 - 0.5	Standing water? Y/N 400 2000000000000000000000000000000000
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N Sampling tool: Fhandle auger T-handle slu Photo info/comments: Sediment matrix Transect #: 5 Sample ID: 11NC28555029 - 0.5	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer Position: 5 Depth: 0.5 , wt., dark gray & dark brown,
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (Y)N Sampling tool: I handle auger T-handle sle Photo info/comments: Sediment matrix Transect #: 5 Sample ID: 11NC2855029 - 0.5 Sample Description: Sift w/ trace organics (material type, moisture content.)	Standing water? Y/N 400 above adge sampler Sludge sampler w/ slide hammer. Position: 5 Depth: 0.5 , wt, dark gray & dark brown,
	(material type, moisture content, color, general density, etc.) Vegetative mat present? (YN Sampling tool: I handle auger T-handle she Photo info/comments: Sediment matrix Transect #: 5 Sample ID: 11NC28SSC29 - 0.5 Sample Description: Sift w/ trace organics (material type, moisture content, color, general density, etc.) Vegetative mat present? (YN Vay thin, cos')	Standing water? Y/N 400 above udge sampler Sludge sampler w/ slide hammer Position: 5 Depth: 0.5 , wet, dark gray & dark brown,

Transect #: 5	Position: 5
Sample ID: \\NC28550)9-1	Depth:
Sample Description: Silty clay, moist, grammaterial type, moisture content, color, general density, etc.)	y, moderate fuel odor
Vegetative mat present? (Y) N	Standing water? Y/N 40 Dkve
Sampling tool: Thandle auger T-handle sluce	lge sampler w/ slide hamm
Photo info/comments: <u>Sodimont matrix</u>	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	5
Transect #: 5 Sample ID: 11 NCSS039-1.5	Position: 5 Depth: 1.5
	ly, slight and odor
(material type, moisture content,	31 313 10
color, general density, etc.)	
Vegetative mat present? \(\sum_{N}\)	Standing water? Y/D 40 above
Vegetative mat present? N Sampling tool: T-handle slu	
Vegetative mat present? \(\overline{\sqrt{N}} \)	
Vegetative mat present? \(\subseteq / \N \) Sampling tool: \(\text{C-handle auger} \) T-handle slu	
Vegetative mat present? \(\subseteq / \N \) Sampling tool: \(\text{C-handle auger} \) T-handle slu	
Vegetative mat present? \(\subseteq / \N \) Sampling tool: \(\text{C-handle auger} \) T-handle slu	
Vegetative mat present? \(\forall / N \) Sampling tool: (\text{-handle auger}) T-handle slu Photo info/comments: (\text{-which} \text{-waty.x}.) Transect #: 5 Sample ID: (\text{1NCSS030})	dge sampler Sludge sampler w/ slide hamm Position:
Vegetative mat present? \(\forall / N \) Sampling tool: \(\text{T-handle auger} \) Thandle slue Photo info/comments: \(\text{Lowent waty} \) Transect #: \(\text{S} \) Sample ID: \(\text{INCSS 030} - \text{Vix.} \) Sample Description: \(\text{Silty Clay} \), \(\text{Vot} \), \(\text{C} \)	dge sampler w/ slide hamm Position:
Vegetative mat present? \(\forall / N \) Sampling tool: \(\text{-handle auger} \) Thandle slu Photo info/comments: \(\text{-when} \) \(\text{-waty} \) \(\text{X} \). Transect #: \(\text{S} \) Sample ID: \(\text{INCSS 030} \)	dge sampler w/ slide hamm Position:
Vegetative mat present? \(\forall / N \) Sampling tool: \(\text{T-handle auger} \) T-handle slu Photo info/comments: \(\text{Local when} \) \(\text{waty} \text{ is } \) Transect \(#: \) Sample ID: \(\text{INCSS030} \) \(\text{trace organics} \) Sample Description: \(\text{Silty Clay} \) \(\text{wot} \) \(\text{contents} \) (material type, moisture content,	dge sampler Sludge sampler w/ slide hamm
Vegetative mat present? V/N Sampling tool: Thandle auger T-handle slu Photo info/comments: Which waty x. Transect #: Sample ID: INCSS 030 - I trace organics Sample Description: Silty Clay , Wet, Commented to the color, general density, etc.) Vegetative mat present? Y/N	Position: 6 Depth: 1' Aux gray, Strong fuel oder Standing water (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Vegetative mat present? V/N Sampling tool: Thandle auger T-handle slu Photo info/comments: Which waty x. Transect #: Sample ID: INCSS 030 - trace organics Sample Description: Silty Clay, Wet, Commented to the color, general density, etc.) Vegetative mat present? V/N Sampling tool: T-handle auger T-handle slu	Position: 6 Depth: 1' Standing water (YOO) ~ 4"

	Transect #: Position: 6
	Sample ID: 11Ne2855036 - 1.5 Depth: 1.5'
(16/11 1055	Sample Description: Clayay silt, trace organics, moist, med. dense, strong (material type, moisture content, color, general density, etc.) Fuel odor
	Vegetative mat present? (Y/N) Standing water? (Y/N)
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix. 2nd depth cellected at point 030.
	Transect #: 5 Position: 6
5/16/11	Sample ID: 11NC2855C30 - 7 Depth: 2'
1100	Sample Description: Clayey Gilt, trace organics, Moist, Mod. dems, Strong (material type, moisture content, color, general density, etc.) Fuel odov
÷	Vegetative mat present? YN Standing water? YN
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sectionent matrix. 3rd depth calcited at paint 030.
:	* DUPLICATE 11 NC 2555030 - 2.5 @ 1105
*	
Live In	Transect #: 5 Position:
allor"	Sample ID: 11 NC 3855031 - 0.5 Depth: 0.5
116	Sample Description: 4000 Peat w/ 40% Silt, moist, mod dense, (material type, moisture content, color, general density, etc.) No Feel odor
	Vegetative mat present? $(\hat{Y}/N \sim 4 - 6)'$ Standing water? $Y(\hat{N})$
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil matrix, On bank of transact - end point.
	20 g sal in MooH sample

:		osition:
	Sample ID: UNCASSS 031-DS D	epth:
1125	Sample Description: Clayey 51+ W (vganics, w (material type, moisture content, color, general density, etc.)	noist, brown, no fuel oder
	Vegetative mat present? (Y/N)	tanding water? Y/N
	Sampling tool: (T-handle auger) T-handle sludge	sampler Sludge sampler w/ slide hammer
	Photo info/comments: Scil matrix	· · · · · · · · · · · · · · · · · · ·
• .		osition: 7
- f 11 1 11		Depth: 1.5
1135	Sample Description: Clayey Silt Worganics (material type, moisture content, color, general density, etc.)	, maist, brown, no fuel odor
	Vegetative mat present? YN	tanding water? Y
	Sampling tool: Thandle auger T-handle sludge	sampler Sludge sampler w/ slide hammer
	Photo info/comments: 501 Matrix	
,		
		· · · · · · · · · · · · · · · · · · ·
	Transect #: 6 P	Position:
		Depth: 0.5'
8/16/11	Sample Description: 15% peat, 25% Silty 50	
1255	(material type, moisture content, color, general density, etc.)	
()	Vegetative mat present (Y)N 6"	standing water? Y/(1)
	Sampling tool: T-handle auger T-handle sludge	sampler Sludge sampler w/ slide hammer
-	Photo info/comments: 501 Marix * 2 Vial	s MeoH *
	1st sample along transect, o	in bank

	Transect #: P	Position:
11.	Sample ID: 1/NC285503 2 - 1	Depth:
1400 1400	Sample Description: Organic Silty clay, Mois (material type, moisture content, color, general density, etc.)	it, brown, no fuel odor
	Vegetative mat present? (Y)/N	Standing water? Y(N)
	Sampling tool: Thandle auger T-handle sludge	sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil matrix	
· · · · · · · · · · · · · · · · · · ·		
	Transect #:	Position:
i	Sample ID: 11 NC28 SSO32 - 1.5	Depth: 1.5
6/16/11	Sample Description: Organic silty day, mois (material type, moisture content, color, general density, etc.) No Fuel odor	
	Vegetative mat present? (YN)	Standing water? (N)
	Sampling tool: T-handle auger T-handle sludge	sampler Sludge sampler w/ slide hammer
	Photo info/comments: Soil Matrix	· · · · · · · · · · · · · · · · · · ·
· .		
	Transect #: 6	Position: 2
alulu	Sample ID: \(\Nc3\SSO3\frac{3}{3} - 0.\S\)	Depth: 0.5
1415	Sample Description: Silt, moist, gray, pre (material type, moisture content, color, general density, etc.)	otty loose, no fuel odor
	Vegetative mat present? (Ŋ/N 6"	Standing water?
	Sampling tool: T-handle auger T-handle sludge	e sampler Sludge sampler w/ slide hammer
		rge in material. See photos

	A STATE OF THE STA	
	Transect #:	Position:
-	Sample ID: 11 NC3555033-1	Depth:
3/16/11	Sample Description: Silt, moist, gray, pr	etly loose, no fuel color
1430	Vegetative mat present? (Y)/N 6	Standing water? Y (N)
	Sampling tool: T-handle auger T-handle sluce	lge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix.	
		·
	Transect #: 6	Position: 2
i (Sample ID: 11NC28SSC33-1.5	Depth: 1.5
8/16/1	Sample Description: Silt moist, gray, loc (material type, moisture content, color, general density, etc.)	so-moderale dense, no fuel odor
	Vegetative mat present (Y/N	Standing water? Y/N
	Sampling tool: 7-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
-	Photo info/comments: Sodiment Matrix, Went	t back to auguer final depth to 1.5' bgs
	and wet silt had object into sample	t back to auger final depth to 1.5' bas hole. See Photos. Material
	like cornstarch	
-		
	Transect #:	Position: 3
	Sample ID: 11NC2855034-0.5_	Depth: 0.5
8/16/11	Sample Description: Organic 514, mc 51, do	ork brown, relatively loose
1455	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present? (N 0-0.5'	Standing water? Y
	Sampling tool: T-handle auger T-handle slu	dge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix.	· · · · · · · · · · · · · · · · · · ·
		·

	Transect #: Position: 3
e/16/-11	Sample ID: 11NC38SSO34-1 Depth:
1500	Sample Description: Organic Silt, moist, dark brown, relatively loose, (material type, moisture content, color, general density, etc.) no fuel odor
	Vegetative mat present? Y/N Standing water? Y/N
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Scaliment Matrix.
	Transect #: 6 Position: 3
al İn	Sample ID: \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\
1510	Sample Description: Clayey 51H, moist, mottled dark brown and gray, (material type, moisture content, color, general density, etc.) medium dense, no fuel o dor
	Vegetative mat present? (Ŷ)'N Standing water? Y(N)
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Scaliment matrix Some not silt oozing into
	sample hole
· <u></u>	
	Transect #: 6 Position: 4
الليالة	Sample ID: 11 NC 38 \$5.035 - 0.5 Depth: 0.5
(230	Sample Description: Organic sit, wet, dark brown, loose, moderato (material type, moisture content, color, general density, etc.) Fuel odor
	Vegetative mat present? (Y/N 0 - 6" Standing water? (N/N ~ 3 - 4"
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
·	Photo info/comments: Sodiment matrix

۹.	Transect #: Position:
16/ 11	Sample ID: 1 NC28 SS035 - 1 Depth:
1625	Sample Description: <u>Granic Clayey Sitt</u> , Wet, loose, dark brown and (material type, moisture content, color, general density, etc.) <u>black</u> , moderate fuel odor
	Vegetative mat present? (Y/N 0-6" Standing water? (Y)N
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sectiment matrix.
	Transect #: Position: 4
: J.,	Sample ID: 11 NC2\$ 550 35 -1.5 Depth: 1.5
8/16/11	Sample Description: Organic silt, moist, locse, brown, moderate fuel Odor (material type, moisture content, color, general density, etc.)
	Vegetative mat present? (Y)N Standing water? (Y)N
,	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix
et.	Transect #: 6 Position: 5
	Sample ID: 11 NC2855036-0.5 Depth: 0.5 (from ground surface, not water)
5/16/11	Sample Description: Organic silt, Wet, loose, brown w/ some black peat,
1550	(material type, moisture content, color, general density, etc.) Slight fuel odo
	Vegetative mat present? YN Standing water? YN ~8"
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix

	Transect#:	Position: 5
d in	Sample ID: 1702855036-1	Depth: 1' (bgs, not below water surface)
1606	Sample Description: Organic 51t, Wet, 100 (material type, moisture content, color, general density, etc.) Slight fiel color (?)	
	Vegetative mat present? (\cancel{y} / N)	Standing water? (9/N
	Sampling tool: T-handle auger T-handle slud	ge sampler w/ slide hammer
	Photo info/comments: Ged mont matrix	
	+ DUPLICATE 11 NO 28550	136-2@1605
	Transect #:	Position:
4/16/11	Sample ID: 11 NC2888036 -1.5	Depth: 1.5' (bgs, not below Hausoufface)
1710	Sample Description: Organic Silt, Mcist, Comaterial type, moisture content, color, general density, etc.)	ox, dark brown, slight fuel
	Vegetative mat present? (Ý)N	Standing water? (N)
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sodiment Matrix	
•		
•	Transect #: Julie Clark	Position:
	Sample D: J. Clark	Depth:
	Sample Description: 8 17/11	
	(material type, moisture content, color, general density, etc.)	
.'	Vegetative mat present? Y/N	Standing water? Y/N
	Sampling tool: T-handle auger T-handle sluc	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments:	

Transect #:		Position: 6	_
Sample ID: UNE 385		Depth: 2 (bgs, Not below water sw	[acc]
Sample Description: (material type, moisture content, color, general density, etc.)	rganic sitty wat, med	d. dense, no fuel adoi	_
Vegetative mat present?	ÝN Ə'	Standing water? Y (v) ~ (
Sampling tool: T-h	andle auger T-handle	sludge sampler Sludge sampler w/ slide hamme	•
Photo info/comments:	Godinnent Matrix. 1	st sample collected at 2' logs; becan	SC:
	present 0-2' by		_
	· 		
Transect #:		Position:	_
Sample ID: \\ \NC2S^	<u>-</u>	Depth: 2.5' (bys, Not below Hac so	ace)
Sample Description: (material type, moisture content, color, general density, etc.)	ganic Clayers 511t,	moist, mod danse, no fuel oder	-
Vegetative mat present?	P (Y)N	Standing water? Y/N 400 Woove	
Sampling tool:	andle auger T-handle	e sludge sampler w/ slide hamme	•
, ,			-
, ,		e sludge sampler w/slide hamme 2nd depth at point 037	- -
, ,			_
, ,			-
, ,			- - -
Photo info/comments:	Sediment matrix	. And depth at point 037	· - - -
Photo info/comments:_ Transect #: 6 Sample ID: 11NC 785	Seliment matrix	2nd depth at point 037 Position: 6	-
Photo info/comments:	Soliment matrix	Position: 6 Depth: 3'	-
Photo info/comments:	Soliment matrix	Position: 6 Depth: 3' moist, med. dense, no fuel odoi	

. (.) .	Transect #: Position: /
8/17/11	Sample ID: [TNC7555038 - 1.75] Depth: 1.75 (ins. Not the surface)
1130	Sample Description: <u>Organic Silt</u> , <u>Frezen</u> , <u>wet</u> , <u>brown</u> , <u>Slight Feel</u> <u>Color</u> (material type, moisture content, color, general density, etc.)
	Vegetative mat present? \(\hat{Y}/N\) C - (.75) Standing water? \(\hat{Y}/N\) (6. \(\hat{g})''
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sealiment Matrix. 1st sample collected at 1.75 because
<i>.</i>	Vegetative mat 0-1.75' bas.
	Transect #: 6 Position: 7
8/17/11	Sample ID: \\NCP\$\$\$638-2.25 \\Depth: \(\frac{2.25}{100}\)
1195	Sample Description: Organic 511th, frozen, wit, brown, story fuel oder (material type, moisture content, color, general density, etc.)
	Vegetative mat present? (Y)N See above Standing water? (Y)N See above
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
•	Photo info/comments: Godiment matrix 2nd sample collected at point 038.
	A lot move ice at 2.25' than at 1.75'
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
•	Transect #: 6 Position: 7
alizhi	Sample ID: 11 NC22 55036 - 2.75 Depth: 2.75
1140	Sample Description: Evg ance silt, moist to wet, brown, mod dense, no (material type, moisture content, color, general density, etc.) Fuel oder
:	Vegetative mat present? (YN 400 alove Standing water? (YN 400 alove
•	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gadiment Matrix, 3rd Gample Ocilected at point 038.
	* MS/MSD - triple volume

	Transect #:	Position: 8
	Sample ID: 1/NC28SS0291-1	Depth:
ક(તા ૫	Sample Description: Organic Gilt w/~ 40%	eat, Prozen, hard, brown, no
1330	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present? YN C-V	Standing water? Y (N)
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 501 matrix . 15+ 5	sample callected at 1'bgs; vegetative
	mat o-1'	
	· · · · · · · · · · · · · · · · · · ·	
		a a company of the co
	Transect #: 6	Position: 5
0/17/1	Sample ID: 11 NC 28 SS 0 39 -1.5	Depth: (.5'
1345	Sample Description: Organic 511+, From (material type, moisture content, color, general density, etc.)	zen, hard, brown, no tuel odor
•	Vegetative mat present YN	Standing water? Y/N
	Sampling tool: T-handle auger T-handle slud	ge sampler w/ slide hammer
	Photo info/comments: Goil matrix. Refus	al at 1.5' bgs-permafrost.
. •	2nd depth at po	3
	DUPLICATE IL NO	2855039-2 @ 1350
-	Transect #:	Position:
المامام	Sample ID: NC3255040 - 0.5	Depth: 0.5
3/17/11 1405	Sample Description: 61lty clay, moist, relationaterial type, moisture content, color, general density, etc.)	rudy loose, gray, no fuel odor
	Vegetative mat present? (Y)N ~4-6"	Standing water? Y(N)
	Sampling tool: T-handle auger T-handle slud	lge sampler w/ slide hammer
	Photo info/comments: 501 Matrix.	

	Transect #:	Position:
برامرا	Sample ID: 11028 SS040 -1	Depth:
/17/11 1410	Sample Description: Organic Sit, moist, (material type, moisture content, color, general density, etc.) Diank, no feel	pretty loose, known w/ some
	Vegetative mat present? O/N 4-64	Standing water? Y (N)
	Sampling tool: T-handle auger T-handle sh	adge sampler w/ slide hammer
·	Photo info/comments: 501 matrix.	
	Transect #:	Position:
t 13	Sample ID: 11NC28 \$5.040 - 1.5	Depth: 1.5
6/17/11 1415	Sample Description: Organic 51H, Frezen, (material type, moisture content, color, general density, etc.)	hard, dark brown, no feel odbir
	Vegetative mat present? YN 4-6	Standing water? YO
	Sampling tool: T-handle auger T-handle sh	udge sampler w/ slide hammer
	Photo info/comments: Goil matrix. Peri	nafrost @ ~1.5
		· · · · · · · · · · · · · · · · · · ·
· "x4.		
•	Transect #:	Position:
· ./.	Sample ID: 11N02855041 -1	Depth:
1430	Sample Description: Post w/ trace silt, wet (material type, moisture content, color, general density, etc.)	, med. dense, moderate tuel odor
	Vegetative mat present YN 0-1'	Standing water? YN but Hzo infiltrating into sample hole
	Sampling tool: A-handle augen T-handle sl	udge sampler Sludge sampler w/ slide hammer
	Photo info/comments: rediment matrix.	1st sample collected at 1 bgs
•	because leg mat o-1'	

	Transect #: Position: 2	-
	Sample ID: [NC38SSC41 - 1.33] Depth: (.33)	
3/17/11	Sample Description: 60% peat, 40% Silt, wet, dark brown & black, (material type, moisture content, color, general density, etc.) Moderate Fuel ador	
	Vegetative mat present? (Y) N Standing water? Y (N) See a bove	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: 4diment matrix. Refusal at 1.33 bys-lots	
·	CF rocks	· ·
	Transect #:	
KIMIN	Sample ID: 11NC28SSO42-1 Depth: 1' (bgs, Not below water sure	iace)
1455	Sample Description: Silt and organics, wet, burnt orange (silt) and dark (material type, moisture content, color, general density, etc.) brown/black (organics), Slight fuel odor	
	Vegetative mat present? YN 1' Standing water? YE5, ~ 6"	B ^Y
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer	
· · ·	Photo info/comments: Sediment Matrix. 1st sample collected at 1' bgs;	
•	vag mat 0-1'	
	<u> </u>	· ·
	Transect #: Position:	÷
الدا	Sample ID: 11 NC 285 SO42 - 1.5 Depth: 1.5 (bgs, NCT below Hac such	, ace)
500 500	Sample Description: Clayey 51t, Wet, gray, relatively loose, slight (material type, moisture content, color, general density, etc.) Fuel odor. Like Cornstarch	1
	Vegetative mat present? \(\frac{\frac{1}{2}}{N} \) \(\frac{1}{2} \) Standing water \(\frac{\frac{1}{2}}{N} \) \(\frac{1}{2} \)	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Sediment Matrix. 2nd depth collected at point (X DUPLICATE (INC28 SSO42-2.5 @ 1505	chc.
	1 001 -10.110 111000 0 000 4 - A.D. C. 1003	

	Transect #: Position: 3
	Sample ID: 11 NC2 \$\$\$5042 - 2 Depth: 2
17/11	Sample Description: Chyay sit w/ some gravel, wet, med dense, gray, (material type, moisture content, color, general density, etc.) Slight fuel odor. Like Cornstarch.
510	Vegetative mat present? (Y/N) Standing water? (Y/N ~ 6"
	Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sediment matrix
* *	Photo info/comments: Sediment Wattie
<i>-</i>	
	Transect #: Position: 4
19/11	Sample ID: 11NC28SS043-1.5 Depth: 1.5
520	Sample Description: 1990 post, 2590 silf, wat brown, Moderate Fuel adar (material type, moisture content, color, general density, etc.)
	Vegetative mat present? YN 0-(.5' Standing water? YN) ~2"
٠	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix, 1st sample collected @ 1.5 bys
	bocause voy mat 0-1.5
. —	
	Transect #: Position:
17/11	Sample ID: 11 NC 2858043-2 Depth: 2'
525	Sample Description: Lest & Silt, Wot, brown, Modaste Fuel oder (material type, moisture content, color, general density, etc.)
	Vegetative mat present? N Standing water N
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Godinent matrix
100	

Transect #:	Position: 4
Sample ID: 11 NC285 5043 - 2.5	
Sample Description: 50% peaf, (material type, moisture content, color, general density, etc.)	50% silt, moist, brown, moderate
Vegetative mat present? (Ŷ)/N	Standing water? (Y)/ N
	T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Gadinent	matrix. Refusal @ 2.5' logs-rocks
Transect #:	- A
Sample ID: \(\langle \langle \	· .
	20% Gilt, wet, mod dense, brown,
Vegetative mat present? YN 0-2	
Sampling tool: T-handle auger	T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Sdiment	matrix. 1st sample collected at 2' bys,
because veg mat 0-2'	·
· · · · · · · · · · · · · · · · · · ·	
Transect #:	Position: 5
Sample ID: NC28SS 044-2.	S Depth: 2.5'
Sample Description: 70% 51t, 30 (material type, moisture content, color, general density, etc.)	% peat, wet, mod. dense, brown, strong
Vegetative mat present? ()/N See al	Standing water? (Y)N
Sampling tool: T-handle auger	T-handle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Gediment	matrix 2nd sample collected at point

	Transect #: Position: 5	
	Sample ID: 11NC265S044 - 3 Depth: 3'	
(17/11	Sample Description: Organic Silt w/~25% peat, wot, med. dense, moderate (material type, moisture content, color, general density, etc.) <u>fuel odor</u>	
	Vegetative mat present? (Y)/N Sae above Standing water? (Y)/N Sae above	
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Sodiment matrix. 3rd depth at point 044.	
	XMS/MSD-triple volume	
		_
	Transect #: 7 Position: 6	
8/17/11	Sample ID: 11NC28SS045-1 Depth: 1	
1625	Sample Description: 50% organic sitt; 50% poat, partially frozen, moist, (material type, moisture content, color, general density, etc.) brown, no fuel odor	
	Vegetative mat present? O/N (' Standing water? VN	
-	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: 501/ matrix. Sample Collected at 1' bas, because veg	
	mat present 0-1' bgs	
· .		_
	Transect #: Position: 6	
6/17/11	Sample ID: 11NC28SS05-1.5 Depth: 1.5	
1630	Sample Description: Organic 511t w/ 25% post, frozen, hard, brown, (material type, moisture content, color, general density, etc.) no fuel odor	
	Vegetative mat present? N See above Standing water? YN	
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Soil matrix. 2nd depth at point 045.	
	Refusal @ 1.5' logs - pormafiost. Cannot auger to 3rd depth	
	ัน	

	Transect #:	Position:
1.14	Sample ID: 11-14-28-56-46-0.75	Depth: 0.75
1714 655	Sample Description: Organic silt w/ ~10% (material type, moisture content, color, general density, etc.)	peat, moist, moderately losse,
	Vegetative mat present? \(\bar{Y} \) N 0.75'	Standing water? Y/N
	Sampling tool: T-handle auge T-handle slu	dge sampler w/ slide hammer
	Photo info/comments: Soil matrix	·
	Transect #:	Position:
	Sample ID: 11NC28046-1.25	Depth: (.25'
1700	Sample Description: Organic Silt w/~10°/o p (material type, moisture content, color, general density, etc.) brown no oder	eat, moist, moderately loose,
	Vegetative mat present?	Standing water? Y(N)
		dge sampler Sludge sampler w/ slide hammer
		uge sampler studge sampler wi stide transmer
	Photo info/comments: 501 Matrix	
•	· · ·	
<u></u>		,
	Transect #: \(\frac{\zeta}{2}\)	Position:
	Sample ID: \\ NC23016-\.75	Depth: 1.75'
8/17/11	Sample Description: Organic Silt w/ trace (material type, moisture content, color, general density, etc.)	fine sand, moist, moderately loose,
	Vegetative mat present? (1/N)	Standing water? YN
	1 of out 11 o mar brosons. On 11	~ warning (1000)
	Compling tool Theredo augar Thandla alu	dae compler Studge compler w/ clide hommer
	Sampling tool: Thandle auger Thandle slu Photo info/comments: Soil Matrix	dge sampler W/ slide hammer

	<u>i i i i i i i i i i i i i i i i i i i </u>	\sim	
	Transect #: 5	Position:	
	Sample ID: INCASSSO47 - 2	Depth: 2	
3/17/11	Sample Description: 60% organic Silt, 409	to peat, Mcist, brown, Very Strong	
715	(material type, moisture content, color, general density, etc.) Fuel Oder		
(, -	Vegetative mat present? (Ŷ) N 2'	Standing water? Y/N but water vary close to surface, and in	ى ئىلچىمى
	Sampling tool: T-handle auger T-handle sl	udge sampler Sludge sampler w/ slide hammer	برالح
	Photo info/comments: Sediment matrix.	Collect first sample at 2' bgs	
	because veg mal present from 0.	-2' bgs.	
	Transect #: \{	Position: 2 Depth: 2.5	
slalu	Sample ID: 11 NC28SSO47-2-5	-	
1720	Sample Description: 90/2 organic 511, 40/2 (material type, moisture content, color, general density, etc.)	le peat, Moist, brown, very strong fu	થ
	Vegetative mat present? (Y)N	Standing water? Y/N 500 above	
	Sampling tool: T-handle auger T-handle si	udge sampler w/ slide hammer	
	Photo info/comments: Sediment matrix,	2nd depth at point 047	
		· · · · · · · · · · · · · · · · · · ·	
		····	
	Transect #:	Position: 2	
: (Sample ID: 11 NC2855017-3	Depth: 3'	
311/11	Sample Description: Organic Silt w/ trace	Fire sand, moist, brown, strong &	
1725	(material type, moisture content, color, general density, etc.)		
	Vegetative mat present? (V/N	Standing water? Y/N Ge alove	
	Sampling tool: T-handle auger T-handle sl	udge sampler w/ slide hammer	
	Photo info/comments: Sediment matrix.	3rd depth at point 047	

T	ransect #:	Position: 3
S	Sample ID: 11 10 7555 C45 - 1	Depth:
S	Sample Description: 70% Gift, 30% peat, 3	vet regatively loose, readish brown,
	naterial type, moisture content, olor, general density, etc.) <u>Mcderale</u> Fuel cdor	· · · · · · · · · · · · · · · · · · ·
V	/egetative mat present? Y/N	Standing water? (Y) N ~ \('
S	Sampling tool: T-handle slud	ge sampler w/ slide hammer
P	Photo info/comments: Simple collected From	Stram, Sediment Matrix.
_	Steen generated when sediment dis	sturbed
7	Fransect #: S	Position: ³
S	Sample ID: 11 NCX 55045 -1.5	Depth: 1.5
(1	material type, moisture content,	anics, some black post, wet, relatively
7	Vegetative mat present YN	Standing water? (Y/N Le Above
S	Sampling tool: T-handle auger T-handle sluc	ge sampler Sludge sampler w/ slide hammer
F	Photo info/comments: Scalment matrix Iv	d depth at point 048
	See allove commonts	
7	Transect #:	Position: 3
5	Sample ID: // NCOSSSC48-7	Depth: 2'
(Sample Description: Silty Clay, trace Organical (material type, moisture content, color, general density, etc.) Slight fuel color	s, wet, groy w/some brown, possible
٠,	Vegetative mat present? (Y/N	Standing water? (Y/N See Above
,	-	
	Sampling tool: T-handle auger T-handle sluce	lge sampler Sludge sampler w/ slide hammer
Ç	Sampling tool: T-handle auger T-handle sluce Photo info/comments: Gdiment matrix.	•

	Transect #: 4	Position: 4
	Sample ID: <u> INCXSSO49 - 5"</u>	Depth: (.5
1181	Sample Description: 75% 611, 25% part, (material type, moisture content, color, general density, etc.) black (part), strong	
910	Vegetative mat present? (\(\hat{Y}/N\) \(\lambda\).5'	Standing water? YN but itso infiltrated into Sample hole.
	Photo info/comments: Calleded at location	
	· · · · · · · · · · · · · · · · · · ·	collected at 1.5' bgs, because veg mat 0-10
· 	<u> </u>	
	Transect #:	Position: 4
18/11	Sample ID: 11NC36 SS 049 - 2	Depth: 2
994	Sample Description: Organic Silt w/ Some posture content, color, general density, etc.) and black (peat),	moderate fuel ada (
	Vegetative mat present YN	Standing water? Y
	Sampling tool: T-handle auger T-handle	sludge sampler w/ slide hammer
	Photo info/comments: See above Comment **DUPLICATE NC 38 55	ts. Sadiment matrix. 2nd depth at point 049
	Transect #: 4	Position: 4
٠	Sample ID: 11NC3855049-3-5	Depth: 2.5
40 H0	· · ·	peat, wet, moderately dense, brown (sitt), moderate fuel odor
	Vegetative mat present? \(\overline{\O} / \N \)	Standing water? Y.
	Sampling tool: T-handle auger T-handle	sludge sampler w/ slide hammer
-	Photo info/comments: See alone comments	. Sediment Matrix, 3rd depth at point 049
		<u> </u>

	Transect #: Position: 5
	Sample ID: 1 100 0.75 Depth: 0.75
l	Sample Description: Organic sit and peat wet, brown, ne fuel oder
	(material type, moisture content, color, general density, etc.)
	Vegetative mat present? O/N 0.75 Standing water? Y/N bor some water skuly infiltratury into samp
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Galinest matrix.
	Transect #: S Position: 5
	Sample ID: 11 NC28 050 - 1-25 Depth: 1.25
	Sample Description: Organic Silt w/ some gravel, wet, brown, slight
	(material type, moisture content, color, general density, etc.) Fuel address:
	Vegetative mat present? (Y)N Standing water? Y(N)
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 4 diment matrix.
·	
	Transect #: Position: 5
1	Sample ID: 11NC38SS050 -1.75 Depth: 1.75
,t	Sample Description: Organic gilt, moist, brown, no Ael odar
	(material type, moisture content, color, general density, etc.)
	Vegetative mat present? (Y/N Standing water? Y/N)
	Sampling tool: T-handle auged T-handle sludge sampler Sludge sampler w/ slide hammer

		$\mathcal{F}^{\mathcal{O}}$,
	Transect #:	Position: 16
	Sample ID: [1 NC2655051 - 0.5	Depth: 0.5'
5/18/11		lorganic silt, moist, mad dense, gray lorganic silt), no feel oder
0 € 0]	Vegetative mat present? (Y/N relatively thin	
	9	le sludge sampler Sludge sampler w/ slide hammer
		ie studge sampter w/ stude nammer
	Photo info/comments: Soil matrix	······································
		· · · · · · · · · · · · · · · · · · ·
		ブ
	Transect #:	Position:
الأوام	Sample ID: 11NC38SSO51-1	Depth: \(\frac{1}{2} \)
1035	Sample Description: Suty clay; Moist, (material type, moisture content, color, general density, etc.)	mod dense, gray, no fuel oder
	Vegetative mat present? (Y)N	Standing water? Y(N)
	Sampling tool: 1-handle auger T-hand	le sludge sampler w/ slide hammer
e e	Photo info/comments: Scil matrix	·
		
		X /
Kg 11	Transect #:	Position: // ()
	Sample ID: // NC7655051-1,5	Depth: (.5
35	Sample Description: Clay, Most, N (material type, moisture content, color, general density, etc.)	led dense, gray, no fud oder
	Vegetative mat present?(Y/N	Standing water? YN
	Sampling tool: Thandle auger T-hand	lle sludge sampler W/ slide hammer
	Photo info/comments: Gil matrix, Refu	sal @ 1.5' bgs-rock

Transect #:	Position:
Sample ID: 1NC38SS052 - 0.5	Depth: 0.5
Sample Description: 60% agance 514, 40% (material type, moisture content, color, general density, etc.)	peat, moist mad dense, brown,
Vegetative mat present? (Y)/N Thin	Standing water? Y/N
Sampling tool: T-handle auger T-handle	e sludge sampler w/ slide hamme
Photo info/comments: Scil matrix.	
- A	•
Transect #:	Position:
Sample ID: 11NC28 SS052-1	Depth:
Sample Description: Capanic Silt, Mas, IM (material type, moisture content, color, general density, etc.)	od deuse, brown, fuel oder
Vegetative mat present? (Y/N	Standing water? Y(N)
Sampling tool: T-handle auger T-handle	e sludge sampler w/ slide hamm
Photo info/comments: 501 Matrix.	
	·
Transact # 9	Position:
Transect #: 9	Position: 1.5'
Sample ID: 11NC38SS052-1.5	Depth: \.5'
Sample ID: 11NC38SS052-1.5	
Sample ID: <u>IINC38SS052-1.5</u> Sample Description: <u>1!NC38S5053-1.5</u> (material type, moisture content,	Depth: \.5'
Sample ID: IINC 38SS 052-1.5 Sample Description: 1! NC 38SS 053-1.5 (material type, moisture content, color, general density, etc.) Vegetative mat present? (V/N	Depth: 1.5' Aganic silt, moist, med. dense, brown,

	Transect #:	Position:
-	Sample ID: [NC288 S053 -	Depth: 1' (bgs, Not below untor surface)
1115	Sample Description: 75% Rat w/25% orga (material type, moisture content, color, general density, etc.) W/ Slight reddish s	
٠.	Vegetative mat present?	Standing water? (Y) N (0-12"
·		udge sampler w/ slide hammer
-	Photo info/comments: <u>Sediment Matrix</u> . I because veg mat 0-1. Collected un	st sample collected at point 053 ge of small pond
	Transect #: 9	Position: 2
8/18/11	Sample ID: 11 NC28SS05 3-1,5	Depth: 1.5' (bys, NOT below water surface)
1125	Sample Description: Consult Site of Some particular type, moisture content, color, general density, etc.)	· · · · · · · · · · · · · · · · · · ·
	Vegetative mat present? (Y)N see also	Standing water (Y)/N & Above
	Sampling tool: T-handle auger T-handle sl	udge sampler w/ slide hammer
	Photo info/comments: Seediment matrix See	e notes above: and semine depth at point 05
		-2.5 @ 1130
		JC
ì	Transect #: 4	Position: 3
5/15/11	Sample ID: 11 NC 25SO 53-2	Depth: 2'(bgs, not below water surface)
1140	Sample Description: Organic Silt W/ some point (material type, moisture content, color, general density, etc.) brown, no feel addresses	
	Vegetative mat present? (Y)N 500 aleve	Standing water? YN See Above
	Sampling tool: T-handle auger T-handle sl	udge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix. See	notes above. 3rd depth at point 05%
	* Mb/MSD - triple velume	l

		W.
	Transect #:	Position: 3
ادأما	Sample ID: 11NC 2855054 - 6.5	Depth: 0.5
6/15/1 1330	Sample Description: Organic Clausey Silt W/ (material type, moisture content, color, general density, etc.) Slight Fuel color	some peat, wet, relatively loose,
	Vegetative mat present? Y (N)	Standing water? (Y/N ~ 12-16"
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Ged Ment Matrix	
	Transect #:	Position: <u>H</u> 3
5/16/11	Sample ID: 11 NC 2855 054-1	Depth:
1335	Sample Description: Organic dayey fift, more (material type, moisture content, color, general density, etc.)	st, relatively loose, slight fuel
	Vegetative mat present? Y(N)	Standing water? Y/N 456 alook
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sodiment matrix	<u> </u>
: . ·		JC
	Transect #:	Position: 75
5/18/11	Sample ID: 11 NC 3455 054.1.5	Depth: 1.5
1345	Sample Description: Organic Clayer 51t, 5 (material type, moisture content, color, general density, etc.) hard, Sight Fuel	odar odar clay, partially frozen,
	Vegetative mat present? Y(N)	Standing water? YN 500 Alove
	Sampling tool: T-handle auger T-handle slu	ndge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix	

Transect #: Position # 4 Sample ID: [180588035 1.5 Depth: [1.5] Sample Description: Organic 51t w/ some clay, wit, med dense, no And (material pps, mediture content, other clay, wit), med dense, no And (material pps, mediture content, other clay, wit), med dense, no And (material pps, mediture content, other clay, wit), mediture info/comments: 52d ment matrix. Photo info/comments: 52d ment matrix. It simple Collected at 1.5' tas because use mat 0 1.5' Transect #: 9 Position: 9 Position		The second secon	び
Sample Description: Organic sett will some class, wet, med dense, no find color general density, and color general density and color g		Transect #: 1	Position: 5
Sample Description: Analysis of the standing water? The standing w	í ÁU	Sample ID: 11 No.255 0 55 - 1.8 I	Depth:(、5
Vegetative mat present? (N) 1.5 Standing water? Y/O but water infilt ration immediately into sample Sampling tool: (Thandle auger) Thandle sludge sampler Sludge sampler While hammer type of veg. most is pulse. Photo info/comments: 56d ment matrix. By Sample ID: 11NC2 SSS C55-2 Sample ID: 11NC2 SSS C55-3 Depth: 2 Sample Description: 14NC28SSC55-3 Creanic clayery sitt, moist, med. dones, (material type, moisture content, color, general density, etc.) Vegetative mat present? (N) See above Standing water? Y/N 500 above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: /ediment matrix. 2nd depth (collected at point 055) Transect #: 9 Position: 54 Position: 54 Sample ID: 11NC28SC55-2:5 Depth: 2.5 Sample ID: 11NC28SC55-2:5 Depth: 2.5 Vegetative mat present? (N) 500 above Standing water? Y/N 500 above Sample ID: 11NC28SC55-2:5 Depth: 2.5 Vegetative mat present? (N) 500 above Standing water? Y/N 500 above Sample ID: 11NC28SC55-2:5 Depth: 2.5 Vegetative mat present? (N) 500 above Standing water? Y/N 500 above S	9 1	Sample Description: Organic sit w/ some of	lay wet, med dense, no fuel
Sampling tool: Thandle augor Thandle studge sampler Studge sampler Wilde hammer Photo info/comments: Seli ment matrix Transect #: 9 Sample ID: II NC25SS 055-2 Sample ID: II NC25SS 055-2 Sampling tool: Thandle augor Thandle studge sampler Studge sampler wilde hammer Photo info/comments: 10 pepth: 2 Transect #: 9 Position: 5 Crganic clausery self, moist, mod. dense, (material type, moisture content, color, general density, etc.) No full clear at present? Will see above Stunding water? Y/N 500 above Sampling tool: Thandle augor Thandle studge sampler Studge sampler wilde hammer Photo info/comments: 10 pepth: 2.5 Transect #: 9 Position: 5 Vegetative mat present? Will see above Standing water? Y/N 500 above	fri CO	$\sim 10^{\circ}$	
Photo info/comments: Sediment matrix. Transect #: 9 Position: S Depth: 2' Sample Description: HNC255555 Caganic clargey sitt, moist, med. dense, (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N SEE above Standing water? Y/N SEE above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Gediment matrix. 2nd depth (collected at paint 055) Transect #: 9 Position: S Vegetative mat present? (V)N SEE above Sample ID: NC265055-25 Popth: 2.5' Sample Description: Organic clargey silt, moist, fairly dense, no fiel ode: (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N SEE above Sampling tool: T-handle auger) T-handle sludge sampler Sludge sampler w/ slide hammer	·	Vegetative mat present? (Y) N 1.5	Standing Water/ V/MV/
Photo info/comments: Seliment matrix 1st sample cellected at 1.5' tas because veg mat 0.1.5' Transect #: 9 Sample Description: HNCASSC55-2 Depth: 2' Sample Description: HNCASSC55-2 Cagaric clavery silt, moist, med dense; (material type, moisture content, color, sement density, etc.) Negetative mat present? (N) See above Standing water? Y/N 500 above Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammer Photo info/comments: Gediment matrix. 2nd depth Collected at point 055 Transect #: 9 Position 5 4 Sample Description: Organic clausery silt, moist, fairly dense, no fiel cdc/ (material type, moisture content, color, general density, etc.) Vegetative mat present? (N) 500 above Standing water? Y/N 400 above Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammer Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammer Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammer		Sampling tool: T-handle auger T-handle sludge	sampler Sludge sampler wy slide hammer when
Transect #: 9 Position: S Sample ID: 11NC25SS 055-2 Depth: 2' Sample Description: 1+NC25SS055-2 Geganic clayery sitt, moist, med dense, (material type, moisture content, color, general density, etc.) Vegetative mat present? (N) See above Sampling tool: 1-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4-diment matrix. 2nd depth collected at point 055. Transect #: 9 Position: 5 Position: 5 Position: 5 Position: 5 Sample ID: 11 NC285S085-25 Depth: 2.5' Sample Description: Organic clayery silt, moist, fairly dense, no feel eder (material type, moisture content, color, general density, etc.) Vegetative mat present? (N) See above Standing water? Y/N 4ee allowe Sampling tool: 1-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	·	Photo info/comments: Sediment matrix.	
Sample ID: II NC28SS C55-2 Sample Description: HNC28SSC55-2 Crganic Clayery silt, moist, med. dorse, (material type, moistrue content, color, general density, etc.) No ful cder Vegetative mat present? (V)N See above Standing water? Y/N 500 above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4cd ment matrix. 2nd depth collected at point 055. Transect #: 9 Position: 3 4 Sample Description: Organic clayery silt, moist, fairly dense, no fuel cder (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N 500 above Standing water? Y/N see above Standing water? Y/N		1st sample collected at 1.5' bgs	because veg mat 0-1.5'
Sample ID: II NC28SS C55-2 Sample Description: HNC28SSC55-2 Crganic Clayery silt, moist, med. dorse, (material type, moistrue content, color, general density, etc.) No ful cder Vegetative mat present? (V)N See above Standing water? Y/N 500 above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4cd ment matrix. 2nd depth collected at point 055. Transect #: 9 Position: 3 4 Sample Description: Organic clayery silt, moist, fairly dense, no fuel cder (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N 500 above Standing water? Y/N see above Standing water? Y/N			· · · · · · · · · · · · · · · · · · ·
Sample ID: II NC28SS C55-2 Sample Description: HNC28SSC55-2 Crganic Clayery silt, moist, med. dorse, (material type, moistrue content, color, general density, etc.) No ful cder Vegetative mat present? (V)N See above Standing water? Y/N 500 above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4cd ment matrix. 2nd depth collected at point 055. Transect #: 9 Position: 3 4 Sample Description: Organic clayery silt, moist, fairly dense, no fuel cder (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N 500 above Standing water? Y/N see above Standing water? Y/N			JC 1
Sample Description: HNC25555 2 Crganic Clausey selt, moist, med. dorse, (material type, moisture content, color, general density, etc.) Vegetative mat present? (Y)N SEE 2 Love Standing water? Y/N 500 2 Love Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Lediment Matrix. 2nd depth Collected at peint 055. Transect #: Position 5 4 Sample ID: 11 NC285055 - 2.5 Depth: 2.5 Sample Description: Organic clausey selt, moist, fairly dense, no feel oder (material type, moisture content, color, general density, etc.) Vegetative mat present? (V/N 500 2000 Standing water? Y/N 400 2000 Standing water? Y/N 400 2000 Standing tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Transect #:	Position: 5
Transect #: 9 Sample Description: Organic clarge Start, Moist, Fairly dense, no feel cdc: (material type, moisture content, color, general density, etc.) Vegetative mat present? (V)N 500 above Standing water? Y/N 500 above Standing water? Y/N 500 above Standing water? Y/N 500 above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4cd went matrix. 2rd depth collected at point 055. Position 5 4 Sample ID: 11 NC 28 35 085 - 2.5 Depth: 2.5 Simple Description: Organic clargey 511t, Moist, Fairly dense, no feel cdc: (material type, moisture content, color, general density, etc.) Vegetative mat present? (I/N 500 aloc ve Standing water? Y/N 4col 20 ve Sampling tool: T-handle auger) T-handle sludge sampler Sludge sampler w/ slide hammer	المأمأ	Sample ID: <u> NC7 SSS 655 - 7 </u>	Depth: 😝 ′
Vegetative mat present? (V) See above Standing water? Y/N 500 above Sampling tool: 1-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: 4cd.mcnt matv.x. 2rd depth Collected at point 055 Transect #: 9 Position 54 Sample ID: 11 NC 2655055 - 2.5 Depth: 2.5' Sample Description: Organic clausey 511t, Moist, Fawly dense, no fuel cdc/ (material type, moisture content, color, general density, etc.) Vegetative mat present? (V/N 500 above Standing water? Y/N 4col/ave Sampling tool: Thandle auger) T-handle sludge sampler Sludge sampler w/ slide hammer	اهر ا ج	· · · · · · · · · · · · · · · · · · ·	nic clayers sitt, moist, mod denses,
Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Galiment matrix. 2nd depth Collected at point 055 Transect #: Position: 5 Sample ID: 11 NC 2-8 35 055 - 2-5 Depth: 2-5 Sample Description: Organic clausey 511t, Moist, fairly dense, no feel cdc: (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 alocke Standing water? Y/N 400 2000 Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer	1415		
Photo info/comments: Gediment matrix. 2nd depth Collected at paint 055. Transect #:	•	Vegetative mat present? (Y)N See above	Standing water? Y/N 500 allowe
Transect #: 9 Sample ID: 11 NC 28 55 05 5 - 2.5 Depth: 2.5' Sample Description: Organic clausey 511t, Moist, Fairly dense, no feel oder (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 alove Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Sampling tool: T-handle auger T-handle sludge	e sampler Sludge sampler w/ slide hammer
Transect #: 9 Sample ID: 11 NC 28 55 05 5 - 2.5 Depth: 2.5' Sample Description: Organic clausey 511t, Moist, Fairly dense, no feel oder (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 alove Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Photo info/comments: Jediment matrix. 2n	d depth collected at point 055
Sample ID: 11 NC 285055-2.5 Depth: 2.5' Sample Description: Organic clausing 51t, Moist, Fairly dense, no feel oder (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 also Standing water? Y/N 500 also Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		· · · · · · · · · · · · · · · · · · ·	
Sample ID: 11 NC 285055-2.5 Depth: 2.5' Sample Description: Organic clausing 51t, Moist, Fairly dense, no feel oder (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 also Standing water? Y/N 500 also Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer			
Sample ID: 11 NC 285085-2.5 Depth: 2.5' Sample Description: Organic clausey 511t, moist, fairly dense, no feel ode: (material type, moisture content, color, general density, etc.) Vegetative mat present? O/N 500 above Standing water? Y/N 400 bove Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer			TE,
Sample Description: Organic Clayey 511t, Moist, Fairly dense, no fuel cdci (material type, moisture content, color, general density, etc.) Vegetative mat present? W/N 500 above Standing water? Y/N 400 above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	•	Transect #: 4	Position 8
(material type, moisture content, color, general density, etc.) Vegetative mat present? Vegetative mat present? Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer		Sample ID: 11 NC 7-855 055 - 2-5	Depth: 2.5
Vegetative mat present? (In 500 aloo Standing water? Y/N 400 aloo Sampling tool: Thandle auger) Thandle sludge sampler Sludge sampler w/ slide hammer	8/15/11		oist, fairly dense, no fuel oder
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	1425		
Sol hand 2 d half collabol at mint por	,	Vegetative mat present? ⊕/N 50€ 31∞ 1€	Standing water? Y/N 400 a lave
Photo info/comments: Sediment matrix. 3rd depth collected at point 055		Sampling tool: T-handle sludge T-handle sludge	e sampler Sludge sampler w/ slide hammer
	3 00	Photo info/comments: Sediment matrix. 3rd	depth collected at point 055
			,

Fransect #:	
**************************************	Position:
Sample ID: (INC285556-0.15	Depth: 0 - 75 '
	ist, relatively loose, brown, no
material type, moisture content, color, general density, etc.)	· · · · · · · · · · · · · · · · · · ·
Vegetative mat present? $(\widehat{Y})/N$ $(.75)'$	Standing water? Y (N)
Sampling tool: T-handle auger T-ha	ndle sludge sampler Sludge sampler w/ slide hamme
Photo info/comments: Soil Matrix	
<u> </u>	· · · · · · · · · · · · · · · · · · ·
Transect #:	Position: 5
Sample ID: 11 NC2855056-1.25	Depth: 1.25
Sample Description: Organic Silt, Moreometrial type, moisture content, color, general density, etc.)	ist, relatively loose, brown, no fuel
Vegetative mat present? (Y/N 566 Alove	Standing water? YN
Vogetative mat present. (1)/11 Dec 1100 40	Standing Water: 1711)
Sampling tool: (7-handle auger) T-ha	
Sampling tool: (Fhandle auger) T-ha	
Sampling tool: (7-handle auger) T-ha	andle sludge sampler Sludge sampler w/ slide hamme
Sampling tool: (7-handle auger) T-ha	
Sampling tool: (7-handle auger) T-ha	
Sampling tool: (T-handle auger) T-ha Photo info/comments: 50 matrix Transect #: 9 Sample ID: 11 NC PSSC 56-1.75	Position: 5 Depth: \. 75 '
Sampling tool: (T-handle auger) T-ha Photo info/comments: 50 matrix Transect #: 9 Sample ID: 11 NC PSSC 56-1.75	andle sludge sampler w/ slide hammer sludge sludge sampler w/ slide hammer sludge sludge sampler w/ slide hammer sludge
Sampling tool: (T-handle auger) T-ha Photo info/comments: Stil matrix Transect #: Sample ID: NC385555- .75 Sample Description: Cayay 511t, moist (material type, moisture content,	Position: 5 Depth: \. 75 '
Sampling tool: (T-handle auger) T-handle auger	Position: 5 Depth: 1.75' The dame, brown, no feel adar

	Transect #: !C	Position:
-	Sample ID: 11 NC 2855C57 - 1.5	Depth: 15'
5/B/N 1535	Sample Description: Organic sit if some per (material type, moisture content, color, general density, etc.)	at, wet, brown, no fuel oaks
	Vegetative mat present? (1/N ~1.5)	Standing water? (Y) N & "
	Sampling tool: Thandle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: At Sugi River, Where Seed inent matrix. Ist sample of	dranage basin empties into river.
	also having problems keeping	material in auger
8/18/V	Transect #: 10 Sample ID: 11 NC33 SS057-2	Position: Depth: 2'
1545	Sample Description: Organic filt, force rock (material type, moisture content, color, general density, etc.)	
	Vegetative mat present? Y/N	Standing water (Y/N 6"
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Scaliment matrix. In	d dopth at point 057.
	<u> </u>	·
	Transect #:	Position:
i i.	Sample ID: 11NC2855057-25	Depth: 2.5
6/16/11	Sample Description: Silty Clay w/ 50mg grave (material type, moisture content, color, general density, etc.)	el, wot, gray med. dense; possible
	Vegetative mat present? (Y)N	Standing water? Y/N 6"
	Sampling tool: P-handle auger T-handle sh	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gentiment Matrix, 300	depth at point 057.
		•

Position: A Sample ID: INCORS.058-0.5 Depth: ~0.5 Sample ID: Sample ID: INCORS.058-0.5 Depth: ~0.5 Sample Description: Sitt and evaganics, wet, dark brewn, no. fiel ode. Countried type, moleture content, could, general deside, cit.] Vegetative mat present? Y/O Sampling tool: Thandle auger Thandle studge sampler Studge sampler w/ slide hammer Photo info/comments: Sectional matrix. At Seqi River where diametry. Transect #: IC Position: 2 Depth: ~1' Sample Description: Ovaganic silt and peat, wet, prefly locuse, dark brown (matried type, mounture content, color, general deside, cit.) Vegetative mat present? Y/O Sampling tool: Thandle auger Thandle studge sampler Photo info/comments: See Comment sleve. Scalurent matrix **DUPLIC ATE INC 28 35058-3 & Moto Vegetative mat present? Y/O Sample Description: Sitty clay of trace five said, wet, med. derive, # Transect #: IC Position: 2 Sample Description: Sitty clay of trace five said, wet, med. derive, # Underly spending content Vegetative mat present? Y/O Standing water? (IN secaleve) Sample Description: Sitty clay of trace five said, wet, med. derive, # Vegetative mat present? Y/O Standing water? (IN secaleve) Sample Description: Sitty clay of trace five said, wet, med. derive, # Vegetative mat present? Y/O Standing water? (IN secaleve) Sample Description: Sitty clay of trace five said, wet, med. derive, # Vegetative mat present? Y/O Standing water? (IN secaleve) Sample Description: Sitty clay of trace five said, wet, med. derive, # Vegetative mat present? Y/O Standing water? (IN secaleve) Sample Description: Sity clay of trace five said. Vegetative mat present? Y/O Standing water? (IN secaleve) Standing water? (IN secaleve) Sample Description: Sity clay of trace five said. Vegetative mat present? Y/O Standing water? (IN secaleve)		The state of the s	
Sample Description: Sult and cryonics, wet, device brown, no fuel cate. (marcial type, mentative contact, color, general death; etc.) Vegetative mat present? Y/O Sampling tool: Thandle anger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sceliment matrix. At Scopi River wire drainage Depth: ~1/ Sample Description: Organic silt and peat, wet, pretty iccs, darf brown (material type, moenture contact, color, general deaths, etc.) Vegetative mat present? Y(O) Sampling tool: Thandle anger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment sleave Geliment matrix Transect #: ID Position: 2 Sample Description: Thandle anger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment sleave Geliment matrix Transect #: ID Position: 2 Sample Description: Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment sleave Geliment matrix Transect #: ID Position: 2 Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color, goord deaths, dec) Vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color, goord deaths, dec) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color, goord deaths, dec) Vegetative mat present? Y(O) Sample Description: Silty clay trace fire God, wet, med. detwe, John firel color vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color vegetative mat present? Y(O) Sample Description: Silty clay w/ trace fire God, wet, med. detwe, John firel color vegetation.		Transect #:	
Sample Description: Sift and evasines, wet, day brown, no tour each content color, general dansity, ac.) Vegetative mat present? Y/B Standing water? (V/N ~ 8-10") Sampling tool: T-handle sugger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section at Matrix. At Sequilibrate diverse divaring to 12.5(n) Empties into the rive. Transect #: IC Position: 2 Sample Description: Organic sult and peat, wet, pratty longe, don't brown (naterial type, mosture content, color, general density, ac.) Vegetative mat present? Y/B Standing water? (V/N see above Sampling tool: T-handle slugger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment shows. Saliment matrix Transect #: IC Position: 2 Sample Description: Other class of the color sample method info/comments: See Comment shows. Saliment matrix Transect #: IC Position: 2 Sample D: IINC2835C58-1.5 Depth: 1.5 Sample D: IINC2835C58-1.5 Depth: 1.5 Sample D: IINC2835C58-1.5 Depth: 1.5 Sample D: IINC2835C58-1.5 Sample method for shows a show of the color shows a sampler of the color vegetative mat present? Y/D Standing water? (V/N see above Sampling tool: T-handle sludge sampler Sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Seediment Matrix. Slight sheen produced.	V Late	·	
Vegetative mat present? Y/N ~ 8-10" Sampling tool: T-handle anger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sediment Matrix. At Seq. River where draining to modern Emphres into the river. Transect #: 10	5 .	(material type, moisture content,	t, dark brown, no fuel oder
Photo info/comments: Section at Matrix. At Sequi River where draining below the river. Transect #: IC Position: 2 Depth: ~1' Sample Description: Organic zitt and peat, wet, pretty too se, don't brown (material type, monture content, color, general denaty, etc.) Vegetative mat present? Y(B) Standing water? (V) see above Sampling tool: Thandle auger T-handle studge sampler Studge sampler w/ stide hammer Photo info/comments: See Comment above Gediment matrix Transect #: IC Position: 2 Sample ID: [INC 28 35 05 8 1.5 Depth: 1.5' Sample Description: 5ths clay with trace fine Good, wet, med. dense, see Comment above Gediment water, wet, med. dense, see Content of the Good (anoted type, moisure content, color, general density, etc.) Vegetative mat present? Y(D) Standing water? (V) See above Sampling tool: Thandle auger) T-handle studge sampler Studge sampler w/ stide hammer Photo info/comments: God/went Matrix, Slight Sheen produced	·		Standing water? $(Y)/N \sim 8-10^{4}$
Photo info/comments: Section of Matrix. At Super River without distinguished the river. Transect #: 10 Position: 2 Sample ID: 11NC 2535655 -1 Depth: ~1' Sample ID: 11NC 2535655 -1 Depth: ~1' Sample addessity etc) (satist and post, wet, pretty iccs, don't brown (matrial type, moisture content, color, general density, etc) Vegetative mat present? Y(N) Standing water? (V) Gee Slove Sampling tool: Thandle auger) Thandle studge sampler Studge sampler w/ slide hammer Photo info/comments: See Comment slove: Satiment matrix DUPLIC ATTE IINC 2835058 -3 Depth: 1.5' Sample ID: 11NC 2835058 -1.5 Depth: 1.5' Sample Description: Sitty clay of trace fine said, wet, med. depths, one of the color, general density, etc) Vegetative mat present? Y(N) Standing water? (V) See slove Sampling tool: Thandle auger) Thandle studge sampler Studge sampler w/ slide hammer Photo info/comments: See Comment Studge Sampler Studge sampler Studge sampler w/ slide hammer Sampling tool: Thandle auger) Thandle studge sampler Studge sampler w/ slide hammer Photo info/comments: See Comment Matrix Stight sheen produced		1 0	dge sampler w/ slide hammer
Transect #: 10 Position: 2 Sample ID: 11 NC 2535 655 -1 Depth: ~1' Sample Description: Organic silf and peat, wet, pretty locse, dearf brown (material type, moisture content, color, general density, etc.) Vegetative mat present? Y(B) Standing water? (V) N GEC Show Sampling tool: Thandle auger T-handle studge sampler Studge sampler w/ slide hammer Photo info/comments: See Comment show Gedingent matrix **DUPLIC ATE IINC 28 35058 - 3 @ 1640** Transect #: 10 Position: 2 Sample ID: 11 NC 28 35058 - 1.5 Depth: 1.5' Sample Description: 51th, clay of trace fine 52nd, wet, med. dearce, of the color, general density, etc.) Vegetative mat present? Y(B) Standing water? (V) N See show Sampling tool: Thandle auger T-handle studge sampler Studge sampler w/ slide hammer Photo info/comments: 4 Eddinent Matrix Stight show produced		Photo info/comments: Sadiment mate	ix. At Sugi River where draining
Transect #: 10 Position: 2 Sample ID: 11 NC 2535 655 -1 Depth: ~1' Sample Description: Organic silt and peat, wet, prafty icc se, don't brown (material type, mosture content, color, general density, etc) Vegetative mat present? Y(N) Standing water? (V) see above Sampling tool: (T-handle auger) T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment above Galiment Matrix DUPLIC ATE IINC 28 35058 - 20 16/40 Transect #: 10 Position: 2 Sample ID: (INC 28 35058 - 1.5 Depth: 1.5' Sample Description: Sitty clay of trace five said, wet, med. derive, 35 (material type, moisture content, color, general density, etc.) Vegetative mat present? Y(D) Standing water? (V) See above Sampling tool: (T-handle auger) T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Godinent Matrix Slight Sheen produced	-		
Sample ID: 11NC 2355 655 -1 Sample Description: Organic silt and post, wet, pretty lock, don't brown (naterial type, moisture content, color, general density, etc.) Vegetative mat present? Y(N) Standing water? (V/N) Get above Sampling tool: Finandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment above Gedingent matrix DUPLIC ATE IINC 28 35058 -3 & 1640 Transect #: 10 Position: 2 Sample ID: 11NC 28 35058 -1.5 Depth: 1.5 Sample Description: Sitts clay w/trace fine said, wet, med. dense, standing water? (V/N) see above Vegetative mat present? Y(N) Standing water? (V/N) see above Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Gedinent Matrix Slight sheen produced		, 1	
Sample ID: 11NC 2355 655 -1 Sample Description: Organic silt and post, wet, pretty lock, don't brown (naterial type, moisture content, color, general density, etc.) Vegetative mat present? Y(N) Standing water? (V/N) Get above Sampling tool: Finandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment above Gedingent matrix DUPLIC ATE IINC 28 35058 -3 & 1640 Transect #: 10 Position: 2 Sample ID: 11NC 28 35058 -1.5 Depth: 1.5 Sample Description: Sitts clay w/trace fine said, wet, med. dense, standing water? (V/N) see above Vegetative mat present? Y(N) Standing water? (V/N) see above Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Gedinent Matrix Slight sheen produced			
Sample ID: 11 NC 2535 665 - Depth:		Transect #: \C	Position: 2
(material type, moisture content, color, general density, etc.) Vegetative mat present? Y(N) Standing water? (V)N Gee above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment above Gediment Matrix **DUPLIC ATE IINC 28 35058-3 & 1640 Transect #: 10 Sample ID: 11NC 28 35058-1.5 Depth: 1.5' Sample Description: Silty clay wittage fine God, wet, med. derve, of material type, moisture content, color, general density, etc.) Vegetative mat present? Y(N) Standing water? (V)N See above Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: God ment Matrix Slight Sheen produced	્રોહ્ના હ		Depth: ~ \ '
Vegetative mat present? YN Standing water? (YN GOE above) Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See Comment above Godinent matrix X DUPLIC ATE IINC 28 35058-3 & 1640 Transect #: 10 Sample ID: 11 NC 28 35058-1.5 Depth: 1.5' Sample Description: Sitty clay w/ trace five God, wet, med. derve, X (material type, moisture content, color, general density, etc.) Vegetative mat present? YND Standing water? (YN See above) Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: God (Ment Matrix Slight Sheen produced)	1635		
Photo info/comments: See Comment share Galiment matrix **DUPLIC ATE IINC 2835058-3 & 1640 Transect #: 10 Position: 2 Sample ID: 11NC 2835058-1.5 Depth: 1.5 Sample Description: Githy clay with trace fine Gard, wet, med. derive, of the coor, general density, etc.) Vegetative mat present? Y.D. Standing water? Gr/N see above. Sampling tool: T-handle auger) T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Godiment Matrix. Slight sheen produced		<u> </u>	•
Transect #: 10 Position: 2 Sample ID: [INC 2835 C58-1.5 Depth: 1.5] Sample Description: Sitty clay with trace fine sand, wet, med. dealers, of medical type, moisture content, color, general density, etc.) Vegetative mat present? YO Standing water? G/N see above. Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sediment Matrix Slight sheen produced		Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
Transect #: 10 Position: 2 Sample ID: [INC 2835 C58-1.5 Depth: 1.5] Sample Description: Sitty clay with trace fine sand, wet, med. dealers, of medical type, moisture content, color, general density, etc.) Vegetative mat present? YO Standing water? G/N see above. Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sediment Matrix Slight sheen produced		Photo info/comments: See Comment above	Godinant matrix
Transect #: 10 Position: 2 Sample ID: 11 NC 2835058-1.5 Depth: 1.5 Sample Description: 51ty clay of trace five Good, wet, med. derve, of (material type, moisture content, color, general density, etc.) Vegetative mat present? Y.D Standing water? GY/N See above Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: God went Matrix Slight Sheen produced			
Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835		,	
Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835		· · · · · · · · · · · · · · · · · · ·	
Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [INC2835058-1.5] Depth: 1.5 Sample ID: [INC2835058-1.5] Sample ID: [Transect #: 15	Position: 2
Sample Description: 5thy clay witrace five 62nd, wet, med. derve, 35 (material type, moisture content, color, general density, etc.) Standing water? Gr/N see above Sampling tool: Thandle auger) Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Godinant Matrix Slight Sheen produced	ŧ	- *	Depth: \15'
Vegetative mat present? Y.D Standing water? G/N See Shave Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: God ment Matrix Slight Sheen produced	8/18/11		sand, wet, med. dense, of
Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: God went Matrix Slight sheen produced	1650	(material type, moisture content	70
Photo info/comments: Godinant Matrix Slight sheen produced		Vegetative mat present? Y.N	Standing water? GY/N See above
		Sampling tool: T-handle auger T-handle slu	idge sampler Sludge sampler w/ slide hammer
when sediment is disturbed.		Photo info/comments: Godinant Matri	x. Slight sheen produced
		when sediment is disturbed.	

Transect #:	Position: 3
Sample ID: 11NC2555059-05	Depth: ~0.5
Sample Description: Work organic sitt, 407	ic post, wet, loose, clark brown w/
(material type, moisture content, color, general density, etc.)	
Vegetative mat present? Y/N	Standing water? (Y) N $\sim 2-3''$
Sampling tool: T-handle auger T-handle	sludge sampler w/ slide hammer
Photo info/comments: At Sugi River where	o water from drainage basin enters
the River . Sediment matrix.	9
Transect #:	Position: 3
Sample ID: 11NC23SSC59-1	Depth:
Sample Description: 60% crganic Silt, (material type, moisture content, color, general density, etc.) no fiel ador	, 40% peat, wet, I case, dark brown,
Vegetative mat present? $\sqrt[4]{N}$	Standing water? (Y)N See alove
Sampling tool: T-handle auger T-handle	sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Sediment matrix	(
Thoto mio/comments.	· · · · · · · · · · · · · · · · · · ·
Transect #: 0	Position: 3
Sample ID: 11N278SSC54-1.5	Depth: \r\5'
Sample Description: 69c organic 51, 40	% pert, not, loose, darkabrain,
(material type, moisture content, color, general density, etc.)	ياع ا
Vegetative mat present? YN	Standing water: YN
Sampling tool: 7-handle auger T-handle	e sludge sampler w/ slide hammer
Photo info/comments: Sediment matrix	·
	

:		
	Transect #:	Position:
8/19/11	Sample ID: NOSSSOLO 10.5	Depth: 0.5
0150	Sample Description: Organic silt and gravelly (material type, moisture content, color, general density, etc.) Fuel Color	sand tol, wet, loose, gray, moderate
	Vegetative mat present? Y/N	Standing water? (/N ~2-4"
	Sampling tool: T-handle auger T-handle sluc	lge sampler W/ slide hammer
	Photo info/comments: Sample Collected in 6	tream between T7 and T8.
-	·	generated When sediment disturbed
)
	Transect #:	Position:
8/9/11	Sample ID:	Depth: /
(000		moderate fiel orbo
	Vegetative mat present? YN	Standing water? (V/N 400 above
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 500 Comments above	Gediment matrix
	* DUPLICATE IINC2859	5060-2 @ 1005
,	Transect #:	Position:
olalı	Sample ID: <u> NC 2855060 - 1.5</u>	Depth: 1,5
8/19/11	· · · · · · · · · · · · · · · · · · ·	ed. dense, brown, moderate
1012	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present?	Standing water (Y)N
	Sampling tool: T-handle auger T-handle slu	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 40 Comments alove.	Sediment matrix

•	Transect #: Position: 2	:
- 1 	Sample ID: 111028SS061-0.25 Depth: 0.25	<u>/</u>
jual 11 1030	Sample Description: 511t, 52nd, and some Vegetation, rematerial type, moisture content, color, general density, etc.) We getative mat present? (Y/N) Standing water?	to possible slight oder in si makingte / strong oder in Veg
	Sampling tool: T-handle auger T-handle sludge sampler Slu	ndge sampler w/ slide hammer
	Photo info/comments: Calledad from Stream between T7 av	d T8. Sodiment
	matrix.	* v _{a.} ,
	* MS/MSD - triple volume	The second secon
		the same ag
	Transect#: Position: 2	
Sigli	Sample ID: 11 NC 7855061 - 1.5 Depth: 155	
1035	Sample Description: Organic Gilt and peat, clark brown (sinternal type, moisture content, color, general density, etc.) Wet, Mederately loose, Slight fuel	
	Vegetative mat present? V/N Standing water?	
÷	Sampling tool: T-handle auger T-handle sludge sampler Sl	udge sampler w/ slide hammer
	Photo info/comments: 2nd sample Collected of 1.5' bgs;	because voots/veg mat
	present from ~0.5-1.5', Sediment matrix.	· · · · · · · · · · · · · · · · · · ·
	Roots/veg from ~05-1.5 has strong fuel	oder
1 11	Transect #: Position: 2	
8/19/11	"Sample ID: \(\lambda \) \(\frac{2}{3} \) \(\frac{1}{2} \) \(\frac{2}{3} \) \(\frac{1}{2} \) \(\frac{2}{3} \) \(\frac{1}{3} \) \(\frac{2}{3} \) \(\frac{1}{3} \) \(\frac{2}{3} \) \(\frac{1}{3} \) \(\frac{2}{3} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{2}{3} \) \(\frac{1}{3} \	
1055	Sample Description: O Clayey Silt trace reat, wet, med. do	ense, gray, slight
	(material type, moisture content, color, general density, etc.)	· · · · · · · · · · · · · · · · · · ·
	Vegetative mat present Y/N Standing water?	Y)N 500 allove
	Sampling tool: F-handle auger T-handle sludge sampler SI	udge sampler w/ slide hammer
	Photo info/comments: Sediment matrix. 3rd depth collected	at point 061.

	Transect #:	Position: 3
	Sample ID: 11 10 28 55 C 62 - 0. 3-5	Depth: 0.25'
8/19/11	Sample Description: bilt will trace sand, we (material type, moisture content, color, general density, etc.)	ot, losse, reddish brown, no oder
(110	Vegetative mat present? Y/N	Standing water? (Y/N ~ 6"
	Sampling tool: T-handle auger T-handle slu	udge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Scalment matrix 13	imple Collected From stream.
	Transect #:	Position: 3
8/19/11	Sample ID: 11 Nc 3855063 - 0.75	Depth: 0-75 (bgs, Not below water)
1130	Sample Description: 60% part, 40% organization (material type, moisture content, color, general density, etc.)	MC 3111, Wet, 1005e, Black, mederale
	Vegetative mat present? (YN~0.)-5-~0.75' ba	Standing water? (Y/N
·	Sampling tool: T-handle auger T-handle sl	ludge sampler w/ slide hammer
		nd sample collected at 0.75' logs,
	bocause roots/veg. ~0.25 0.75 = Root	15/veg have strong fiel oder.
And the second of the second of	Refusal at 0.75' bas - rock	5
1.14	Transect#:	Position:
Spain	Sample ID: 11 NC38 55063-0.35	Depth: 0.25
1350	Sample Description: SIT W/ Clay, trace (material type, moisture content, color, general density, etc.) POSSIBLE Slight oc	peat, wet, loose, radish brown,
\$ 15 m	Vegetative mat present? (Y)N ~0.5 - 1.75	Standing water? (Y/N Shoul)
		ludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gediment matrix. 4 02 septa, 2 16 02 jars.	3 javs of sample - 1 Moott-pres.
		

·	AND THE STATE OF T		
	Transect #:	Position:	
. 1	Sample ID: 11NC28SSO63-0.75	Depth: 0 - 75	
(19/11)	Sample Description: 90% peat, 10% on a at	nic silt, upt, med, danse, dark brown	
405			
	Vegetative mat present? (Y/N	Standing water? (Y) N	
	Sampling tool: T-handle auger T-handle sl	udge sampler Sludge sampler w/ slide hammer Shove	
	Photo info/comments: Sediment matrix, 2 3 jars calected.	and depth collected at paint 063	
		f.	
	Transect #:	Position: 4 Depth: 1.75	
1 1 /	Sample ID: 11NC 2885063 - 1.15		
3/19/11	Sample Description: 60% pear w/ 40% c	rganic silt, ust, med. dense, black (peat)	
1415	(material type, moisture content, color, general density, etc.) and brown (silt)	Strong Fuel odor	
	Vegetative mat present? N	Standing water? N	
	Sampling tool: T-handle auger T-handle sl	udge sampler w/ slide hammer	
	Photo info/comments: Sediment matrix 3	d depth collected at point 063	
	3 javs collected		
	Transect #:	Position: 5	
() a /	Sample ID: 11 NC2855064- 6.35	Depth: <u>6.25</u>	
MILL	Sample Description: Sut w trace sand, t	race peat, wet, loose, reddish	
(425)	(material type, moisture content, color, general density, etc.) Drown, no fue!	o do	
,	Vegetative mat present (Y)N ~0.25-(.75'	Standing water? (Y)N ~ 2 ~ 4"	
	Sampling tool: T-handle auger T-handle sl	udge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Galiment matrix.	3 jars collected Shovel	
	* DUPLICATE II NCOSS	. U	

	Transect #: Position:
1475 1436	Sample ID: 1 NC25 SS064 - 1.75 Depth: (.75)
	Sample Description: 80% par w/20% organic silt, wet, black (peat) =
	(material type, moisture content, color, general density, etc.) brown (Gilt), mod. Jense, moderate fuel adov
	Vegetative mat present? $(\hat{Y})N$ Standing water? $(\hat{Y})/N$
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: 46diment matrix. 2nd depth collected at point 064.
	then generated from this material.
	Transect #: Position: 5
olali	Sample ID: 11 NC28SS064 - 2.25 Depth: 2.25
1440	Sample Description: 75% organic silt, 25% post, moist pretty dense, brown (silt)
1990	(material type, moisture content; solor, general density, etc.) & black (poat), slight fucl oder
	Vegetative mat present? Y/N Standing water? Y/N
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix, 3rd depth collected at print 064.
	* DUPLICATE IINCASSOCAT-2.5 @ 1445
	en e
	Transect #: Position:
2 · 🛂	Sample ID: \(\(\mathbb{N}\mathcal{C} 2^8 \s\$ \s\$ \(\mathbb{G} - 2\) \(\mathcal{D}\mathcal{D} = \mathcal{D}\)
8/19/11	Sample Description: 60% peat, 40% organic silt, wet, med. dense, black (peat)
1505	(material type, moisture content, color, general density, etc.) and brown (silt), strong fuel odor
	Vegetative mat present? (Y)N ~0.5 - 2' Standing water? (Y)N 3-6"
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sectionent matrix. We 1st sample collected at 2' bas
	because Vog. mat present 0-2' bgs

	Transect #: Position:
	Sample ID: 102955065 - 2.5 Depth: 2.5
	Sample Description: Organic Silt, moist to wet, pretty dense, slight Feel
	(material type, moisture content, color, general density, etc.) Odor brown & gray
	Vegetative mat present? (Y) N 500 above Standing water? (Y) N 500 above
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gadiment Matrix and depth at point 065.
	Transect #: 1 Position:
	Sample ID: 1 NC7858065 - 3 Depth: 3'
	Sample Description: Organic Sitt & silty clay, moist, protty dense, brown (Git)
	(material type, moisture content, color, general density, etc.) and gray (silty clay), slight feel odor
	Vegetative mat present? YN 100 2000 Standing water? YN 500 2000
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
,e	Photo info/comments: Gedingent matrix 3rd depth at point 065.
	Photo info/comments: Ged ment matrix and depth at paint 065. X MS/MSD collected - double volume (2 Mobil 4 oz.)
	4 16 oz.
i	Transect #: V/A Position: V/A
I	Sample ID: 11 NC28SS066 - 0.75 Depth: 0.75 (Inclaw ground, Not Inclaw)
	Sample Description: Oganic Git and prat, wot, dans brown and black, moderate to
	(material type, moisture content, color, general density, etc.) Fuel oder
	Vegetative mat present? YN Standing water?(Y)N 9"
	Sampling tool: T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: At historic hotspot OINEDESD 155/156, Sodiment matrix.
	20 g Sample in Most Container, 2 16 oz. Containers.

	Transect #: Position: N	<u>/</u> #
8/19/11	,	(bys, NOT indow water surface)
1600	Sample Description: Organic Gift w/ Some post, wet, pro	etty danse, clark brown,
	(material type, moisture content, color, general density, etc.) Strong Fuel cdor.	
	Vegetative mat present? Y(N) Standing wat	er? (Y) N See above
	Sampling tool: T-handle auger T-handle sludge sampler	Sludge sampler w/ slide hammer
	Photo info/comments: Historic hotspot olNE285D155/156	. Sodiment matrix.
	Refusal at 1.25' bys-rock	
	* DUPLICATE 11 NC28550 GG-2	@ 1605 /
		<i>y</i>
	Transect #: N/A Position: N	<u>[</u>
10/11	Sample ID: 11NC2855067 -0.5 Depth: 6.5	· · · · · · · · · · · · · · · · · · ·
Olal !!	Sample Description: Sand, Wet, med. dense, brown,	no fuel oder
(K30)	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present? (M/N C - W) Standing wat	er? (N/N ~ 2"
	Sampling tool: T-handle auger T-handle sludge sampler	Sludge sampler w/ slide hammer
	Photo info/comments: Historichotspot OINESDI67	168.
		· · · · · · · · · · · · · · · · · · ·
	, · · · · · · · · · · · · · · · · · · ·	
	Transect #: N/k Position:	v/k
1 L.,	Sample ID: (INC2855067 - Depth:	
8/19/1h	Sample Description: Organic silt and sand, wet, medic	dense, brown, moderate
1635	color, general density, etc.) Full odor	· · · · · · · · · · · · · · · · · · ·
	Vegetative mat present? YN 500 above Standing was	er Ynd see above
	Sampling tool: T-handle auger T-handle sludge sampler	Sludge sampler w/ slide hammer
·	Photo info/comments: Itistoric hotspot OINESDIL	1/168

	Transect #: N/A	Position: N/A
· () ·	Sample ID: [[NC2855067- [.5	Depth: 1.5
3/19/11	Sample Description: Sand w/ Some Organic (material type, moisture content, color, general density, etc.) Moderate fuel codor	silt, wat, med dense, brown,
	Vegetative mat present? Y/N	Standing water? (Y/N see above
	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: At historic hotopo!	01NE289)(67/168
. · <u> </u>		
	Transect #: N/A	Position: N/A
alali	Sample ID: 11 NC38 SSO68 - 644	Depth: Do 5 1
1700	Sample Description: 90% post, 10% organic (material type, moisture content, color, general density, etc.) brown, strong HC	
	Vegetative mat present? (Y) N Very with	Standing water? Y(N)
	Sampling tool: T-handle auger T-handle sluc	lge sampler w/ slide hammer
	Photo info/comments: Historic hotspet 94NE 3	
	Refusal at 1 logs in	3 different spots - rocks.
	* d Vials Mco	H
	Transect #: N/A	Position: N/A Discrete Sample 4
1001	Sample ID: 11NC 2855069 -1.5	Depth: 1.5' logs lorown
4/201 ·	Sample Description: Ovalanic 5114 w/ ~25% (material type, moisture content, color, general density, etc.)	· · · · · · · · · · · · · · · · · · ·
	Vegetative mat present? (Y/N \ \.5'	Standing water? Y(N) but wher with
	Sampling tool: Thandle auger T-handle sluc	,
	Photo info/comments: 1st sample ceileted	at 15' bgs because of vog mat/roots

	Transect #: N/K Dix	rete sample 4	
3/20/11	Sample ID: 11703555069-3 Depth: 2		
0955	Sample Description: Organic 511 w/~4090 peat, wet, Mrd. dense, b (material type, moisture content, color, general density, etc.) Strong fuel alei	rown,	
	Vegetative mat present? (Y) N 400 above Standing water? Y/N 4	ee above	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sample	r w/ slide hammer	
	Photo info/comments: Schimont matrix. Refusal at 2' lags - rock	5	
	* DUPLICATE 11NC28SSO69-2.5 6 1000	<u> </u>	
	Transect #: N/A Discret	ic bample 5	
5/20/11	Sample ID: 11 NC2555070-0.75 Depth: 0-75 (bgs, Not	- below water)	. •
1030	Sample Description: Cigaric Silt cul 20% post, wet, med clense, (material type, moisture content, color, general density, etc.) Slight-Made ate Fuel		
	Vegetative mat present? (Y)N ~0.75' Standing water? (Y)N	6-7"	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sample	and the second s	
	Photo info/comments: Sediment in Arix	<u> </u>	
		<u> </u>	
-			_
•	Transect #: N/A Discrete	Sample 5	
l u	Sample ID: 11NC2855076-1.25 Depth: 1.25' by: (not		
430111	Sample Description: Organic Silt, wet, Ived. dense Joroun, Slight (material type, moisture content, color, general density, etc.)	fuel oder	
	Vegetative mat present? (Y)N 400 a love Standing water? (Y)N 400	alo re	
•	Sampling tool: T-handle auger T-handle sludge sampler Sludge sample	er w/ slide hammer	
	Photo info/comments: Galiment matrix	· 	

· .	Transect #:	Position: N/A Discrete Gample 5
: İ.,	Sample ID: (1, NG) \$55070 - 1.75	Depth: 1.75' (lays, Not water surface)
3 (30) 11	Sample Description: (000 00)	not, and, mai dinea, brown,
1035	(material type, moisture content, color, general density, etc.) Aught Fuel Cdc1	
	Vegetative mat present? (Y/N	Standing water? () / N
· ·	Sampling tool: T-handle auger T-handle slud	ge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix.	
	Transect #: N/A	Position: N/A Discrete sample 6
190/11	Sample ID: 11 NC78SSC71-1	Depth: //
1110	Sample ID: 11 NC78SSC71-1 Sample Description: Organic 61H, Wet, L	ose, dark brain, strong feel
(((material type, moisture content, color, general density, etc.)	
	Vegetative mat present? (I/N) Relatively thin &	Standing water? YN but present after prelivy
		ge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix. Sheer	
	metal & word debris in area-had to	o try several sample holes before finding
Sect	to sample. * DUPLICATE III	VC28SS071-2.5@1115
•		
•	Transect #: N/A	Position: N/M Discrete Sample 6
ا أعداً لا	Sample ID: 11NC9355071-1.5	Depth: (5
A 1301	Sample Description: Organic Silt, wet, loc	150, dark brown, moderate - Strong
1130	(material type, moisture content, color, general density, etc.)	
	Vegetative mat present? (Y)N GE A DOVE	Standing water? Y/N 46 a bove
	Sampling tool: T-handle auger T-handle sluc	lge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix.	See comments alovo
	·	

•	The state of the s
	Transect #: N/A Discrete 52mple 6
6/20/11	Sample ID: 102355071 - 2 Depth: 2
	Sample Description: Organic sitt, moist, polatively dense, dark brown,
1130	(material type, moisture content, color, general density, etc.) NO Fiel ode!
	Vegetative mat present? (y)/N 400 dlove - Standing water? Y/N 500 alove
	Sampling tool; T-handle augen T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix. See comments above
•	* M5/M5D - 3 Mout-pres. 4 cz septas, 4 16 cz unpreserval
	Transect #: 11/A Position: N/A Discrete Sample 7
120/11	Sample ID: 11NC28SS072 - 1.25 Depth: 1.25 (bgs, Not below water
1330	Sample Description: 50% peat, 50% organic silt, wet, med. danse, dark
	(material type, moisture content, color, general density, etc.) brown & black, Strong fuel adoi:
	Vegetative mat present? (Y/N Standing water (V/N ~ 6"
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment matrix. 1st sample ceilected at 1.25 bgs
	bacause veg. mat 0-1.25
. <u> </u>	
	Transect #: N/A Discrete Sample 7
11 106/2	Sample ID: 11NCASSS072-1.75 Depth: 1.75 (bys, Not below water)
1335	Sample Description: 80% peat, 20% organic silt, wet, med. dense, dark brown
	(material type, moisture content, Eblack, moderate fuel oder
r	Vegetative mat present? (YAN 500 above Standing water? (YN 500 above
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gadiment matrix and depth at discrete location 7

•	Transect #: N/A Decrete Sample 7	
-	Sample ID: 11 NC735 SC12 - 2.25 Depth: 2.25	
4/20/11	Sample Description: Peat, git, and clay, moist, dense, dark brown (peat & si	į-(
1355	(material type, moisture content, color, general density, etc.) and gray (clay), strong fuel calc.	
1022	Vegetative mat present? Y/N See above Standing water? Y/N See above	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
•	Photo info/comments: Sediment matrix 3rd depth at discrete sample 7	
	* DUPLICATE 11NC2855072-25@ 1400	
	Shean generated in Water	
	Transect #: N/A Discrete Sample 8	
// 1.	Sample ID: 11NC2855073: 1.5 Depth: 1.5 (logs, not lodou Water)	
8 301 "	Sample Description: Organic silt, wet, med dense, brown w/ some gioy.	
1420	(material type, moisture content, color, general density, etc.) Moderate fuel color	
	Vegetative mat present? YN 1.5' Standing water? YN 1.5'	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Gentliment matrix. 1st sample collected at 1.5' by's because	
	roots/veg mat present 0-1.5'.	
	Transect #: N/A Position: N/A Discrete 52mple 8	
130(11	Sample ID: 1 NC28550 73 -> Depth: 3' (bys, not below water)	
1455	Sample Description: Organic Silt, wet, danse, brown, Slight Fiel oder (material type, moisture content, color, general density, etc.)	
	Vegetative mat present? YN 40 Nove Standing water? YN 40 Nove	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Godinnent matrix. 2nd depth collected at point 073	

		
	Transect #: NTA	Position: N/A Discrete Gample 8
	Sample ID: 11N 3855 73 3 .5	Depth: 25' (boys, not below water)
11 belo	Sample Description: Organic Silt, Some par	ot, maist, dense, brown,
6(09) .<00	(material type, moisture content, color, general density, etc.) 5 light to moderate:	fuel oder
1600	Vegetative mat present? (Y/N Ger who e	Standing water? WN Goodbave
	Sampling tool: T-handle auger T-handle sluce	lge sampler Sludge sampler w/ slide hammer
	Photo info/comments: <u>Gertiment matrix.</u>	3rd depth at point 073.
·		<u> </u>
	Transect #: NA	Position: N/A Discrete sample 9 Depth: 1 (bgs, not below water)
0120111	Sample ID: 11 NOXSS 0-74-1	
(525	Sample Description: Organic 511+, moist, Med (material type, moisture content, color, general density, etc.)	dense, brown, slight fuel odor
	Vegetative mat present? Y/N ~\'	Standing water? ()/N ~ 12-16"
	Sampling tool: T-handle auger T-handle sluc	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gediment matrix.	
r f	Transect #: N/A	Position: NIA Discrete Simple 9
5/2c/11	Sample ID: 11NC28SSC 74-1.5	Depth: 1.5 (bys, not below water)
1535	Sample Description: Ova and sit, some part (material type, moisture content, color, general density, etc.) black (peat), Skight	
	Vegetative mat present? YN 500 2000	Standing water (Y/N See above
	Sampling tool: T-handle auger T-handle slue	dge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gadiment Matrix.	·
		· ———

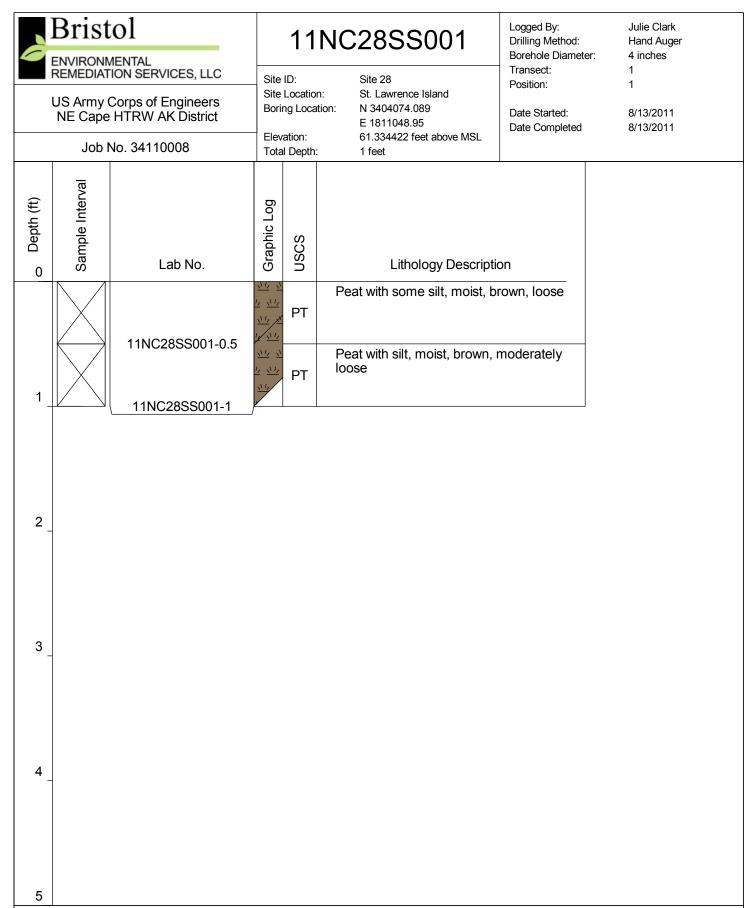
Transect #: N/K	Position: N/K Discrete Gample 9
Sample ID: 11NC3835074 - 7	Depth: 3 (logs, not below water)
Sample Description: Cramic silt, Some	peat, wet, med, dense, brewn,
(material type, moisture content, color, general density, etc.) Slight fuel col	e ^c
Vegetative mat present? (Y/N %c abc	Standing water? (Y) N See 3 lave
Sampling tool: T-handle auger T-handle	e sludge sampler w/ slide hammer
Photo info/comments: Sediment matrix	
Transect #:	Position: N/A Discrete Sample 10
Sample ID: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Depth: 1.5 (logs Nor boku water)
Sample Description: Organic Alter peat,	wet-standing Hao, relatively loose,
(material type, moisture content, color, general density, etc.) brown (GIT), black	(peat), slight fuel oder
Vegetative mat present? (N 1,5	Standing water? (Y)N ~ \
Sampling tool: (T-handle auger) T-handle	e sludge sampler w/ slide hammer
Photo info/comments: Schiment matrix.	1st depth collected at 1.5' bgs,
Vag mat 0-1.5	
•	
Transect #: N/A	Position: N/A Dix rete Gample 10
Sample ID: 11Nc385S075-3	Depth: 21 (bags, Not booless cupter)
	sand & trace peat, wet-standing Har,
(material type, moisture content, color, general density, etc.) Med. dense; occur	hish gray & black, Slight fuel odor
Vegetative mat present? (Y/N Gee Tolare	Standing water? \widehat{Y} $N \sim V$
Sampling tool: T-handle auger T-handl	e sludge sampler w/ slide hammer
Photo info/comments: Sediment Matrix	c. 2nd depth collected at paint 075
	

Transect #: N/A Discrete Gamp10 10 Sample Description: Clargey 11t, trace with, cheaner, brewn, slight food (materil type, notatine content, act) Vegetative mat present? (DN Sec. Above Standing water? (DN Sec. Above Sampling tool: Thandle auger) Transect #: N/A Position: N/A Discrete Gamp10 11 Sample Description: Clargey 11t w/ 3nd, with the content water. Transect #: N/A Position: N/A Discrete Gamp10 11 Sample Description: Clargey 11t w/ 3nd, with the content water. Vegetative mat present? (VN Col. 5) Sample Description: Clargey 11t w/ 3nd, with the content water. Vegetative mat present? (VN Col. 5) Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section at matrix. Ist sample collected at 1.5 by becase using materials. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Sample Description: Clargey oilt w/ sind, wet med dence brain w/ content water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Sample Description: Clargey oilt w/ sind, wet med dence brain w/ content water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Sample Description: Clargey oilt w/ sind, wet med dence brain w/ content water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Sample Description: Clargey oilt w/ sind, wet med dence brain w/ content water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #: N/A Position: N/A Discrete Sample 11 Depth: 2 (123, NG) below water. Transect #				
Sample Do. 11 10 10 10 10 10 10 10 10 10 10 10 10		Transect #: N/A Discrete 50mp10 10		
Transect #: N/A Position: N/A Discrete Sample II Sampling tool: Thandle august Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Selment matix. X MS/MSD - 2 Mecit 4 cz , 4 16 cz unpres. Transect #: N/A Position: N/A Discrete Sample II Sample ID: 11NC 28 550 76 1.5 Depth: 1.5 (695 NOT below water) Sample Description: Ctange y sult w/ 5 and , wet, med. dence, brown, (material type, moisture content.) Vegetative mat present? (VIN C-1.5) Standing water? (VIN ~6-8) Sampling tool: Thandle august Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in matrix. 1st sample collected at 1.5 bgs becomes yet and matrix. 1st sample collected at 1.5 bgs becomes yet and collected at 1.5 bgs becomes yet and collected sample II Sample ID: 11NC 26350 76-2 Depth: 2 (495, Not below eater) Sample Description: Claway sith w/ 5 and, wet, med dence, brown w/ (material type, moisture content, collected sample II) Sample Description: Claway sith w/ 5 and, wet, med dence, brown w/ (material type, moisture content, collected sample II) Sample Description: Claway sith w/ 5 and, wet, med dence, brown w/ (material type, moisture content, collected sample II) Sample Description: Claway sith w/ 5 and, wet, med dence, brown w/ (material type, moisture content, collected sample) Vegetative mat present? (VIN 5 ce flower)	3/30/11	Sample ID: 11 No 355075 - 2.5 Depth: 2.5 (bgs, Not be brown let)		
Transect #: N/A Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler Sludge sampler sludge sampler sludge sampler Photo info/comments: Telement matrix. MS/MSD - J. McOit 4 cz., 4 16 cz. unpres. Transect #: N/A Position: N/A Discrete sample 11 Sample ID: 11NC 28 350 76-1.5 Depth: 1.5 (195, Not below water) Vegetative mat present? (N/N C-1.5) Sampling tool: Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: See ment matrix. Ist sample collected at 1.5 bgs becase Neg mat 0-1.5 Transect #: N/A Position: N/A Discrete sample 11 Sample ID: 11NC 28350 76-2 Depth: 2 (195, Not below water) Sample ID: 11NC 28350 76-2 Depth: 2 (195, Not below water) Sample Description: Clayer sitt w/ sand wet, med dense, brown w/ content to the sample 11 Sample Description: Clayer sitt w/ sand wet, med dense, brown w/ content to the sample 11 Sample Description: Clayer sitt w/ sand wet, med dense, brown w/ content type, meltium content, color, general density, etc.) Transect #: N/A Position: N/A Discrete sample 11 Sample Description: Clayer sitt w/ sand wet, med dense, brown w/ color, general density, etc.) Sample Description: Clayer sitt w/ sand wet, med dense, brown w/ color, general density, etc.) Thandle auger Thandle sludge sampler Sludge sampler w/ slide hammer	1725	, Je		
Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/slide hammer Photo info/comments: Sediment Matrix. **Transect #: ** **I/A**	, .	(material type, moisture content,		
Photo info/comments: General Matrix. X MS MSD - 2 Macrit 4 cz., 4 16-cz unpres. Transect#: N/A Position: N/A Discrete 52mple 11 Sample ID: 11NC 28 35C 76-1.5 Depth: 1.5' (193, NOT below water) Sample Description: Chargey only w/ 5and, work, med. dense, brown, (material type, moisture content, color, general density, etc.) Vegetative mat present? VN C-1.5' Standing water? V/N ~ 6-8" Sampling tool: Flandic auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Ged ment matrix. 1st sample collected at 1.5' bgs because veg mat C-1.5 Transect #: N/A Position: N/A Discrete 52mple 11 Sample ID: 11NC 28350 76-2 Depth: 2' (193, NOT below water) Sample Description: Clausey sith w/ 52nd, wet, med dense brown w/ (material type, moisture content, color, general density, etc.) Vegetative mat present? VN See Method above Standing water? (VN See above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Vegetative mat present? (Y) N 400 Above Standing water? (Y) N 400 Above		
Transect #: 1/A Position: N/A Directe 52mple 11 Sample ID: 11NC 26 35C 76-1.5 Depth: 1.5 (195 NOT Irela) water) Sample Description: Clay yoult w/ sand, wet med. deng, brown, color, general density, etc.) Vegetative mat present? (VN 0-1.5' Standing water? (VN ~6-8") Sampling tool: #handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Scalment matrix. Ist sample collected at 1.5' bys because veg mat 0-1.5 Transect #: N/A Position: N/A Directe 52mple 11 Sample ID: 11NC 25350 76-2 Depth: 2' (195, NOT belaugater) Sample Description: Clay you fift w/ sand, wet, med dense, brown w/ color, general density, etc.) Sample Description: Clay you fift w/ sand, wet, med dense, brown w/ color, general density, etc.) Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		
Transect #: 1/A Position: N/A Discrete somple 11 Sample ID: 11NC 28 350 76-1.5 Depth: 1.5' (bg. Not below water) Sample Description: Ctange y silt w/ sand, with med. dense, brown, (material type, moisture content, color, general density, etc.) Vegetative mat present? (V/N 0-1.5' Standing water? (V/N ~6-8') Sampling tool: Finance auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section to material type, moisture content, color, general density, etc.) Transect #: N/A Standing water? (V/N ~6-8') Sample ID: 11NC 2835076-2 Depth: 2' (1935, Not below water) Sample ID: 11NC 2835076-2 Depth: 2' (1935, Not below water) Sample Description: Clausey sift w/ sand, wet, med dense, brown w/ (inaterial type, moisture content, color, general density, etc.) Vegetative mat present (V/N see Albert) above Standing water? (V/N see albert) Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Photo info/comments: Sediment Matrix.		
Sample Description: Ctage yearlt w/ sand, wet, med. dense, brown, (material type, moisture content, color, general density, etc.) Negetative mat present? (NN 0-1.5) Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in the matrix. 1st sample collected at 1.5 bys because was mat 0-1.5 Transect #: N/A Position: N/A Discrete sample II Sample ID: IINC 2535076-2 Depth: 2' (bys, Not below water) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		X MS/MSD - 2 Medit 4 oz, 4 16-02 unpres.		
Sample Description: Ctage yearlt w/ sand, wet, med. dense, brown, (material type, moisture content, color, general density, etc.) Negetative mat present? (NN 0-1.5) Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in the matrix. 1st sample collected at 1.5 bys because was mat 0-1.5 Transect #: N/A Position: N/A Discrete sample II Sample ID: IINC 2535076-2 Depth: 2' (bys, Not below water) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer	·			
Sample Description: Ctage yearlt w/ sand, wet, med. dense, brown, (material type, moisture content, color, general density, etc.) Negetative mat present? (NN 0-1.5) Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in the matrix. 1st sample collected at 1.5 bys because was mat 0-1.5 Transect #: N/A Position: N/A Discrete sample II Sample ID: IINC 2535076-2 Depth: 2' (bys, Not below water) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Sample Description: Clayer sift w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Live the contract		
Sample Description: Change y soilt w/ sand, wet, med. dense, brown, (material type, moisture content, color, general density, etc.) Vegetative mat present? (V/N 0-1.5) Standing water? (V/N ~6-8") Sampling tool: Fhandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in the matrix. Ist sample collected at 1.5' bys because veg mat 0-1.5 Transect #: N/A Position: N/A Discrete sample II Sample ID: 11 NC2535076-2 Depth: 2' (bys, Not belasicator) Sample Description: Clausey sith w/ sand, wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Sample moisture content, some give; no feel odd Vegetative mat present? (V/N see Method) above Standing water? (V/N see above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer				
Vegetative mat present? V/N 0-1.5' Standing water? V/N ~6-8" Sampling tool: Flandle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Sediment matrix. Ist sample collected at 1.5' bgs because veg mat 0-1.5 Transect #: N/A Position: N/A Discrete Sample II Sample ID: 11 NC2535076-2 Depth: 2' (bgs, Not below water) Sample Description: Clargy sift w/ Sand, Wet, med dense, brown w/ (material type, moisture content, color, general density, etc.) Some gray, not feel odd Vegetative mat present? V/N see Mount above Standing water? (V/N see above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	_	1 — · · · · · · · · · · · · · · · · · ·		
Vegetative mat present? V/N 0-1.5' Standing water? V/N ~6-8" Sampling tool: #handle auger T-handle sludge sampler Sludge sampler w/ slide hammer Photo info/comments: Section in the matrix. Ist sample collected at 1.5' bgs because veg mat 0-1.5 Transect #: N/A Position: N/A Discrete sample !! Sample ID: !! NC2535076-2 Depth: 2' (bgs, Not below water) Sample Description: Clausey silt w/ sand, wet, med dense brown w/ (material type, moisture content, color, general density, etc.) Sample density, etc.) some giary, no feel odo Vegetative mat present? V/N see https:// Standing water? (V/N see a bove Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer	<u> ४ ५१। ''</u>	(material type moisture content		
Sampling tool: #Fhandle auger T-handle sludge sampler Sludge sampler w/slide hammer Photo info/comments: Scalment matrix. 1st sample collected at 1.5' bg's because veg mat 0-1.5 Transect #: N/A Position: N/A Discrete sample II Sample ID: 11 NC2535076-2 Depth: 2' (bg's, Not below water) Sample Description: Clayay sift w/ sand, Wet, mad dense brown w/ color, general density, etc.) Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/slide hammer	0840	color, general density, etc.) \[\frac{\hat{\alpha}}{\hat{\alpha}} \frac{\hat{\alpha}}{\hat{\alpha}} \frac{\hat{\alpha}}{\hat{\alpha}} \]		
Photo info/comments: Sectionent matrix. Ist sample collected at 1.5 bys because veg mat 0-1.5 Transect #: N/A Position: N/A Discrete Sample II Sample ID: 11 NC2635076-2 Depth: 2' (bys, Not below water) Sample Description: Clayay Silt w/ Sand, Wet, Med dense, brown w/ (material type, moisture content, color, general density, etc.) See gray, no feel odo Vegetative mat present? V/N see Inthon above Standing water? (Y/N see above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	•	Vegetative mat present? Y/N 0-1.5' Standing water? Y/N ~6-8"		
Transect#: N/A Position: N/A Discrete 52mple Sample ID: NCX535076-2 Depth: 2' (hgs, Not below water) Sample Description: Clausey 51H w/ 52nd, Wet, med dense brown w/ (material type, moisture content, color, general density, etc.) Vegetative mat present? Y/N See Allew above Standing water? (Y/N See a bove Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		
Transect #: N/A Position: N/A Discrete Sample II Sample ID: 1/NC2635076-2 Depth: 2' (bgs, Not below water) Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brain w/ (material type, moisture content, color, general density, etc.) Some gray, no feel odo Vegetative mat present? Y/N see Allow above Standing water? (Y/N see a bove Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Photo info/comments: Sediment matrix. 1st sample collected at 1.5 bgs		
Sample ID: 11 NC2635076-2 Depth: 2' (hgs, Not below water) Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brown w/ (material type, moisture content, color, general density, etc.) We getative mat present? Y/N See HMM above Standing water? Y/N See above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		because veg mat 0-1.5		
Sample ID: 11 NC2635076-2 Depth: 2' (hgs, Not below water) Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brown w/ (material type, moisture content, color, general density, etc.) We getative mat present? Y/N See HMM above Standing water? Y/N See above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer				
Sample ID: 11 NC2635076-2 Depth: 2' (hgs, Not below water) Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brown w/ (material type, moisture content, color, general density, etc.) We getative mat present? Y/N See HMM above Standing water? Y/N See above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer				
Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brain w/ (material type, moisture content, color, general density, etc.) Sample Description: Clayay 51H w/ 52nd, Wet, Med dense, brain w/ (material type, moisture content, color, general density, etc.) 50NE GIAY NO FLE! Color Vegetative mat present? V/N 52e MWW above Standing water? Y/N 52e a bove Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	. •	Transect #: N/A Discrete 52mple 11		
(material type, moisture content, color, general density, etc.) Vegetative mat present? Y/N See HWWA above Standing water? Y/N See above Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		Sample ID: 11 NC 2655076-2 Depth: 2' (bgs, NCT below water)		
Vegetative mat present? V/N See HWW above Standing water? Y/N See a love Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	3 f	Sample Description: Clayay silt w/ sand, Wet, med dense, brain w/		
Vegetative mat present? V/N See HWW 3 be & Standing water? Y/N See 3 bove Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	8 31 (11	(material type, moisture content, color, general density, etc.) 50 ME Gray No Fiel Card		
	0850			
O Photo info/comments: Gediment matrix. 2nd depth collected at point 076		Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer		
<u> </u>	0	Photo info/comments: Gediment matrix. 2nd depth collected at point 076		
	~			

	The control of the co	
	Transect #: NA	Position: N/A Discrete Gample 11
5/21/11		Depth: $\frac{2.5'}{}$
0900	Sample Description: Alty day W Gand, WC (material type, moisture content, color, general density, etc.) NO Fuel Cdc	t, dense, gray and brown,
	Vegetative mat present? (Y)/N	Standing water? Y/N & Hove
	Sampling tool: T-handle auger T-handle sludge Photo info/comments: Scalment Matrix. 30c	•
0936	Sample ID: 11NC28SS077-1.5 Sample Description: Organic silt w/ some per (material type, moisture content, color, general density, etc.) Clanse Dicus, Slight f	Standing water? (Ý/N ~\6" e sampler Sludge sampler w/ slide hammer
	Transect #: N K	Position: N/A Discrete sample D
8(21/11	Sample ID: UNC38 SSC 77-2 Sample Description: Organic Gilt wil peat, wet	Depth: 2' (bys, Not below Water), pretly dense, brown, slight
0935	(material type, moisture content, color, general density, etc.)	
ar in the second	Vegetative mat present? YN Lee above Sampling tool: T-handle auger T-handle sludg Photo info/comments: Xcliment instrix.	start

	Transect #: Position: N/A	_
21 Al	Sample ID: INC 3556 17 - 25 Depth: 2.5 (kgs, Not haloo wate	y 公代の
:155	Sample Description: Organic Bilt wi trace part, wet, dange, brown, (material type, moisture content, blight fuel oda color, general density, etc.) Sight fuel oda	- -
	Vegetative mat present? (V/N 46 Acc) Standing water? (V)N 460 Acc	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments: Gadingat matrix. 3rd depth at point 077.	-
		- :
	Transect #: Position:	-
	Sample ID: Depth:	
	Sample Description:	- -
	Vegetative mat present? Y/N Standing water? Y/N	
÷	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	
	Photo info/comments:	-
	Transect #:Position:	
	Sample ID:	
	Sample Description:	_
	Vegetative mat present? Y/N Standing water? Y/N	
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer	•
	Photo info/comments:	
		_

	Transect #: Barransect #: Pos	sition:
1 191	and the second s	pth: 1.5
10:35		c silt, wet, med dense,
	Vegetative mat present? (Y/N 1/5) Sta	anding water? Y/O ber that immediately
**************************************	Sampling tool: T-handle auger T-handle sludge sa	ampler Sludge sampler w/ slide hammer
	Photo info/comments: Gediment matrix	
:		
		·
		sition:
5/21/11	Sample ID: 11 NC 75 55078 -7 De	epth: 2
1100	Sample Description: Can C Silf w/ Same pros (material type, moisture content, color, general density, etc.)	ot, woist, med dense, brown,
	Vegetative mat present? Y/N 500 DIXIC Sta	anding water? YOU GE SLOVE
*	Sampling tool: T-handle auger T-handle sludge sa	ampler Sludge sampler w/ slide hammer
	Photo info/comments: Redirect Thatriv	· · · · · · · · · · · · · · · · · · ·
,	<u> </u>	
-		
	Transect#: Background Po	sition:
7 I	Sample ID: 1 NCX SSO 78 - 2.5 De	epth: 2.5
4/21/11	· · · · · · · · · · · · · · · · · · ·	clay, some organic silt;
1105	(material type, moisture content, color, general density, etc.) Mas mad dense, gradients	(sitty day) & brown (organic silt), no
	Vegetative mat present? (V)N 450 Store Sta	anding water? (Y/N GED bow
	Sampling tool: T-handle auger T-handle sludge sampling tool:	ampler Sludge sampler w/slide hammer
	Photo info/comments: Gediment watrix.	
	* DUPLICATE ILUC28SSO78-	-> @ 110


Transect #: Background	Position: 2
Sample ID: 1100555079, -2.5	Depth: 2.5
Sample Description: Organic Silt w/	some peat, wat, med derive,
(material type, moisture content, color, general density, etc.) brown, no fix	1 oder
Vegetative mat present? (Y/N)5'	Standing water? Y (N but writer unmerliately infiltrates sample to
Sampling tool: T-handle auger T-han	dle sludge sampler w/ slide hammer
Photo info/comments: indiment mate	i v
· · · · · · · · · · · · · · · · · · ·	<u> </u>
Transect #: Background	Position:
Sample ID: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Depth: 3
Sample Description: <u>Crank of tw/ same</u> (material type, moisture content, color, general density, etc.)	e peat, wet, med dense, brown, no flot
Vegetative mat present? (Y/N CAR Alborn	Standing water? YN 500 Deve
Sampling tool: T-handle auger T-han	ndle sludge sampler Sludge sampler w/ slide hammer
Photo info/comments: Schwart matri	
Those into comments. See in C (1977)	
	· · · · · · · · · · · · · · · · · · ·
Transect #: Pack ground	Position:
Transect #: Exclegiound Sample ID: 11NC2855079-3.5	Position: 2 Depth: 3,5'
	2/
Sample ID: 11NC28550 79-3.5 Sample Description: Organic 51H, 5575 (material type, moisture content,	Depth: 3.5'
Sample ID: 11NC2855079-3.5 Sample Description: Organic 51lt, 55m (material type, moisture content, color, general density, etc.) Vegetative mat present? (Y/N 4xx a) locac	Depth: 3.5' Turt, Mad dense, brown no fuel odor

	Transect #: Bakara Position: 3
	Sample ID: New 2855 080 - 2-15 Depth: 2.75' (bys, not below water)
135	Sample Description: Peat w/ some organic sit, wet, loose to med. dense, (material type, moisfure content, color, general density, etc.) brown, no Fiel odor
	Vegetative mat present? YN 2.15' Standing water? YN ~6-8"
	Sampling tool: Thandle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Satiment natrix
	
	Transect #: Packground Position: 3
ما الم	Sample ID: 11NC385080-3.25 Depth: 3.25 (bys, not below water)
6121 (11 (140	Sample Description: Post w/ some organic silt; wet, loose-med dense, (material type, moisture content, color, general density, etc.) brown, no odor
	Vegetative mat present? YN 400 Above Standing water NN 400 Above
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Sediment Matrix
	Transect #: Background Position: 3
	Sample ID: 11NC2855080-3:75 Depth: 3.75 (by5, net bolew water)
1155	Sample Description: ^50% organic 51H, 50% pent, wet, loose-med dense, (material type, moisture content, color, general density, etc.) Drown, no odor
	Vegetative mat present? (V)N 500 0 1000 Standing water? (V)N 500 0 1000
	Sampling tool: T-handle auger T-handle sludge sampler Sludge sampler w/ slide hammer
	Photo info/comments: Gertiment matrix
	+ MS/MSD - double volume

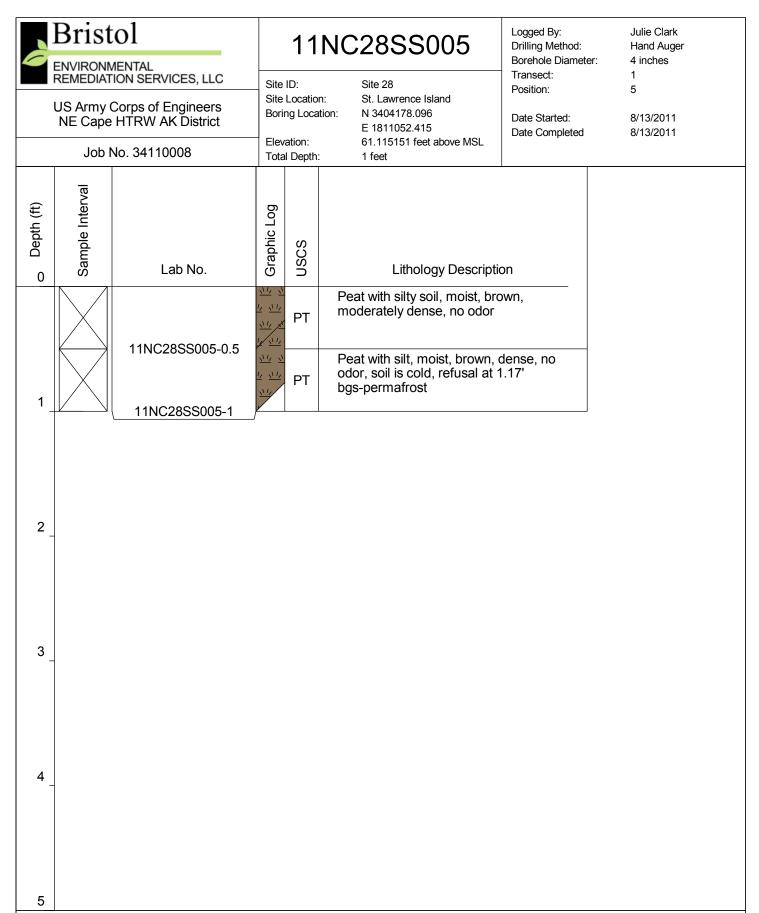
7/21/11 1200	Transect #: Paul-grand Position: Sample ID: 11NC28SSOSI-1.25 Depth: Sample Description: Croponic Silt w/~25% peat, U (material type, moisture content, color, general density, etc.)	t 15' (bgs, Not below water) Vet-standing water, Protty
		ter? $(Y)N \sim 4''$ Sludge sampler w/ slide hammer
8/21/11 1205	Transect #: Bockground Position: Sample ID: 11 NC28 SSCS1-1.75 Depth: 25 Sample Description: Organic Silt w/~25% peak, we (material type, moisture content, color, general density, etc.) Vegetative mat present? (YN Get Nove Standing was Sampling tool: T-handle auger T-handle sludge sampler Photo info/comments: Gediment Matcix	t-Standing: Water, ater (Y)N See above Sludge sampler w/ slide hammer
8/21/11	Transect #: Background Position: 4 Sample ID: INCXSSCSI - 2.25 Depth: 2 Sample Description: ~75/e peat, 25% organic 5:14, (material type, moisture content, color, general density, etc.) no fuel color. Vegetative mat present? YN fee above Standing was Sampling tool: [I-handle auger T-handle sludge sampler Photo info/comments: Saliment Matrix Houp LICATE IINC28 SSO8 I	Moist, Icose brown, ater? (A)/N see obeve Sludge sampler w/ slide hammer

APPENDIX C

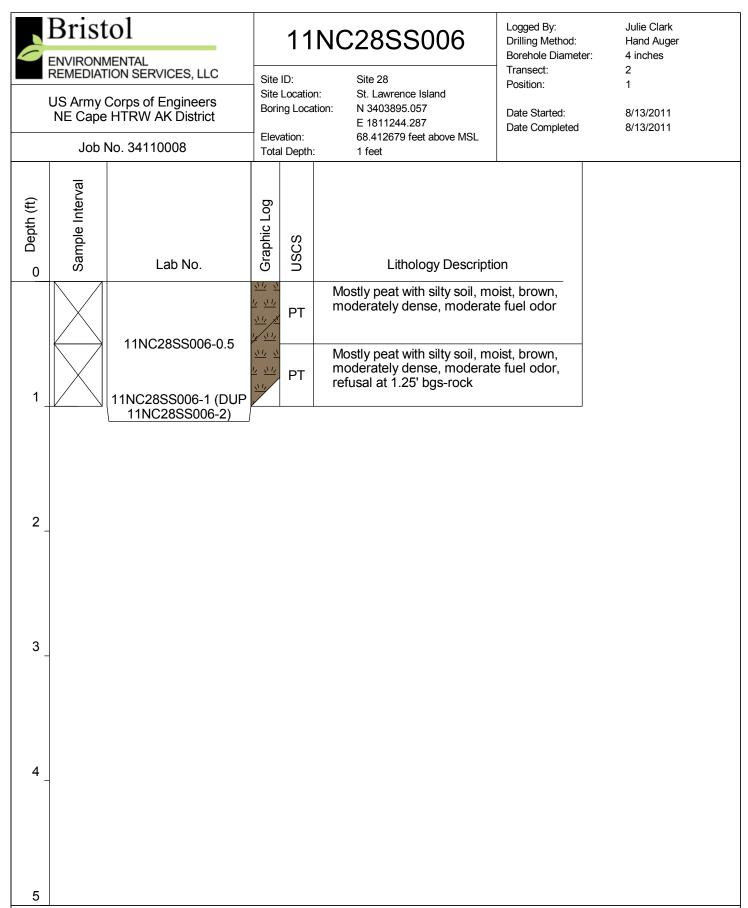
Soil Boring Logs

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS002 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404098.196 Date Started: 8/13/2011 NE Cape HTRW AK District E 1811051.045 **Date Completed** 8/13/2011 Elevation: 59.429591 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2') 1 Organic silt, wet, dark brown, fairly dense, moderate fuel odor OL 2 11NC28SS002-2 Organic silt, wet, dark brown, fairly dense, moderate fuel odor OL 11NC28SS002-2.5 Organic silt, brown, fairly dense, slight fuel odor OL 3 11NC28SS002-3 4 5

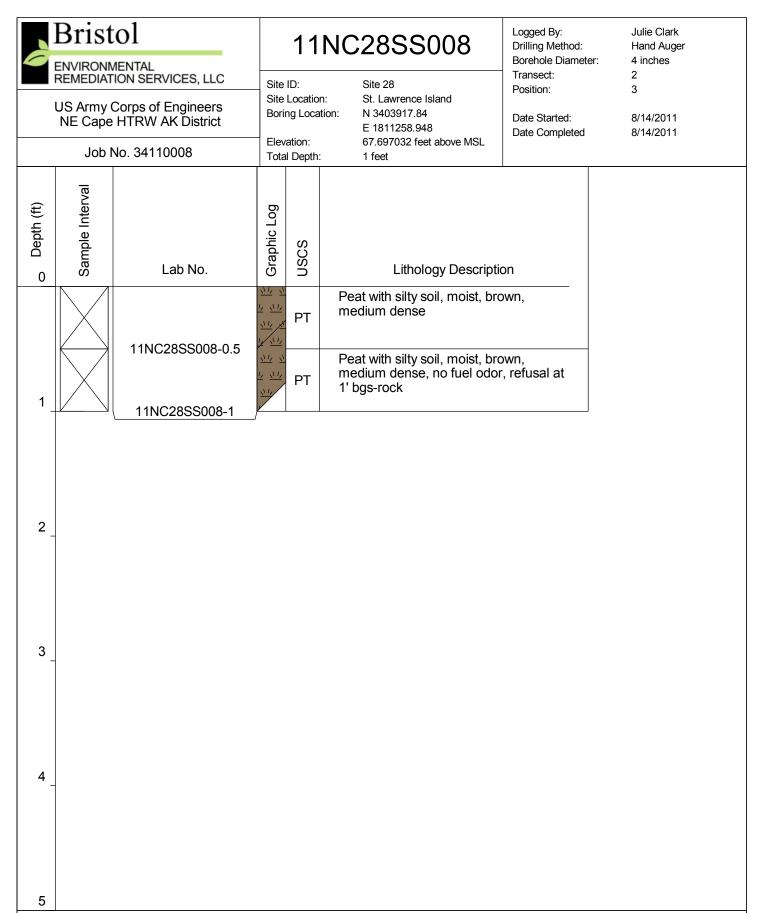

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

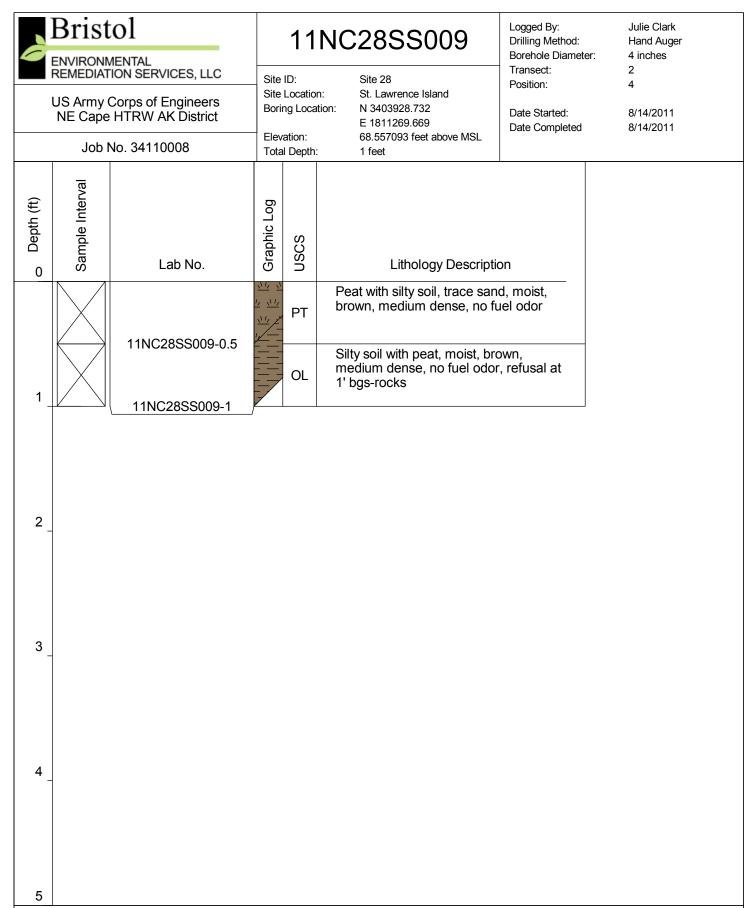
Bristol Logged By: Julie Clark 11NC28SS003 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404126.435 Date Started: 8/13/2011 NE Cape HTRW AK District E 1811051.168 **Date Completed** 8/13/2011 Elevation: 59.479807 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **USCS** Lithology Description Lab No. 0 Vegetative Mat (0-2.5') 1 2 Organic silt, brown and gray, fairly dense, possible slight fuel odor OL 11NC28SS003-2.5 Silty clay, wet, gray, dense, slight fuel odor CL 3 11NC28SS003-3 Silty clay, wet, grayish brown, dense CL 11NC28SS003-3.5 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS004 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL REMEDIATION SERVICES, LLC Transect: Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers NE Cape HTRW AK District Boring Location: N 3404166.841 Date Started: 8/13/2011 E 1811053.364 **Date Completed** 8/13/2011 Elevation: 58.561578 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2.5) 1 2 Organic silt, wet, brown, moderately dense, refusal at 2.5' bgs OL 11NC28SS004-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS007 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL REMEDIATION SERVICES, LLC Transect: 2 Site ID: Site 28 2 Position: Site Location: St. Lawrence Island US Army Corps of Engineers NE Cape HTRW AK District Boring Location: N 3403906.734 Date Started: 8/13/2011 E 1811252.342 **Date Completed** 8/13/2011 Elevation: 67.788737 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Peat with silty soil, moist, brown, medium dense, fuel odor, refusal at PT 1.6' bgs 11NC28SS007-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

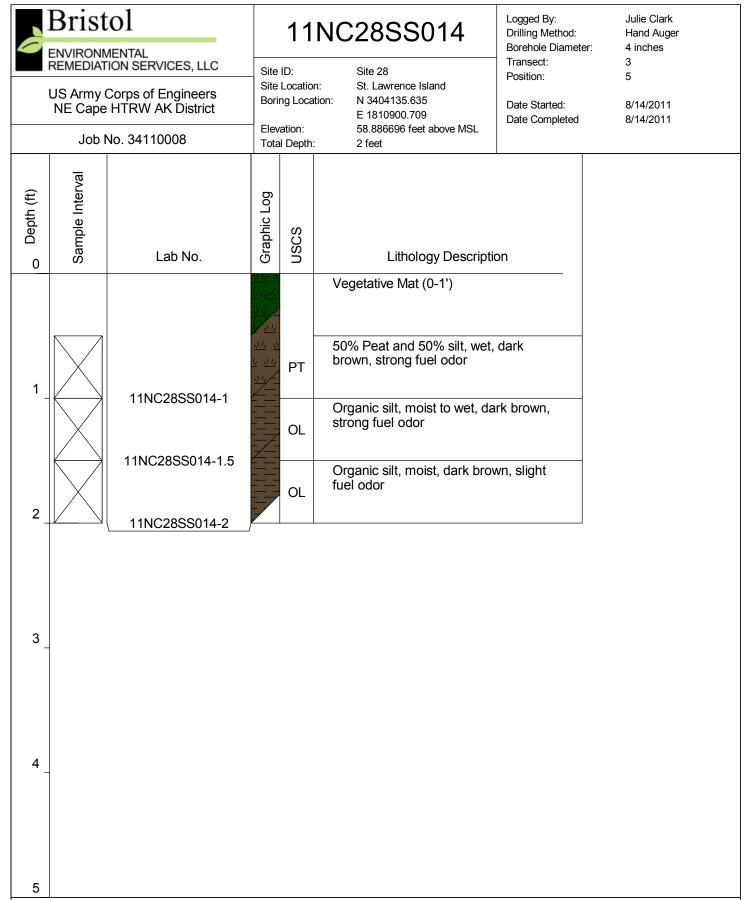
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Julie Clark Logged By: 11NC28SS010 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 3 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 1 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404052.849 Date Started: 8/14/2011 NE Cape HTRW AK District E 1810862.033 **Date Completed** 8/14/2011 62.444305 feet above MSL Elevation: Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Fill-gravelly sand, traces of organics, moist, brown, loose, no fuel odor SP 11NC28SS010-0.5 Silty clay, moist, mottled brown and gray, medium dense, no fuel odor CL 1 11NC28SS010-1 Silty clay, pretty dry (crumbly), mottled brown and gray, medium dense, CL slight-moderate fuel odor 11NC28SS010-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

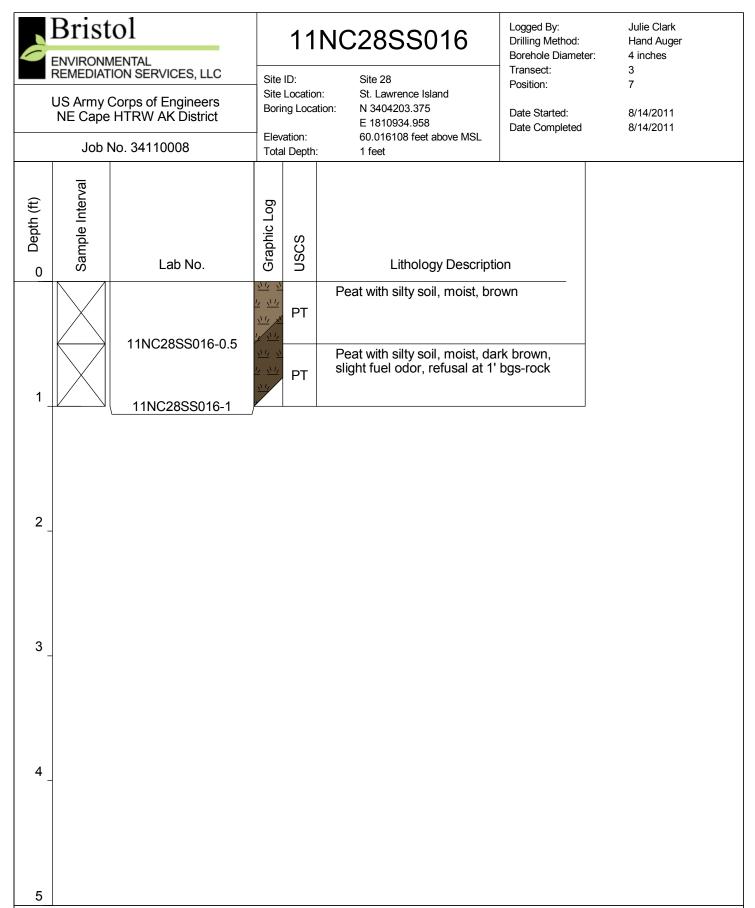
Bristol Logged By: Julie Clark 11NC28SS011 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 3 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404066.716 Date Started: 8/14/2011 NE Cape HTRW AK District E 1810867.11 **Date Completed** 8/14/2011 Elevation: 60.526575 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 50% silty clay with trace gravel and sand and 50% peat, moist, brown CL (peat), with brown/gray mottling (silty clay), medium dense, slight-moderate 11NC28SS011-0.5 fuel odor Organic silty clay, moist, brown, CL moderately dense, fuel odor 1 11NC28SS011-1 Organic silty clay, moist, brown, moderately dense, fuel odor CL 11NC28SS011-1.5 2 3 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS012 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 3 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404083.593 Date Started: 8/14/2011 NE Cape HTRW AK District E 1810876.457 **Date Completed** 8/14/2011 Elevation: 59.838824 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Sandy silt with peat, wet, dark brown, moderately dense, no fuel odor OL 11NC28SS012-0.5 Organic clayey silt, wet, dark brown, moderately dense, no fuel odor OL 1 11NC28SS012-1 Organic clayey silt, moist, dark brown, slight fuel odor OL 11NC28SS012-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS013 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: 3 Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404107.494 Date Started: NE Cape HTRW AK District 8/14/2011 E 1810881.771 **Date Completed** 8/14/2011 Elevation: 59.002956 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt, wet, dark brown, no fuel odor OL 11NC28SS013-0.5 Organic silt, moist to wet, brown, no fuel odor OL 1 11NC28SS013-1 Organic silt, moist to wet, brown, possible slight fuel odor OL 11NC28SS013-1.5 2 3 4 5

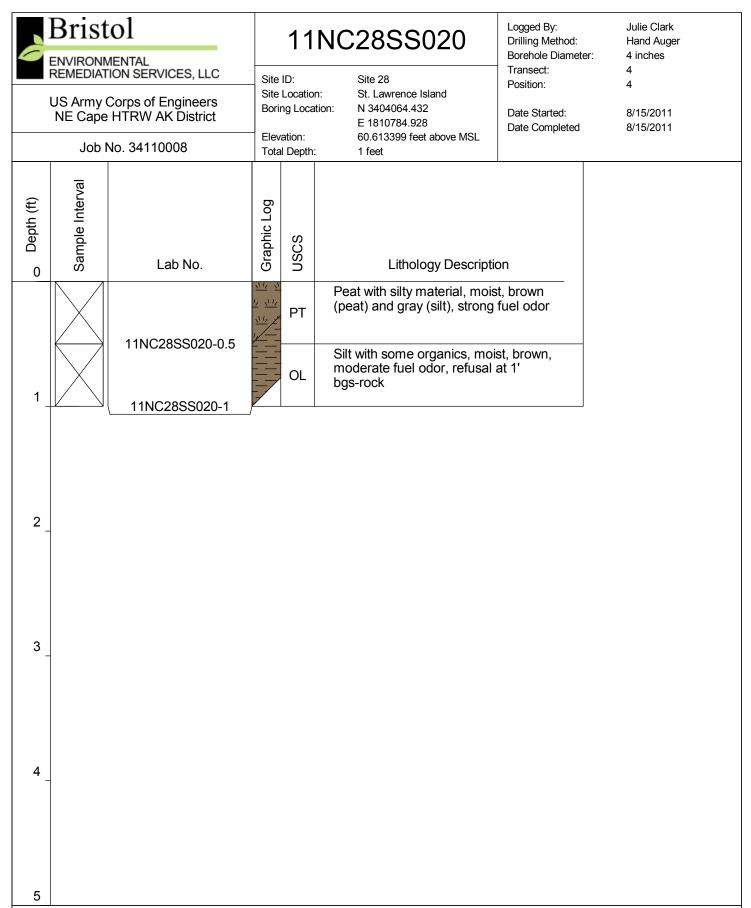

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS015 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL REMEDIATION SERVICES, LLC Transect: 3 Site ID: Site 28 Position: 6 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404168.585 Date Started: 8/14/2011 NE Cape HTRW AK District E 1810917.157 **Date Completed** 8/14/2011 Elevation: 59.328076 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Mostly peat with some silty soil, wet, dark brown, moderate fuel odor PT 11NC28SS015-1.5 Mostly peat with some silty soil, wet, dark brown, moderate fuel odor, PT refusal at 2' bgs 2 11NC28SS015-2 3 4 5

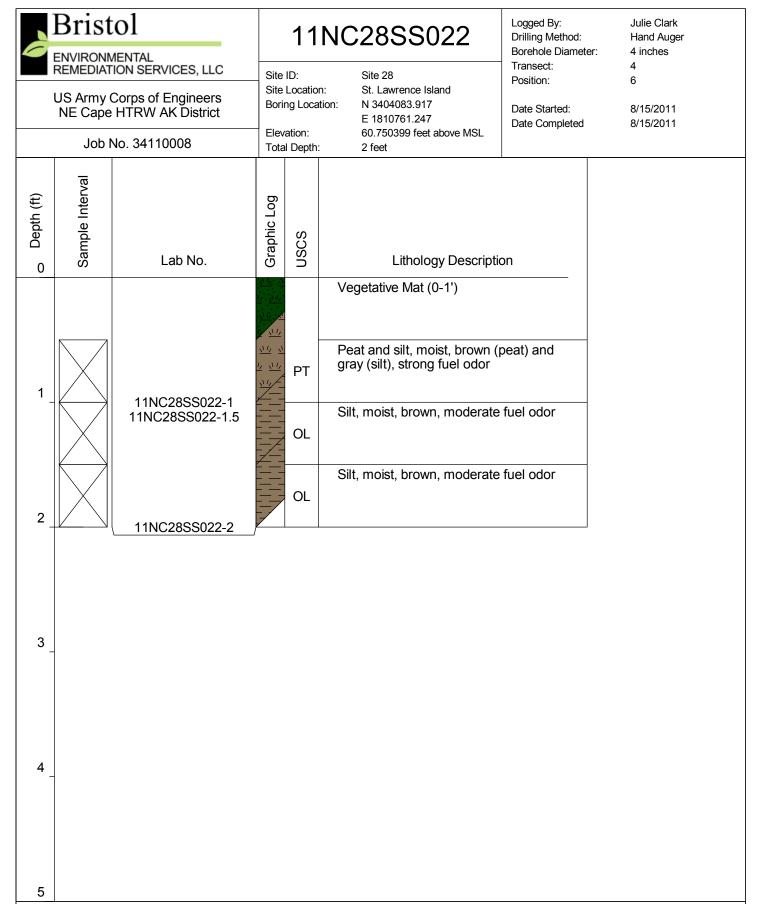
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

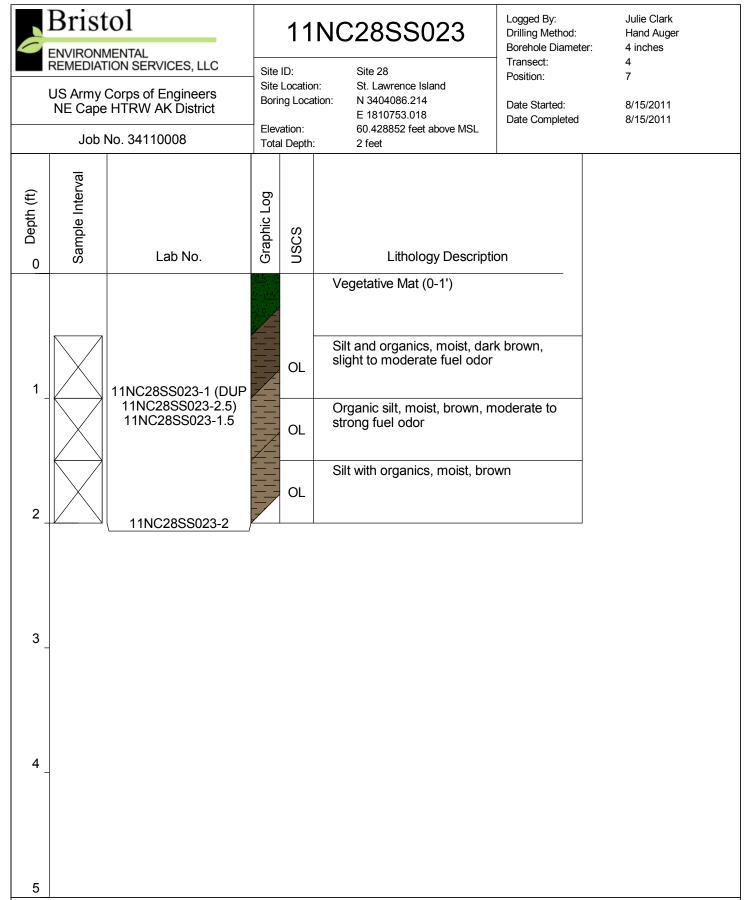
Bristol Logged By: Julie Clark 11NC28SS017 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404049.338 Date Started: 8/15/2011 NE Cape HTRW AK District E 1810804.277 **Date Completed** 8/15/2011 Elevation: 61.205311 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Gravelly sand with some organics, moist, gray, moderate fuel odor SP 11NC28SS017-0.5 Organic silt, moist, brown, moderate fuel odor OL 1 11NC28SS017-1 Silt, moist, brown, moderate fuel odor OL 11NC28SS017-1.5 2 3 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS018 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404057.307 Date Started: 8/15/2011 NE Cape HTRW AK District E 1810789.557 **Date Completed** 8/15/2011 Elevation: 60.353281 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt, moist, brown, strong fuel odor OL 11NC28SS018-0.5 Organic silt, moist, brown, strong fuel odor OL 1 11NC28SS018-1 Organic silt, brown, moist, strong fuel odor, organics at 1.5' bgs OL 11NC28SS018-1.5 2 3 4 5

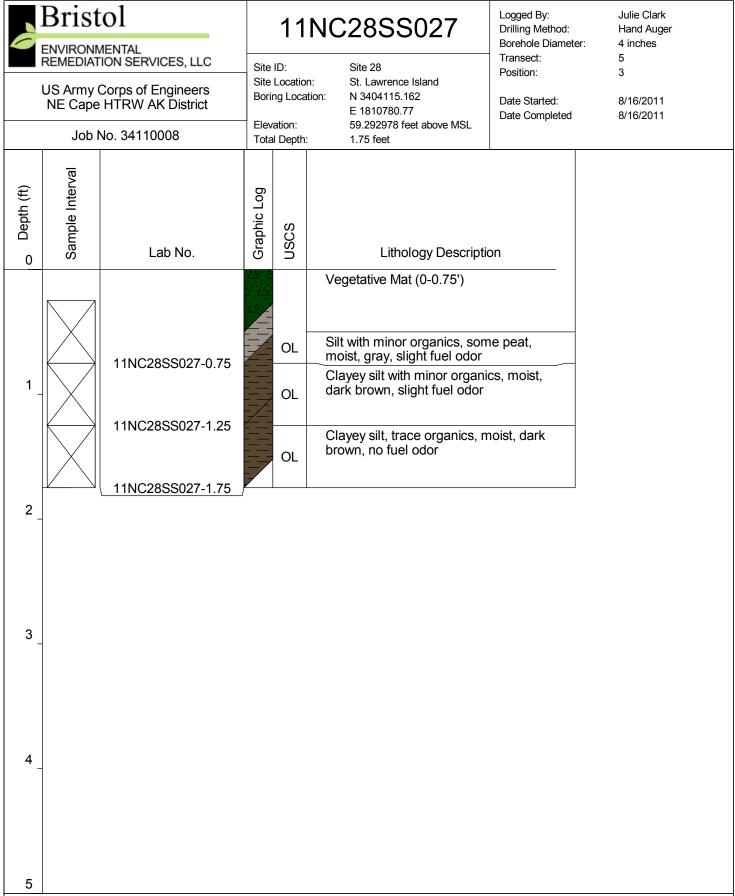
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


Bristol Logged By: Julie Clark 11NC28SS019 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404054.502 Date Started: 8/15/2011 NE Cape HTRW AK District E 1810797.903 **Date Completed** 8/15/2011 Elevation: 60.941952 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt with sand and organics, gray, moist, slight to moderate fuel OL 11NC28SS019-0.5 Organic silt, brown, moist, moderate fuel odor OL 1 11NC28SS019-1 Silt with some organics, moist, brown, slight fuel odor OL 11NC28SS019-1.5 2 3 4 5

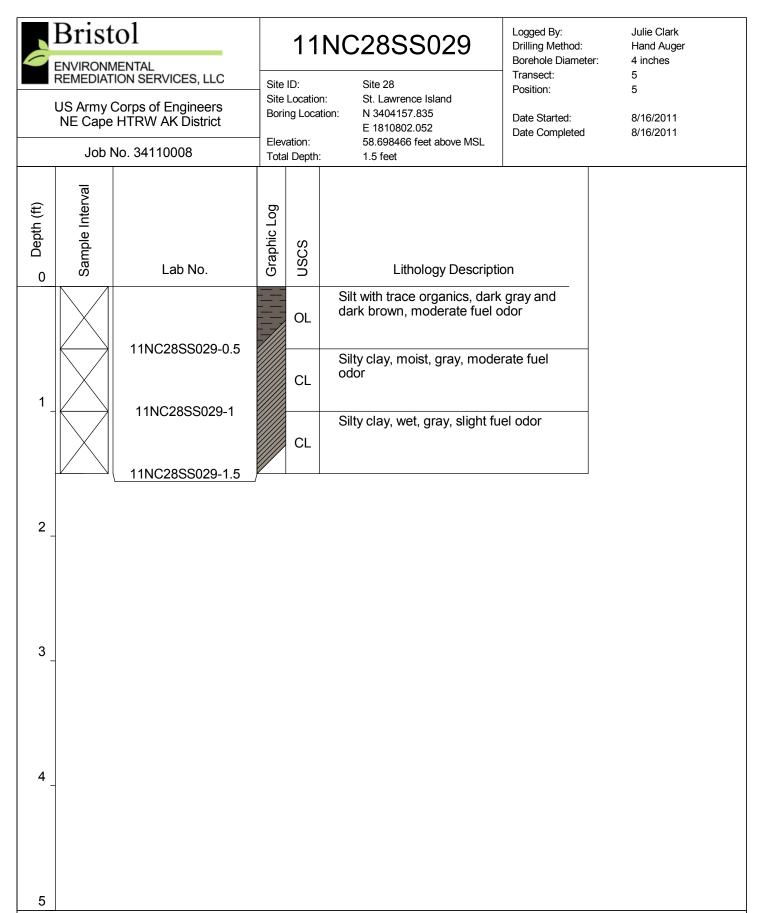

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

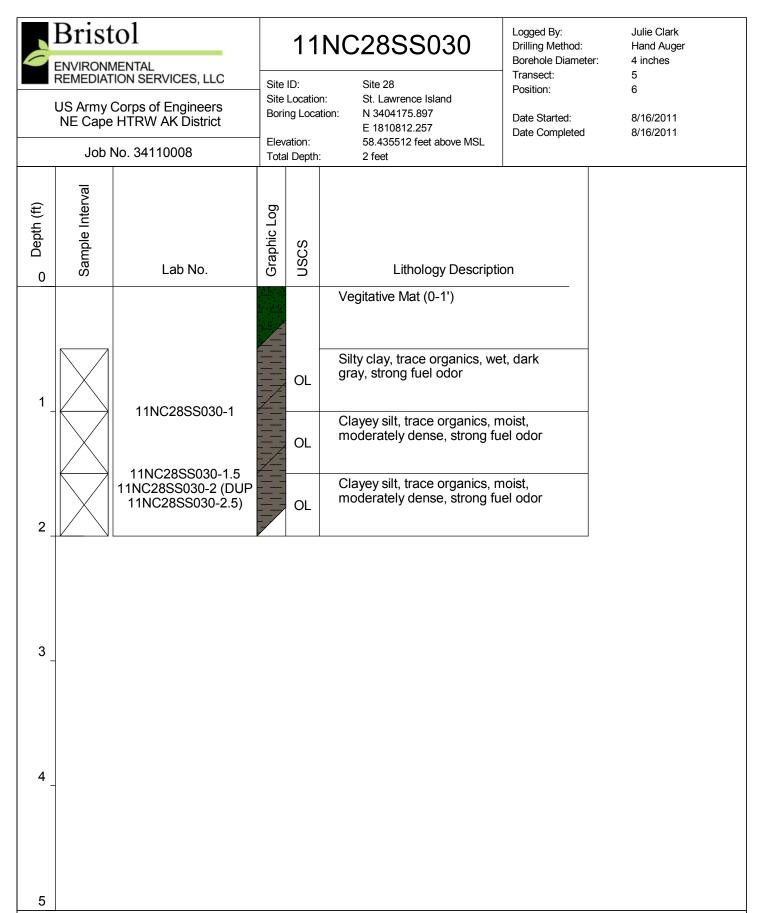
Bristol Logged By: Julie Clark 11NC28SS021 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 5 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404071.137 Date Started: 8/15/2011 NE Cape HTRW AK District E 1810775.509 **Date Completed** 8/15/2011 Elevation: 60.805343 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Peat and silt, moist, brown (peat) and gray (silt) РΤ 11NC28SS021-0.5 Organic silt, moist, brown, slight fuel odor OL 1 11NC28SS021-1 Silt, moist, brown, slight fuel odor OL 11NC28SS021-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


Bristol Logged By: Julie Clark 11NC28SS024 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: Site ID: Site 28 Position: 8 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404092.536 Date Started: NE Cape HTRW AK District 8/15/2011 E 1810747.49 **Date Completed** 8/15/2011 Elevation: 61.018029 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1') Silt with some peat, moist, brown, no noticible fuel odor OL 1 11NC28SS024-1 Silt with trace organics, moist, gray and brown, slight fuel odor, refusal at 1.5' OL bgs-rock 11NC28SS024-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


Bristol Logged By: Julie Clark 11NC28SS026 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 5 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404096.228 Date Started: 8/16/2011 **NE Cape HTRW AK District** E 1810774.861 **Date Completed** 8/16/2011 Elevation: 59.764705 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 75% peat, with 25% fine silty sand, brown (peat) and gray (silty sand), РΤ moist, strong fuel odor 11NC28SS026-0.5 80% Fine silty sand and 20% peat, moist, brown (peat) and gray (silt), OL strong fuel odor 1 11NC28SS026-1 Clayey silt with trace organics, moist, dark brown, moderate fuel odor OL 11NC28SS026-1.5 2 3 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS028 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 5 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404135.458 Date Started: 8/16/2011 **NE Cape HTRW AK District** E 1810794.585 **Date Completed** 8/16/2011 Elevation: 58.893117 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Silt with fine sand, trace organics, moist, dark gray, moderate fuel odor OL 11NC28SS028-0.5 Silt with fine sand, trace organics, wet, dark gray, moderate fuel odor OL 1 11NC28SS028-1 Clayey silt, trace organics, moist, dark brown, slight fuel odor OL 11NC28SS028-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

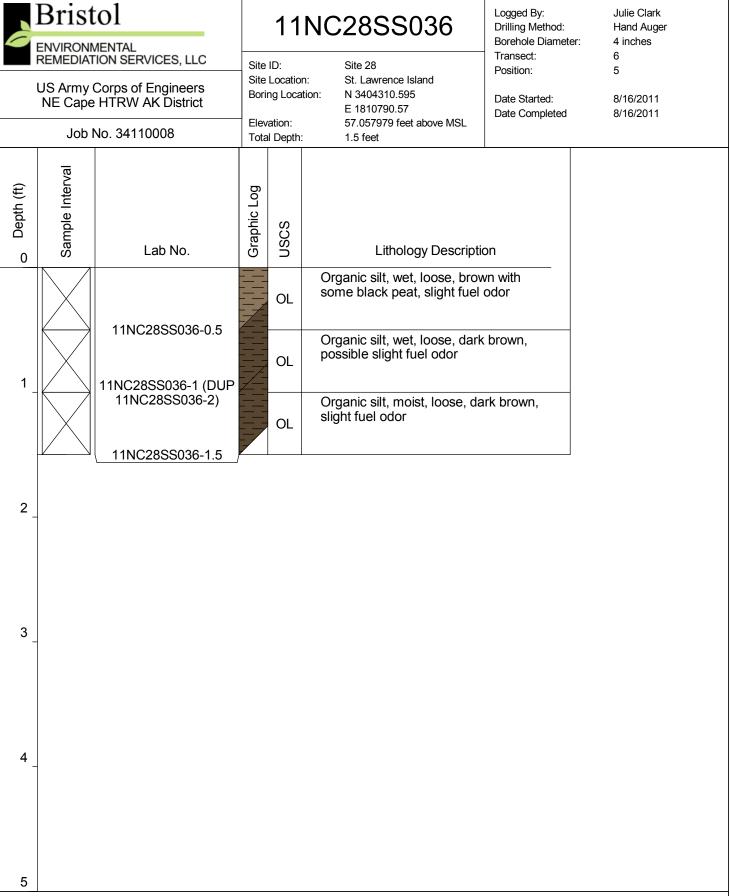
Bristol Logged By: Julie Clark 11NC28SS031 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 5 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 7 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404200.436 Date Started: 8/16/2011 NE Cape HTRW AK District E 1810821.152 **Date Completed** 8/16/2011 Elevation: 61.158975 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 60% peat and 40% silt, moist, moderately dense, no fuel odor РΤ 11NC28SS031-0.5 Clayey silt with organics, moist, brown, no fuel odor OL 1 11NC28SS031-1 Clayey silt with organics, moist, brown, no fuel odor OL 11NC28SS031-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS032 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 6 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404321.232 Date Started: 8/16/2011 NE Cape HTRW AK District E 1810662.168 **Date Completed** 8/16/2011 61.917712 feet above MSL Elevation: Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 75% peat and 25% silty soil, moist, brown, no fuel odor РΤ 11NC28SS032-0.5 Organic silty clay, moist, brown, no fuel odor CL 1 11NC28SS032-1 Organic silty clay, moist, mottled brown and gray, no fuel odor CL 11NC28SS032-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS033 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: 6 Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404315.658 Date Started: 8/16/2011 NE Cape HTRW AK District E 1810703.747 **Date Completed** 8/16/2011 Elevation: 59.763538 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Silt, moist, gray, relatively loose, no fuel odor MH 11NC28SS033-0.5 Silt, moist, gray, relatively loose, no fuel MΗ 1 11NC28SS033-1 Silt, moist, gray, loose-moderately dense, no fuel odor MH 11NC28SS033-1.5 2 3 4 5

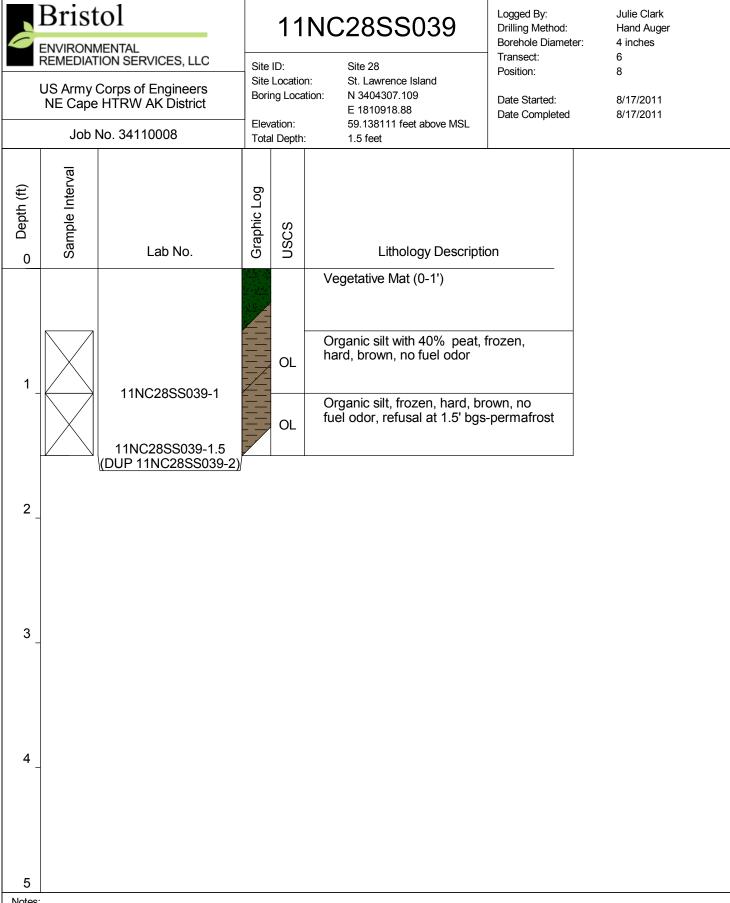

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

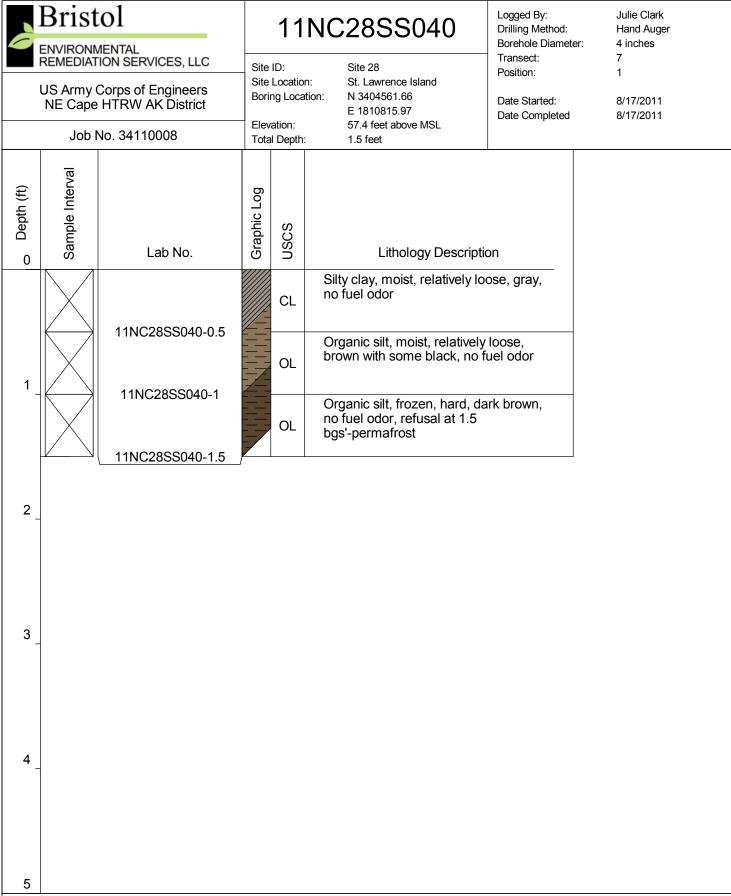
Bristol Logged By: Julie Clark 11NC28SS034 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 6 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404313.161 Date Started: 8/16/2011 **NE Cape HTRW AK District** E 1810743.386 **Date Completed** 8/16/2011 Elevation: 58.279595 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt with 25% peat, moist, dark brown, relatively loose, no fuel odor OL 11NC28SS034-0.5 Organic silt, moist, dark brown, relatively loose, no fuel odor OL 1 11NC28SS034-1 Clayey silt, moist, mottled dark brown and gray, medium dense, no fuel odor OL 11NC28SS034-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS035 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 6 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404318.247 Date Started: 8/16/2011 NE Cape HTRW AK District E 1810768.182 **Date Completed** 8/16/2011 Elevation: 57.815083 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt, wet, dark brown, loose, moderate fuel odor OL 11NC28SS035-0.5 Organic clayey silt, wet, loose, dark brown and black, moderate fuel odor OL 1 11NC28SS035-1 Organic silt, moist, loose, brown, moderate fuel odor OL 11NC28SS035-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level




Bristol Logged By: Julie Clark 11NC28SS037 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 6 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 6 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404309.055 NE Cape HTRW AK District Date Started: 8/17/2011 E 1810827.364 **Date Completed** 8/17/2011 Elevation: 56.884279 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2') 1 Organic silty clay, wet, medium dense, no fuel odor OL 2 11NC28SS037-2 Organic clayey silt, moist, medium dense, no fuel odor OL 11NC28SS037-2.5 Organic clayey silt, moist, medium dense, no fuel odor OL 3 11NC28SS037-3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS038 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 7 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404312.925 NE Cape HTRW AK District Date Started: 8/17/2011 E 1810898.221 **Date Completed** 8/17/2011 Elevation: 57.630686 feet above MSL Job No. 34110008 Total Depth: 2.75 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.75') 1 Organic silt, frozen, wet, brown, slight OL fuel odor 11NC28SS038-1.75 Organic silt and ice, frozen, wet, brown, 2 no fuel odor OL 11NC28SS038-2.25 Organic silt, moist to wet, brown, moderately dense, no fuel odor OL 11NC28SS038-2.75 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

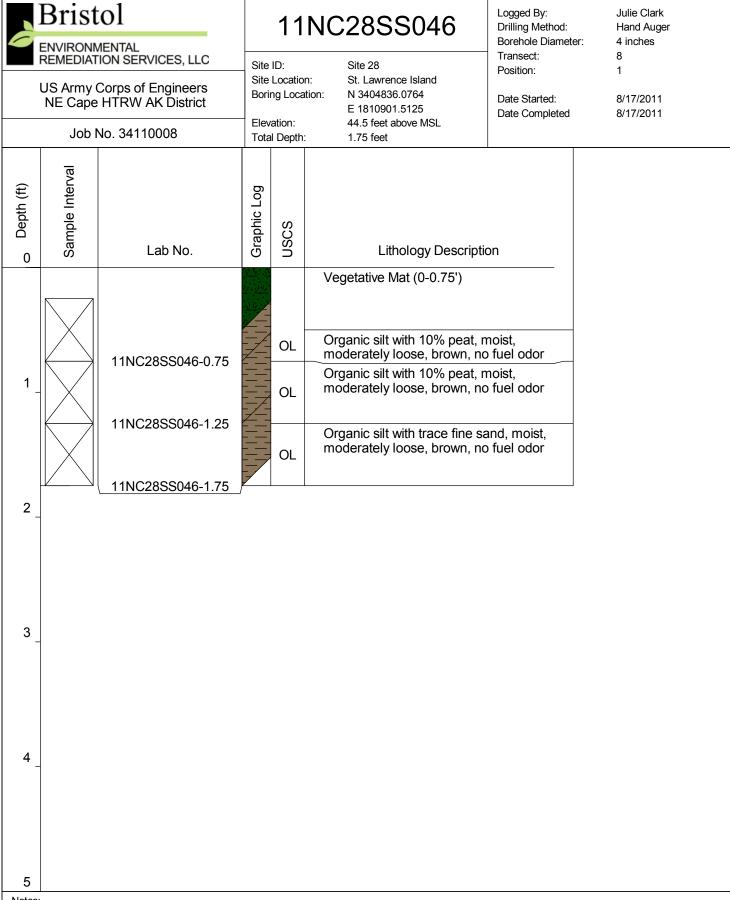
Bristol Logged By: Julie Clark 11NC28SS041 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404549.96 Date Started: 8/17/2011 NE Cape HTRW AK District E 1810851.24 **Date Completed** 8/17/2011 Elevation: 54.1 feet above MSL Job No. 34110008 Total Depth: 1.33 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1') Peat with trace silt, wet, medium dense, moderate fuel odor PT 1 11NC28SS041-1 60% peat and 40% silt, wet, dark brown PT and black, moderate fuel odor, refusal at 1.33' bgs-rocks 11NC28SS041-1.33 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS042 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404545.98 Date Started: 8/17/2011 **NE Cape HTRW AK District** E 1810866.77 **Date Completed** 8/17/2011 Elevation: 53.8 feet above MSL Job No. 34110008 Total Depth: 2 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1') Silt and organics, wet, burnt orange (silt) and dark brown/black (organics), OL slight fuel odor 1 11NC28SS042-1 Clayey silt (like cornstarch), wet, gray, relatively loose, slight fuel odor OL 11NC28SS042-1.5 (DUP 11NC28SS042-Clayey silt (like cornstarch) with some 2.5) gravel, wet, medium density, gray, OL slight fuel odor 2 11NC28SS042-2 3 4 5

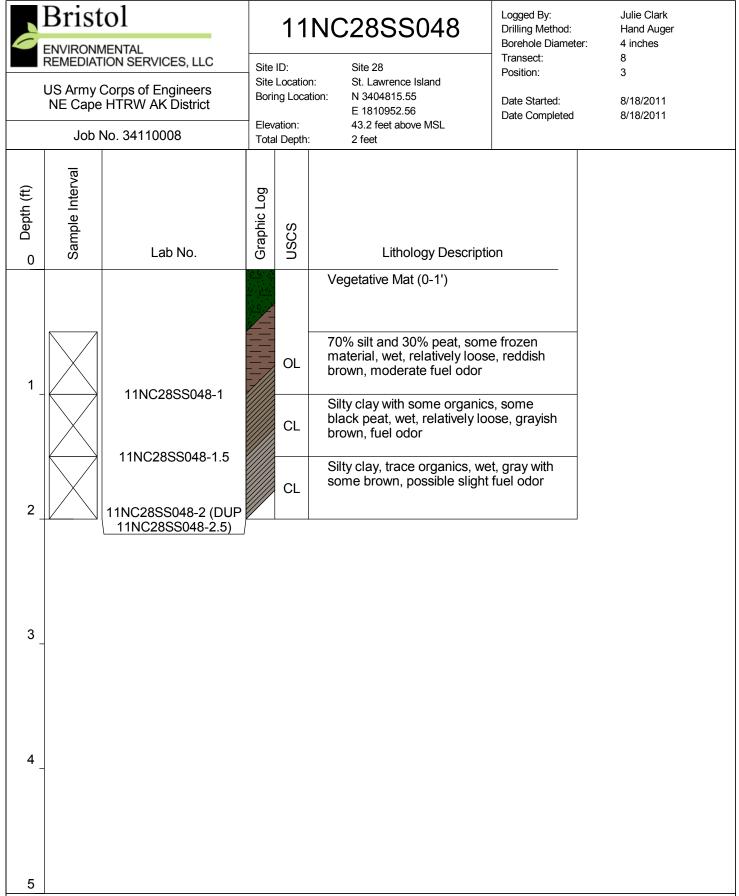
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS043 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404537.26 Date Started: 8/17/2011 **NE Cape HTRW AK District** E 1810910.75 **Date Completed** 8/17/2011 Elevation: 55.1 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 75% peat and 25% silt, wet, brown, moderate fuel odor PT 11NC28SS043-1.5 60% peat and 40% silt, wet, brown, moderate fuel odor PT 2 11NC28SS043-2 50% peat and 50% silt, moist, brown, moderate fuel odor, refusal at 2.5' PT bgs-rocks 11NC28SS043-2.5 3 4 5

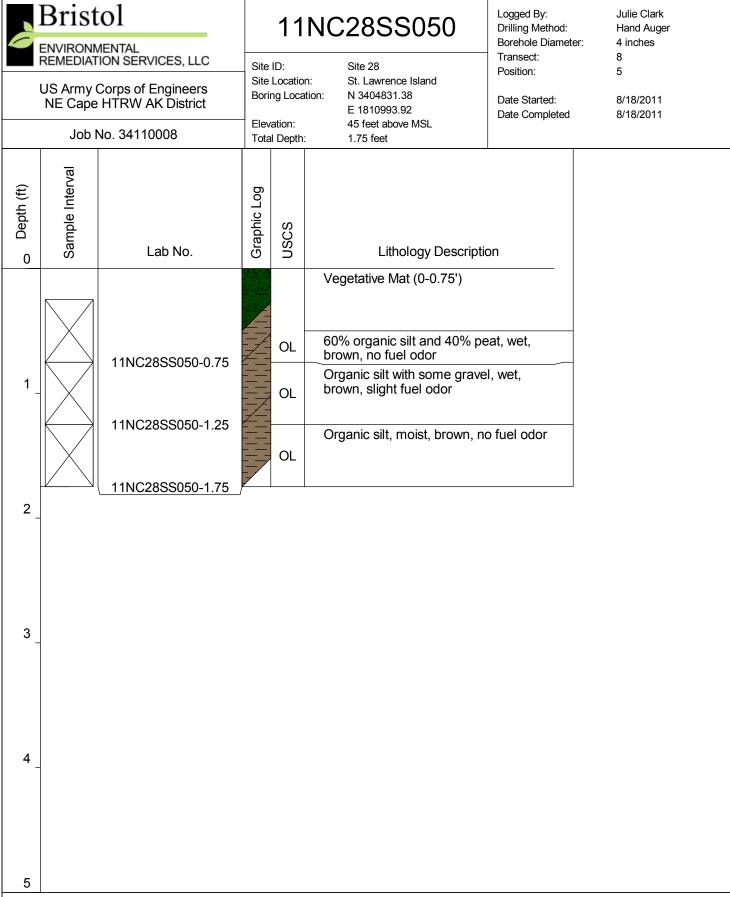

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

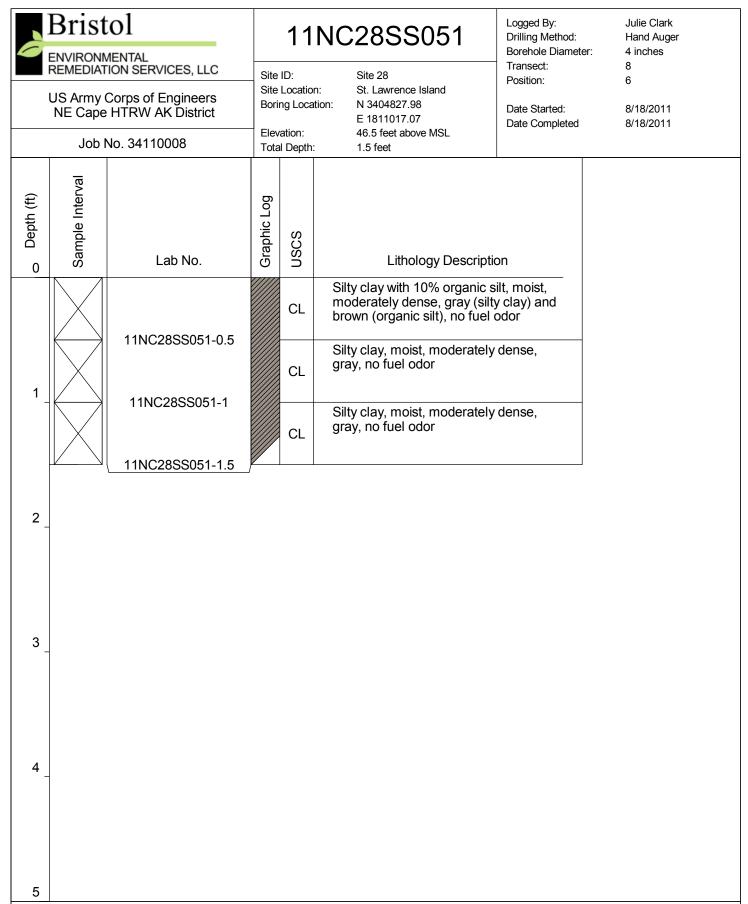
Bristol Logged By: Julie Clark 11NC28SS044 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 5 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404530.55 Date Started: 8/17/2011 NE Cape HTRW AK District E 1810932.7 **Date Completed** 8/17/2011 Elevation: 55.1 feet above MSL Job No. 34110008 Total Depth: 3 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2') 1 80% peat and 20% silt, wet, moderately dense, brown, strong fuel odor PT 2 11NC28SS044-2 70% silt and 30% peat, wet, moderately dense, brown, strong fuel odor OL 11NC28SS044-2.5 Organic silt with 25% peat, wet, medium dense, moderate fuel odor OL 3 11NC28SS044-3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

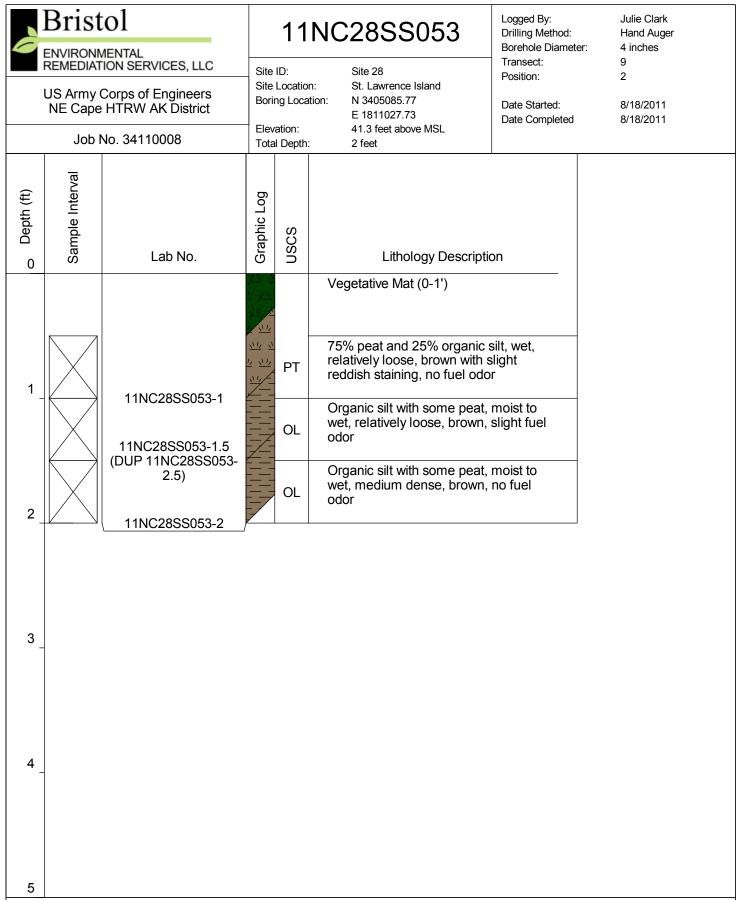

Bristol Logged By: Julie Clark 11NC28SS045 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: Site ID: Site 28 Position: 6 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404517.92 Date Started: 8/17/2011 NE Cape HTRW AK District E 1810951.78 **Date Completed** 8/17/2011 Elevation: 56.6 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1') 50% organic silt and 50% peat, partially frozen, moist, brown, no fuel odor OL 1 11NC28SS045-1 Organic silt with 25%peat, frozen, hard, brown, no fuel odor, refusal at 1.5' OL bgs-permafrost 11NC28SS045-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level


Bristol Logged By: Julie Clark 11NC28SS047 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 8 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404826.34 Date Started: 8/17/2011 NE Cape HTRW AK District E 1810934.46 **Date Completed** 8/17/2011 Elevation: 43.6 feet above MSL Job No. 34110008 Total Depth: 3 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2') 1 60% organic silt and 40% peat, moist, brown, very strong fuel odor OL 2 11NC28SS047-2 90% organic silt and 10% peat, moist, brown, very strong fuel odor OL 11NC28SS047-2.5 Organic silt with trace fine sand, moist, brown, moderate fuel odor OL 3 11NC28SS047-3 4 5

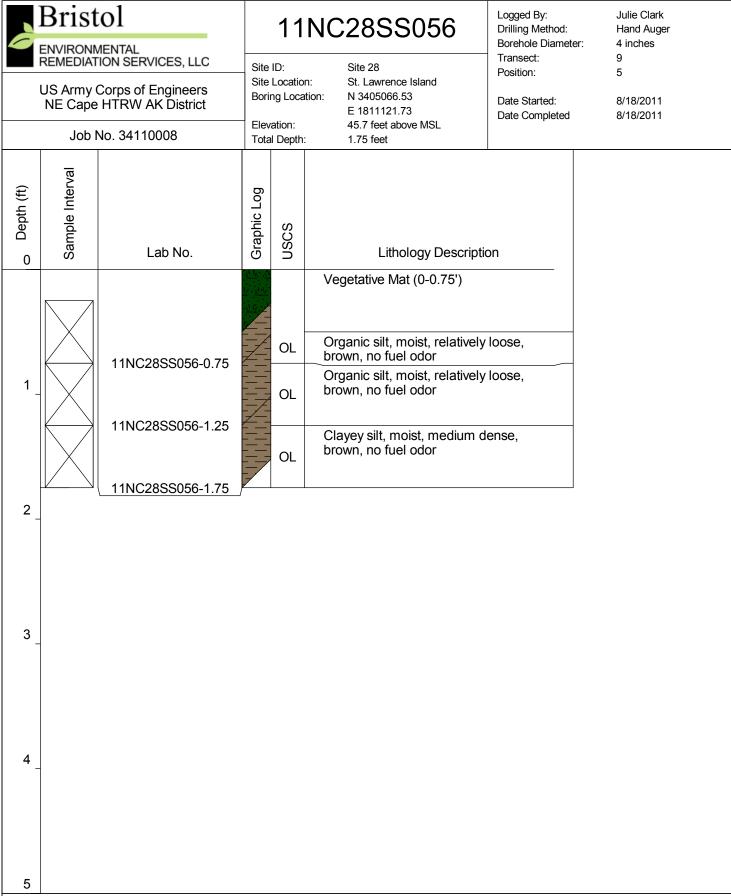

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS049 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 8 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404830.93 Date Started: 8/18/2011 **NE Cape HTRW AK District** E 1810967.73 **Date Completed** 8/18/2011 Elevation: 43.8 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 75% silt and 25% peat, wet, relatively loose, dark brown (silt) and black OL (peat), strong fuel odor 11NC28SS049-1.5 Organic silt with some peat, wet, moderately dense, brown (silt) and OL black (peat), moderate fuel odor 2 11NC28SS049-2 (DUP 11NC28SS049-3) Organic silt with some peat, wet, moderately dense, brown (silt) and OL black (peat), moderate fuel odor 11NC28SS049-2.5 3 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS052 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 1 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405092.26 Date Started: 8/18/2011 NE Cape HTRW AK District E 1810994.91 **Date Completed** 8/18/2011 Elevation: 40.7 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 60% organic silt and 40% peat, moist, moderately dense, brown, no fuel odor OL 11NC28SS052-0.5 Organic silt, moist, moderately dense, brown, fuel odor OL 1 11NC28SS052-1 Organic silt, moist, medium dense, brown, no fuel odor OL 11NC28SS052-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level



Bristol Logged By: Julie Clark 11NC28SS054 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** REMEDIATION SERVICES, LLC Transect: Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405080.83 Date Started: 8/18/2011 NE Cape HTRW AK District E 1811037.13 **Date Completed** 8/18/2011 Elevation: 41.1 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic clayey silt with some peat, wet, relatively loose, slight fuel odor OL 11NC28SS054-0.5 Organic clayey silt, moist, relatively loose, slight fuel odor OL 1 11NC28SS054-1 Organic clayey silt, some silty clay, partially frozen, hard, slight fuel odor OL 11NC28SS054-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS055 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 4 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405082.74 Date Started: 8/18/2011 NE Cape HTRW AK District E 1811080.93 **Date Completed** 8/18/2011 Elevation: 42.4 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt with some clay, wet, moderately dense, no fuel odor OL 11NC28SS055-1.5 Organice clayey silt, moist, moderately dense, no fuel odor OL 2 11NC28SS055-2 Organic clayey silt, moist, fairly dense, no fuel odor OL 11NC28SS055-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

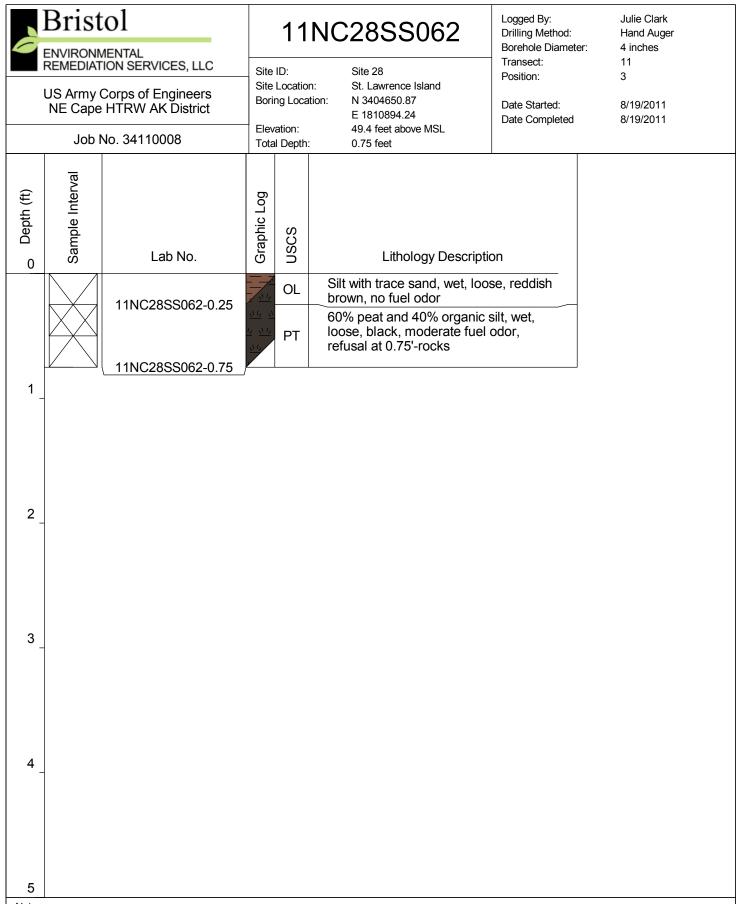
Bristol Logged By: Julie Clark 11NC28SS057 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 10 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 1 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405549.44 Date Started: 8/18/2011 NE Cape HTRW AK District E 1811108.8 **Date Completed** 8/18/2011 Elevation: 35.9 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt with some peat, wet, brown, no fuel odor OL 11NC28SS057-1.5 Organic silt, some rocks, wet, brown, possible fuel odor OL 2 11NC28SS057-2 Silty clay with some gravel, wet, gray, medium dense, possible fuel odor CL 11NC28SS057-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS058 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 10 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405551.76 Date Started: 8/18/2011 NE Cape HTRW AK District E 1811143.75 **Date Completed** 8/18/2011 Elevation: 35.7 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Silt and organics, wet, dark brown, no fuel odor OL 11NC28SS058-0.5 Organic silt and peat, wet, relatively loose, dark brown (silt), black (peat), OL peat has moderate fuel odor 1 11NC28SS058-1 (DUP 11NC28SS58-2) Silty clay with trace fine sand, wet, medium dense, slight fuel odor CL 11NC28SS058-1.5 2 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS059 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 10 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405551.68 Date Started: 8/18/2011 **NE Cape HTRW AK District** E 1811154.41 **Date Completed** 8/18/2011 Elevation: 36.3 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 60% organic silt and 40% peat, wet, loose, dark brown with slight gray, no OL fuel odor 11NC28SS059-0.5 60% organic silt and 40% peat, wet, loose, dark brown, no fuel odor OL 1 11NC28SS059-1 60% organic silt and 40% peat, wet, loose, dark brown, no fuel odor OL 11NC28SS059-1.5 2 3 4 5


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

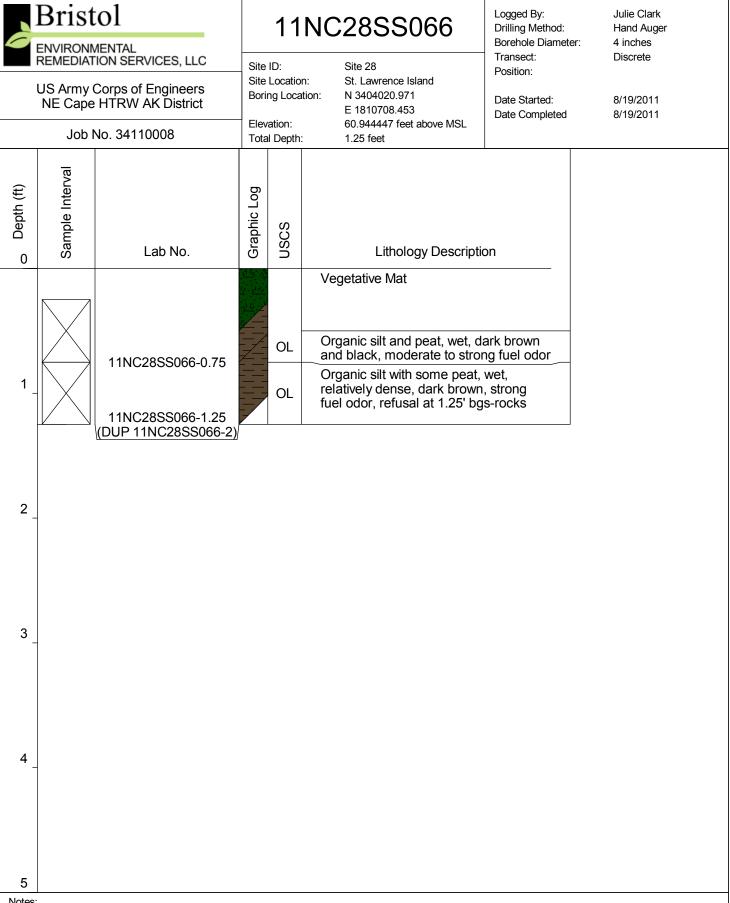
Bristol Logged By: Julie Clark 11NC28SS060 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 11 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404561.5 Date Started: 8/19/2011 **NE Cape HTRW AK District** E 1810861.97 **Date Completed** 8/19/2011 Elevation: 52.8 feet above MSL Job No. 34110008 Total Depth: 1.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt and gravelly sand, wet, loose, dark gray, moderate fuel odor OL 11NC28SS060-0.5 Gravelly sand with some organic silt and peat, wet, relatively loose, dark SP brown, moderate fuel odor 1 11NC28SS060-1 (DUP 11NC28SS060-2) Organic silt, moist, medium dense, brown, moderate fuel odor OL 11NC28SS060-1.5 2 3 4 5

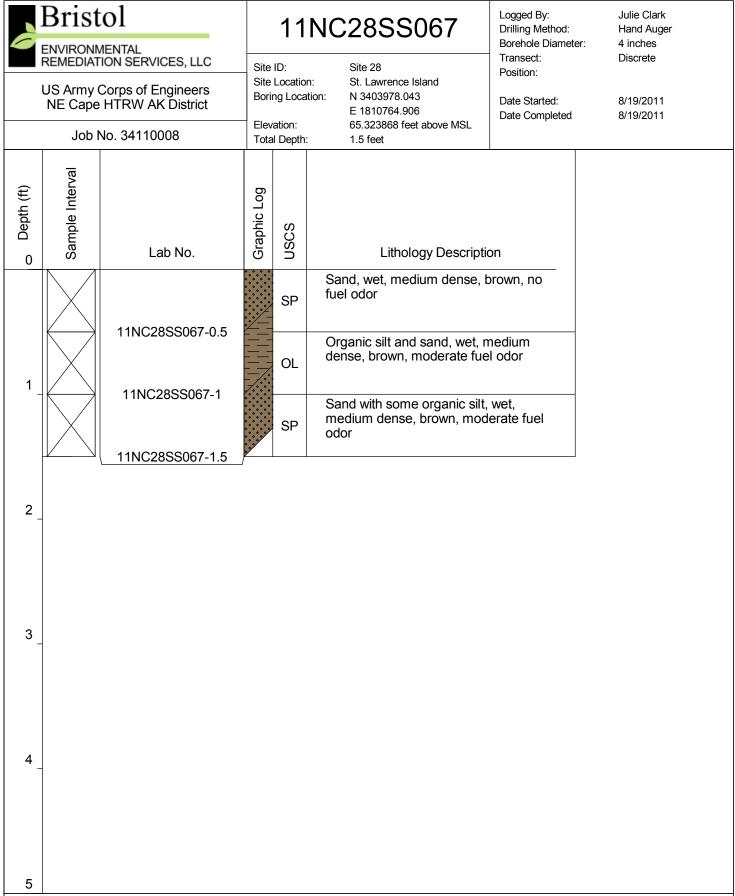
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

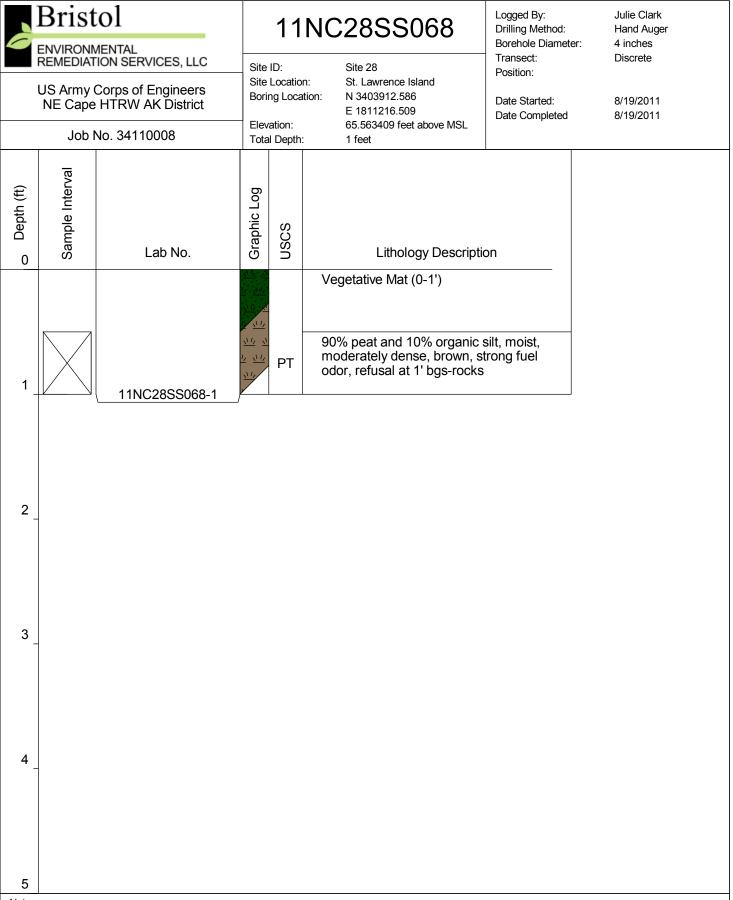
Bristol Logged By: Julie Clark 11NC28SS061 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 11 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404609.97 Date Started: 8/19/2011 **NE Cape HTRW AK District** E 1810879.92 **Date Completed** 8/19/2011 Elevation: 51.1 feet above MSL Job No. 34110008 Total Depth: 2 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Silt, sand and some vegetation, reddish OL brown (silt and sand) and black 11NC28SS061-0.25 (vegetation), wet, loose, possible slight fuel odor in silt/sand, moderate-strong fuel odor in vegetation Vegetative Mat (0.25-1.25' bgs) 1 Organic silt and peat, dark brown(silt) OL and black(peat), wet, moderately loose, 11NC28SS061-1.5 slight fuel odor Clayey silt, trace peat, wet, medium OL dense, gray, slight fuel odor 2 11NC28SS061-2 3 4 5 Notes:

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS063 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 11 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404711.82 Date Started: 8/19/2011 **NE Cape HTRW AK District** E 1810891.07 **Date Completed** 8/19/2011 Elevation: 45.9 feet above MSL Job No. 34110008 Total Depth: 1.75 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Organic silt with clay, trace peat, wet, OL loose, reddish brown, possible slight 11NC28SS063-0.25 fuel odor 90% peat and 10% organic silt, wet, PT moderately dense, dark brown to black, slight fuel odor 11NC28SS063-0.75 Vegetative Mat (0.75-1.75 bgs) 1 60% peat and 40% organic silt, wet, PT medium dense, black (peat) and brown 11NC28SS063-1.75 (silt), strong fuel odor 2 3 4 5

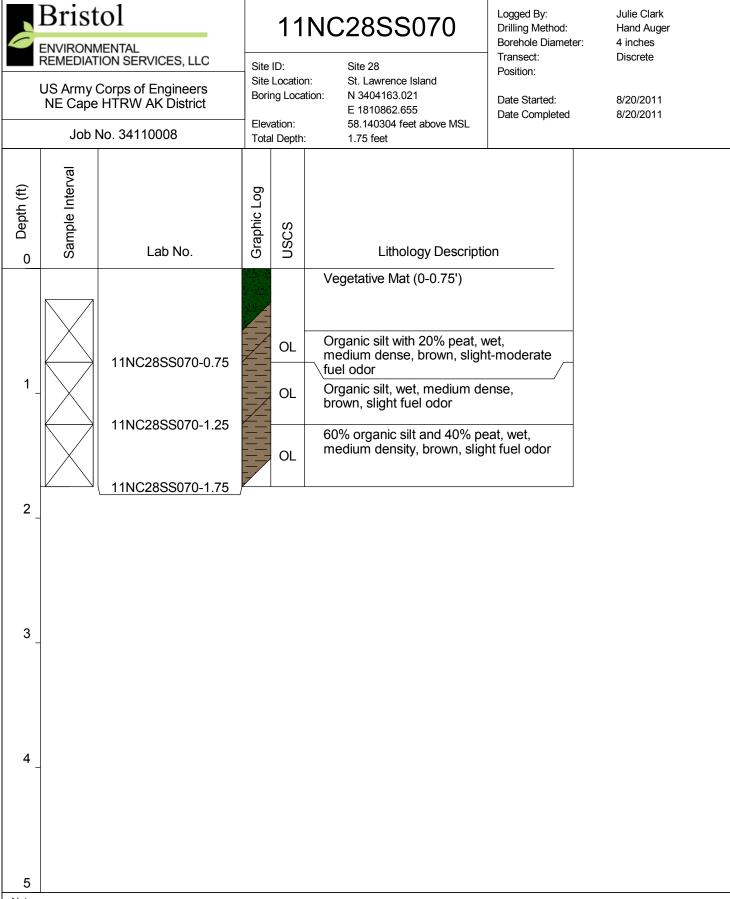

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

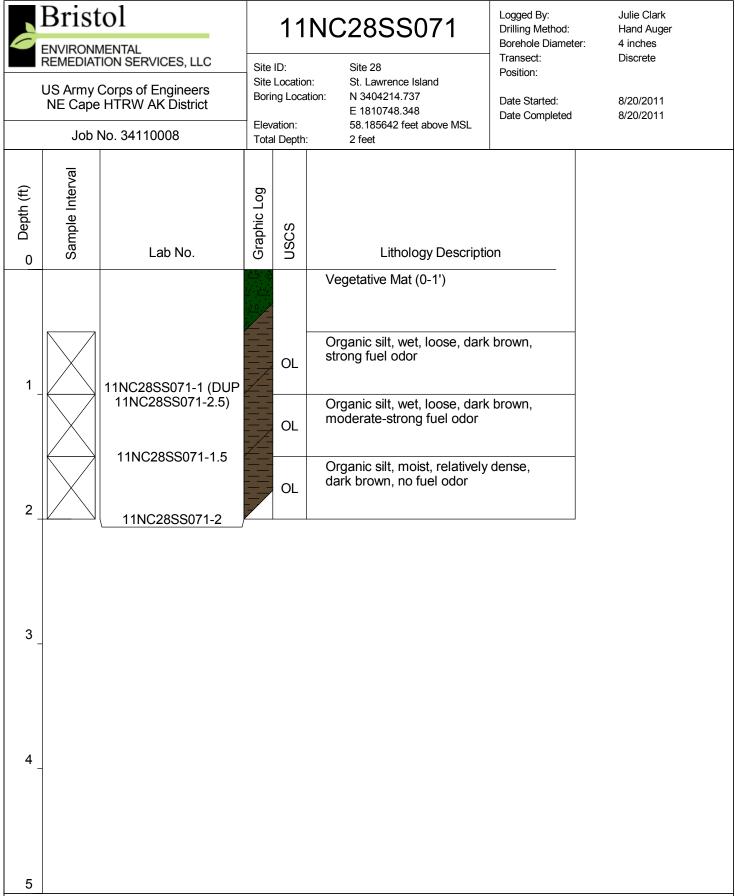

Bristol Logged By: Julie Clark 11NC28SS064 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: 11 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 5 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404749.28 Date Started: 8/19/2011 **NE Cape HTRW AK District** E 1810912.84 **Date Completed** 8/19/2011 Elevation: 45.2 feet above MSL Job No. 34110008 Total Depth: 2.25 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Silt with trace sand and trace peat, wet, OL loose, reddish brown, no fuel odor 11NC28SS064-0.25 Vegetative Mat (0.25-1.75 bgs) 1 80% peat with 20% organic silt, wet, PT black(peat) and brown (silt), 11NC28SS064-1.75 moderately dense, moderate fuel odor 2 75% organic silt and 25% peat, moist, OL pretty dense, brown (silt) and black 11NC28SS064-2.25 (peat), slight fuel odor (DUP 11NC28SS064-2.5) 3 4 5 Notes:


" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS065 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: 11 REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 6 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404779.07 Date Started: 8/19/2011 **NE Cape HTRW AK District** E 1810937.75 **Date Completed** 8/19/2011 Elevation: 43.8 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-2') 1 60% peat and 40% organic silt, wet, medium dense, black (peat) and brown PT (silt), strong fuel odor 2 11NC28SS065-2 Organic silt, moist to wet, relatively dense, brown and gray, slight fuel odor OL 11NC28SS065-2.5 Organic silt and silty clay, moist, pretty dense, brown (silt) and gray (silty clay), OL slight fuel odor 3 11NC28SS065-3 4 5

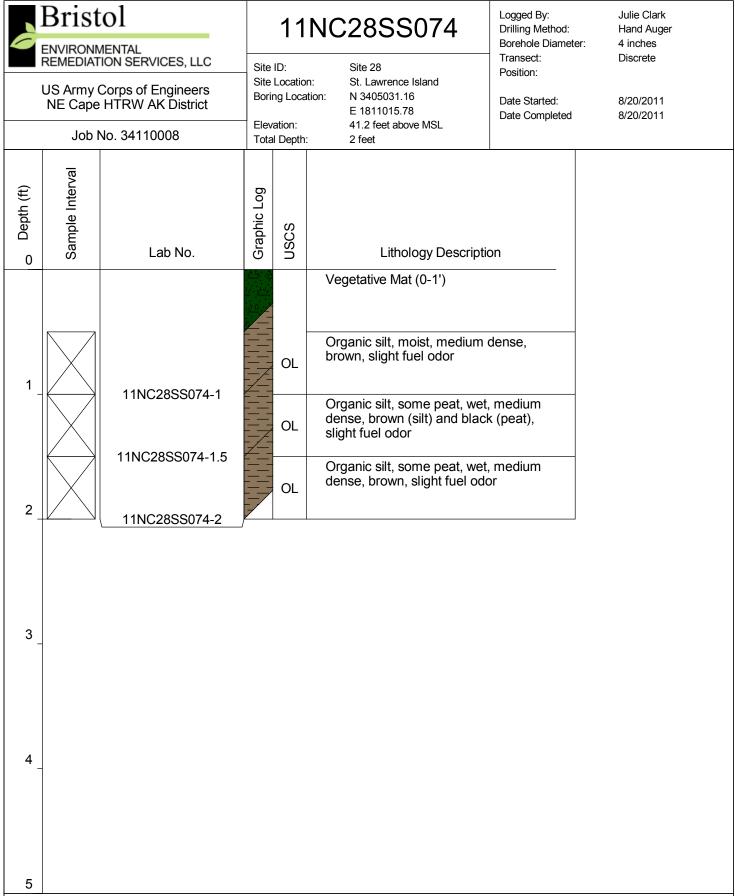
" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level





Bristol Logged By: Julie Clark 11NC28SS069 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404100.379 Date Started: 8/20/2011 NE Cape HTRW AK District E 1810966.681 **Date Completed** 8/20/2011 Elevation: 59.70281 feet above MSL Job No. 34110008 Total Depth: Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt with 25% peat, wet, medium dense, brown, strong fuel odor OL 11NC28SS069-1.5 Organic silt with 40% peat, wet, medium dense, brown, strong fuel OL odor, refusal at 2' bgs-rocks 2 11NC28SS069-2 (DUP 11NC28SS069-2.5) 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level



Bristol Logged By: Julie Clark 11NC28SS072 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3404423.13 Date Started: 8/20/2011 **NE Cape HTRW AK District** E 1810835.7 **Date Completed** 8/20/2011 Elevation: 55.3 feet above MSL Job No. 34110008 Total Depth: 2.25 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.25') 1 50% peat and 50% organic silt, wet, PT medium dense, dark brown and black, 11NC28SS072-1.25 strong fuel odor 80% peat and 20% organic silt, wet, PT medium dense, dark brown and black, moderate fuel odor 11NC28SS072-1.75 Peat, silt, and clay, moist, dense, dark 2 brown (peat and silt), and gray (clay), PT strong fuel odor 11NC28SS072-2.25 (DUP 11NC28SS072-2.5) 3 4 5 Notes:

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS073 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404989.4 8/20/2011 Date Started: NE Cape HTRW AK District E 1811005.05 **Date Completed** 8/20/2011 Elevation: 42.8 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt, wet, medium dense, brown with some gray, moderate fuel odor OL 11NC28SS073-1.5 Organic silt, wet, dense, brown, slight fuel odor OL 2 11NC28SS073-2 Organic silt, some peat, moist, dense, brown, slight to moderate fuel odor OL 11NC28SS073-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS075 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3405292.08 8/20/2011 Date Started: **NE Cape HTRW AK District** E 1811068.45 **Date Completed** 8/20/2011 Elevation: 38.2 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt and peat, wet, relatively loose, brown (silt), black (peat), slight OL fuel odor 11NC28SS075-1.5 Organic silt, some sand and trace peat, wet with standing water, medium OL dense, brownish gray and black, slight 2 fuel odor 11NC28SS075-2 Clayey silt, wet, dense, brown, slight fuel odor OL 11NC28SS075-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS076 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405417.96 Date Started: 8/21/2011 NE Cape HTRW AK District E 1811112.37 **Date Completed** 8/21/2011 Elevation: 37.9 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Clayey silt with sand, wet, medium dense, brown, no fuel odor OL 11NC28SS076-1.5 Clayey silt with sand, wet, medium dense, brown with some gray, no fuel OL 2 11NC28SS076-2 Silty clay with sand, wet, dense, gray and brown, no fuel odor CL 11NC28SS076-2.5 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS077 Drilling Method: Hand Auger Borehole Diameter: 4 inches **ENVIRONMENTAL** Transect: Discrete REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3404959.3 Date Started: 8/21/2011 NE Cape HTRW AK District E 1810970.97 **Date Completed** 8/21/2011 Elevation: 42.4 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 Organic silt with some peat, wet, relatively dense, brown, slight fuel odor OL 11NC28SS077-1.5 Organic silt with peat, wet, relatively dense, brown, slight fuel odor OL 2 11NC28SS077-2 Organic silt with trace peat, wet, dense, 11NC28SS077-2.5 brown, slight fuel odor OL 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS078 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: BG REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3405774.52 Date Started: 8/21/2011 **NE Cape HTRW AK District** E 1816455.4 **Date Completed** 8/21/2011 Elevation: 42.1 feet above MSL Job No. 34110008 Total Depth: 2.5 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.5') 1 90% peat and 10% organic silt, wet, medium dense, brown, no fuel odor PT 11NC28SS078-1.5 Organic silt with some peat, moist, medium dense, brown, no fuel odor OL 2 11NC28SS078-2 Silty clay, some organic silt, moist, medium dense, gray (silty clay) and CL brown (organic silt), no fuel odor 11NC28SS078-2.5 (DUP 11NC28SS078-3) 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS079 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: BG REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 2 Site Location: St. Lawrence Island US Army Corps of Engineers Boring Location: N 3405781.36 Date Started: 8/21/2011 NE Cape HTRW AK District E 1816473.22 **Date Completed** 8/21/2011 Elevation: 42.2 feet above MSL Job No. 34110008 Total Depth: 3.5 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat (0-2.5') 1 2 Organic silt with some peat, wet, medium dense, brown, no fuel odor OL 11NC28SS079-2.5 Organic silt with some peat, wet, medium dense, brown, no fuel odor OL 3 11NC28SS079-3 Organic silt, wet, medium dense, brown, no fuel odor OL 11NC28SS079-3.5 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS080 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: BG REMEDIATION SERVICES, LLC Site ID: Site 28 Position: 3 Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3405794.73 Date Started: 8/21/2011 NE Cape HTRW AK District E 1816487.26 **Date Completed** 8/21/2011 Elevation: 41.3 feet above MSL Job No. 34110008 Total Depth: 3.75 feet Sample Interval Depth (ft) Graphic Log **USCS** Lab No. Lithology Description 0 Vegetative Mat 0-2.75') 1 2 Peat with some organic silt, wet, loose to medium dense, brown, no fuel odor PT 11NC28SS080-2.75 Peat with some organic silt, wet, 3 loose-medium dense, brown, no fuel PT odor 11NC28SS080-3.25 50% organic silt and 50% peat, wet, loose-medium dense, brown, no fuel OL odor 11NC28SS080-3.75 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

Bristol Logged By: Julie Clark 11NC28SS081 Drilling Method: Hand Auger Borehole Diameter: 4 inches ENVIRONMENTAL Transect: BG REMEDIATION SERVICES, LLC Site ID: Site 28 Position: Site Location: St. Lawrence Island **US Army Corps of Engineers** Boring Location: N 3405805.44 Date Started: 8/21/2011 **NE Cape HTRW AK District** E 1816505.91 **Date Completed** 8/21/2011 Elevation: 41.8 feet above MSL Job No. 34110008 Total Depth: 2.25 feet Sample Interval Depth (ft) Graphic Log **NSCS** Lab No. Lithology Description 0 Vegetative Mat (0-1.25') 1 Organic silt with 25% peat, wet, OL relatively loose, brown, no fuel odor 11NC28SS081-1.25 Organic silt with 25% peat, wet (standing water), loose, brown, no fuel OL odor 11NC28SS081-1.75 75% peat and 25% organic silt, moist, 2 loose, brown, no fuel odor PT 11NC28SS081-2.25 (DUP 11NC28SS081-2.5) 3 4 5

" = inch or inches bgs = below ground surface ft = foot or feet ID = identification MSL = mean sea level

APPENDIX D

ADEC Checklists

Chemical Data Verification Report

Laboratory Data Review Checklist

Completed by:	Emily Conway
Title:	Geologist Date: October 17, 2011
CS Report Name:	NE Cape 2011 HTRW Report Date:
Consultant Firm:	Bristol Environmental Remediation Services
Laboratory Name	Test America Tacoma Laboratory Report Number: 580-28053-1
ADEC File Numb	er: ADEC RecKey Number:
	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes □ No □NA (Please explain.) Comments:
laborat	samples were transferred to another "network" laboratory or sub-contracted to an alternate cory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments:
	ody (COC) Information completed, signed, and dated (including released/received by)? If Yes □ No □NA (Please explain.) Comments:
	t analyses requested? X Yes No NA (Please explain.) Comments:
a. Sample	mple Receipt Documentation e/cooler temperature documented and within range at receipt $(4^{\circ} \pm 2^{\circ} C)$? Yes $\Box X \ No \Box NA$ (Please explain.) Comments:
Coolers	arrived at 0.6, 1.5 and 5.8°C.
Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes □ No □NA (Please explain.) Comments:

	c.	Sample condition □X Yes		ented – broken □NA (Please		thanol), z	zero headspace (VOC vials)? Comments:
	d.	•			•		xample, incorrect sample able range, insufficient or missing
		□X Yes	□ No	□NA (Please	explain.)		Comments:
	1	No time on label of	MeOH	jar, some jars	(16oz) only ha	alf full.	
	e.	Data quality or us	sability a	affected? (Pleas	se explain.)	Comn	nents:
	S	Sample results are t	usable w	ithout qualifica	ations.		
4. <u>(</u>		Narrative Present and unde		le? □NA (Please	explain.)		Comments:
	b.	Discrepancies, er □X Yes		QC failures ider □NA (Please	•	lab?	Comments:
	c.	Were all correction □X Yes		ns documented NA (Please			Comments:
	d.	What is the effect	t on data	quality/usabil	ity according	to the cas	
	5	Sample results are	usable w	ith some quali	fications.		
5. <u>s</u>	-	es Results Correct analyses	-	ed/reported as □NA (Please	-	COC?	Comments:
	b.	All applicable ho ☐Yes ☐X N	_	nes met? Please explain	.)	Comm	nents:
	S	Some holding time	s were n	ot met, affecte	d samples are	noted in	the report and flagged in table.

c.	All soils reporte \Box Yes \Box X	-	ight basis? A (Please explain.)	Comments:					
d.	Are the reported PQLs less than the Cleanup Level or the minimum required detection level for project?								
		No□NA (Plea	se explain.)	Comments:					
A	Affected samples	are highlighte	ed on the report tabl	les.					
e.	Data quality or	usability affec	eted?	Comments:					
S	Sample results are	usable with s	some qualifications						
<u>. Sa</u> a.	<u>mples</u> Method Blank								
	i. One met	-	-	nalysis and 20 samples?					
	$\Box X Yes$	\square No \square N	A (Please explain.)	Comments:					
_	A 11 41	- 11-11	14 - 1 41 DOI 9						
	ıı. Alı metr □X Yes		lts less than PQL? (A (Please explain.)	Comments:					
			(1 1 0 000 0 11 p 1 0 1111)	,					
	iii. If above	PQL, what sa	imples are affected						
				Comments:					
	iv. Do the a	ffected sample	e(s) have data flags	and if so, are the data flags clearly det	fined?				
	$\Box X Yes$	\square No \square N	A (Please explain.)	Comments:					
_	y Doto and	lity or neekili	ty affactad? (Dlace	ee evnlain)					
	v. Data quality or usability affected? (Please explain.) Comments:								
F	Results are usable	without quali	ification						
	tosuits are usuoie	Willout quan							
b.	Laboratory Con	trol Sample/D	ouplicate (LCS/LCS	SD)					
	i. Organic	s – One LCS/I	LCSD reported per	matrix, analysis and 20 samples? (LCS	S/LCSD				
	required	per AK metho	ods, LCS required 1	per SW846)					
	$\Box X Yes$	\square No \square N	A (Please explain.)	Comments:					

$\Box X Yes$? □ No □NA (Please €	explain.) Comments:
And pro	ject specified DQOs, if a	s (%R) reported and within method or laboratory limits? pplicable. (AK Petroleum methods: AK101 60%-120%, -120%; all other analyses see the laboratory QC pages) explain.) Comments:
		ifferences (RPD) reported and less than method or
LCS/LC		ecified DQOs, if applicable. RPD reported from mple/sample duplicate. (AK Petroleum methods 20%; al
	o □NA (Please explain.	1 0 /
Some MS/MSDs	failed, LCS/LCSDs are a	cceptable.
v. If %R o	r RPD is outside of accep	table limits, what samples are affected? Comments:
Samples are flagg	ged.	
vi. Do the a		ata flags? If so, are the data flags clearly defined? Comments:
vi. Do the a	affected sample(s) have da on the large of	
vi. Do the a □Yes □ N Parent samples ar	affected sample(s) have da lo □NA (Please explain. re "J" flagged.	
vi. Do the a □Yes □ N Parent samples ar vii. Data qu	affected sample(s) have da lo □NA (Please explain. re "J" flagged.	Comments: ? (Use comment box to explain.) Comments:
vi. Do the a □Yes □ N Parent samples ar vii. Data qu	affected sample(s) have date on the one of t	Comments: ? (Use comment box to explain.) Comments:
vi. Do the a Yes N Parent samples ar vii. Data qua Sample results are Surrogates – Or	affected sample(s) have date on NA (Please explain. The "J" flagged. The additional process of the same and the same and the same qualifier ganics of the same qualifier ganical ganical ganical ganical ganical ganical ganical ganical ganical gang ganical	Comments: ? (Use comment box to explain.) Comments: ications. I for organic analyses – field, QC and laboratory samples
vi. Do the a Yes N Parent samples ar vii. Data qua Sample results are Surrogates – Or i. Are surr X Yes ii. Accurace	affected sample(s) have date on NA (Please explain. The "J" flagged. The ality or usability affected and the usable with some qualification of the control	Comments: ? (Use comment box to explain.) Comments: ications. I for organic analyses – field, QC and laboratory samples

	flags cl	early defin	ed?	te recoveries have data flags? If so, are the data
	⊔X Yes	□ No	□NA (Please explain.)	Comments:
	iv. Data qu	ality or us	ability affected? (Use th	ne comment box to explain.) Comments:
Samp	ple results ar	e usable v	vithout qualification.	
l. Tri <u>Soi</u>	-	olatile ana	lyses only (GRO, BTEX	X, Volatile Chlorinated Solvents, etc.): Water and
	(If not,	enter expl	ported per matrix, analystanation below.) (Please explain.)	sis and for each cooler containing volatile samples Comments:
Trip	Blank 2 (11)	NC081511) was missed by lab.	
	□X Yes	□ No	t explaining why must b	
	iii. All resu □Yes □X		an PQL? (Please explain.)	Comments:
	iv. If above	e PQL, wh	at samples are affected?	Comments:
Affe	cted samples	s are flagg	ed.	
	v. Data qu	ality or us	ability affected? (Please	explain.) Comments:
Samp	ple results ar	e usable v	vith some qualification.	
. Fie	eld Duplicate	e		
	i. One fie □X Yes	-	te submitted per matrix, NA (Please explain.)	analysis and 10 project samples? Comments:

ii. Submitted blind to lab?	
$\Box X \text{ Yes}$ $\Box \text{ No } \Box \text{NA (Please explain.)}$	Comments:
iii. Precision – All relative percent differences (F (Recommended: 30% water, 50% soil)	RPD) less than specified DQOs?
	x 100
$((R_1+R_2)/2)$	
Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration	\n
$\Box Yes \Box X \text{ No} \qquad \Box NA \text{ (Please explain.)}$	Comments:
Affected sample results are highlighted in the results to	able.
iv. Data quality or usability affected? (Use the co	omment hoy to explain why or why not
1v. Data quanty of usability affected: (Ose the o	Comments:
Commis mospite and weakle with smallfingtions	Comments.
Sample results are useable with qualifications.	
f. Decontamination or Equipment Blank (If not used ex	xplain why).
\Box Yes \Box X No \Box NA (Please explain.)	Comments:
Not required.	
i. All results less than PQL?	
•	Comments
\Box Yes \Box No \Box X NA (Please explain.)	Comments:
Not required.	
ii. If above PQL, what samples are affected?	
	Comments:
N/A	
Data quality on yeahility offe et al? (Diago aw	mlain)
iii. Data quality or usability affected? (Please ex	,
[Comments:
N/A	
ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific,	etc.)
a. Defined and appropriate?	
$\Box X \text{ Yes} \qquad \Box \text{ No} \Box \text{NA (Please explain.)}$	Comments:
Flags are defined in table.	

Laboratory Data Review Checklist

Completed by: Emily Conway
Title: Geologist Date: October 19, 2011
CS Report Name: NE Cape 2011 HTRW Report Date:
Consultant Firm: Bristol Environmental Remediation Services
Laboratory Name: TestAmerica-Tacoma Laboratory Report Number: 580-28112-1
ADEC File Number: ADEC RecKey Number:
 Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? □X Yes □ No □NA (Please explain.) Comments:
 b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? ☐ X Yes ☐ No ☐NA (Please explain.) Comments: Several analyses were subcontracted to TA-Denver.
 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? □X Yes □ No □NA (Please explain.) Comments:
b. Correct analyses requested? □X Yes □ No □NA (Please explain.) Comments:
3. <u>Laboratory Sample Receipt Documentation</u> a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? □X Yes □ No □NA (Please explain.) Comments:
 Coolers arrived at 3.8, 2.7, 3.6 and 1.5°C. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? X Yes □ No □NA (Please explain.) Comments:

	c.	Sample condition □X Yes		ented – broken, lea □NA (Please exp		zero headspace (VOC vials)? Comments:
	d.	•				xample, incorrect sample able range, insufficient or missing
		□X Yes	\square No	□NA (Please exp	lain.)	Comments:
	(Container label for	sample	(580-28112-27) di	d no match inform	ation on COC.
	e.	Data quality or us	sability a	affected? (Please e.	xplain.) Comn	nents:
	5	Sample results are u	ısable w	rithout qualification	1.	
4.		Narrative Present and under		ole? □NA (Please exp	lain.)	Comments:
	b.	Discrepancies, en □X Yes		QC failures identifi □NA (Please exp		Comments:
	c.	Were all correctiv □X Yes		ns documented? □NA (Please exp	lain.)	Comments:
	d.	What is the effect	on data	ı quality/usability ε	ccording to the cas	
	;	Sample results are u	usable w	ith some qualifica	tion.	
5.	-	les Results Correct analyses		ed/reported as requ □NA (Please exp		Comments:
	b.	All applicable hod		nes met? □NA (Please exp	lain.)	Comments:

c	. All soils reported on a dry X Yes □ No □NA (P	•	Comments:
[
d	project?	•	the minimum required detection level for the
-		□NA (Please explain.)	Comments:
Į	Affected sample results are h	nighlighted on the results tab	bles .
e	. Data quality or usability af	fected?	Comments:
	Results are still usable for prattributed to high sample moi		nalifications due to elevated PQLs
6. <u>QC S</u> a		reported per matrix, analysis	s and 20 samples?
ſ		□NA (Please explain.)	Comments:
ſ	ii. All method blank re □X Yes □ No □	esults less than PQL? NA (Please explain.)	Comments:
ſ	iii. If above PQL, what	t samples are affected?	Comments:
[nple(s) have data flags and in □NA (Please explain.)	f so, are the data flags clearly defined? Comments:
·	v. Data quality or usal	bility affected? (Please expl	lain.) Comments:
	Sample results are usable with	thout qualification.	
b	. Laboratory Control Sample	e/Duplicate (LCS/LCSD)	
	required per AK me	S/LCSD reported per matrix ethods, LCS required per SV □NA (Please explain.)	x, analysis and 20 samples? (LCS/LCSD W846) Comments:
ſ			

	samples? X Yes	J	□NA (Please explai		Comments:
	And proje	ect speci 5%-125°	fied DQOs, if applica	able. (AK Petr 6; all other and	d within method or laboratory limits? roleum methods: AK101 60%-120%, alyses see the laboratory QC pages) Comments:
	laboratory LCS/LCS	y limits? SD, MS/I lyses see	And project specifie	d DQOs, if ap sample duplic ages)	eported and less than method or oplicable. RPD reported from eate. (AK Petroleum methods 20%; all Comments:
Some M	S/MSDs fa	ailed, LC	CS/LCSDs are accept	able.	
v.	If %R or	RPD is	outside of acceptable		amples are affected?
Parent sa	amples are	flagged			
	Do the af		mple(s) have data fla	•	the data flags clearly defined? Comments:
vii	. Data qual	ity or us	ability affected? (Us		x to explain.) mments:
Sample	results are	usable v	ith some qualification	on.	
c. Surrog	gates – Org	anics O	nly		
i. □∑	Are surro	_	overies reported for o	•	es – field, QC and laboratory samples Comments:
	And proje	ect speci see the la		able. (AK Petres)	d within method or laboratory limits? roleum methods 50-150 %R; all other mments:
Samples	outside lin	nite are	flagged		
\perp Dailings	CONTRICTED III	111115 4115	110225U.		

$\Box X Yes$	learly defin ☐ No	□NA (Please explain.)	Comments:
		1 /	
iv. Data q	uality or us	ability affected? (Use the c	comment box to explain.) Comments:
ample results a	re usable w	vith some qualifications.	
Trip blank – V <u>Soil</u>	Volatile ana	lyses only (GRO, BTEX, V	Volatile Chlorinated Solvents, etc.): Water an
	, enter expl	oorted per matrix, analysis anation below.) NA (Please explain.)	and for each cooler containing volatile sampl Comments:
	, a commen	to transport the trip blank at explaining why must be emplain.)	and VOA samples clearly indicated on the Centered below) Comments:
	ults less that No \Box NA (an PQL? (Please explain.)	Comments:
	ve POL. wh	at samples are affected?	
iv. If abov			Comments:
		ability affected? (Please ex	
v. Data q	uality or us		plain.)
v. Data q	uality or us are usable w	ability affected? (Please ex	plain.)

ii. Submitted blind to lab? $\Box X \text{ Yes} \qquad \Box \text{ No} \Box \text{NA} \text{ (Please explain}$	cin.) Comments:
iii. Precision – All relative percent differe (Recommended: 30% water, 50% soil)	
RPD (%) = Absolute value of: $(R_1-R_1-R_2)$	2,
$((R_1+x_1)^2)$	$\frac{1}{(R_2)/(2)}$ x 100
Where $R_1 = $ Sample Concentration	
$R_2 = $ Field Duplicate Conce $\Box Yes \Box X \text{ No} \Box NA \text{ (Please explain.)}$	entration Comments:
Affected samples are highlighted in the results t	table.
iv. Data quality or usability affected? (Us	se the comment box to explain why or why not.)
• •	Comments:
Sample results are usable with qualifications.	
f. Decontamination or Equipment Blank (If not	used explain why).
□Yes □ No □X NA (Please explain.)	Comments:
Not required.	
i. All results less than PQL?	
\Box Yes \Box No \Box X NA (Please explain.)	Comments:
Not required.	
ii. If above PQL, what samples are affect	ted?
	Comments:
N/A	
iii. Data quality or usability affected? (Ple	ease explain.)
	Comments:
N/A	
her Data Flags/Qualifiers (ACOE, AFCEE, Lab Sp	pecific etc.)
a. Defined and appropriate?	<u>sectite, etc.</u>
$\Box X \text{ Yes}$ $\Box \text{ No } \Box \text{NA (Please explain}$	in.) Comments:
Flags are defined in Table notes.	

Laboratory Data Review Checklist

Completed by:	Emily Conway				
Title:	Geologist			Date:	October 27, 2011
CS Report Name:	NE Cape 2011	HTRW		Report Date:	
Consultant Firm:	Bristol Environ	mental Remediati	on Services		
Laboratory Name	: TestAmerica-S	Seattle	Laborate	ory Report Nu	1 580-28198-1
ADEC File Numb	per:		ADEC Rec	Key Number:	
		ved laboratory rec □NA (Please ex	-		submitted sample analyses? ments:
labora □∑	tory, was the labor	ratory performing	the analyses	ADEC CS ap	ab-contracted to an alternate proved? ments:
2. Chain of Cust	ody (COC)				
a. COC i	nformation compl	eted, signed, and o	,	•	eceived by)? ments:
	et analyses request X Yes □ No		plain.)	Com	ments:
	e/cooler temperati				4° ± 2° C)? ments:
Volati	le Chlorinated Sol	vents, etc.)?		-	red VOC soil (GRO, BTEX,
	X Yes □ No	□NA (Please ex	zplain.)	Com	ments:

	c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? □X Yes □ No □NA (Please explain.) Comments:
	d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	Г	ETT Tes ETTT (Trease explaint)
	e.	Data quality or usability affected? (Please explain.) Comments:
		Sample results are usable without qualification.
4.		arrative Present and understandable? □X Yes □ No □NA (Please explain.) Comments:
	b.	Discrepancies, errors or QC failures identified by the lab? □X Yes □ No □NA (Please explain.) Comments:
	L	
	c.	Were all corrective actions documented? □X Yes □ No □NA (Please explain.) Comments:
	d.	What is the effect on data quality/usability according to the case narrative? Comments:
		ample results are usable with some qualifications.
5.	_	SE Results Correct analyses performed/reported as requested on COC? □X Yes □ No □NA (Please explain.) Comments:
	b.	All applicable holding times met? □Yes □X No□NA (Please explain.) Comments:
		everal samples were received with greater than 50% of holding time expired.

c.	All soils reported on a dry weig $\Box X \text{ Yes} \qquad \Box \text{ No} \Box \text{NA}$	ht basis? (Please explain.)	Comments:
d.	Are the reported PQLs less than project?	the Cleanup Level	or the minimum required detection level for t
	□Yes □X No□NA (Please	e explain.)	Comments:
7	The affected samples are highligh	ited on the results to	ables.
e.	Data quality or usability affecte	d?	Comments:
S	Sample results are usable with qu	alifications.	
C Sa	<u>imples</u>		
a.	Method Blank i. One method blank repor	rted per matrix, ana (Please explain.)	lysis and 20 samples? Comments:
	ii. All method blank results □X Yes □ No □NA	s less than PQL? (Please explain.)	Comments:
	iii. If above PQL, what sam	ples are affected?	Comments:
		s) have data flags at (Please explain.)	nd if so, are the data flags clearly defined? Comments:
	v. Data quality or usability	affected? (Please	explain.) Comments:
S	Sample results are usable without	qualifications.	
b.	Laboratory Control Sample/Du	plicate (LCS/LCSD)
	i. Organics – One LCS/LC required per AK method	CSD reported per m	atrix, analysis and 20 samples? (LCS/LCSD

	ii. Metals/In samples?	organics -	one LCS and one s	ample duplicat	te reported per matrix, analysis and 20
	□X Yes	□ No	□NA (Please explain	n.)	Comments:
	And proje	ect specifi 5%-125%	ed DQOs, if applica	ble. (AK Petro); all other anal	within method or laboratory limits? leum methods: AK101 60%-120%, yses see the laboratory QC pages) Comments:
	laboratory LCS/LCS other anal	y limits? A D, MS/M lyses see	And project specified	d DQOs, if applicatinges)	orted and less than method or licable. RPD reported from te. (AK Petroleum methods 20%; all ments:
C]
Som	e MS/MSDS w	ere outsi	de acceptable limits.		
	v. If %R or	RPD is ou	itside of acceptable		mples are affected? ments:
Sam	ple results and	parent sa	mples are flagged.		
	vi. Do the af		nple(s) have data fla NA (Please explain	•	ne data flags clearly defined? Comments:
	vii. Data qual	ity or usa	bility affected? (Use		to explain.) ments:
Sam	ple results are	usable wi	th qualifications.		
c. Su	rrogates – Org	anics Onl	y		
	i. Are surro □X Yes	_	veries reported for or □NA (Please explain	•	s – field, QC and laboratory samples? Comments:
	And proje	ect specifi see the lab		ble. (AK Petrol	within method or laboratory limits? leum methods 50-150 %R; all other Comments:
Som	e recoveries ar		acceptance limits.		

Comments:
comment box to explain.) Comments:
Volatile Chlorinated Solvents, etc.): Water and
s and for each cooler containing volatile samples Comments:
c and VOA samples clearly indicated on the CO entered below) Comments:
OC samples.
Comments:
Comments:
explain.) Comments:
nination above the LOQ.
nalysis and 10 project samples? Comments:

ii. Submitted blind to lab? $\Box X Yes \qquad \Box No \Box NA $ (Please of	explain.) Comments:
iii. Precision – All relative percent de (Recommended: 30% water, 50%)	ifferences (RPD) less than specified DQOs? soil)
RPD (%) = Absolute value of:	$\frac{(R_1-R_2)}{}$ x 100
($((R_1+R_2)/2)$
Where $R_1 = Sample$ Concentr $R_2 = Field$ Duplicate G	
\Box Yes \Box X No \Box NA (Please explain.	
Affected samples are highlighted in the res	sults table.
iv. Data quality or usability affected	? (Use the comment box to explain why or why not.)
	Comments:
Sample results are usable with qualification	ns.
f. Decontamination or Equipment Blank (I	f not used explain why).
□Yes □ X No □NA (Please of	explain.) Comments:
Not required.	
i. All results less than PQL?	
□Yes □ No □XNA (Please explain	n.) Comments:
Not required.	
ii. If above PQL, what samples are a	affected?
	Comments:
N/A	
D 4 124 1214 66 4 1	0 /DI 1 ')
iii. Data quality or usability affected	•
	Comments:
N/A	
her Data Flags/Qualifiers (ACOE, AFCEE, La	ah Specific etc.)
a. Defined and appropriate?	us specific, etc.)
\Box X Yes \Box No \Box NA (Please 6	explain.) Comments:
Flags are defined in table notes.	

TABLE OF CONTENTS

SEC ₁	<u> ION</u>		PAGE
ACRO	ONYM	S AND ABBREVIATIONS	iii
1.0	INTR	ODUCTION	1
2.0	DAT	A VERIFICATION	5
2.1	Saı	nple Receipt Conditions	29
2.2	ВТ	EX Analyses	29
2.3	GR	O Analyses	39
2.4	PC	B Analyses	42
2.5	PA	H Analyses	48
2.6	DR	O/RRO Analyses	51
2.7	TO	C Analyses	59
2.8	Me	etals Analyses	62
2.9	Me	ercury Analyses	65
2.1	0 Fie	ld QA/QC	67
2	2.10.1	Field Sample Duplicates	67
2	2.10.2	Matrix Spikes and Matrix Spike Duplicates	80
2	2.10.3	Trip Blanks	81
2.1	1 Sar	nple Qualifiers	82
3.0	SUM	MARY	99

TABLES

Table 1-0	Laboratory Work Order Numbers	3
Table 2-0.1	Sample Identification and Analysis	6
Table 2-2.1	BTEX QC Batches	29
Table 2-3.1	GRO QC Batches	39
Table 2-4.1	PCB QC Batches	42
Table 2-5.1	PAH QC Batches	48
Table 2-6.1	DRO/RRO QC Batches	52
Table 2-7.1	TOC QC Batches	59
Table 2-8.1	Metals QC Batches	62
Table 2-9.1	Mercury QC Batches	65
Table 2-10.1	Field Sample Duplicate Pair Results	68
Table 2-11	Sample Qualifiers	82

ACRONYMS AND ABBREVIATIONS

ADEC Alaska Department of Environmental Conservation
Bristol Bristol Environmental Remediation Services, LLC

BTEX benzene, toluene, ethylbenzene, and xylenes

CoC chain-of-custody
DL detection limit

DoD Department of Defense
DQO data quality objective
DRO diesel-range organics

FD field duplicate

GRO Gasoline range organics

HTRW Hazardous, Toxic, and Radioactive Waste

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection

LOQ limit of quantitation

MBs method blanks

MOC Main Operations Complex

MS matrix spike

MSD matrix spike duplicate

NE Cape Northeast Cape, St. Lawrence Island, Alaska

PAHs polynuclear aromatic hydrocarbons

PCBs polychlorinated biphenyls

QAPP Quality Assurance Project Plan

QC quality control

Report Data Verification Report

RPD relative percent difference

RRO residual-range organics

SIM Selected ion mode

SW U.S. EPA Solid Waste Method

ACRONYMS AND ABBREVIATIONS (continued)

TestAmerica Laboratories, Inc.

TOC total organic carbon

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

1.0 INTRODUCTION

This Data Verification Report (Report) has been completed on the submitted data packages in accordance with an agreement between Bristol Environmental Remediation Services, LLC (Bristol), and the U.S. Army Corps of Engineers (USACE), Alaska District. As per this agreement, all laboratory results were generated as part of work on the Remedial Actions at Northeast Cape (NE Cape), St. Lawrence Island, Alaska. The USACE assigned this project to Bristol under Contract No. W911KB-06-D-0007.

Data verification for this report was performed on the data collected as part of the Remedial Actions at Site 28 at NE Cape in 2011. Data verification is a process for evaluating the completeness, correctness, consistency, compliance with method procedures and quality control (QC) requirements, and identification of anomalous data. The reported project sample values, as well as any method laboratory control samples extracted or prepared with the project samples were reviewed. Specifically, the following items were reviewed in this data verification:

- Sample receipt conditions:
 - Sample preservation,
 - Cooler temperatures upon receipt,
 - Chain-of-custody (CoC) condition/correspondence to submitted sample set, and
 - Presence/absence of custody seals.
- Extraction and analytical procedures:
 - Holding times,
 - Method blanks (MBs),
 - Laboratory control samples (LCSs)/laboratory control sample duplicates (LCSDs),
 - Matrix spike (MS)/matrix spike duplicate (MSD),
 - Duplicate samples, and
 - Surrogate recoveries.
- Sampling procedures:
 - Trip blanks,
 - Equipment blanks, and
 - Field duplicate samples.

• Correspondence to method criteria and project data quality objectives (DQOs)

Unless otherwise discussed in this document, the above parameters were within control limits specified in the NE Cape HTRW Remedial Actions Quality Assurance Project Plan (QAPP) dated July 2011. If control limits were not specified in the QAPP, laboratory control limits were used for review. In some instances, quality control information beyond QAPP specifications were reported (e.g., additional surrogates). This information was not used for data review unless specifically noted.

No information on internal standards, calibrations, instrument tunes, chromatograms, quantitation reports, spectra, summaries identifying any analytical irregularities, and the subsequent corrective action taken by the laboratories, and results from any other analytical procedures other than those listed above were reviewed and are not included in this Report. Laboratory narratives were examined and any documented calibration or other QC outliers were included as appropriate in this Report.

Data verification was performed in accordance with:

- NE Cape HTRW Remedial Actions Northeast Cape, St. Lawrence Island, Alaska Quality Assurance Project Plan (QAPP) (July, 2011);
- Department of Defense (DoD) Quality Systems Manual, Version 4.1 (2009); and
- Alaska Department of Environmental Conservation (ADEC) Technical Memorandum: Environmental Laboratory and Quality Assurance Requirements (Updated March 2009).

Precision and accuracy were assessed by comparing surrogate, MS/MSD and LCS/LCSD recoveries and relative percent differences (RPDs) to the QAPP-specified control limits. The frequency of QC samples was compared to the frequency specified in the QAPP. The MS/MSDs performed on non-project samples are not applicable, and were not evaluated.

The reviewed data sets include data from samples collected for the NE Cape Remedial Actions at Site 28 in August 2011 which were analyzed by TestAmerica Laboratories, Inc., (TestAmerica) Tacoma, Washington by the following methods.

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (USEPA) Solid Waste (SW-846) Methods 5035B/ 8260B;
- Gasoline-range organics (GRO) by ADEC method AK101;
- Diesel range organics (DRO) and residual-range organics (RRO) by ADEC method AK102/103;
- DRO and RRO by ADEC method AK102/103 with silica gel clean-up;
- Polynuclear aromatic hydrocarbons (PAHs) by SW-846 method 3550C/8270C selected ion mode (SIM);
- Polychlorinated biphenyls (PCBs) by SW-846 method 3550C/8082 (soils);
- Total organic carbon (TOC)-Quad by SW-846 9060;
- Metals by SW-846 method 3050B/6020;
- Mercury by SW-846 method 7471A.

The sampling event and laboratory work order numbers are presented in Table 1-0.

Sampling Work Order **Event Sample Matrix** Number **Revision No Date** 2 Site 28 Soil 580-28053-1 10/24/2011 1 Soil 580-28112-1 10/24/2011 580-28198-1 10/22/2011 Soil

Table 1-0 Laboratory Work Order Numbers

Analytical results tables, which includes qualifiers assigned during data review, are presented in Appendix A. The tables include sample IDs, which reference the year (11), the project (NC) for NE Cape, the site (-28 for site 28), the matrix (SB for soil boring, SS for soil sample) and the sample location or LocID. The LocID indicates the specific site at NE Cape, as well as a specific location within the sites.

The following data qualifiers may be used to identify data points when data verification determines that results should be qualified because of a potential bias in the result, or a deviation from method or QAPP QC procedures:

- J Analyte result is considered an estimated value because the level is below the laboratory limit of quantitation (LOQ) but above the detection limit (DL) (formerly the method detection limit).
- ND (LOD) Analyte result is less than the DL. The non-detected result has the limit of detection (LOD) in parentheses.
- R Analyte result is rejected result is not usable. Note that "R" replaces the chemical result (no result shall be reported with an "R" flag).
- B Analyte result is considered a high estimated value due to contamination present in the method or trip blank. Results less than 10 times the reported method blank concentration will be B flagged to indicate bias.
- MH, ML, MN Analyte result is considered an estimated value biased (high, low, uncertain) due to matrix effects).
- QH, QL, QN Analyte result is considered an estimated value biased (high, low, uncertain) due to a quality control failure.

2.0 DATA VERIFICATION

Two hundred twenty three (223) soil samples which included 23 field duplicates, volume for MS/MSD pairs, and 12 trip blanks were collected in August 2011 and submitted to the laboratory for analysis. Field sample numbers and corresponding laboratory numbers are presented in Table 2-0.1.

Table 2-0.1 Sample Identification and Analysis

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS001-0.5	580-28053-1	28-1-1-0.5	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS001-1	580-28053-2	28-1-1-1	Х	Х	Х	Χ	Χ	Х	Χ	Х	MS/MSD for BTEX
11NC28SS002-2	580-28053-3	28-1-2-2	Χ	Х	Х	Х	Х	Х	Χ	Χ	MS/MSD for GRO
11NC28SS002-2.5	580-28053-4	28-1-2-2.5	Х	Х	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS002-3	580-28053-5	28-1-2-3	Χ	Х	Х	Х	Χ	Х	Х	Χ	
11NC28SS003-2.5	580-28053-6	28-1-3-2.5	Х	Х	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS003-3	580-28053-7	28-1-3-3	Х	Х	Х	Х	Х	Х	Х	Χ	
11NC28SS003-3.5	580-28053-8	28-1-3-3.5	Х	Х	Х	Х	Χ	Х	Х	Χ	
11NC28SS004-2.5	580-28053-9	28-1-4-2.5	Х	Х	Х	Х	Χ	Х	Х	Χ	
11NC28SS005-0.5	580-28053-10	28-1-5-0.5	Х	Х	Х	Х	Χ	Х	Х	Χ	
11NC28SS005-1	580-28053-11	28-1-5-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS006-0.5	580-28053-12	28-2-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS006-1	580-28053-13	28-2-1-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS006-2	580-28053-14	28-2-1-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS006-1

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS007-1.5	580-28053-15	28-2-2-1.5	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	
11NC28SS008-0.5	580-28053-16	28-2-3-0.5	Χ	Х	Χ	X	Χ	Х	X	Χ	
11NC28SS008-1	580-28053-17	28-2-3-1	X	X	X	X	X	X	X	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS009-0.5	580-28053-18	28-2-4-0.5	Х	Х	Χ	Х	Χ	Х	Χ	Χ	
11NC28SS009-1	580-28053-19	28-2-4-1	Х	Х	Х	Х	Χ	Х	Х	Χ	
11NC28SS010-0.5	580-28053-20	28-3-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS010-1	580-28053-21	28-3-1-1	Х	Х	Х	Х	Χ	Х	Х	Х	MS/MSD for TOC
11NC28SS010-1.5	580-28053-22	28-3-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS011-0.5	580-28053-23	28-3-2-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS011-1	580-28053-24	28-3-2-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS011-2	580-28053-25	28-3-2-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS011-1
11NC28SS011-1.5	580-28053-26	28-3-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS012-0.5	580-28053-27	28-3-3-0.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS012-1	580-28053-28	28-3-3-1	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS012-1.5	580-28053-29	28-3-3-1.5	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	
11NC28SS012-2	580-28053-30	28-3-3-1.5	Х	Х	Х	Χ	Χ	Х	Χ	Χ	FD of 11NC28SS012-1.5
11NC28SS013-0.5	580-28053-31	28-3-4-0.5	Х	Χ	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS013-1	580-28053-32	28-3-4-1	Х	Х	Х	Х	Х	Х	Χ	Χ	
11NC28SS013-1.5	580-28053-33	28-3-4-1.5	Х	Χ	Х	Χ	Χ	Х	Χ	Χ	
11NC28SS014-1	580-28053-34	28-3-5-1	Х	Χ	Х	Χ	Х	Х	Χ	Χ	
11NC28SS014-1.5	580-28053-35	28-3-5-1.5	Х	Х	Х	Х	Х	Х	Χ	Χ	
11NC28SS014-2	580-28053-36	28-3-5-2	Х	X	X	Х	Х	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS015-1.5	580-28053-37	28-3-6-1.5	Х	Χ	Х	Х	Х	Х	Х	Х	
11NC28SS015-2	580-28053-38	28-3-6-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS016-0.5	580-28053-39	28-3-7-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS016-1	580-28053-40	28-3-7-1	Х	Х	Х	Х	Х	Х	Х	Х	

 Table 2-0.1
 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC081511TripBlank1	580-28053-41		Х	Х							
11NC081511TripBlank2	580-28053-42		Х	Х							
11NC28SS017-0.5	580-28112-1	28-4-1-0.5	Х	Х	Х	Χ	Х	Х	Χ	Χ	MS/MSD for TOC
11NC28SS017-2	580-28112-2	28-4-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS017- 0.5
11NC28SS017-1	580-28112-3	28-4-1-1	Х	Χ	Х	X	Х	Х	Χ	Χ	
11NC28SS017-1.5	580-28112-4	28-4-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PAHs, metals
11NC28SS018-0.5	580-28112-5	28-4-2-0.5	Х	Х	Х	Χ	Х	Х	Х	Χ	
11NC28SS018-1	580-28112-6	28-4-2-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS018-1.5	580-28112-7	28-4-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for PAHs
11NC28SS019-0.5	580-28112-8	28-4-3-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS019-1	580-28112-9	28-4-3-1	Х	Х	Х	Х	Х	Х	Χ	Х	
11NC28SS019-1.5	580-28112-10	28-4-3-1.5	Х	Х	Х	Х	Х	Х	Χ	Χ	MS/MSD for PCBs
11NC28SS020-0.5	580-28112-11	28-4-4-0.5	Х	Х	Х	Χ	Χ	Х	Χ	Χ	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS020-1	580-28112-12	28-4-4-1	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for TOC
11NC28SS021-0.5	580-28112-13	28-4-5-0.5	Х	Х	Х	X	Х	Х	X	Χ	
11NC28SS021-1	580-28112-14	28-4-5-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS021-1.5	580-28112-15	28-4-5-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS022-1	580-28112-16	28-4-6-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS022-1.5	580-28112-17	28-4-6-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS022-2	580-28112-18	28-4-6-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS023-1	580-28112-19	28-4-7-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS023-2.5	580-28112-20	28-4-7-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS023-1
11NC28SS023-1.5	580-28112-21	28-4-7-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS023-2	580-28112-22	28-4-7-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS024-1	580-28112-23	28-4-8-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS024-1.5	580-28112-24	28-4-8-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS025-0.5	580-28112-25	28-5-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS025-1	580-28112-26	28-5-1-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS025-1.5	580-28112-27	28-5-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS026-0.5	580-28112-28	28-5-2-0.5	Χ	Х	Х	Χ	Х	Χ	Χ	Х	
11NC28SS026-1	580-28112-29	28-5-2-1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
11NC28SS026-1.5	580-28112-30	28-5-2-1.5	Χ	Х	Х	Χ	Х	Χ	Χ	Х	
11NC28SS026-2	580-28112-31	28-5-2-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	FD of 11NC28SS026- 1.5
11NC28SS027-0.75	580-28112-32	28-5-3-0.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS027-1.25	580-28112-33	28-5-3-1.25	X	X	Х	Χ	Х	X	Х	Х	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS027-1.75	580-28112-34	28-5-3-1.75	Х	Х	Х	Χ	Χ	Χ	Χ	Х	
11NC28SS028-0.5	580-28112-35	28-5-4-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS028-1	580-28112-36	28-5-4-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS028-1.5	580-28112-37	28-5-4-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS029-0.5	580-28112-38	28-5-5-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS029-1	580-28112-39	28-5-5-1	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS029-1.5	580-28112-40	28-5-5-1.5	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	
11NC28SS030-1	580-28112-41	28-5-6-1	Χ	Х	Х	Х	Х	Х	Χ	Χ	
11NC28SS030-1.5	580-28112-42	28-5-6-1.5	Х	Х	Х	Χ	Х	Х	Χ	Χ	MS/MSD for PCBs
11NC28SS030-2	580-28112-43	28-5-6-2	Х	Х	Х	Х	Х	Х	Х	Χ	
11NC28SS030-2.5	580-28112-44	28-5-6-2	Х	Х	Х	Χ	Х	Х	Х	Х	FD of 11NC28SS030-2
11NC28SS031-0.5	580-28112-45	28-5-7-0.5	Х	Х	Χ	Х	Х	Х	Х	Χ	
11NC28SS031-1	580-28112-46	28-5-7-1	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for PAHs
11NC28SS031-1.5	580-28112-47	28-5-7-1.5	Х	Х	Х	Х	Х	Х	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, metals
11NC28SS032-0.5	580-28112-48	28-6-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS032-1	580-28112-49	28-6-1-1	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for TOC
11NC28SS032-1.5	580-28112-50	28-6-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS033-0.5	580-28112-51	28-6-2-0.5	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for mercury

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS033-1	580-28112-52	28-6-2-1	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for 6020 metals
11NC28SS033-1.5	580-28112-53	28-6-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS034-0.5	580-28112-54	28-6-3-0.5	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for TOC
11NC28SS034-1	580-28112-55	28-6-3-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS034-1.5	580-28112-56	28-6-3-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS035-0.5	580-28112-57	28-6-4-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS035-1	580-28112-58	28-6-4-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS035-1.5	580-28112-59	28-6-4-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS036-0.5	580-28112-60	28-6-5-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS036-1	580-28112-61	28-6-5-1	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for GRO, BTEX,
11NC28SS036-2	580-28112-62	28-6-5-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS036-1; MS/MSD for PCBs
11NC28SS036-1.5	580-28112-63	28-6-5-1.5	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for PAHs

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC081711TripBlank1	580-28112-64		Х	Х							
11NC081711TripBlank2	580-28112-65		Х	Х							
11NC081711TripBlank3	580-28112-66		Х	Х							
11NC28SS037-2	580-28198-1	28-6-6-2	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS037-2.5	580-28198-2	28-6-6-2.5	Х	Х	Х	Χ	Х	Χ	Х	Х	
11NC28SS037-3	580-28198-3	28-6-6-3	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS038-1.75	580-28198-4	28-6-7-1.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS038-2.25	580-28198-5	28-6-7-2.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS038-2.75	580-28198-6	28-6-7-2.75	Х	Х	X	Х	Х	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS039-1	580-28198-7	28-6-8-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS039-1.5	580-28198-8	28-6-8-1.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS039-2	580-28198-9	28-6-8-1.5	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS039- 1.5
11NC28SS040-0.5	580-28198-10	28-7-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS040-1	580-28198-11	28-7-1-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS040-1.5	580-28198-12	28-7-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS041-1	580-28198-13	28-7-2-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS041-1.33	580-28198-14	28-7-2-1.33	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS042-1	580-28198-15	28-7-3-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS042-1.5	580-28198-16	28-7-3-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS042-2.5	580-28198-17	28-7-3-1.5	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS042- 1.5
11NC28SS042-2	580-28198-18	28-7-3-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS043-1.5	580-28198-19	28-7-4-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS043-2	580-28198-20	28-7-4-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS043-2.5	580-28198-21	28-7-4-2.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS044-2	580-28198-22	28-7-5-2	Х	Х	Х	Χ	Х	Х	Χ	Х	MS/MSD for TOC
11NC28SS044-2.5	580-28198-23	28-7-5-2.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS044-3	580-28198-24	28-7-5-3	X	X	X	X	X	X	X	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS045-1	580-28198-25	28-7-6-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS045-1.5	580-28198-26	28-7-6-1.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS046-0.75	580-28198-27	28-8-1-0.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS046-1.25	580-28198-28	28-8-1-1.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS046-1.75	580-28198-29	28-8-1-1.75	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS047-2	580-28198-30	28-8-2-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS047-2.5	580-28198-31	28-8-2-2.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS047-3	580-28198-32	28-8-2-3	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS048-1	580-28198-33	28-8-3-1	Х	Х	Х	X	Х	Х	Х	Х	
11NC28SS048-1.5	580-28198-34	28-8-3-1.5	Х	Х	Х	Х	Х	Х	Χ	Х	
11NC28SS048-2	580-28198-35	28-8-3-2	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for 6020 metals
11NC28SS048-2.5	580-28198-36	28-8-3-2	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS048-2
11NC28SS049-1.5	580-28198-37	28-8-4-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS049-2	580-28198-38	28-8-4-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS049-3	580-28198-39	28-8-4-2	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS049-2
11NC28SS049-2.5	580-28198-40	28-8-4-2.5	Х	Х	Х	Х	Х	Х	Χ	Х	
11NC28SS050-0.75	580-28198-41	28-8-5-0.75	Х	Х	Х	Х	Х	Х	Χ	Х	
11NC28SS050-1.25	580-28198-42	28-8-5-1.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS050-1.75	580-28198-43	28-8-5-1.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS051-0.5	580-28198-44	28-8-6-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS051-1	580-28198-45	28-8-6-1	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS051-1.5	580-28198-46	28-8-6-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS052-0.5	580-28198-47	28-9-1-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS052-1	580-28198-48	28-9-1-1	Х	Х	Х	Χ	Х	Χ	Х	Х	
11NC28SS052-1.5	580-28198-49	28-9-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS053-1	580-28198-50	28-9-2-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS053-1.5	580-28198-51	28-9-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS053-2.5	580-28198-52	28-9-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS053- 1.5
11NC28SS053-2	580-28198-53	28-9-2-2	X	X	X	Х	X	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS054-0.5	580-28198-54	28-9-3-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS054-1	580-28198-55	28-9-3-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS054-1.5	580-28198-56	28-9-3-1.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS055-1.5	580-28198-57	28-9-4-1.5	Χ	Х	Х	Χ	Χ	Х	Χ	Х	
11NC28SS055-2	580-28198-58	28-9-4-2	Χ	Χ	Х	Χ	Х	Х	Χ	Χ	
11NC28SS055-2.5	580-28198-59	28-9-4-2.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS056-0.75	580-28198-60	28-9-5-0.75	Х	Х	Х	Χ	Χ	Х	Х	Х	
11NC28SS056-1.25	580-28198-61	28-9-5-1.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS056-1.75	580-28198-62	28-9-5-1.75	Х	Х	Х	Χ	Χ	Х	Х	Х	
11NC28SS057-1.5	580-28198-63	28-10-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS057-2	580-28198-64	28-10-1-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS057-2.5	580-28198-65	28-10-1-2.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS058-0.5	580-28198-66	28-10-2-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS058-1	580-28198-67	28-10-2-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS058-2	580-28198-68	28-10-2-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS058-1
11NC28SS058-1.5	580-28198-69	28-10-2-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS059-0.5	580-28198-70	28-10-3-0.5	Х	Х	Х	Χ	Х	Х	Χ	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS059-1	580-28198-71	28-10-3-1	Χ	Х	Χ	Χ	Х	Χ	Χ	Х	
11NC28SS059-1.5	580-28198-72	28-10-3-1.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS060-0.6	580-28198-73	28-11-1-0.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS060-1	580-28198-74	28-11-1-1	Χ	Х	Х	Χ	Χ	Х	Χ	Х	
11NC28SS060-2	580-28198-75	28-11-1-1	Х	Х	Х	Χ	Х	Х	Χ	Х	FD of 11NC28SS060-1
11NC28SS060-1.5	580-28198-76	28-11-1-1.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS061-0.025	580-28198-77	28-11-2-0.25	X	X	Х	Х	Х	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS061-1.5	580-28198-78	28-11-2-0.5	Х	Х	Х	Х	Х	Х	Χ	Х	
11NC28SS061-2	580-28198-79	28-11-2-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS062-0.25	580-28198-80	28-11-3-0.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS062-0.75	580-28198-81	28-11-3-0.75	Х	Х	Х	Χ	Х	Х	Χ	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS063-0.25	580-28198-82	28-11-4-0.25	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS063-0.75	580-28198-83	28-11-4-0.75	Χ	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS063-1.75	580-28198-84	28-11-4-1.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS064-0.25	580-28198-85	28-11-5-0.25	Χ	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS064-0.5	580-28198-86	28-11-5-0.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS064-1.75	580-28198-87	28-11-5-1.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS064-2.25	580-28198-88	28-11-5-2.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS064-2.5	580-28198-89	28-11-5-2.25	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS064- 2.25
11NC28SS065-2	580-28198-90	28-11-6-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS065-2.5	580-28198-91	28-11-6-2.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS065-3	580-28198-92	28-11-6-3	X	X	X	Х	X	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS066-0.75	580-28198-93	28-DIS-01- 0.75	Х	Х	Х	Χ	Χ	Х	Х	Х	
11NC28SS066-1.25	580-28198-94	28-DIS-01- 1.25	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS066-2	580-28198-95	28-DIS-01- 1.25	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS066- 1.25
11NC28SS067-0.5	580-28198-96	28-DIS-02-0.5	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	
11NC28SS067-1	580-28198-97	28-DIS-02-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS067-1.5	580-28198-98	28-DIS-02-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS068-1	580-28198-99	28-DIS-03-1	Χ	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS069-1.5	580-28198- 100	28-DIS-04-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS069-2	580-28198- 101	28-DIS-04-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS069-2.5	580-28198- 102	28-DIS-04-2	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS069-2
11NC28SS070-0.75	580-28198- 103	28-DIS-05- 0.75	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS070-1.25	580-28198- 104	28-DIS-05- 1.25	X	Х	X	Χ	Х	Х	Х	Х	
11NC28SS070-1.75	580-28198- 105	28-DIS-05- 1.75	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS071-1	580-28198- 106	28-DIS-06-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS071-2.5	580-28198- 107	28-DIS-06-1	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS071-1
11NC28SS071-1.5	580-28198- 108	28-DIS-06-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS071-2	580-28198- 109	28-DIS-06-2	X	X	Х	Х	X	X	Х	X	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS072-1.25	580-28198- 110	28-DIS-07- 1.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS072-1.75	580-28198- 111	28-DIS-07- 1.75	X	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS072-2.25	580-28198- 112	28-DIS-07- 2.25	Х	Х	Х	Χ	Χ	Х	Χ	Х	
11NC28SS072-2.5	580-28198- 113	28-DIS-07- 2.25	Х	Х	Х	Χ	Х	Х	Х	Х	FD of 11NC28SS072- 2.25
11NC28SS073-1.5	580-28198- 114	28-DIS-08-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS073-2	580-28198- 115	28-DIS-08-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS073-2.5	580-28198- 116	28-DIS-08-2.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS074-1	580-28198- 117	28-DIS-09-1	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS074-1.5	580-28198- 118	28-DIS-09-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS074-2	580-28198- 119	28-DIS-09-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS075-1.5	580-28198- 120	28-DIS-10-1.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS075-2	580-28198- 121	28-DIS-10-2	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS075-2.5	580-28198- 122	28-DIS-10-2.5	Х	X	X	X	Х	X	X	Х	MS/MSD for GRO, BTEX, DRO/RRO, DRO/RRO with silica gel, PCBs,PAHs, metals, TOC
11NC28SS076-1.5	580-28198- 123	28-DIS-11-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS076-2	580-28198- 124	28-DIS-11-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS076-2.5	580-28198- 125	28-DIS-11-2.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS077-1.5	580-28198- 126	28-DIS-12-1.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS077-2	580-28198- 127	28-DIS-12-2	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS077-2.5	580-28198- 128	28-DIS-12-2.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS078-1.5	580-28198- 129	28-BG-1-1.5	Х	Х	Х	Х	Х	Х	Х	Х	

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS078-2	580-28198- 130	28-BG-1-2	Х	Х	Х	Χ	Х	Х	Χ	X	
11NC28SS078-2.5	580-28198- 131	28-BG-1-2.5	Х	Х	Х	Χ	Х	Х	Χ	Х	
11NC28SS078-3	580-28198- 132	28-BG-1-2.5	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS078- 2.5
11NC28SS079-2.5	580-28198- 133	28-BG-2-2.5	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS079-3	580-28198- 134	28-BG-2-3	Х	Х	Х	Χ	Х	Х	Х	Χ	
11NC28SS079-3.5	580-28198- 135	28-BG-2-3.5	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS080-2.75	580-28198- 136	28-BG-3-2.75	Х	Х	Х	Х	Х	Х	Х	Χ	
11NC28SS080-3.25	580-28198- 137	28-BG-3-3.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS080-3.75	580-28198- 138	28-BG-3-3.75	Х	Х	Х	Х	Х	Х	Х	Х	MS/MSD for DRO/RRO, DRO/RRO with silica gel, TOC

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC28SS081-1.25	580-28198- 139	28-BG-4-1.25	Х	X	Х	Х	Χ	Х	Х	Х	
11NC28SS081-1.75	580-28198- 140	28-BG-4-1.75	Х	Х	Х	Χ	Х	Х	Х	Х	
11NC28SS081-2.25	580-28198- 141	28-BG-4-2.25	Х	Х	Х	Х	Х	Х	Х	Х	
11NC28SS081-2.5	580-28198- 142	28-BG-4-2.25	Х	Х	Х	Х	Х	Х	Х	Х	FD of 11NC28SS081- 2.25
11NC082211TripBlank1	580-28198- 143		Х	Х							
11NC082211TripBlank2	580-28198- 144		Х	Х							
11NC082211TripBlank3	580-28198- 145		Х	Х							
11NC082211TripBlank4	580-28198- 146		Х	Х							

Table 2-0.1 Sample Identification and Analysis (continued)

Field Sample ID	Laboratory Sample Number	Location ID	GRO (AK101)	BTEX (SW8260B)	DRO/RRO (AK102/103)	DRO/RRO with Silica Gel (AK102/103)	PCB (SW8082)	PAHs (8270C SIM)	Total Metals (SW6020/7471A)	TOC (9060)	Remarks
11NC082211TripBlank5	580-28198- 147		Х	Х							
11NC082211TripBlank6	580-28198- 148		Х	Х							
11NC082211TripBlank7	580-28198- 149		Х	Х							

Notes:					
AK	=	State of Alaska Method	MSD	=	matrix spike duplicate
BTEX	=	benzene, toluene, ethylbenzene, xylene	PAHs	=	polynuclear aromatic hydrocarbons
DRO	=	diesel range organics	PCBs	=	polychlorinated biphenyls
FD	=	field duplicate	RRO	=	residual range organics
GRO	=	gasoline range organics	SIM	=	selective ion monitoring
ID	=	identifier	TOC	=	total organic carbon
MS	=	matrix spike	metals	=	6020: arsenic, barium, cadmium, chromium, lead, nickel selenium, silver, vanadium 7471A: mercury

2.1 SAMPLE RECEIPT CONDITIONS

Samples were received within 0-6 degrees Celsius and in good condition.

Sample IDs listed on the chain-of-custody (CoC) form did not match the sample labels for two samples:

Logged in Sample No.	Lab ID	CoC ID	Label ID
11NC28SS062-0.75	580-28198-81	11NC28SS062-0.75	11NC28SS062-0. 25
11NC28SS063-0.25	580-28198-82	11NC28SS063-0.25	11NC28SS0 62 -0.25

Discrepancies in the sample IDs are shown in bold. Samples were logged in per the CoC.

2.2 BTEX ANALYSES

TestAmerica analyzed samples for BTEX by SW-846 method 8260B. The sample QC batches are summarized in Table 2-2.1.

Table 2-2.1 BTEX QC Batches

Laboratory Work Order	QC Batch	QC Batch Date
580-28053-1	580-93220	8/20/2011
	580-93234	8/20/2011
	580-93246	8/21/2011
	580-93922	8/30/2011
580-28112-1	580-93467	8/23/2011
	580-93490	8/24/2011
	580-93673	8/25/2011
	580-93754	8/26/2011
580-28198-1	280-83553	8/17/2011
	280-83556	8/31/2011
	280-83718	8/18/2011
	280-83746	8/18/2011
	280-83775	8/19/2011
	280-83964	8/31/2011
	280-84106	8/22/2011

Notes:

BTEX = benzene, toluene, ethylbenzene, and xylenes

QC = quality control

Required QC for an analytical batch of up to 20 samples includes an MB, LCS, and MS/MSD pair. An MB, LCS/LCSD, and MS/MSD pair were analyzed with each batch.

The following items were reviewed and met QAPP criteria: LCS/LCSD RPDs.

Several samples were re-analyzed outside the holding time of 14 days due to either surrogate or LCS/LCSD outliers. Hold time exceedances are associated with a low bias and are QL qualified. Results were reviewed and, to be conservative, the highest detected concentration was selected for reporting. Surrogate recoveries were evaluated in conjunction with the hold time exceedances. Results associated with a high surrogate recovery and outside hold were QN qualified to indicate uncertainty in the bias since the hold time is associated with a low bias while the high surrogate recoveries would indicate a potential high bias. Samples associated with low surrogate recoveries were QL qualified due to the hold time exceedance and additional qualifiers were not required. Results reported outside the holding time are listed below.

Client Sample ID	Lab Sample ID	Analyte	Result, mg/kg	Qualifier	Days to Analysis
11NC28SS037-2	580-28198-1	Toluene	1.1	QL	19
11NC28SS037-2.5	580-28198-2	Toluene	0.43	QL	19
11NC28SS037-3	580-28198-3	Toluene	0.52	QL	19
11NC28SS038-2.75	580-28198-6	Toluene	0.12	QL	19
11NC28SS039-1.5	580-28198-8	Toluene	0.16	QL	19
11NC28SS040-1.5	580-28198-12	Toluene	0.13	QL	19
11NC28SS042-1	580-28198-15	Toluene	0.49	QL	19
11NC28SS042-2.5	580-28198-17	Toluene	0.054	QL	20
11NC28SS042-2	580-28198-18	Toluene	0.05	QL	20
11NC28SS043-1.5	580-28198-19	Ethylbenzene	1.2	QL	20
11NC28SS043-1.5	580-28198-19	m-Xylene & p-Xylene	4.8	QL	20
11NC28SS043-1.5	580-28198-19	o-Xylene	4.0	QL	20
11NC28SS043-2	580-28198-20	Ethylbenzene	1.3	QN	20
11NC28SS043-2	580-28198-20	m-Xylene & p-Xylene	5.5	QN	20
11NC28SS043-2	580-28198-20	o-Xylene	4.3	QN	20
11NC28SS043-2.5	580-28198-21	Ethylbenzene	1.6	QN	20
11NC28SS043-2.5	580-28198-21	m-Xylene & p-Xylene	6.2	QN	20

Client Sample ID	Lab Sample ID	Analyte	Result, mg/kg	Qualifier	Days to Analysis
11NC28SS043-2.5	580-28198-21	o-Xylene	4.1	QN	20
11NC28SS044-2	580-28198-22	Ethylbenzene	5.4	QL	20
11NC28SS044-2	580-28198-22	m-Xylene & p-Xylene	31	QL	20
11NC28SS044-2	580-28198-22	o-Xylene	13	QL	20
11NC28SS044-2	580-28198-22	Toluene	0.39	QL	20
11NC28SS044-2.5	580-28198-23	o-Xylene	3.8	QL	20
11NC28SS044-2.5	580-28198-23	Toluene	0.22	QL	20
11NC28SS044-3	580-28198-24	Toluene	0.97	QL	20
11NC28SS045-1	580-28198-25	Toluene	0.12	QL	21
11NC28SS045-1.5	580-28198-26	Toluene	0.12	QL	21
11NC28SS046-0.75	580-28198-27	Toluene	0.082	QL	21
11NC28SS047-2	580-28198-30	Ethylbenzene	12	QL	21
11NC28SS047-2	580-28198-30	m-Xylene & p-Xylene	55	QL	21
11NC28SS047-2	580-28198-30	o-Xylene	28	QL	21
11NC28SS047-2	580-28198-30	Toluene	0.84	QL	21
11NC28SS047-2.5	580-28198-31	Ethylbenzene	3.5	QL	21
11NC28SS047-2.5	580-28198-31	m-Xylene & p-Xylene	19	QL	21
11NC28SS047-2.5	580-28198-31	o-Xylene	7.3	QL	21
11NC28SS047-2.5	580-28198-31	Toluene	0.18	QL	21
11NC28SS047-3	580-28198-32	Toluene	0.18	QL	21
11NC28SS048-1	580-28198-33	Toluene	0.24	QL	20
11NC28SS053-1	580-28198-50	Toluene	0.24	QL	18
11NC28SS053-1.5	580-28198-51	m-Xylene & p-Xylene	0.19	QL	18
11NC28SS053-1.5	580-28198-51	o-Xylene	0.31	QL	18
11NC28SS053-2.5	580-28198-52	o-Xylene	0.38	QL	18
11NC28SS053-2	580-28198-53	o-Xylene	0.23	QL	18
11NC28SS070-0.75	580-28198-103	Ethylbenzene	0.19	QL	18
11NC28SS070-1.25	580-28198-104	m-Xylene & p-Xylene	0.35	QL	18
11NC28SS070-1.25	580-28198-104	o-Xylene	0.14	QL	18
11NC28SS070-1.25	580-28198-104	Toluene	0.15	QL	18
11NC28SS070-1.75	580-28198-105	Ethylbenzene	0.18	QN	18
11NC28SS070-1.75	580-28198-105	m-Xylene & p-Xylene	0.39	QN	18
11NC28SS070-1.75	580-28198-105	Toluene	0.22	QN	18

Surrogates were outside QAPP control limits as shown below. Several samples were analyzed twice and had results selected from both runs for reporting. For those samples, surrogates may have been outside control limits for both analyses and the analysis date is also noted:

Sample No.	Lab ID	Date of Analysis	Surrogate	%R	Control Limits
11NC28SS017-0.5	580-28112-1	8/23/2011	4-Bromofluorobenzene	140	85-120
11NC28SS017-2	580-28112-2	8/23/2011	4-Bromofluorobenzene	134	85-120
11NC28SS019-0.5	580-28112-8	8/27/2011	4-Bromofluorobenzene	131	85-120
11NC28SS025-1	580-28112-26	8/24/2011	4-Bromofluorobenzene	146	85-120
11NC28SS026-1	580-28112-29	8/25/2011	4-Bromofluorobenzene	122	85-120
11NC28SS030-1	580-28112-41	8/25/2011	4-Bromofluorobenzene	121	85-120
11NC28SS033-1	580-28112-52	8/26/2011	4-Bromofluorobenzene	83	85-120
11NC28SS033-1.5	580-28112-53	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC28SS034-0.5	580-28112-54	8/26/2011	4-Bromofluorobenzene	82	85-120
11NC28SS034-1	580-28112-55	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC28SS034-1.5	580-28112-56	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC28SS035-0.5	580-28112-57	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC28SS036-0.5	580-28112-60	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC081711TripBlank1	580-28112-64	8/26/2011	4-Bromofluorobenzene	83	85-120
11NC081711TripBlank2	580-28112-65	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC081711TripBlank3	580-28112-66	8/26/2011	4-Bromofluorobenzene	84	85-120
11NC28SS037-2	580-28198-1	8/31/2011	4-Bromofluorobenzene	84	85-120
11NC28SS037-2	580-28198-1	8/31/2011	Toluene-d8	83	85-115
11NC28SS037-2	580-28198-1	9/5/2011	Toluene-d8	77	85-115
11NC28SS037-3	580-28198-3	8/31/2011	4-Bromofluorobenzene	79	85-120
11NC28SS037-3	580-28198-3	8/31/2011	Toluene-d8	78	85-115
11NC28SS037-3	580-28198-3	9/5/2011	Toluene-d8	79	85-115
11NC28SS038-1.75	580-28198-4	8/31/2011	Toluene-d8	83	85-115
11NC28SS038-2.75	580-28198-6	8/31/2011	4-Bromofluorobenzene	71	85-120
11NC28SS038-2.75	580-28198-6	8/31/2011	Toluene-d8	72	85-115
11NC28SS038-2.75	580-28198-6	9/5/2011	Toluene-d8	80	85-115
11NC28SS039-1.5	580-28198-8	8/31/2011	4-Bromofluorobenzene	63	85-120
11NC28SS039-1.5	580-28198-8	8/31/2011	Toluene-d8	62	85-115
11NC28SS039-1.5	580-28198-8	9/5/2011	4-Bromofluorobenzene	76	85-120

Sample No.	Lab ID	Date of Analysis	Surrogate	%R	Control Limits
11NC28SS039-1.5	580-28198-8	9/5/2011	Toluene-d8	59	85-115
11NC28SS039-2	580-28198-9	8/31/2011	4-Bromofluorobenzene	77	85-120
11NC28SS039-2	580-28198-9	8/31/2011	Toluene-d8	78	85-115
11NC28SS040-0.5	580-28198-10	8/31/2011	4-Bromofluorobenzene	67	85-120
11NC28SS040-0.5	580-28198-10	8/31/2011	Toluene-d8	67	85-115
11NC28SS040-1	580-28198-11	8/31/2011	4-Bromofluorobenzene	84	85-120
11NC28SS040-1	580-28198-11	8/31/2011	Toluene-d8	79	85-115
11NC28SS040-1.5	580-28198-12	8/31/2011	4-Bromofluorobenzene	73	85-120
11NC28SS040-1.5	580-28198-12	8/31/2011	Toluene-d8	72	85-115
11NC28SS040-1.5	580-28198-12	9/5/2011	Toluene-d8	71	85-115
11NC28SS041-1	580-28198-13	8/31/2011	4-Bromofluorobenzene	81	85-120
11NC28SS041-1	580-28198-13	8/31/2011	Toluene-d8	80	85-115
11NC28SS041-1.33	580-28198-14	8/31/2011	4-Bromofluorobenzene	77	85-120
11NC28SS041-1.33	580-28198-14	8/31/2011	Toluene-d8	70	85-115
11NC28SS042-1	580-28198-15	9/5/2011	Toluene-d8	70	85-115
11NC28SS042-1.5	580-28198-16	8/31/2011	Toluene-d8	79	85-115
11NC28SS042-2.5	580-28198-17	8/31/2011	4-Bromofluorobenzene	82	85-120
11NC28SS042-2.5	580-28198-17	8/31/2011	Toluene-d8	80	85-115
11NC28SS042-2	580-28198-18	9/1/2011	4-Bromofluorobenzene	62	85-120
11NC28SS042-2	580-28198-18	9/1/2011	Toluene-d8	65	85-115
11NC28SS043-2	580-28198-20	9/7/2011	Toluene-d8	127	85-115
11NC28SS043-2.5	580-28198-21	9/7/2011	Toluene-d8	120	85-115
11NC28SS044-2	580-28198-22	9/1/2011	4-Bromofluorobenzene	84	85-120
11NC28SS044-2	580-28198-22	9/1/2011	Toluene-d8	66	85-115
11NC28SS044-2	580-28198-22	9/7/2011	4-Bromofluorobenzene	65	85-120
11NC28SS044-2	580-28198-22	9/7/2011	Toluene-d8	71	85-115
11NC28SS044-2.5	580-28198-23	9/1/2011	4-Bromofluorobenzene	82	85-120
11NC28SS044-2.5	580-28198-23	9/1/2011	Toluene-d8	75	85-115
11NC28SS044-2.5	580-28198-23	9/7/2011	4-Bromofluorobenzene	72	85-120
11NC28SS044-2.5	580-28198-23	9/7/2011	Toluene-d8	65	85-115
11NC28SS044-3	580-28198-24	9/1/2011	Toluene-d8	84	85-115
11NC28SS044-3	580-28198-24	9/7/2011	4-Bromofluorobenzene	66	85-120
11NC28SS044-3	580-28198-24	9/7/2011	Toluene-d8	53	85-115
11NC28SS045-1	580-28198-25	9/1/2011	4-Bromofluorobenzene	77	85-120
11NC28SS045-1	580-28198-25	9/1/2011	Toluene-d8	79	85-115

Sample No.	Lab ID	Date of Analysis	Surrogate	%R	Control Limits
11NC28SS045-1	580-28198-25	9/7/2011	4-Bromofluorobenzene	82	85-120
11NC28SS045-1	580-28198-25	9/7/2011	Toluene-d8	75	85-115
11NC28SS045-1.5	580-28198-26	9/7/2011	Toluene-d8	83	85-115
11NC28SS046-0.75	580-28198-27	9/1/2011	4-Bromofluorobenzene	64	85-120
11NC28SS046-0.75	580-28198-27	9/1/2011	Toluene-d8	66	85-115
11NC28SS046-0.75	580-28198-27	9/7/2011	4-Bromofluorobenzene	76	85-120
11NC28SS046-0.75	580-28198-27	9/7/2011	Toluene-d8	75	85-115
11NC28SS046-1.25	580-28198-28	9/1/2011	4-Bromofluorobenzene	62	85-120
11NC28SS046-1.25	580-28198-28	9/1/2011	Toluene-d8	64	85-115
11NC28SS046-1.25	580-28198-28	9/7/2011	4-Bromofluorobenzene	74	85-120
11NC28SS046-1.25	580-28198-28	9/7/2011	Toluene-d8	77	85-115
11NC28SS046-1.75	580-28198-29	9/1/2011	4-Bromofluorobenzene	70	85-120
11NC28SS046-1.75	580-28198-29	9/1/2011	Toluene-d8	73	85-115
11NC28SS047-2	580-28198-30	9/1/2011	Toluene-d8	78	85-115
11NC28SS047-2.5	580-28198-31	8/31/2011	4-Bromofluorobenzene	124	85-120
11NC28SS047-3	580-28198-32	9/7/2011	4-Bromofluorobenzene	77	85-120
11NC28SS047-3	580-28198-32	9/7/2011	Toluene-d8	65	85-115
11NC28SS048-1	580-28198-33	8/31/2011	4-Bromofluorobenzene	82	85-120
11NC28SS048-1	580-28198-33	8/31/2011	Toluene-d8	81	85-115
11NC28SS048-1	580-28198-33	9/7/2011	4-Bromofluorobenzene	47	85-120
11NC28SS048-1	580-28198-33	9/7/2011	Toluene-d8	27	85-115
11NC28SS052-1.5	580-28198-49	9/2/2011	Toluene-d8	84	85-115
11NC28SS053-1	580-28198-50	9/2/2011	Toluene-d8	84	85-115
11NC28SS053-1	580-28198-50	9/5/2011	Toluene-d8	68	85-115
11NC28SS053-1.5	580-28198-51	9/2/2011	Toluene-d8	84	85-115
11NC28SS053-2	580-28198-53	9/2/2011	Toluene-d8	80	85-115
11NC28SS053-2.5	580-28198-52	9/2/2011	Toluene-d8	81	85-115
11NC28SS054-0.5	580-28198-54	9/2/2011	4-Bromofluorobenzene	80	85-120
11NC28SS054-0.5	580-28198-54	9/2/2011	Toluene-d8	81	85-115
11NC28SS056-1.25	580-28198-61	9/2/2011	4-Bromofluorobenzene	84	85-120
11NC28SS056-1.25	580-28198-61	9/2/2011	Toluene-d8	80	85-115
11NC28SS056-1.75	580-28198-62	9/2/2011	Toluene-d8	82	85-115
11NC28SS057-1.5	580-28198-63	9/2/2011	4-Bromofluorobenzene	84	85-120
11NC28SS057-1.5	580-28198-63	9/2/2011	Toluene-d8	80	85-115
11NC28SS058-2	580-28198-68	9/2/2011	Toluene-d8	82	85-115

Sample No.	Lab ID	Date of Analysis	Surrogate	%R	Control Limits
11NC28SS059-1.5	580-28198-72	9/2/2011	4-Bromofluorobenzene	83	85-120
11NC28SS059-1.5	580-28198-72	9/2/2011	Toluene-d8	80	85-115
11NC28SS060-0.5	580-28198-73	9/2/2011	4-Bromofluorobenzene	224	85-120
11NC28SS060-1	580-28198-74	9/2/2011	4-Bromofluorobenzene	179	85-120
11NC28SS060-1.5	580-28198-76	9/2/2011	4-Bromofluorobenzene	136	85-120
11NC28SS060-2	580-28198-75	9/2/2011	4-Bromofluorobenzene	202	85-120
11NC28SS061-1.5	580-28198-78	9/2/2011	4-Bromofluorobenzene	139	85-120
11NC28SS062-0.75	580-28198-81	9/2/2011	4-Bromofluorobenzene	135	85-120
11NC28SS063-1.75	580-28198-84	9/2/2011	4-Bromofluorobenzene	189	85-120
11NC28SS066-0.75	580-28198-93	9/2/2011	4-Bromofluorobenzene	209	85-120
11NC28SS066-2	580-28198-95	9/3/2011	4-Bromofluorobenzene	138	85-120
11NC28SS067-1	580-28198-97	9/3/2011	Toluene-d8	80	85-115
11NC28SS069-1.5	580-28198-100	9/3/2011	4-Bromofluorobenzene	136	85-120
11NC28SS069-1.5	580-28198-100	9/3/2011	Toluene-d8	129	85-115
11NC28SS069-2.5	580-28198-102	9/3/2011	4-Bromofluorobenzene	77	85-120
11NC28SS069-2.5	580-28198-102	9/3/2011	Toluene-d8	67	85-115
11NC28SS070-0.75	580-28198-103	9/3/2011	Toluene-d8	77	85-115
11NC28SS070-0.75	580-28198-103	9/6/2011	4-Bromofluorobenzene	73	85-120
11NC28SS070-0.75	580-28198-103	9/6/2011	Toluene-d8	72	85-115
11NC28SS070-1.25	580-28198-104	9/3/2011	Toluene-d8	77	85-115
11NC28SS070-1.25	580-28198-104	9/7/2011	4-Bromofluorobenzene	74	85-120
11NC28SS070-1.25	580-28198-104	9/7/2011	Toluene-d8	64	85-115
11NC28SS070-1.75	580-28198-105	9/3/2011	4-Bromofluorobenzene	145	85-120
11NC28SS070-1.75	580-28198-105	9/3/2011	Toluene-d8	130	85-115
11NC28SS070-1.75	580-28198-105	9/6/2011	4-Bromofluorobenzene	130	85-120
11NC28SS070-1.75	580-28198-105	9/6/2011	Toluene-d8	118	85-115
11NC28SS071-1	580-28198-106	9/3/2011	Toluene-d8	83	85-115
11NC28SS071-1.5	580-28198-108	9/3/2011	4-Bromofluorobenzene	78	85-120
11NC28SS072-1.25	580-28198-110	9/3/2011	Toluene-d8	83	85-115
11NC28SS072-1.75	580-28198-111	9/3/2011	4-Bromofluorobenzene	82	85-120
11NC28SS072-1.75	580-28198-111	9/3/2011	Toluene-d8	79	85-115
11NC28SS073-2.5	580-28198-116	9/3/2011	Toluene-d8	79	85-115
11NC28SS074-1	580-28198-117	9/3/2011	Toluene-d8	80	85-115
11NC28SS074-1.5	580-28198-118	9/3/2011	4-Bromofluorobenzene	169	85-120
11NC28SS074-1.5	580-28198-118	9/3/2011	Toluene-d8	155	85-115

Cantral

Sample No.	Lab ID	Date of Analysis	Surrogate	%R	Control Limits
11NC28SS074-2	580-28198-119	9/3/2011	4-Bromofluorobenzene	84	85-120
11NC28SS074-2	580-28198-119	9/3/2011	Toluene-d8	77	85-115
11NC28SS075-2	580-28198-121	9/3/2011	4-Bromofluorobenzene	2	85-120
11NC28SS075-2	580-28198-121	9/3/2011	Toluene-d8	2	85-115
11NC28SS076-1.5	580-28198-123	9/3/2011	Toluene-d8	83	85-115
11NC28SS076-2	580-28198-124	9/3/2011	4-Bromofluorobenzene	82	85-120
11NC28SS076-2	580-28198-124	9/3/2011	Toluene-d8	79	85-115
11NC28SS076-2.5	580-28198-125	9/3/2011	Toluene-d8	84	85-115
11NC28SS077-1.5	580-28198-126	9/3/2011	Toluene-d8	78	85-115
11NC28SS077-2	580-28198-127	9/3/2011	Toluene-d8	81	85-115
11NC28SS077-2.5	580-28198-128	9/3/2011	Toluene-d8	82	85-115
11NC082211TripBlank2	580-28198-144	9/3/2011	Toluene-d8	83	85-115
11NC082211TripBlank6	580-28198-148	9/1/2011	Toluene-d8	83	85-115
11NC082211TripBlank6	580-28198-148	9/5/2011	Toluene-d8	84	85-115
11NC082211TripBlank6	580-28198-148	9/7/2011	4-Bromofluorobenzene	73	85-120
11NC082211TripBlank6	580-28198-148	9/7/2011	Toluene-d8	78	85-115

Detected results associated with high recoveries were QH qualified and all results associated with low recoveries were QL qualified. For surrogate recoveries less than 10%, results were not detected and qualified as rejected (R). Note, additional surrogates and surrogate control limits cited in the data package were not those specified in the QAPP. Data review was performed using surrogates and control limits provided on QAPP Table 12-5.

LCS/LCSD recoveries were outside QAPP Table 12-5 control limits as follows:

Analytical Batch	Analyte	%R	Control Limits (%R)	RPD	Limits (RPD)
280-84140	m,p-Xylene	79/	80-125		<30
280-84082	Ethylbenzene	74/	75/125		<30
	m,p-Xylene	76/73	80-125		<30
	o-Xylene	/72	75-125		<30

Associated results were qualified as estimated with a low bias (QL). No further qualification was required for samples that had been qualified due to low surrogate recoveries or hold time exceedances.

MS/MSD analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-5 control limits:

0 11 10 1		0/ 5	Control Limits		Control Limits	•
Spiked Sample	Analyte	%R	(%R)	RPD	(RPD)	Comments
11NC28SS001-1 (580-28053-2)	All in control					
11NC28SS008-1	Ethylbenzene	70/	75-125		<30	Both MSD %R and RPD
(580-28053-17)	m,p-Xylene	73/	80-125			in control, no qualifiers
	o-Xylene	69/	75-125			
11NC28SS014-2 (580-28053-36)	m,p-Xylene	79/	80-125		<30	Both MSD %R and RPD in control, no qualifiers
11NC28SS017-1.5	Benzene	/27	75-125	93	<30	
(580-28112-4)	Toluene	/29	70-125	96	<30	
	Ethylbenzene	30/- 22	75-125		<30	Sample concentration 2.8x spike concentration; ML qualified.
	o-Xylene	18/- 28	75-125		<30	Sample concentration >4x spike concentration, no qualifiers.
	m,p-Xylene	/52	80-125		<30	20x dilution, no qualifiers.
11NC28SS027-1.25 (580-28112-33)	All in control					
11NC28SS031-1.5	Benzene	/33	75-125	105	<30	
(580-28112-47)	Toluene	/31	70-125	107	<30	
	Ethylbenzene	/31	75-125	108	<30	
	o-Xylene	/30	75-125	108	<30	
	m,p-Xylene	/29	80-125	111	<30	
11NC28SS036-1 (580-28112-61)	All in control					
11NC28SS038-2.75	Benzene	142/	75-125		<30	
(580-28198-6) ^a	Ethylbenzene	142/	75-125	32	<30	
	m,p-Xylene	142/	80-125	32	<30	
	o-Xylene	142/	75-125	34	<30	
	Toluene	156/	70-125	32	<30	
11NC28SS044-3	m,p-Xylene	60	80-125	NA	<30	
(580-28198-24) ^a	o-Xylene	68	75-125	NA	<30	
	Toluene	/	70-125	35	<30	

			Control Limits		Control Limits	
Spiked Sample	Analyte	%R	(%R)	RPD	(RPD)	Comments
11NC28SS053-2 (580-28198-53)	All in control					
11NC28SS061-0.25 (580-28198-77)	All in control					
11NC28SS065-3 (580-28198-92)	All in control					
11NC28SS071-2 (580-28198-109)	All in control					
11NC28SS075-2.5 (580-28198-122)	All in control					

Notes:

^aSample analyzed twice, result from run selected for reporting shown for MS/MSD recoveries.

-- = in control NA = not applicable

The majority of MS/MSD results were in control and qualification due to MS/MSD outliers was limited to the spiked sample. Results associated with high recoveries were MH qualified and results associated with low recoveries were ML qualified to indicate bias due to matrix effects. For RPD outliers only, results were MN qualified to indicate bias could not be determined. No qualifiers were assigned when the spiked sample had significant concentrations of the spiked analyte or as noted above in the comment section. For samples qualified due to surrogate or hold times, qualifiers should be changed from Q to M with the direction of bias noted.

For samples analyzed in laboratory work order 580-28053, batch 580-93922, m & p xylene (0.0111 mg/kg) was detected in the associated method blank. Associated results were not detected and qualification was not required.

For samples analyzed in laboratory work order 580-28112, m & p-xylene was detected in all associated method blanks at concentrations ranging from 0.0119 to 0.0236 mg/kg. The highest method blank result was used to qualify project samples and all samples in this laboratory work order with m & p-xylene concentrations of 0.236 mg/kg or less were B qualified to indicate the potential for high bias.

For samples analyzed in laboratory work order 580-28198, analytes were detected in method blanks as follows:

Analyte	Concentration (mg/kg)	Analysis Batch	Comments
Toluene	0.0536	280-84731	Qualified
Ethylbenzene	0.104	280-84815	All results >10x blank
m,p-Xylene	0.0882	280-84815	All results >10x blank
Toluene	0.14	280-84815	Qualified

Results in associated samples at concentrations less than 10x the blank concentration were B qualified to indicate blank contamination and a possible high bias.

2.3 GRO ANALYSES

TestAmerica analyzed samples for GRO by ADEC method AK101. The sample QC batches are summarized in Table 2-3.1.

Table 2-3.1 GRO QC Batches

Laboratory Work Order	QC Batch	QC Batch Date
580-28053-1	580-93220	8/20/2011
	580-93234	8/20/2011
	580-93246	8/21/2011
	580-93922	8/30/2011
580-28112-1	580-93467	8/23/2011
	580-93490	8/24/2011
	580-93673	8/25/2011
	580-93754	8/26/2011
580-28198	280-83271	8/26/2011
	280-83273	8/26/2011
	280-83274	8/26/2011
	280-83275	8/26/2011
	280-83277	8/26/2011
	280-83278	8/26/2011
	280-83280	8/26/2011

Notes:

GRO = gasoline-range organics QC = quality control

Required QC for an analytical batch of up to 20 samples includes an MB, LCS, and MS/MSD pair. An MB, LCS/LCSD pair, and MS/MSD pair were performed with each batch.

The following items were reviewed and met QAPP criteria: MB, LCS/LCSD recoveries and RPDs.

The following samples were analyzed outside the QAPP hold time requirement of 14 days.

The hold time specified in Method AK101 for soil is 28 days and no qualifiers were assigned.

Sample No.	Lab ID	Days to Analysis	Sample No.	Lab ID	Days to Analysis
11NC28SS069-2	580-28198-101	16	11NC28SS073-2	580-28198-115	16
11NC28SS069-2.5	580-28198-102	16	11NC28SS073-2.5	580-28198-116	17
11NC28SS070-0.75	580-28198-103	16	11NC28SS074-1	580-28198-117	17
11NC28SS070-1.25	580-28198-104	16	11NC28SS074-1.5	580-28198-118	17
11NC28SS070-1.75	580-28198-105	16	11NC28SS075-1.5	580-28198-120	17
11NC28SS071-1	580-28198-106	16	11NC28SS074-2	580-28198-119	17
11NC28SS047-2.5	580-28198-31	16	11NC28SS064-0.25	580-28198-85	18
11NC28SS071-2.5	580-28198-107	16	11NC28SS054-0.5	580-28198-54	19
11NC28SS071-1.5	580-28198-108	16	11NC28SS054-1	580-28198-55	19
11NC28SS044-2.5	580-28198-23	16	11NC28SS054-1.5	580-28198-56	19
11NC28SS072-1.25	580-28198-110	16	11NC28SS055-1.5	580-28198-57	19
11NC28SS071-2	580-28198-109	16	11NC28SS055-2	580-28198-58	19
11NC28SS072-1.75	580-28198-111	16	11NC28SS055-2.5	580-28198-59	19
11NC28SS072-2.25	580-28198-112	16	11NC28SS056-0.75	580-28198-60	19
11NC28SS072-2.5	580-28198-113	16	11NC28SS047-3	580-28198-32	20
11NC28SS073-1.5	580-28198-114	16			

Several samples were diluted due to high analyte concentration. Surrogate recoveries were evaluated for samples analyzed at a dilution of 4x or less. For dilutions greater than 4x, the surrogates were considered to be diluted out and recoveries were not evaluated. Surrogate recoveries for samples analyzed at a dilution of 4x or less were outside QAPP control limits as follows:

Sample No.	Lab ID	Surrogate	%R	Control Limits
11NC081511TripBlank1	580-28053-41	Trifluorotoluene	171	50-150
11NC081711TripBlank1	580-28112-64	Trifluorotoluene	170	50-150
11NC081711TripBlank2	580-28112-65	Trifluorotoluene	171	50-150
11NC081711TripBlank3	580-28112-66	Trifluorotoluene	174	50-150

Detected results associated with high recoveries were QH qualified to indicate the potential for high bias. Note, surrogates and control limits provided by the laboratory were not those specified in the QAPP. Data review was performed using surrogates and control limits provided on QAPP Table 12-1.

MS/MSDs analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-1 control limits:

			Control Limits		Control Limits
Sample No.	Lab ID	%R	(%R)	RPD	(RPD)
11NC28SS002-2	580-28053-3	/-4	50-150	51	≤50%
11NC28SS008-1	580-28053-17	48/35	50-150		≤50%
11NC28SS014-2	580-28053-36	All in control			
11NC28SS017-1.5	580-28112-4	-15/-42	50-150		≤50%
11NC28SS027-1.25	580-28112-33	All in control			
11NC28SS031-1.5	580-28112-47	All in control			
11NC28SS036-1	580-28112-61	All in control			
11NC28SS038-2.75	580-28198-6	All in control			
11NC28SS044-3	580-28198-24	Not evaluated, 1	0x dilution		
11NC28SS053-2	580-28198-53	-29/42	50-150		≤50%
11NC28SS061-0.025	580-28198-77	-108/-106	50-150		≤50%
11NC28SS065-3	580-28198-92	-0.9/-9			
11NC28SS071-2	580-28198-109	All in control			
11NC28SS075-2.5	580-28198-122	All in control			
Note:					

-- = in control

The majority of MS/MSD results were in control and qualification due to MS/MSD outliers was limited to the spiked sample. Results associated with low recoveries were ML qualified to indicate low bias due to matrix effects. While GRO concentrations in unspiked samples were not 4x the spike concentration (and would not be evaluated) concentrations were

relatively high and more severe qualifiers due to exceedingly low recoveries were not required. When low recoveries were associated with high RPDs, the low recovery was considered the overriding outlier and qualification was based on the recovery information.

2.4 PCB ANALYSES

TestAmerica analyzed samples by method SW-846 8082A. The extraction batches are summarized in Table 2-4.1.

Table 2-4.1 PCB QC Batches

Laboratory Work Order	QC Batch	QC Batch Dates
580-28053-1	280-82415	8/22/2011
	280-82494	8/22/2011
580-28112-1	280-82850	8/24/2011
	280-82911	8/24/2011
	280-82924	8/24/2011
	280-82935	8/24/2011
580-28198-1	280-83255	8/26/2011
	280-83281	8/26/2011
	280-83321	8/26/2011
	280-83337	8/26/2011
	280-83393	8/27/2011
	280-83413	8/28/2011
	280-83419	8/28/2011

Notes:

PCB = polychlorinated biphenyl

QC = quality control

Required QC for an analytical batch of up to 20 samples includes an MB, LCS, and MS/MSD pair. An MB, LCS/LCSD, and MS/MSD pair were performed with each QC batch.

The following items were reviewed and met QAPP criteria: holding times, MB, and LCS/LCSD recoveries.

Many samples were diluted due to the presence of either target or non-target analytes. Surrogate recoveries were evaluated for samples analyzed at a dilution of 4x or less. For dilutions greater than 4x, the surrogates were considered to be diluted out and recoveries were not evaluated. Surrogate recoveries for samples analyzed at a dilution of 4x or less were outside QAPP control limits as follows:

Sample No.	Affected Analyte	Surrogate	%R	Control Limits
11NC28SS002-2	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS002-3	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS003-2.5	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS003-3	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS004-2.5	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS005-0.5	Detected PCBs	Decachlorobiphenyl	129	60-125
11NC28SS006-1	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS006-2	Detected PCBs	Decachlorobiphenyl	144	60-125
11NC28SS007-1.5	All PCBs	Decachlorobiphenyl	54	60-125
11NC28SS010-0.5	All PCBs	Decachlorobiphenyl	55	60-125
11NC28SS017-0.5	All PCBs	Decachlorobiphenyl	46	60-125
11NC28SS017-2	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS017-1	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS018-0.5	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS018-1	All PCBs	Decachlorobiphenyl	57	60-125
11NC28SS018-1.5	All PCBs	Decachlorobiphenyl	45	60-125
11NC28SS019-0.5	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS019-1	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS019-1.5	All PCBs	Decachlorobiphenyl	57	60-125
11NC28SS020-0.5	All PCBs	Decachlorobiphenyl	51	60-125
11NC28SS020-1	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS021-0.5	All PCBs	Decachlorobiphenyl	40	60-125
11NC28SS021-1	All PCBs	Decachlorobiphenyl	47	60-125
11NC28SS021-1.5	All PCBs	Decachlorobiphenyl	49	60-125
11NC28SS022-1	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS023-1	All PCBs	Decachlorobiphenyl	52	60-125
11NC28SS023-2.5	All PCBs	Decachlorobiphenyl	55	60-125
11NC28SS023-1.5	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS023-2	All PCBs	Decachlorobiphenyl	58	60-125
11NC28SS025-0.5	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS025-1	All PCBs	Decachlorobiphenyl	55	60-125

Sample No.	Affected Analyte	Surrogate	%R	Control Limits
11NC28SS025-1.5	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS026-0.5	All PCBs	Decachlorobiphenyl	21	60-125
11NC28SS026-1	All PCBs	Decachlorobiphenyl	22	60-125
11NC28SS026-1.5	All PCBs	Decachlorobiphenyl	32	60-125
11NC28SS026-2	All PCBs	Decachlorobiphenyl	30	60-125
11NC28SS027-0.75	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS027-1.25	All PCBs	Decachlorobiphenyl	38	60-125
11NC28SS027-1.75	All PCBs	Decachlorobiphenyl	34	60-125
11NC28SS028-0.5	All PCBs	Decachlorobiphenyl	25	60-125
11NC28SS028-1	All PCBs	Decachlorobiphenyl	32	60-125
11NC28SS028-1.5	All PCBs	Decachlorobiphenyl	38	60-125
11NC28SS029-0.5	All PCBs	Decachlorobiphenyl	19	60-125
11NC28SS029-1	All PCBs	Decachlorobiphenyl	28	60-125
11NC28SS029-1.5	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS031-0.5	All PCBs	Decachlorobiphenyl	57	60-125
11NC28SS031-1	All PCBs	Decachlorobiphenyl	57	60-125
11NC28SS031-1.5	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS035-0.5	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS035-1	All PCBs	Decachlorobiphenyl	44	60-125
11NC28SS040-0.5	All PCBs	Decachlorobiphenyl	40	60-125
11NC28SS040-1	All PCBs	Decachlorobiphenyl	54	60-125
11NC28SS041-1	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS041-1.33	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS043-2.5	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS044-2	All PCBs	Decachlorobiphenyl	55	60-125
11NC28SS044-2.5	All PCBs	Decachlorobiphenyl	55	60-125
11NC28SS045-1	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS045-1.5	All PCBs	Decachlorobiphenyl	58	60-125
11NC28SS054-0.5	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS060-1	All PCBs	Decachlorobiphenyl	50	60-125
11NC28SS062-0.75	All PCBs	Decachlorobiphenyl	45	60-125
11NC28SS065-3	All PCBs	Decachlorobiphenyl	51	60-125
11NC28SS066-2	All PCBs	Decachlorobiphenyl	27	60-125
11NC28SS067-0.5	All PCBs	Decachlorobiphenyl	58	60-125
11NC28SS068-1	All PCBs	Decachlorobiphenyl	48	60-125

Sample No.	Affected Analyte	Surrogate	%R	Control Limits
11NC28SS069-1.5	All PCBs	Decachlorobiphenyl	36	60-125
11NC28SS069-2	All PCBs	Decachlorobiphenyl	57	60-125
11NC28SS069-2.5	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS070-0.75	All PCBs	Decachlorobiphenyl	58	60-125
11NC28SS070-1.25	All PCBs	Decachlorobiphenyl	59	60-125
11NC28SS071-1	All PCBs	Decachlorobiphenyl	45	60-125
11NC28SS071-1.5	All PCBs	Decachlorobiphenyl	54	60-125
11NC28SS071-2	All PCBs	Decachlorobiphenyl	54	60-125
11NC28SS071-2.5	All PCBs	Decachlorobiphenyl	43	60-125
11NC28SS072-1.25	All PCBs	Decachlorobiphenyl	56	60-125
11NC28SS072-1.75	All PCBs	Decachlorobiphenyl	53	60-125
11NC28SS072-2.5	All PCBs	Decachlorobiphenyl	48	60-125
11NC28SS073-1.5	All PCBs	Decachlorobiphenyl	52	60-125
11NC28SS073-2	All PCBs	Decachlorobiphenyl	55	60-125
11NC28SS077-2	All PCBs	Decachlorobiphenyl	52	60-125
11NC28SS077-2.5	All PCBs	Decachlorobiphenyl	53	60-125

Detected PCB results associated with high recoveries for the surrogate dechlorobiphenyl (DCB) were QH qualified to indicate the potential for high bias and all PCB results associated with low DCB recoveries are QL qualified to indicate the potential for low bias.

Although included in the QAPP, recoveries for the surrogate tetrachloro-m-xylene (TCX) were not reported. The surrogate DCB is more closely associated with PCBs and no action was required due to the lack of TCX recovery information.

The RPD for PCB-1260 in the LCS/LCSD for laboratory work order 580-28198-1, prep batch 280-83419 was 28% which exceeds the control criteria of <20%. The RPDs for the MS/MSD for this batch were in control and data qualifiers were not assigned.

MS/MSDs analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-4 control limits:

Spiked Sample	Lab ID	Analyte	%R	Control Limits (%R)	RPD	Control Limits (RPD)
11NC28SS008-1	580-28053-17	PCBs	7011	All in co		(5)
11NC28SS014-2	580-28053-36	PCBs		All in co		
11NC28SS036-2	580-28112-62	PCBs		All in co	ontrol	
11NC28SS019-1.5	580-28112-10	PCB-1016	26/27	40-140	31	<20
		PCB 1260	45/51	60-130	42	<20
11NC28SS027-1.25	580-28112-33	PCB-1016	44/0	40-140	200	<20
		PCB 1260	58/53	60-130		<20
11NC28SS030-1.5	580-28112-42	PCB 1260	142/	60-130	36	<20
11NC28SS038-2.75	580-28198-6	PCB-1016	222/168	40-140	33	<20
11NC28SS044-3	580-28198-24	PCB-1016	/37	40-140		<20
		PCB 1260	/53	60-130	24	<20
11NC28SS053-2	580-28198-53	PCB-1016	/	40-140	27	<20
11NC28SS061-0.025	580-28198-77	PCBs		All in co	ontrol	
11NC28SS065-3	580-28198-92	PCBs		All in co	ntrol	
11NC28SS071-2	580-28198-109	PCB-1016	/	60-130	28	<20
		PCB 1260	58/	40-140		<20
11NC28SS075-2.5	580-28198-122	PCBs		All in co	ontrol	

The majority of MS/MSD results were in control and qualification due to MS/MSD outliers was limited to the spiked sample. All results associated with low recoveries were ML qualified and detected results associated with high recoveries were MH qualified. When recovery outliers were associated with high RPDs, recoveries were considered the overriding outlier and qualification was based on the recovery information. Where samples had been previously qualified due to surrogate outliers, qualifiers due to matrix interference takes precedence and should be used. For the single sample with an MSD recovery of zero, an ML qualifier was considered adequate since there was recovery in the MS and the spike concentration (0.147 mg/kg) was well below the screening criteria of 1 mg/kg.

The laboratory narrative indicated that more than one PCB compound was present for the following samples.

Sample No.	Lab ID	Comment
11NC28SS026-0.5	580-28112-28	QL Qualified due to surrogate, no further qualifier
11NC28SS026-1	580-28112-29	QL Qualified due to surrogate, no further qualifier
11NC28SS028-0.5	580-28112-35	QL Qualified due to surrogate, no further qualifier
11NC28SS029-0.5	580-28112-38	QL Qualified due to surrogate, no further qualifier
11NC28SS054-0.5	580-28198-54	QL Qualified due to surrogate, no further qualifier
11NC28SS061-1.5	580-28198-78	MN Qualified
11NC28SS062-0.75	580-28198-81	QL Qualified due to surrogate, no further qualifier
11NC28SS066-0.75	580-28198-93	MN Qualified
11NC28SS066-1.25	580-28198-94	MN Qualified
11NC28SS066-2	580-28198-95	QL Qualified due to surrogate, no further qualifier
11NC28SS067-0.5	580-28198-96	QL Qualified due to surrogate, no further qualifier

Detected results were qualified as estimated with an unknown bias (MN). For samples qualified due to low surrogate recovery, further qualification was not required.

The laboratory narrative indicated that due to weathering or other environmental processes, PCBs in the following sample do not closely match any of the laboratory's PCB standards:

Sample No.	Lab ID	Comment
11NC28SS030-1	580-28112-41	MN Qualified
11NC28SS030-1.5	580-28112-42	MN Qualified
11NC28SS030-2	580-28112-43	MN Qualified
11NC28SS030-2.5	580-28112-44	MN Qualified
11NC28SS031-0.5	580-28112-45	QL Qualified due to surrogate, no further qualifier
11NC28SS035-0.5	580-28112-57	QL Qualified due to surrogate, no further qualifier
11NC28SS035-1	580-28112-58	QL Qualified due to surrogate, no further qualifier
11NC28SS036-0.5	580-28112-60	MN Qualified
11NC28SS041-1	580-28198-13	QL Qualified due to surrogate, no further qualifier
11NC28SS041-1.33	580-28198-14	QL Qualified due to surrogate, no further qualifier
11NC28SS042-1	580-28198-15	MN Qualified
11NC28SS067-1	580-28198-97	MN Qualified
11NC28SS067-1.5	580-28198-98	MN Qualified
11NC28SS069-2	580-28198-101	QL Qualified due to surrogate, no further qualifier
11NC28SS069-2.5	580-28198-102	QL Qualified due to surrogate, no further qualifier
11NC28SS071-1	580-28198-106	QL Qualified due to surrogate, no further qualifier
11NC28SS071-2.5	580-28198-107	QL Qualified due to surrogate, no further qualifier

11NC28SS071-1.5	580-28198-108	QL Qualified due to surrogate, no further qualifier
11NC28SS073-1.5	580-28198-114	QL Qualified due to surrogate, no further qualifier
11NC28SS073-2	580-28198-115	QL Qualified due to surrogate, no further qualifier
11NC28SS073-2.5	580-28198-116	MN Qualified
11NC28SS077-2	580-28198-127	QL Qualified due to surrogate, no further qualifier

Results were reported as either PCB-1254 or PCB-1260. Detected results were MN qualified to indicate uncertainty in the result due to matrix effects. No additional qualifiers were assigned to results qualified due to low surrogate recoveries.

2.5 PAH ANALYSES

TestAmerica analyzed samples by SW-846 method 8270C SIM for PAHs. The extraction batches are summarized in Table 2-5-1.

Table 2-5.1 PAH QC Batches

Laboratory Work Order	QC Batch	QC Batch Dates
580-28053-1	280-82271	8/19/2011
	280-82278	8/19/2011
580-28112-1	280-82758	8/24/2011
	280-82796	8/24/2011
	280-82807	8/24/2011
	280-82838	8/24/2011
580-28198-1	280-83243	8/26/2011
	280-83266	8/26/2011
	280-83303	8/26/2011
	280-83336	8/26/2011
	280-83373	8/27/2011
	280-83379	8/27/2011
	280-83389	8/27/2011

Notes:

PAH = polynuclear aromatic hydrocarbons

QC = quality control

Required QC for an analytical batch of up to 20 samples includes an MB, LCS, and MS/MSD pair. An MB, LCS/LCSD, and MS/MSD pair were performed with each batch.

The following items were reviewed and met QAPP criteria: holding times and LCS/LCSD recoveries and RPDs. All samples used for MS/MSDs were analyzed at a 5x dilution or higher and were not evaluated.

Many samples were diluted due to the presence of either target or non-target analytes. Surrogate recoveries were evaluated for samples analyzed at a dilution of 4x or less. For dilutions greater than 4x, the surrogates were considered to be diluted out and recoveries were not evaluated. Surrogate recoveries for samples analyzed at a dilution of 4x or less were outside QAPP control limits as follows:

Sample No.	Lab ID.	Surrogate	%R	Control Limits
11NC28SS003-3.5	580-28053-8	Nitrobenzene-d5	141	35-100
11NC28SS005-0.5	580-28053-10	Nitrobenzene-d5	101	35-100
11NC28SS010-1	580-28053-21	Nitrobenzene-d5	102	35-100
11NC28SS013-1	580-28053-32	Nitrobenzene-d5	127	35-100
11NC28SS014-1.5	580-28053-35	Nitrobenzene-d5	222	35-100
11NC28SS033-0.5	580-28112-51	Nitrobenzene-d5	133	35-100
11NC28SS033-1	580-28112-52	Nitrobenzene-d5	142	35-100
11NC28SS037-2.5	580-28198-2	Nitrobenzene-d5	140	35-100
11NC28SS037-3	580-28198-3	Nitrobenzene-d5	121	35-100
11NC28SS039-1	580-28198-7	Nitrobenzene-d5	133	35-100
11NC28SS039-1.5	580-28198-8	Nitrobenzene-d5	182	35-100
11NC28SS039-2	580-28198-9	Nitrobenzene-d5	163	35-100
11NC28SS040-0.5	580-28198-10	Nitrobenzene-d5	188	35-100
11NC28SS040-1	580-28198-11	Nitrobenzene-d5	181	35-100

The laboratory qualified results for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene due to surrogate outliers for nitrobenzene-d5 in data packages 580-28053 and 580-28198; for data review, this association was also used for data package 580-28112. Detected results for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene that were associated with high nitrobenzene-d5 recoveries were QH qualified to indicate the potential for a high bias.

PAH compounds were detected in the method blanks as shown below.

Laboratory Work Order	Preparation Batch	Analytes	Units	Concentration
580-28053	280-82278	Naphthalene	μg/kg	0.321
		2-Methylnaphthalene	μg/kg	0.407
580-28112	280-82758	Naphthalene	μg/kg	3.23
		1-Methylnaphthalene	μg/kg	1.86
		2-Methylnaphthalene	μg/kg	3.55
	280-82796	Naphthalene	μg/kg	0.845
		1-Methylnaphthalene	μg/kg	0.390
		2-Methylnaphthalene	μg/kg	0.715
	280-82807	Naphthalene	μg/kg	5.05
		1-Methylnaphthalene	μg/kg	2.94
		2-Methylnaphthalene	μg/kg	5.89
	280-82838	Naphthalene	μg/kg	0.565
		1-Methylnaphthalene	μg/kg	0.335
		2-Methylnaphthalene	μg/kg	0.421
580-28198	280-83266	Naphthalene	μg/kg	2.64
		1-Methylnaphthalene	μg/kg	1.06
		2-Methylnaphthalene	μg/kg	2.24
	280-83379	Naphthalene	μg/kg	0.327
		2-Methylnaphthalene	μg/kg	0.295

Associated results detected at concentrations less than 10x the blank concentration were B qualified to indicate the potential for a high bias.

Samples used for MS/MSDs were diluted and results were not evaluated for the following:

Sample No.	Lab ID	Dilution
11NC28SS008-1	580-28053-17	20x
11NC28SS014-2	580-28053-36	5x
11NC28SS018-1.5	580-28112-7	600x
11NC28SS027-1.25	580-28112-33	20x
11NC28SS031-1	580-28112-46	5x
11NC28SS036-1.5	580-28112-63	10x
11NC28SS038-2.75	580-28198-6	5x
11NC28SS044-3	580-28198-24	100x
11NC28SS053-2	580-28198-53	5x
11NC28SS061-0.025	580-28198-77	50x
11NC28SS065-3	580-28198-92	25x
11NC28SS071-2	580-28198-109	15x
11NC28SS075-2.5	580-28198-122	5x

No data from the MS/MSDs is available to evaluate matrix effect for method 8270C SIM. One alternative for future sampling events would be to specify samples for MS/MSD analysis from less contaminated areas to minimize the need for dilution.

2.6 DRO/RRO ANALYSES

TestAmerica analyzed samples for DRO/RRO following ADEC methods AK102/103. Both DRO/RRO and DRO/RRO after silica gel cleanup were reported for each sample. Prep batches were the same for both DRO/RRO and DRO/RRO with silica gel cleanup. However, different analytical batches were used for the silica gel cleanup. Both the prep batches and the analysis batches are summarized in Table 2-6.1.

Table 2-6.1 DRO/RRO QC Batches

Laboratory Work Order	Analyses	Prep Batch	Prep Date	Analysis Batch	Analysis Date
580-28053-1	DRO/RRO	580-93791	8/26/2011	580-94068	8/30/2011
	DRO	580-93791	8/26/2011	580-94183	8/31/2011
	DRO/RRO	580-93796	8/26/2011	580-94059	8/31/2011
	DRO/RRO w/Silica Gel	580-93791	8/26/2011	580-94627	9/7/2011
	DRO w/Silica Gel	580-93791	8/26/2011	580-94776	9/7/2011
	DRO/RRO w/Silica Gel	580-93796	8/26/2011	580-94881	9/7/2011
	DRO w/Silica Gel	580-93796	8/26/2011	580-94976	9/9/2011
580-28112-1	RRO	580-93810	8/26/2011	580-94186	9/1/2011
	DRO	580-93810	8/26/2011	580-94338	9/1/2011
	RRO w/Silica Gel	580-93810	8/26/2011	580-95131	9/12/2011
	DRO w/Silica Gel	580-93810	8/26/2011	580-95221	9/13/2011
	DRO w/Silica Gel	580-93810	8/26/2011	580-95375	9/14/2011
	DRO/RRO	580-93833	8/26/2011	580-94183	9/1/2011
	DRO/RRO	580-93833	8/26/2011	580-94492	9/3/2011
	DRO/RRO w silica gel	580-93833	8/26/2011	580-95216	9/13/2011
	DRO/RRO w silica gel	580-93833	8/26/2011	580-95344	9/14/2011
	DRO/RRO	580-93838	8/26/2011	580-94266	9/1/2011
	DRO/RRO	580-93838	8/26/2011	580-94393	9/2/2011
	DRO/RRO w silica gel	580-93838	8/26/2011	580-95140	9/12/2011
	DRO/RRO w silica gel	580-93838	8/26/2011	580-95225	9/13/2011
	DRO/RRO	580-94125	8/30/2011	580-94624	9/6/2011
	DRO/RRO w silica gel	580-94125	8/30/2011	580-95432	9/15/2011

Table 2-6.1 DRO/RRO QC Batches (continued)

Laboratory Work Order	Analyses	Prep Batch	Prep Date	Analysis Batch	Analysis Date
580-28198-1	DRO/RRO	580-94125	8/30/2011	580-94624	9/7/2011
	DRO	580-94125	8/30/2011	580-94772	9/7/2011
	DRO/RRO w silica gel	580-94125	8/30/2011	580-95432	9/15/2011
	DRO/RRO w silica gel	580-94125	8/30/2011	580-95556	9/17/2011
	DRO/RRO w silica gel	580-94125	8/30/2011	580-95614	9/19/2011
	DRO	580-94125	8/30/2011	580-95716	9/20/2011
	DRO/RRO	580-94170	8/31/2011	580-95228	9/14/2011
	DRO	580-94170	8/31/2011	580-95330	9/14/2011
	DRO/RRO w silica gel	580-94170	8/31/2011	580-95825	9/22/2011
	DRO/RRO w silica gel	580-94170	8/31/2011	580-95882	9/22/2011
	DRO/RRO	580-94177	8/31/2011	580-94772	9/8/2011
	DRO/RRO w silica gel	580-94177	8/31/2011	580-95885	9/23/2011
	DRO/RRO w silica gel	580-94177	8/31/2011	580-96087	9/26/2011
	DRO	580-94177	8/31/2011	580-96181	9/27/2011
	DRO/RRO	580-94271	9/1/2011	580-94776	9/8/2011
	DRO	580-94271	9/1/2011	580-94843	9/8/2011
	DRO/RRO w silica gel	580-94271	9/1/2011	580-96008	9/23/2011
	DRO/RRO	580-94295	9/1/2011	580-94964	9/10/2011
	DRO	580-94295	9/1/2011	580-95140	9/12/2011
	DRO/RRO w silica gel	580-94295	9/1/2011	580-96011	9/24/2011
	DRO/RRO w silica gel	580-94356	9/1/2011	580-95330	9/15/2011
	DRO	580-94356	9/1/2011	580-95445	9/15/2011
	DRO/RRO	580-94356	9/1/2011	580-95710	9/21/2011
	DRO/RRO w silica gel	580-94377	9/2/2011	580-95344	9/15/2011
	DRO/RRO	580-94377	9/2/2011	580-95375	9/15/2011
	DRO/RRO	580-94384	9/2/2011	580-94528	9/4/2011
	DRO/RRO w silica gel	580-94384	9/2/2011	580-95344	9/15/2011

Notes:

DRO = diesel-range organics

QC = quality control

RRO = residual range organics

Required QC for a batch of up to 20 samples includes an MB, LCS/LCSD, and MS/MSD pair. An MB, LCS/LCSD, and MS/MSD were analyzed with each batch.

The following items were reviewed and met QAPP/method criteria: hold times and LCS/LCSD recoveries and RPDs.

Many samples were diluted due to the presence of either target or non-target analytes. Surrogate recoveries were evaluated for samples analyzed at a dilution of 4x or less. For dilutions greater than 4x, the surrogates were considered to be diluted out and recoveries were not evaluated. Surrogate recoveries for samples analyzed at a dilution of 4x or less were outside control limits specified in QAPP Tables 12-2and 12-3 as follows:

Sample No.	Lab ID	Surrogate	%R	Control Limits
Affected Analyte: RRO	1			
11NC28SS006-0.5	580-28053-12	n-triacontane-d62	155	50-150
11NC28SS017-1	580-28112-3	n-triacontane-d62	174	50-150
11NC28SS020-1	580-28112-12	n-triacontane-d62	155	50-150
11NC28SS022-2	580-28112-18	n-triacontane-d62	172	50-150
11NC28SS023-2.5	580-28112-20	n-triacontane-d62	153	50-150
11NC28SS023-1.5	580-28112-21	n-triacontane-d62	170	50-150
11NC28SS023-2	580-28112-22	n-triacontane-d62	163	50-150
11NC28SS024-1.5	580-28112-24	n-triacontane-d62	163	50-150
11NC28SS026-1.5	580-28112-30	n-triacontane-d62	191	50-150
11NC28SS026-2	580-28112-31	n-triacontane-d62	179	50-150
11NC28SS030-2	580-28112-43	n-triacontane-d62	166	50-150
11NC28SS031-0.5	580-28112-45	n-triacontane-d62	189	50-150
11NC28SS031-1	580-28112-46	n-triacontane-d62	195	50-150
11NC28SS031-1.5	580-28112-47	n-triacontane-d62	176	50-150
11NC28SS032-0.5	580-28112-48	n-triacontane-d62	193	50-150
11NC28SS032-1	580-28112-49	n-triacontane-d62	165	50-150
11NC28SS034-1.5	580-28112-56	n-triacontane-d62	162	50-150
11NC28SS035-0.5	580-28112-57	n-triacontane-d62	39	50-150
11NC28SS035-1.5	580-28112-59	n-triacontane-d62	174	50-150
11NC28SS036-1	580-28112-61	n-triacontane-d62	192	50-150
11NC28SS036-2	580-28112-62	n-triacontane-d62	162	50-150

Sample No.	Lab ID	Surrogate	%R	Control Limits
11NC28SS036-1.5	580-28112-63	n-triacontane-d62	199	50-150
11NC28SS037-2	580-28198-1	n-triacontane-d62	185	50-150
11NC28SS037-2.5	580-28198-2	n-triacontane-d62	179	50-150
11NC28SS038-1.75	580-28198-4	n-triacontane-d62	181	50-150
11NC28SS038-2.25	580-28198-5	n-triacontane-d62	182	50-150
11NC28SS038-2.75	580-28198-6	n-triacontane-d62	186	50-150
11NC28SS039-2	580-28198-9	n-triacontane-d62	167	50-150
11NC28SS040-1	580-28198-11	n-triacontane-d62	201	50-150
11NC28SS040-1.5	580-28198-12	n-triacontane-d62	172	50-150
11NC28SS041-1.33	580-28198-14	n-triacontane-d62	151	50-150
11NC28SS055-1.5	580-28198-57	n-triacontane-d62	180	50-150
11NC28SS067-1.5	580-28198-98	n-triacontane-d62	28	50-150
11NC28SS075-2.5	580-28198-122	n-triacontane-d62	192	50-150
11NC28SS081-1.25	580-28198-139	n-triacontane-d62	225	50-150
11NC28SS081-1.75	580-28198-140	n-triacontane-d62	182	50-150
11NC28SS081-2.25	580-28198-141	n-triacontane-d62	210	50-150
11NC28SS081-2.5	580-28198-142	n-triacontane-d62	189	50-150
Affected Analyte: RR	O with Silica Gel Cle	anup		
11NC28SS040-0.5	580-28198-10	n-triacontane-d62	182	50-150
11NC28SS067-1	580-28198-97	n-triacontane-d62	12	50-150

Detected results for the affected analyte associated with a high recovery were QH qualified to indicate the potential for a high bias. Results associated with a low recovery were QL qualified to indicate the potential for a low bias.

Analytes were detected in the method blanks as follows:

Analyte	Concentration (mg/kg)	Analysis Batch	Comments
DRO	9.84	580-94266	Associated results >10x blank concentration
DRO	5.99	580-94624	Associated results >10x blank concentration
DRO with silica gel cleanup	4.91	580-95131	Only RRO reported, no associated DRO results
DRO with silica gel cleanup	6.70	580-95216	Associated results >10x blank concentration
RRO	13.5	580-94183	Associated results >10x blank concentration
RRO	27.5	580-94624	Associated results >10x blank concentration

Analyte	Concentration (mg/kg)	Analysis Batch	Comments
RRO with silica gel cleanup	10.0	580-95131	Associated results >10x blank concentration
RRO with silica gel cleanup	18.3	580-95216	Associated results >10x blank concentration
DRO	2.12	580-94528	Associated results >10x blank concentration
DRO	5.99	580-94624	Associated results >10x blank concentration
RRO	27.5	580-94624	Associated results >10x blank concentration
DRO	2.76	580-94772	Associated results >10x blank concentration
DRO	4.16	580-94964	Associated results >10x blank concentration
DRO with silica gel	6.34	580-95330	Associated results >10x blank concentration
DRO with silica gel	4.06	580-95344	Associated results >10x blank concentration
RRO with silica gel	10.4	580-95344	Associated results >10x blank concentration
DRO with silica gel	8.21	580-95344	Associated results <10x blank concentration B qualified
RRO with silica gel	22.3	580-95344	Associated results >10x blank concentration
DRO with silica gel	2.87	580-95825	Associated results >10x blank concentration
DRO with silica gel	3.14	580-95885	Associated results <10x blank concentration B qualified
RRO with silica gel	11.7	580-95885	Associated results <10x blank concentration B qualified

Associated results detected at concentrations less than 10x the blank concentration were B qualified to indicate the potential for a high bias.

MS/MSD analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-2 and 12-3 control limits:

			Control Limits		Control Limits	
Spiked Sample	Lab ID	%R	(%R)	RPD	(RPD)	Comments
DRO:						
11NC28SS008-1	580-28053-17	Not evaluated	72-128		≤20%	Sample concentration>4x spike concentration
11NC28SS014-2	580-28053-36	63/	72-128		≤20%	
11NC28SS017-1.5	580-28112-4	Not evaluated	72-128		≤20%	Sample concentration>4x spike concentration
11NC28SS027-1.25	580-28112-33	/52	72-128		≤20%	
11NC28SS031-1.5	580-28112-47	/	72-128		≤20%	
11NC28SS038-2.75	580-28198-6	/	72-128		≤20%	
11NC28SS044-3	580-28198-24	Not evaluated	72-128		≤20%	Sample concentration>4x spike concentration
11NC28SS053-2	580-28198-53	61/56	72-128		≤20%	
11NC28SS061-0.025	580-28198-77	Not evaluated	72-128	26	≤20%	Sample concentration>4x spike concentration
11NC28SS065-3	580-28198-92	159/128	72-128		≤20%	
11NC28SS071-2	580-28198-109	45/113	72-128	36	≤20%	
11NC28SS075-2.5	580-28198-122	/	72-128		≤20%	
11NC28SS080-3.75	580-28198-138	/	72-128		≤20%	
DRO with Silica Gel Cl	eanup					
11NC28SS008-1	580-28053-17	Not evaluated	72-128		≤20%	Sample concentration>4x spike concentration
11NC28SS014-2	580-28053-36	53/63	72-128		≤20%	
11NC28SS017-1.5	580-28112-4	Not evaluated	72-128		≤20%	Sample concentration>4x spike concentration
11NC28SS027-1.25	580-28112-33	/52	72-128	-	≤20%	Sample concentration>4x spike concentration
11NC28SS031-1.5	580-28112-47	/	72-128		≤20%	
11NC28SS038-2.75	580-28198-6	/	72-128		≤20%	
11NC28SS044-3	580-28198-24	Not evaluated	72-128	31	≤20%	Sample concentration>4x spike concentration
11NC28SS053-2	580-28198-53	/	72-128		≤20%	
11NC28SS061-0.025	580-28198-77	Not evaluated	72-128	32	≤20%	Sample concentration>4x spike concentration
11NC28SS065-3	580-28198-92	176/	72-128	21	≤20%	
11NC28SS071-2	580-28198-109	46/	72-128	38	≤20%	
11NC28SS075-2.5	580-28198-122	/	72-128		≤20%	
11NC28SS080-3.75	580-28198-138	/	72-128		≤20%	

О	О	\boldsymbol{n}
П	П	v

11NC28SS008-1	580-28053-17	164/	53-116	23	≤20%	
11NC28SS014-2	580-28053-36	Not evaluated	53-116		≤20%	Sample concentration>4x spike concentration
11NC28SS017-1.5	580-28112-4	Not evaluated	53-116		≤20%	Sample concentration>4x spike concentration
11NC28SS027-1.25	580-28112-33	/121	53-116		≤20%	
11NC28SS031-1.5	580-28112-47	/	53-116		≤20%	
11NC28SS038-2.75	580-28198-6	Not evaluated	53-116		≤20%	Sample concentration>4x spike concentration
11NC28SS044-3	580-28198-24	/	53-116		≤20%	
11NC28SS053-2	580-28198-53	39/	53-116		≤20%	
11NC28SS061-0.025	580-28198-77	/	53-116		≤20%	
11NC28SS065-3	580-28198-92	162/205	53-116		≤20%	
11NC28SS071-2	580-28198-109	39/	53-116		≤20%	
11NC28SS075-2.5	580-28198-122	138/191	53-116		≤20%	
11NC28SS080-3.75	580-28198-138	-17/	53-116	34	≤20%	Sample concentration 2.5x spike concentration
RRO with Silica Gel Cle	eanup					
11NC28SS008-1	580-28053-17	/	53-116		≤20%	
11NC28SS014-2	580-28053-36	/	53-116		≤20%	
11NC28SS017-1.5	580-28112-4	/	53-116		≤20%	
11NC28SS027-1.25	580-28112-33	/	53-116		≤20%	
11NC28SS031-1.5	580-28112-47	/	53-116		≤20%	
11NC28SS038-2.75	580-28198-6	/	53-116		≤20%	
11NC28SS044-3	580-28198-24	/	53-116		≤20%	
11NC28SS053-2	580-28198-53	/132	53-116		≤20%	
11NC28SS061-0.025	580-28198-77	/127	53-116		≤20%	
11NC28SS065-3	580-28198-92	132/123	53-116		≤20%	
11NC28SS071-2	580-28198-109	/	53-116		≤20%	
11NC28SS075-2.5	580-28198-122	/137	53-116		≤20%	
11NC28SS080-3.75	580-28198-138	/	53-116		≤20%	

Note:

= in control

The majority of MS/MSD results were in control and qualification due to MS/MSD outliers was limited to the spiked sample. Results associated with low recoveries were ML qualified and detected results associated with high recoveries were MH qualified. When recovery

outliers were associated with high RPDs, recoveries were considered the overriding outlier and qualification was based on the recovery information. For the single sample with a negative MS recovery, an ML qualifier was considered adequate since the sample concentration was 2.5x the spike concentration. MS/MSD recoveries and RPDs are not evaluated when the sample concentration is greater than four times the spike concentration since the spike addition is negligible in relation to the sample concentration.

2.7 TOC ANALYSES

TestAmerica analyzed samples for TOC-Quad by SW-846 method 9060. The QC batches are summarized in Table 2-7.1.

Table 2-7.1 TOC QC Batches

Laboratory Work Order	QC Batch	QC Batch Date
580-28053-1	580-93888	8/28/2011
	580-94049	8/30/2011
	580-94459	8/30/2011
580-28112-1	580-94711	9/7/2011
	580-95027	9/9/2011
	580-95143	9/12/2011
	580-95395	9/14/2011
	580-95700	9/18/2011
580-28198-1	280-86252	9/8/2011
	280-86399	9/9/2011
	280-86438	9/13/2011
	280-86515	9/14/2011
	280-86544	9/15/2011
	280-88408	9/28/2011
	280-88512	9/27/2011
	280-88568	9/29/2011
	580-96187	9/21/2011

Required QC for a batch of up to 20 samples includes an MB, LCS/LCSD pair, and MS/MSD pair. A MB, LCS/LCSD, and MS/MSD pair were analyzed per batch with the exception that

no LCSD was provided for laboratory work orders 580-28053-1 and 580-28112-1 and batch 580-96187 for laboratory work order 580-28198-1. Precision information was available through the MS/MSD pair and the lack of an LCSD will not affect data usability.

The following items were reviewed and met QAPP criteria: MB, LCS/LCSD %Rs and RPDs, and MS/MSD %Rs and RPDs.

Several samples were analyzed outside the 28 day hold time. In some instance, the laboratory narrative indicated samples were frozen within the 28 days extending the hold time to six months and qualification was not required. Samples that were not frozen prior to 28 days and analyzed outside the 28 day hold time were QL qualified to indicate an estimated result with a potential low bias. Samples analyzed outside the hold time of 28 days and QL qualified were:

Sample No.	Lab ID	Days to Analysis
11NC28SS069-1.5	580-28198-100	38
11NC28SS069-2	580-28198-101	38
11NC28SS069-2.5	580-28198-102	38
11NC28SS070-0.75	580-28198-103	38
11NC28SS070-1.25	580-28198-104	38
11NC28SS070-1.75	580-28198-105	38
11NC28SS071-1	580-28198-106	38
11NC28SS071-2.5	580-28198-107	38
11NC28SS071-1.5	580-28198-108	38
11NC28SS071-2	580-28198-109	38
11NC28SS072-1.25	580-28198-110	38
11NC28SS072-2.25	580-28198-112	38
11NC28SS078-1.5	580-28198-129	31
11NC28SS078-2	580-28198-130	31
11NC28SS078-2.5	580-28198-131	31
11NC28SS078-3	580-28198-132	31
11NC28SS079-2.5	580-28198-133	32
11NC28SS079-3	580-28198-134	32
11NC28SS079-3.5	580-28198-135	31
11NC28SS080-2.75	580-28198-136	31
11NC28SS080-3.25	580-28198-137	31
11NC28SS080-3.75	580-28198-138	31
11NC28SS081-1.25	580-28198-139	31
11NC28SS081-1.75	580-28198-140	31
11NC28SS081-2.25	580-28198-141	31
11NC28SS081-2.5	580-28198-142	31

MS/MSDs analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-9 control limits:

		% R Control Limits	RPD Control Limit	
Sample No.	Lab ID	(76-128%)	(<28%)	Comments
11NC28SS008-1	580-28053-17	Not evaluated		Sample concentration>4x spike concentration
11NC28SS010-1	580-28053-21	/		
11NC28SS014-2	580-28053-36	Not evaluated		Sample concentration>4x spike concentration
11NC28SS017-0.5	580-28112-1	/		
11NC28SS020-1	580-28112-12	Not evaluated		Sample concentration>4x spike concentration
11NC28SS027-1.25	580-28112-33	Not evaluated		Sample concentration>4x spike concentration
11NC28SS032-1	580-28112-49	482/438		Sample concentration>3.4x spike concentration
11NC28SS034-0.5	580-28112-54	/na	(lab duplicate)	
11NC28SS038-2.75	580-28198-6	/		
11NC28SS044-2	580-28198-22	/		
11NC28SS044-3	580-28198-24	/		
11NC28SS053-2	580-28198-53	/		
11NC28SS061-0.025	580-28198-77	/		
11NC28SS071-2	580-28198-109	/		
11NC28SS075-2.5	580-28198-122	/		
11NC28SS080-3.75	580-28198-138	/na		Sample concentration>4x spike concentration

The majority of MS/MSD results were in control and qualification due to MS/MSD outliers was limited to the spiked sample. Detected results associated with high recoveries were MH qualified. MS/MSD recoveries are not evaluated when the sample concentration is greater than four times the spike concentration since the spike addition is negligible in relation to the sample concentration. RPDs for MS/MSDs at 4x the spike concentration were in control.

The laboratory noted that nine samples, including an MS/MSD pair were analyzed before the first continuing calibration verification (CCV) due to an analyst error. Recoveries and RPDs for the MS/MSD pair were in control and no action was taken to qualify the results.

2.8 METALS ANALYSES

TestAmerica analyzed soil samples by SW-846 method 6020. The QC batches are summarized in Table 2-8.1.

Table 2-8.1 Metals QC Batches

Laboratory Work Order	QC Batch	QC Batch Date
580-28053-1	580-93639	8/24/2011
	580-93648	8/24/2011
580-28112-1	580-94027	8/29/2011
	580-94090	8/30/2011
	580-94124	8/30/2011
	580-94132	8/30/2011
580-28198-1	580-94820	9/7/2011
	580-94830	9/7/2011
	580-94856	9/8/2011
	580-94864	9/8/2011
	580-94945	9/9/2011
	580-94946	9/8/2011
	580-94949	9/8/2011
	580-94984	9/9/2011

Note:

QC = quality control

Required QC for a batch of up to 20 samples includes an MB, LCS/LCSD pair, and MS/MSD pair. An MB, MS/MSD, LCS/LCSD, and a laboratory duplicate were analyzed per batch.

The following items were reviewed and met QAPP criteria: holding time and LCS/LCSD %Rs and RPDs.

Analytes were detected in the method blanks as follows:

Prep Batch	Analyte	Concentration (mg/kg)
580-94027	Barium	0.0593
580-94090	Barium	0.0598
580-94124	Barium	0.0492
580-94132	Barium	0.0411
580-94820	Barium	0.0786
580-94830	Barium	0.0714
580-94856	Barium	0.0824
580-94864	Barium	0.0793
580-94945	Silver	0.0375
580-94946	Cadmium	0.00876
	Lead	0.0226
580-94949	Barium	0.0379

With the exception of silver, all associated results were greater than 10x the method blank concentration and qualification was not required. Sample results associated with the detection of silver in the method blank were <10x the blank concentration and were B qualified.

MS/MSDs analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-7 control limits:

Spiked Sample	Analyte	%R	%R Control Limits	RPD	RPD Control Limits	Comments
•	•					Comments
11NC28SS008-1	Arsenic	/	80-120	29	<20	No qualifiers due to
(580-28053-17)	Barium	/	80-120	25	<20	RPD; lab duplicate on the same sample had
	Cadmium	/	80-120	29	<20	RPDs in control (<20%
	Chromium	66/	80-120	39	<20	RPD).
	Lead	/	80-120	36	<20	
	Nickel	/	80-120	28	<20	
	Selenium	/	80-120	28	<20	
	Silver	/	80-120	28	<20	
	Vanadium	/	80-120	34	<20	
11NC28SS014-2 (580-28053-36)	All in control					

Spiked Sample	Analyte	%R	%R Control Limits	RPD	RPD Control Limits	Comments
11NC28SS017-1.5	Arsenic	/	80-120	23	<20	No qualifiers due to
(580-28112-4)	Barium	/	80-120	21	<20	RPD; lab duplicate on the same sample had
	Cadmium	/	80-120	25	<20	RPDs in control (<20%
	Lead	/	80-120	21	<20	RPD).
	Selenium	/	80-120	23	<20	
	Silver	/	80-120	25	<20	
11NC28SS027-1.25	Chromium	79/	80-120		<20	
(580-28112-33)	Lead	 /125	80-120	26	<20	
11NC28SS031-1.5 (580-28112-47)	All in control					
11NC28SS033-1 (580-28112-52)	All in control					
11NC28SS038-2.75 (580-28198-6)	All in control					
11NC28SS044-3 (580-28198-24)	All in control					
11NC28SS048-2 (580-28198-35)	All in control					
11NC28SS053-2 (580-28198-53)	All in control					
11NC28SS061- 0.025 (580-28198-77)	All in control					
11NC28SS065-3 (580-28198-92)	All in control					
11NC28SS071-2 (580-28198-109)	All in control					
11NC28SS075-2.5 (580-28198-122)	Chromium	 /126	80-120		<20	

Results associated with low matrix spike recoveries were ML qualified and detected results associated with high spike recoveries were MH qualified to indicate bias due to a matrix effect. Associated samples were those samples from the same analytical preparation batch.

Laboratory duplicate RPDs were outside the laboratory control limits of <20% as follows:

Spiked Sample	Analyte	RPD	RPD Control Limits
11NC28SS027-1.25	Chromium	38	<20
(580-28112-33)	Nickel	31	<20
11NC28SS031-1.5 (580-28112-47)	Cadmium	28	<20
11NC28SS065-3	Cadmium	23	<20
(580-28198-92)	Lead	26	<20

Duplicate samples and the associated detected project sample in the batch were QN qualified to indicate the matrix may be non-homogenous. For chromium samples qualified due to matrix, no further qualifiers were assigned.

2.9 MERCURY ANALYSES

TestAmerica analyzed soil samples for mercury by SW-846 method 7471A. The QC batches are summarized in Table 2-9.1.

Table 2-9.1 Mercury QC Batches

Laboratory Work Order	QC Batch	QC Batch Date
580-28053-1	580-93726	8/25/2011
	580-93742	8/25/2011
580-28112-1	580-93988	8/29/2011
	580-94252	8/31/2011
	580-94322	9/1/2011
	580-94323	9/1/2011
580-28198-1	580-94611	9/6/2011
	580-94638	9/6/2011
	580-94650	9/6/2011
	580-94664	9/6/2011
	580-94675	9/7/2011
	580-94683	9/7/2011
	580-94723	9/7/2011
	580-94737	9/7/2011

Note:

QC = quality control

Required QC for a batch of up to 20 samples includes an MB, LCS/LCSD pair, and an MS/MSD pair. An MB, LCS/LCSD pair, and MS/MSD pair were analyzed per batch. In addition, a laboratory duplicate was reported.

The following items were reviewed and met QAPP criteria: hold time, MB, LCS/LCSD %Rs and RPDs, and MS/MSD %Rs.

MS/MSDs analyzed are listed below. Recoveries and RPDs are noted when they were outside QAPP Table 12-8 control limits:

Spiked Sample	Lab ID	%R Control Limits: 80-120%	RPD Control Limit: <20%	Comments
11NC28SS008-1	580-28053-17	/		
11NC28SS014-2	580-28053-36	/		
11NC28SS017-1.5	580-28112-4	/		
11NC28SS027-1.25	580-28112-33	/		
11NC28SS031-1.5	580-28112-47	/	22	Lab duplicate in control, no qualifier.
11NC28SS033-0.5	580-28112-51	/		
11NC28SS038-2.75	580-28198-6	/		
11NC28SS044-3	580-28198-24	/		
11NC28SS053-2	580-28198-53	/		
11NC28SS061-0.025	580-28198-77	/		
11NC28SS065-3	580-28198-92	/		
11NC28SS071-2	580-28198-109	/		
11NC28SS075-2.5	580-28198-122	/		

The single RPD outlier was associated with an acceptable laboratory duplicate RPD and no data qualifiers were assigned due to MS/MSD results.

For laboratory work order 580-28198-1, analytical batch 580-94638, the laboratory duplicate had an RPD of 27% which is outside the control limits of <20%. The project sample was used as the laboratory duplicate. This sample and the associated detected project sample in the batch were QN qualified to indicate the matrix may be non-homogenous.

2.10 FIELD QA/QC

Field QC samples included field duplicate pairs and MS/MSD pairs. The same methods used to analyze the investigative samples were used to analyze the field QC samples.

2.10.1 Field Sample Duplicates

Comparison of field sample duplicate results to the associated parent sample results provides precision information for the overall sample collection and analytical process, including possible variability related to sample collection, handling, shipping, storage, preparation, and analysis. The RPD between the primary (parent) sample and field duplicate sample also accounts for the variation of target analyte concentrations within a matrix. This variability is assessed by evaluating the calculated RPDs between the field duplicates and the associated parent samples. If target analytes were detected in one sample greater than the LOQ and not detected in the duplicate, both detected and non-detected results should be flagged to indicate imprecision. Data which is J flagged was detected between the LOQ and the DL. The RPD assessment criteria in the QAPP of ≤50% for soils was used to evaluate the field duplicates.

Field Duplicate Frequencies

Field sample duplicate pairs are required by the QAPP at a rate of 10 percent. Field duplicates were collected at the following frequencies per method:

 Twenty three field duplicate pairs were collected for 223 samples at a frequency of 10% for BTEX, GRO, DRO/RRO, DRO/RRO with silica gel cleanup, PCBs, PAHs, metals and TOC.

Field Duplicate RPDs

Tables 2-10.1 lists the RPDs calculated between the field duplicate and parent sample results for target analytes that were detected above the LOQ in both the parent and field duplicate sample.

Table 2-10.1 Field Sample Duplicate Pair Results

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)			Levei	2 2 2 2		
		Percent Moisture DRO	%	9200 ¹	64 39000	70 57000	9 38
		DRO w/ SG	mg/kg	9200 ¹	34000	47000	38
		RRO	mg/kg mg/kg	9200 ¹	3200	3700	3 <u></u> 14
		RRO w/ SG	mg/kg	9200 ¹	730	770	5
		TOC	mg/kg	9200	180000	240000	29
		GRO	mg/kg	300 ²	18	52	97
		PCB-1254	mg/kg	1 1	0.046 J	ND (0.064)	nc
		PCB-1260	mg/kg	1 1	0.027 J	ND (0.064)	nc
11NC28SS006-1	11NC28SS006-2	PCBs-Total	mg/kg	1 1	0.073 J	ND (0.130)	nc
28-2-1-1	28-2-1-1	Arsenic	mg/kg	11 1	1.5	3.4	78
(580-28053-13)	(580-28053-14)	Barium	mg/kg	1100 ²	77	96	22
		Cadmium	mg/kg	5 ²	0.36 J	0.56 J	nc
		Chromium	mg/kg	25 ²	14	22	44
		Lead	mg/kg	400 ²	19	31	48
		Nickel	mg/kg	86 ²	7.3	14	63
		Selenium	mg/kg	3.4 ²	3.2	3	6
		Silver	mg/kg	11.2 ²	0.25 J	0.27 J	nc
		Vanadium	mg/kg	3400 ²	17	29	52
		Mercury	mg/kg	1.4 ²	0.096	0.11	14
		Percent Moisture	%		48	53	10
		DRO	mg/kg	9200 ¹	11000	30000	93
		DRO w/ SG	mg/kg	9200 ¹	10000	23000	79
		RRO	mg/kg	9200 1	4700	5300	12
		RRO w/ SG	mg/kg	9200 ¹	2400	1800	29
		TOC	mg/kg		110000	110000	0
		GRO	mg/kg	300 ²	90	110	20
		Benzene	mg/kg	2 ¹	0.093	0.12	25
		Ethylbenzene	mg/kg	6.9 ²	0.35	0.5	35
		m,p-Xylene	μg/kg	Total =	1800	2700	40
		o-Xylene	μg/kg	63000	2400	3600	40
		Total Xylenes	mg/kg	63 ²	4.2	6.3	40
		PCB-1254	mg/kg	1 1	0.041 J	0.027 J	nc
		PCB-1260	mg/kg	1 1	0.032 J	0.018 J	nc
11NC28SS011-1	11NC28SS011-2	PCBs-Total	mg/kg	1 1	0.073 J	0.045 J	nc
28-3-2-1	28-3-2-1	Arsenic	mg/kg	11 1	3.4	3.6	6
(580-28053-24)	(580-28053-25)	Barium	mg/kg	1100 ²	87	110	23
		Cadmium	mg/kg	5 ²	0.37	0.35 J	nc
		Chromium	mg/kg	25 ²	81	23	112
		Lead	mg/kg	400 ²	25	27	8
		Nickel	mg/kg	86 2	13	13	0
		Selenium	mg/kg	3.4 ²	0.74 J	1.0 J	nc
		Silver	mg/kg		0.082 J	0.11 J	nc
		Vanadium	mg/kg	3400 ²	23	30	26
		Mercury 1 Mothylpaphthalogo	mg/kg	1.4 ² 6.2 ²	0.083	0.11	28
		1-Methylnaphthalene 2-Methylnaphthalene	mg/kg mg/kg	6.2 6.1 ²	11 20	10 18	10 11
		Fluorene	mg/kg	220 ²	0.75	0.68	10
		Naphthalene	mg/kg	120 ¹	5.7	5.5	4
		Phenanthrene	mg/kg	3000 ²	0.77	0.75	3
		Pyrene	mg/kg	1000 ²	0.77 0.130 J	ND (0.280)	nc
		r yrene	ilig/kg	1000	U. 13U J	ND (0.200)	TIC

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)		%	LCVCI	57	60	5
		Percent Moisture DRO		9200 ¹	3600	4400	20
		DRO w/ SG	mg/kg mg/kg	9200 ¹	2400	3300	32
		RRO	mg/kg	9200 ¹	4000	3000	29
		RRO w/ SG	mg/kg	9200 ¹	800	640	22
		TOC	mg/kg	9200	180000	180000	0
		GRO	mg/kg	300 ²	37	47	24
		Benzene	mg/kg	2 1	0.073	0.096	27
		Ethylbenzene	mg/kg	6.9 ²	0.13	0.16	21
		m,p-Xylene	μg/kg	Total =	610	770	23
		o-Xylene	μg/kg	63000	440	510	15
		Total Xylenes	mg/kg	63 ²	1.05	1.28	20
		PCB-1254	mg/kg	1	ND (0.032)	0.049 J	nc
11NC28SS012-1.5	11NC28SS012-2	Arsenic	mg/kg	11 1	4.5	4.7	4
28-3-3-1.5	28-3-3-1.5	Barium	mg/kg	1100 ²	130	140	7
(580-28053-29)	(580-28053-30)	Cadmium	mg/kg	5 ²	0.33 J	0.32 J	nc
		Chromium	mg/kg	25 ²	20	21	5
		Lead	mg/kg	400 ²	14	13	7
		Nickel	mg/kg	86 ²	13	13	0
		Selenium	mg/kg	3.4 ²	1.5	1.5	0
		Silver	mg/kg	11.2 ²	0.13 J	0.12 J	nc
		Vanadium	mg/kg	3400 ²	35	35	0
		Mercury	mg/kg	1.4 ²	0.093	0.095	2
		1-Methylnaphthalene	mg/kg	6.2 ²	4.4	4.2	5
		2-Methylnaphthalene	mg/kg	6.1 ²	7.9	7.5	5
		Fluorene	mg/kg	220 ²	0.39	0.39	0
		Naphthalene	mg/kg	120 ¹	2.7	2.3	16
		Phenanthrene	mg/kg	3000 ²	0.290 J	0.36	nc
		Percent Moisture	%		23	19	19
		DRO	mg/kg	9200 1	30000	23000	26
		DRO w/ SG	mg/kg	9200 1	30000	20000	40
		RRO	mg/kg	9200 ¹	3000	3200	6
		RRO w/ SG	mg/kg	9200 ¹	2700	2700	0
		TOC	mg/kg		18000	18000	0
		GRO	mg/kg	300 ²	370	320	14
		Benzene	mg/kg	2 1	0.020 J	ND (0.014)	nc
		Ethylbenzene	mg/kg	6.9 ²	0.22	0.13	51
		m,p-Xylene	μg/kg	Total =	820	510	47
		o-Xylene	μg/kg	63000	840	580	37
11NC28SS017-0.5	11NC28SS017-2	Total Xylenes	mg/kg	63 2	1.66	1.09	41
28-4-1-0.5	28-4-1-0.5	PCB-1260	mg/kg	1 1	0.0084 J	0.016 J	nc
(580-28112-1)	(580-28112-2)	PCBs-Total	mg/kg	11	0.0084 J	0.016 J	nc
		Arsenic	mg/kg	11 1	4.7	4.6	2
		Barium	mg/kg	1100 2	65	54	18
		Cadmium	mg/kg	5 ² 25 ²	0.36	0.42	15
		Chromium	mg/kg mg/kg	400 ²	15 36	18	18 27
		Lead Nickel		86 ²	36 11	47 11	0
		Selenium	mg/kg	3.4 2	0.57 J	0.50 J	
		Silver	mg/kg mg/kg	11.2 ²	0.57 J 0.079 J	0.50 J 0.074 J	nc
		Vanadium		3400 ²	22		nc 5
		Mercury	mg/kg mg/kg	1.4 2	0.044	21 0.054	5 20
		1-Methylnaphthalene	mg/kg	6.2 2	8.3	3.5	81
		i -ivietriyiriapritrialerle	ilig/kg	0.2	0.3	ن.ن	U I

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)			6.1 ²	6.6		78
		2-Methylnaphthalene Benzo[a]anthracene	mg/kg	3.6 2	ND (0.320)	2.9 0.120 J	
		Chrysene	mg/kg mg/kg	360 ²	ND (0.320)	0.120 J	nc nc
		Fluoranthene	mg/kg	1400 ²	0.140 J	0.160 J	nc
		Fluorene	mg/kg	220 ²	1.4	0.72	64
		Phenanthrene	mg/kg	3000 ²	1.4	ND (0.310)	nc
		Pyrene	mg/kg	1000 ²	0.270 J	0.370 J	nc
		Percent Moisture	%		59	57	3
		DRO	mg/kg	9200 ¹	55000	50000	10
		DRO w/ SG	mg/kg	9200 ¹	58000	53000	9
		RRO	mg/kg	9200	7400	6200	18
		RRO w/ SG	mg/kg	9200 ¹	3000	2600	14
		TOC	mg/kg		160000	170000	6
		GRO	mg/kg	300 ²	190	170	11
		Benzene	mg/kg	2 1	0.14	0.12	15
		Ethylbenzene	mg/kg	6.9 ²	0.86	1.5	54
		m,p-Xylene	μg/kg	Total =	2200	4800	74
		o-Xylene	μg/kg	63000	160	290	58
		Total Xylenes	mg/kg	63 ²	2.36	5.09	73
		PCB-1260	mg/kg	1 ¹	0.013 J	0.027 J	nc
4411000000004	4411000000000000	PCBs-Total	mg/kg	1 ¹	0.013 J	0.027 J	nc
11NC28SS023-1	11NC28SS023-2.5	Arsenic	mg/kg	11 ¹	6.2	5.6	10
28-4-7-1	28-4-7-1	Barium	mg/kg	1100 ²	140	150	7
(580-28112-19)	(580-28112-20)	Cadmium	mg/kg	5 ²	0.68	0.56	19
		Chromium	mg/kg	25 ²	22	23	4
		Lead	mg/kg	400 ²	16	17	6
		Nickel	mg/kg	86 ²	17	16	6
		Selenium	mg/kg	3.4 ²	1.9	1.8	5
		Silver	mg/kg	11.2 ²	0.12 J	0.14 J	nc
		Vanadium	mg/kg	3400 ²	36	37	3
		Mercury	mg/kg	1.4 2	0.096	0.090	6
		1-Methylnaphthalene	mg/kg	6.2 2	68	56	19
		2-Methylnaphthalene	mg/kg	6.1 ²	87	71	20
		Acenaphthene	mg/kg	180 ²	ND (1.200)	4.4	nc
		Fluorene	mg/kg	220 2	9	6.2	37
		Naphthalene	mg/kg	120 1	32	24	29
		Phenanthrene	mg/kg	3000 ²	3.6	2.4	40
		Percent Moisture	%		50	50	0
		DRO	mg/kg	9200 1	110000	110000	0
		DRO w/ SG	mg/kg	9200 ¹	21000	24000	13
		RRO	mg/kg	9200 1	7300	7600	4
		RRO w/ SG	mg/kg	9200 '	3700	4300	15
		TOC	mg/kg	300 ²	170000	150000	13
11NC28SS026-1.5	11NC28SS026-2	GRO	mg/kg	2 1	180	120	40
28-5-2-1.5	28-5-2-1.5	Benzene Ethylbenzene	mg/kg	6.9 ²	0.12 1.5	0.11 1.3	9 14
(580-28112-30)	(580-28112-31)	m,p-Xylene	mg/kg µg/kg		7300	6300	15
		o-Xylene	μg/kg μg/kg	Total = 63000	5000	4000	22
		Total Xylenes	mg/kg	63 2	12.3	10.3	18
		Arsenic	mg/kg	11 1	4.1	4.4	7
		Barium	mg/kg	1100 2	110	100	10
		Cadmium	mg/kg	5 ²	0.28 J	0.37	nc
		Chromium	mg/kg	25 ²	17	17	0
		Onionium	ilig/kg	۷۵	17	17	U

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID Location (Lab ID)	FD ID Location (Lab ID)	Target Analytes	Units	Screen Level	Parent Result	FD Result	RPD (%)
		Lead	mg/kg	400 ²	15	19	24
		Nickel	mg/kg	86 ²	10	10	0
		Selenium	mg/kg	3.4 2	1.7	1.5	13
		Silver	mg/kg	11.2 ²	0.10 J	0.10 J	nc
		Vanadium	mg/kg	3400 ²	32	30	6
		Mercury	mg/kg	1.4 2	0.11	0.095	15
		1-Methylnaphthalene	mg/kg	6.2 2	30	29	3
		2-Methylnaphthalene	mg/kg	6.1 ²	50	50	0
		Fluorene	mg/kg	220 ²	2.7	2.7	0
		Naphthalene	mg/kg	120 ¹	22	22	0
		Phenanthrene	mg/kg	3000 ²	0.930 J	0.950 J	nc
		Percent Moisture	%		35	56	46
		DRO	mg/kg	9200 1	38000	56000	38
		DRO w/ SG	mg/kg	9200 ¹	35000	57000	48
		RRO	mg/kg	9200 ¹	4100	5300	26
		RRO w/ SG	mg/kg	9200 ¹	1500	2100	33
		TOC	mg/kg		130000	160000	21
		GRO	mg/kg	300 ²	160	300	61
		Benzene	mg/kg	2 ¹	0.38	0.65	52
		Ethylbenzene	mg/kg	6.9 ²	3.8	6.4	51
		m,p-Xylene	μg/kg	Total =	17000	31000	58
		o-Xylene	μg/kg	63000	6500	11000	51
		Total Xylenes	mg/kg	63 ²	23.5	42	56
		Toluene	mg/kg	6.5	0.051 J	0.11	nc
		PCB-1254	mg/kg	1 ¹	0.032 J	ND (0.022)	nc
11NC28SS030-2	11NC28SS030-2.5	PCB-1260	mg/kg	1 1	0.036 J	0.026 J	nc
28-5-6-2	28-5-6-2	PCBs-Total	mg/kg	1 1	0.068 J	0.026 J	nc
(580-28112-43)	(580-28112-44)	Arsenic	mg/kg	11 ¹	3.7	5.3	36
(000 20112 40)	(500 20112 44)	Barium	mg/kg	1100 ²	96	140	37
		Cadmium	mg/kg	5 ²	0.3	0.34 J	nc
		Chromium	mg/kg	25 ²	16	21	27
		Lead	mg/kg	400 2	14	14	0
		Nickel	mg/kg	86 ²	10	14	33
		Selenium	mg/kg	3.4 2	1.1	1.7	43
		Silver	mg/kg	11.2 2	0.075 J	0.10 J	nc
		Vanadium	mg/kg	3400 2	25	34	31
		Mercury	mg/kg	1.4 2	0.072	0.10	33
		1-Methylnaphthalene	mg/kg	6.2 2	78	120	42
		2-Methylnaphthalene	mg/kg	6.1 2	140	220	44
		Acenaphthene	mg/kg	180 2	5.1	8.2	47
		Fluorene	mg/kg	220 2	6.8	11	47
		Naphthalene	mg/kg	120 1	49	77	44
I		Phenanthrene	mg/kg	3000 ²	5.1	7.3	35

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
, ,	, ,	Percent Moisture	%		62	64	3
		DRO	mg/kg	9200 ¹	3100	2600	18
		DRO w/ SG	mg/kg	9200 ¹	2700	2200	20
		RRO	mg/kg	9200 ¹	8300	7900	5
		RRO w/ SG	mg/kg	9200 ¹	2400	2100	13
		TOC	mg/kg		130000	140000	7
		GRO	mg/kg	300 ²	13	27	70
		Ethylbenzene	mg/kg	6.9 ²	0.065 J	0.092 J	nc
		m,p-Xylene	μg/kg	Total =	190	280	38
		o-Xylene	μg/kg	63000	250	320	25
		Total Xylenes	mg/kg	63 ²	0.44	0.6	31
44110000000004	44110000000000	Arsenic	mg/kg	11 ¹	4	3.9	3
11NC28SS036-1	11NC28SS036-2	Barium	mg/kg	1100 ²	130	120	8
28-6-5-1	28-6-5-1	Cadmium	mg/kg	5 ²	0.5	0.49	2
(580-28112-61)	(580-28112-62)	Chromium	mg/kg	25 ²	19	19	0
		Lead	mg/kg	400 ²	15	13	14
		Nickel	mg/kg	86 ²	13	13	0
		Selenium	mg/kg	3.4 ²	1.2 J	1.3	nc
		Silver	mg/kg	11.2 ²	0.099 J	0.094 J	nc
		Vanadium	mg/kg	3400 ²	30	29	3
		Mercury	mg/kg	1.4 ²	0.083	0.087	5
		1-Methylnaphthalene	mg/kg	6.2 ²	2.1	2.2	5
		2-Methylnaphthalene	mg/kg	6.1 ²	3.9	4.2	7
		Fluorene	mg/kg	220 ²	0.170 J	0.200 J	nc
		Naphthalene	mg/kg	120 ¹	1.9	2	5
		Phenanthrene	mg/kg	3000 ²	0.100 J	0.120 J	nc
		Percent Moisture	%		67	80	18
		DRO	mg/kg	9200 ¹	980	1300	28
		DRO w/ SG	mg/kg	9200 ¹	310	440	35
		RRO	mg/kg	9200 ¹	12000	16000	29
		RRO w/ SG	mg/kg	9200 ¹	2000	2400	18
		TOC	mg/kg		230000	270000	16
		Arsenic	mg/kg	11 ¹	4.4	6.4	37
		Barium	mg/kg	1100 ²	130	190	38
44N000000004.5	44N000000000	Cadmium	mg/kg	5 ²	0.50 J	0.71 J	nc
11NC28SS039-1.5	11NC28SS039-2	Chromium	mg/kg	25 ²	24	39	48
28-6-8-1.5 (580-28198-8)	28-6-8-1.5 (580-28198-9)	Lead	mg/kg	400 ²	13	21	47
(300-20130-0)	(300-20130-3)	Nickel	mg/kg	86 ²	11	16	37
		Selenium	mg/kg	3.4 ²	2	3.2	46
		Silver	mg/kg	11.2 ²	0.14 J	0.24 J	nc
		Vanadium	mg/kg	3400 ²	40	61	42
		Mercury	mg/kg	1.4 2	0.090	0.13	36
		1-Methylnaphthalene	mg/kg	6.2 ²	0.08	0.12	40
		2-Methylnaphthalene	mg/kg	6.1 2	0.12	0.19	45
		Fluorene	mg/kg	220 ²	0.023 J	0.033 J	nc
		Naphthalene	mg/kg	120 ¹	0.063	0.099	44

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)	•		Level	11000110		, ,
		Percent Moisture	%	9200 ¹	30	32	6
		DRO DRO w/ SG	mg/kg		390 360	300	26 77
		RRO W/SG	mg/kg	9200 ¹ 9200 ¹	360	160 290	22
		RRO w/ SG	mg/kg	9200 ¹	71	41	54
		TOC	mg/kg		9800	8700	12
		GRO	mg/kg mg/kg	300 ²	35	30	15
				11 1	1.8		18
		Arsenic Barium	mg/kg	1100 2	42	1.5 41	2
4411000000040445	441000000040.0.5		mg/kg	5 ²			
11NC28SS042-1.5	11NC28SS042-2.5	Cadmium	mg/kg	25 ²	0.059 J	0.063 J	nc
28-7-3-1.5	28-7-3-1.5	Chromium	mg/kg	400 ²	10 5.5	9.4 5.3	6 4
(580-28198-16)	(580-28198-17)	Lead Nickel	mg/kg	86 ²			5
		Silver	mg/kg	11.2 2	6.3 0.042 J	6 0.038 J	
		Vanadium	mg/kg	3400 ²			nc
			mg/kg	1.4 2	15	14	7
		Mercury	mg/kg	6.2 2	0.014 J	0.019 J	nc
		1-Methylnaphthalene	mg/kg	6.1 2	0.44 0.77	0.48	9
		2-Methylnaphthalene	mg/kg	180 ²		0.86	11
		Acenaphthene	mg/kg		0.022 J	0.022 J	nc
		Fluorene	mg/kg	220 ²	0.030 J	0.032 J	nc
		Naphthalene	mg/kg	120 ¹	0.32	0.37	14
		Percent Moisture DRO	%	9200 ¹	27	28	4 22
			mg/kg		410	330	
		DRO w/ SG	mg/kg	9200 1	310	190	48
		RRO	mg/kg	9200 1	1300	1300	0
		RRO w/ SG	mg/kg	9200 1	330	330	0
		TOC GRO	mg/kg	300 ²	29000	27000	7
			mg/kg		8.9	32	113
		m,p-Xylene	μg/kg	63000	ND (120)	130 J	nc
		Total Xylenes	mg/kg	63 ²	ND (0.178)	0.130 J	nc
		Arsenic	mg/kg	11 1	2.6	2.7	4
44110000000000	4411000000040.0.5	Barium	mg/kg	1100 ² 5 ²	120	140	15
11NC28SS048-2	11NC28SS048-2.5	Cadmium	mg/kg	25 ²	0.17 J	0.20 J	nc
28-8-3-2	28-8-3-2	Chromium	mg/kg		23	25	8
(580-28198-35)	(580-28198-36)	Lead	mg/kg	400 ²	9.9	10	1
		Nickel	mg/kg	3.4 ²	15	15	0
		Selenium	mg/kg		0.46 J	0.48 J	nc
		Silver	mg/kg	11.2 ²	0.094 J	0.10 J	nc
		Vanadium	mg/kg	1.4 ²	36 0.048	39	8
		Mercury 1-Methylnaphthalene	mg/kg	6.2 ²		0.056	15 22
			mg/kg	6.1 2	1 5	0.8	
		2-Methylnaphthalene	mg/kg	180 ²	1.5	1.3	14 22
		Acenaphthene	mg/kg	220 ²	0.041	0.033	
		Fluorene	mg/kg		0.064	0.053	19
		Naphthalene	mg/kg	120 ¹	0.440	0.360	20
		Phenanthrene	mg/kg	3000 ²	0.020 J	0.016 J	nc

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)		%	LCVCI	60		2
		Percent Moisture DRO	mg/kg	9200 ¹	4200	59 5500	<u>2</u> 27
		DRO w/ SG	mg/kg	9200 ¹	4900	6200	23
		RRO	mg/kg	9200 ¹	2300	2200	4
		RRO w/ SG	mg/kg	9200 ¹	740	610	19
		TOC	mg/kg	9200	140000	130000	7
		GRO	mg/kg	300 ²	95	170	57
		m,p-Xylene	µg/kg	Total =	580 J	760	nc
		o-Xylene	μg/kg	63000	350	470	29
		Total Xylenes	mg/kg	63 ²	0.930 J	1.23	nc
		Arsenic	mg/kg	11 1	3	2.3	26
		Barium	mg/kg	1100 ²	110	100	10
11NC28SS049-2	11NC28SS049-3	Cadmium	mg/kg	5 ²	0.23 J	0.21 J	nc
28-8-4-2	28-8-4-2	Chromium	mg/kg	25 ²	14	13	7
(580-28198-38)	(580-28198-39)	Lead	mg/kg	400 ²	9.3	8.7	7
		Nickel	mg/kg	86 ²	9.5	8.8	8
		Selenium	mg/kg	3.4 2	1.3 J	1.1 J	nc
		Silver	mg/kg	11.2 ²	0.093 J	0.087 J	nc
		Vanadium	mg/kg	3400 ²	31	28	10
		Mercury	mg/kg	1.4 ²	0.067	0.10	40
		1-Methylnaphthalene	mg/kg	6.2 ²	6.9	7.5	8
		2-Methylnaphthalene	mg/kg	6.1 ²	12	13	8
		Acenaphthene	mg/kg	180 ²	ND (0.290)	0.320 J	nc
		Fluorene	mg/kg	220 ²	0.61	0.67	9
		Naphthalene	mg/kg	120 ¹	3.300	3.800	14
		Phenanthrene	mg/kg	3000 ²	0.240 J	0.260 J	nc
		Percent Moisture	%		62	61	2
		DRO	mg/kg	9200 ¹	1400	1000	33
		DRO w/ SG	mg/kg	9200 ¹	1300	990	27
		RRO	mg/kg	9200 1	2800	2300	20
		RRO w/ SG	mg/kg	9200 ¹	600	530	12
		TOC	mg/kg		150000	140000	7
		GRO	mg/kg	300 ²	95	27	111
		o-Xylene	μg/kg	63000	280 J	310 J	nc
		Total Xylenes	mg/kg	63 ²	0.280 J	0.310 J	nc
		Arsenic	mg/kg	11 1	3.2	3.4	6
		Barium	mg/kg	1100 2	120	110	9
		Cadmium	mg/kg	5 ²	0.23 J	0.23 J	nc
11NC28SS053-1.5	11NC28SS053-2.5	Chromium	mg/kg	25 ²	13	12	8
28-9-2-1.5	28-9-2-1.5	Lead	mg/kg	400 2	8.6	8.2	5
(580-28198-51)	(580-28198-52)	Nickel	mg/kg	86 2	7.8	7.4	5
		Selenium	mg/kg	3.4 2	1.6	1.6	0
		Silver	mg/kg	11.2 2	0.074 J	0.072 J	nc
		Vanadium	mg/kg	3400 2	28	25	11
		Mercury	mg/kg	1.4 2	0.067	0.066	2
		1-Methylnaphthalene 2-Methylnaphthalene	mg/kg	6.2 ²	0.850 J	1.9	nc
		, ,	mg/kg	180 ²	1.000 J 0.130 J	2.4 0.110 J	nc
		Acenaphthene Acenaphthylene	mg/kg	180 ²	0.130 J 0.072 J	0.110 J 0.016 J	nc
		Anthracene	mg/kg	3000 ²	ND (0.650)	0.016 J 0.092 J	nc
		Fluorene	mg/kg	220 ²	0.210 J	0.092 J 0.200 J	nc
		Naphthalene	mg/kg mg/kg	120 ¹	0.550 J	1.5	nc nc

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
		Percent Moisture	%		51	51	0
		DRO	mg/kg	9200 ¹	7200	4500	46
		DRO w/ SG	mg/kg	9200 ¹	7900	4600	53
		RRO	mg/kg	9200 ¹	2500	2100	17
		RRO w/ SG	mg/kg	9200 ¹	1400	1000	33
		TOC	mg/kg		41000	43000	5
		GRO	mg/kg	300 ²	12	6.4	61
		Arsenic	mg/kg	11 1	5.3	5	6
		Barium	mg/kg	1100 ²	83	74	11
11NC28SS058-1	11NC28SS058-2	Cadmium	mg/kg	5 ²	0.25 J	0.23 J	nc
28-10-2-1	28-10-2-1	Chromium	mg/kg	25 ²	16	14	13
(580-28198-67)	(580-28198-68)	Lead	mg/kg	400 2	15	13	14
		Nickel	mg/kg	86 ²	11	10	10
		Selenium	mg/kg	3.4 2	1.3	1.1 J	nc
		Silver	mg/kg	11.2 2	0.077 J	0.070 J	nc
		Vanadium	mg/kg	3400 ²	28	26	7
		Mercury	mg/kg	1.4 2	0.052	0.043	19
		1-Methylnaphthalene	mg/kg	6.2 2	0.170 J	0.110 J	nc
		2-Methylnaphthalene	mg/kg	6.1 ²	0.160 J	0.110 J	nc
		Fluorene	mg/kg	220 ²	0.049 J	ND (0.250)	nc
		Naphthalene	mg/kg	120 ¹	0.050 J	0.045 J	nc
		Percent Moisture	%		31	30	3
		DRO	mg/kg	9200 ¹	32000	23000	33
		DRO w/ SG	mg/kg	9200 1	35000	26000	30
		RRO	mg/kg	9200 1	2500	1800	33
		RRO w/ SG	mg/kg	9200 1	1400	1100	24
		TOC	mg/kg	,	29000	27000	7
		GRO	mg/kg	300 2	320	410	25
		Ethylbenzene	mg/kg	6.9 2	0.085 J	0.120 J	nc
		Arsenic	mg/kg	11 1	3.9	3.5	11
		Barium	mg/kg	1100 2	61	51	18
11NC28SS060-1	11NC28SS060-2	Cadmium	mg/kg	5 ²	0.13 J	0.11 J	nc
28-11-1-1	28-11-1-1	Chromium	mg/kg	25 ²	14	12	15
580-28198-74	580-28198-75	Lead	mg/kg	400 2	8.3	7.4	11
		Nickel	mg/kg	86 ²	7.7	6.3	20
		Selenium	mg/kg	3.4 2	0.60 J	0.60 J	nc
		Silver	mg/kg	11.2 2	0.044 J	0.034 J	nc
		Vanadium	mg/kg	3400 2	23	20	14
		Mercury	mg/kg	1.4 2	0.033	0.023	36
		1-Methylnaphthalene	mg/kg	6.2 2	5.8	4.9	17
		2-Methylnaphthalene	mg/kg	6.1 ²	6.3	5.4	15
		Fluorene	mg/kg	220 2	1.000 J	1.000 J	nc
		Naphthalene	mg/kg	120 ¹	2.8	2.7	4
		Phenanthrene	mg/kg	3000 ²	0.520 J	0.510 J	nc

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)		%	LCVCI	49	45	9
		Percent Moisture DRO	mg/kg	9200 ¹	2500	4800	63
		DRO w/ SG	mg/kg	9200 ¹	2400	4900	68
		RRO	mg/kg	9200 ¹	3900	3800	3
		RRO w/ SG	mg/kg	9200 ¹	1200	1300	8
		TOC	mg/kg	3200	93000	130000	33
		GRO	mg/kg	300 ²	43	76	<u>55</u>
		Ethylbenzene	mg/kg	6.9 ²	0.140 J	0.120 J	nc
		m,p-Xylene	µg/kg	Total =	350 J	380 J	nc
		o-Xylene	μg/kg	63000	280	330	16
		Total Xylenes	mg/kg	63 ²	0.630 J	0.710 J	nc
		Arsenic	mg/kg	11 1	4.6	4.3	7
11NC28SS064-2.25	11NC28SS064-2.5	Barium	mg/kg	1100 ²	130	140	7
28-11-5-2.25	28-11-5-2.25	Cadmium	mg/kg	5 ²	0.21 J	0.22 J	nc
(580-28198-88)	(580-28198-89)	Chromium	mg/kg	25 ²	20	22	10
,	,	Lead	mg/kg	400 ²	10	10	0
		Nickel	mg/kg	86 ²	14	15	7
		Selenium	mg/kg	3.4 ²	1.1 J	1.1 J	nc
		Silver	mg/kg	11.2 ²	0.080 J	0.080 J	nc
		Vanadium	mg/kg	3400 ²	35	38	8
		Mercury	mg/kg	1.4 ²	0.068	0.071	4
		1-Methylnaphthalene	mg/kg	6.2 ²	3.9	5.1	27
		2-Methylnaphthalene	mg/kg	6.1 ²	6.4	9	34
		Acenaphthene	mg/kg	180 ²	0.190 J	0.220 J	nc
		Fluorene	mg/kg	220 ²	0.230 J	0.280 J	nc
		Naphthalene	mg/kg	120 '	1.2	1.9	45
		Phenanthrene	mg/kg	3000 ²	0.074 J	ND (0.170)	nc
		Percent Moisture	%		41	35	16
		DRO	mg/kg	9200 1	42000	24000	55
		DRO w/ SG	mg/kg	9200 1	46000	24000	63
		RRO	mg/kg	9200 1	7100	4900	37
		RRO w/ SG	mg/kg	9200 ¹	5900	3300	57
		TOC	mg/kg		58000	53000	9
		GRO	mg/kg	300 ²	720	1100	42
		Ethylbenzene	mg/kg	6.9 ²	0.130 J	0.150 J	nc
		m,p-Xylene	µg/kg	Total =	770	810	5 7
		o-Xylene	μg/kg	63000 63 ²	1000	930	
		Total Xylenes Toluene	mg/kg	6.5 ²	1.77 0.280 J	1.74 0.300 J	2
11NC28SS066-1.25	11NC28SS066-2	PCB-1254	mg/kg	1 1	0.280 3	0.300 3	nc 27
28-DIS-01-1.25	28-DIS-01-1.25	PCB-1254 PCB-1260	mg/kg mg/kg	1 1	0.79	0.32	27
(580-28198-94)	(580-28198-95)	PCB-1200 PCBs-Total	mg/kg	1 1	1.21	0.32	27
		Arsenic	mg/kg	11 1	8	5.9	30
		Barium	mg/kg	1100 2	270	92	98
		Cadmium	mg/kg	5 ²	1.8	0.78	79
		Chromium	mg/kg	25 ²	24	19	23
		Lead	mg/kg	400 ²	280	130	73
		Nickel	mg/kg	86 ²	13	11	17
		Selenium	mg/kg	3.4 2	0.84 J	0.90 J	nc
		Silver	mg/kg	11.2 2	0.23 J	0.11 J	nc
		Vanadium	mg/kg	3400 ²	24	24	0
		Mercury	mg/kg	1.4 2	0.84	0.57	38
		1-Methylnaphthalene	mg/kg	6.2 2	15	11	31

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID			_			
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
		2-Methylnaphthalene	mg/kg	6.1 ²	15	7.1	71
		Benzo[a]pyrene	mg/kg	2.1 ²	0.210 J	0.220 J	nc
		Fluoranthene	mg/kg	1400 ²	ND (0.580)	0.220 J	nc
		Fluorene	mg/kg	220 ²	1.6	1.6	0
		Naphthalene	mg/kg	120 ¹	6.5	3.6	57
		Phenanthrene	mg/kg	3000 ²	0.930 J	0.940 J	nc
		Pyrene	mg/kg	1000 ²	ND (0.580)	0.260 J	nc
		Percent Moisture	%		57	42	30
		DRO	mg/kg	9200 ¹	23000	17000	30
		DRO w/ SG	mg/kg	9200 ¹	28000	20000	33
		RRO	mg/kg	9200 ¹	3400	2400	34
		RRO w/ SG	mg/kg	9200 ¹	1200	750	46
		TOC	mg/kg		49000	53000	8
		GRO	mg/kg	300 ²	3500	770	128
		Ethylbenzene	mg/kg	6.9 ²	3.9	2.6	40
		m,p-Xylene	μg/kg	Total =	20000	12000	50
		o-Xylene	μg/kg	63000	11000	6800	47
		Total Xylenes	mg/kg	63 ²	31	18.8	49
		PCB-1260	mg/kg	1 ¹	0.032 J	0.016 J	nc
44N00000000	44100000000000	PCBs-Total	mg/kg	1 ¹	0.032 J	0.016 J	nc
11NC28SS069-2 28-DIS-04-2	11NC28SS069-2.5 28-DIS-04-2	Arsenic	mg/kg	11 ¹	3.8	2.7	34
(580-28198-101)	(580-28198-102)	Barium	mg/kg	1100 ²	100	68	38
(380-28198-101)	(380-28198-102)	Cadmium	mg/kg	5 ²	0.29 J	0.25 J	nc
		Chromium	mg/kg	25 ²	13	9.2	34
		Lead	mg/kg	400 ²	15	12	22
		Nickel	mg/kg	86 ²	7.2	5.7	23
		Selenium	mg/kg	3.4 ²	1.4	0.92 J	nc
		Silver	mg/kg	11.2 ²	0.13 J	0.086 J	nc
		Vanadium	mg/kg	3400 ²	27	18	40
		Mercury	mg/kg	1.4 ²	0.060	0.033	58
		1-Methylnaphthalene	mg/kg	6.2 ²	57	46	21
		2-Methylnaphthalene	mg/kg	6.1 ²	95	80	17
		Fluorene	mg/kg	220 ²	3.9	2.8	33
		Naphthalene	mg/kg	120 ¹	32	29	10
		Phenanthrene	mg/kg	3000 ²	2.600 J	1.900 J	nc

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID	FD ID						
Location	Location			Screen	Parent		RPD
(Lab ID)	(Lab ID)	Target Analytes	Units	Level	Result	FD Result	(%)
(Lab ID)	(Lab ID)						
		Percent Moisture	%		58	61	5
		DRO	mg/kg	9200 ¹	26000	28000	1
		DRO w/ SG RRO	mg/kg	9200 1	31000	35000	12
		RRO w/ SG	mg/kg	9200 ¹ 9200 ¹	14000 13000	13000 12000	7
		TOC	mg/kg	9200			8 95
		GRO	mg/kg mg/kg	300 ²	95000 200	34000 220	10
					200		10
		Ethylbenzene	mg/kg	6.9 ²	1	ND (0.160)	nc
		m,p-Xylene	μg/kg	63000	870	940	8
		Total Xylenes	mg/kg	63 ²	0.87	0.94	8
		PCB-1254	mg/kg	1 1	0.32	0.23	33
		PCB-1260	mg/kg	1 1	0.31	0.24	25
11NC28SS071-1	11NC28SS071-2.5	PCBs-Total	mg/kg	1 1	0.63	0.47	29
28-DIS-06-1	28-DIS-06-1	Arsenic	mg/kg	11 1	6.5	7.4	13
(580-28198-106)	(580-28198-107)	Barium	mg/kg	1100 2	120	140	15
		Cadmium	mg/kg	5 ² 25 ²	1	1.2	18
		Chromium	mg/kg		26	29	11
		Lead	mg/kg	400 ² 86 ²	71	81	13
		Nickel	mg/kg	3.4 2	18	21	15
		Selenium Silver	mg/kg	11.2 ²	1.5 0.18 J	1.5 J 0.21 J	nc
		Vanadium	mg/kg mg/kg	3400 2	37	39	nc 5
		Mercury	mg/kg	1.4 2	0.26	0.30	14
		1-Methylnaphthalene	mg/kg	6.2 2	30	51	52
		2-Methylnaphthalene	mg/kg	6.1 2	51	85	50
		Fluorene	mg/kg	220 ²	3.1	4.9	45
		Naphthalene	mg/kg	120 ¹	10	17	52
		Phenanthrene	mg/kg	3000 ²	1.600 J	2.6	nc
		Percent Moisture	%		43	41	5
		DRO	mg/kg	9200 ¹	36000	27000	29
		DRO w/ SG	mg/kg	9200 ¹	44000	34000	26
		RRO	mg/kg	9200 ¹	4000	3500	13
		RRO w/ SG	mg/kg	9200 ¹	1300	930	33
		TOC	mg/kg		150000	110000	31
		GRO	mg/kg	300 ²	770	990	25
		Ethylbenzene	mg/kg	6.9 ²	4.5	6.6	38
		m,p-Xylene	μg/kg	Total =	19000	27000	35
		o-Xylene	μg/kg	63000	11000	16000	37
		Total Xylenes	mg/kg	63 ²	30	43	36
11NC28SS072-2.25	11NC28SS072-2.5	Arsenic	mg/kg	11 1	3.5	3.3	6
28-DIS-07-2.25	28-DIS-07-2.25	Barium	mg/kg	1100 2	130	130	0
(580-28198-112)	(580-28198-113)	Cadmium	mg/kg	5 ²	0.26 J	0.27 J	nc
		Chromium	mg/kg	25 ²	15	16	6
		Lead	mg/kg	400 2	8.8	9.8	11
		Nickel	mg/kg	86 ²	9.1	9.8	7
		Selenium	mg/kg	3.4 2	1.2	1.2	0
		Silver	mg/kg	11.2 2	0.075 J	0.073 J	nc
		Vanadium	mg/kg	3400 ²	30	31	3
		Mercury	mg/kg	1.4 2	0.067	0.063	6
		1-Methylnaphthalene	mg/kg	6.2 2	120	2.4	192
		2-Methylnaphthalene	mg/kg	6.1 2	210	2.9	195
		Acenaphthene	mg/kg	180 ²	5.8	ND (0.120)	nc
		Fluoranthene	mg/kg	1400 2	ND (2.100)	0.083 J	nc

Table 2-10.1 Field Sample Duplicate Pair Results (continued)

Parent Field ID Location (Lab ID)	FD ID Location (Lab ID)	Target Analytes	Units	Screen Level	Parent Result	FD Result	RPD (%)
, ,	, ,	Fluorene	mg/kg	220 ²	5.9	0.4	175
		Naphthalene	mg/kg	120 ¹	86	1.3	194
		Phenanthrene	mg/kg	3000 ²	2.800 J	0.28	nc
		Pyrene	mg/kg	1000 ²	ND (2.100)	0.083 J	nc
		Percent Moisture	%		28	22	24
		DRO	mg/kg	9200 ¹	74	110	39
11NC28SS078-2.5	11NC28SS078-3	DRO w/ SG	mg/kg	9200 ¹	50	63	23
28-BG-1-2.5 (580-28198-131)	28-BG-1-2.5 (580-28198-132)	RRO	mg/kg	9200 ¹	670	1200	57
(000 20100 101)	(000 20100 102)	RRO w/ SG	mg/kg	9200 1	420	640	42
		TOC	mg/kg		24000	34000	34
		Percent Moisture	%		78	79	1
44NC00000004 0 05	44NC0000004 0 5	DRO	mg/kg	9200 ¹	1100	1000	10
	11NC28SS081-2.25 28-BG-4-2.25 (580-28198-141) 11NC28SS081-2.5 28-BG-4-2.25 (580-28198-142)	DRO w/ SG	mg/kg	9200 ¹	680	540	23
(580-28198-141)		RRO	mg/kg	9200 ¹	11000	11000	0
(300-20190-141)	(300-20190-142)	RRO w/ SG	mg/kg	9200 ¹	2800	2700	4
		TOC	mg/kg	-	350000	360000	3
Sediment:							
		Percent Moisture	%		68	66	3
		DRO	mg/kg	3500 ¹	4000	8100	68
		DRO w/ SG	mg/kg	3500 ¹	4500	8800	65
		RRO by AK103	mg/kg	3500 ¹	620	970	44
		RRO w/ SG	mg/kg	3500 ¹	370	520	34
		TOC	mg/kg		48000	41000	16
11NC28SS064-0.25		GRO	mg/kg		7.8	14	57
28-11-5-0.25	11NC28SS064-0.5	Arsenic	mg/kg	93 ¹	72	67	7
(580-28198-85)	28-11-5-0.25	Barium	mg/kg		120	120	0
	(580-28198-86)	Cadmium	mg/kg	596 ³	0.12	0.076	45
		Chromium	mg/kg	270 ¹	7.6	9.2	19
		Lead	mg/kg	530 1 ¹	6.1	6	2
		Nickel	mg/kg	18000 ³	3.7	4.4	17
		Selenium	mg/kg		ND (1.2)	0.63 J	nc
		Silver	mg/kg		ND (0.061)	0.034 J	nc
		Vanadium	mg/kg		16	18	12
		Mercury	mg/kg	174 ³	ND (0.025)	0.025 J	nc

Notes:

BOLD = Exceeds acceptance criteria

% = percent nc = not calculated, one or more concentration below the LOQ μ g/kg = micrograms per kilogram ND () = Not detected. Value in parenthesis is the limit of detection.

DRO diesel range organics PCBs = polychlorinated biphenyl = FD field duplicate RPD = relative percent difference GRO gasoline range organics RRO residual range organics identifier TOC ID total organic carbon = LOQ limit of quantitation w/SG with silica gel cleanup

mg/kg = milligrams per kilogram

¹Site-specific cleanup levels established in 2009 Decision Document

²Cleanup levels from 18AAC75 Section 341, Tables B1 and B2, Migration to Groundwater

³NOAA SQuiRT sediment cleanup values only shown for analytes that have no established site-specific cleanup criteria

J = The analyte was positively identified at a concentration below the LOQ and is considered estimated

Project screening criteria were included on Table 2-10.1 to aid in the evaluation of duplicate results.

The field duplicate RPDs were reviewed to determine whether imprecision was observed for any single analyte. The analyte with the highest number of calculated RPDs that exceeded the QAPP criteria of <50% was GRO which had RPDs >50% for 10 of the 23 field duplicate samples. Of these, there was a single instance where one duplicate pair showed a result both above and below the screening criteria of 300 mg/kg (11NC28SS030-2). The next analyte with the second highest number of RPD exceedances was for DRO with silica gel cleanup in 6 of the 23 field duplicate samples. Of these both the duplicate and parent result were both either above or below the screening criteria of 9,200 mg/kg (or 3,500 mg/kg for sediment). Since, in all cases, more than half of the duplicate pairs had acceptable RPDs, QN qualification for RPDs >50% was limited to the duplicate pair.

For samples with one or both results detected at a concentration below the LOQ (J flagged), RPDs were not calculated (nc). For these results, either the screening levels are well above the uncertainty, or no screening level was established, and results were not qualified.

2.10.2 Matrix Spikes and Matrix Spike Duplicates

The MS/MSD samples are spiked in the laboratory with known concentrations of target analytes. The MS/MSD sample results provide information on possible matrix effects encountered during sample extraction, digestion, and analysis. Analytical results from MS/MSD samples are used to evaluate the sample matrix, method efficiency and applicability, accuracy, and precision. Accuracy was assessed by calculating the percent recovery of the target analytes added to the primary sample; precision was assessed by calculating the RPD for the MS/MSD sample pairs.

The MS/MSD sample pairs are required by the QAPP at a rate of one MS/MSD pair per 20 samples per matrix. The MS/MSD sample pairs were collected at the following frequencies:

- BTEX, GRO, and PAHs: 14 soil MS/MSDs were analyzed at a frequency of 6%.
- DRO/RRO, DRO/RRO with silica gel cleanup, and mercury: 13 soil MS/MSDs were analyzed at a frequency of 6%.

- 6020 metals (arsenic, barium, cadmium, chromium, lead, nickel selenium, silver and vanadium) and PCBs: 12 soil MS/MSDs at a frequency of 5%.
- TOC: 17 soil MS/MSDs at a frequency of 8%.

The MS and MSD recoveries and RPDs are discussed in Sections 2.2 through 2.14.

2.10.3 Trip Blanks

Methanol trip blanks are included in shipments containing soil samples which are submitted to the laboratory for BTEX and GRO analyses. Trip blanks are collected to assess the potential for BTEX or GRO cross-contamination introduced by sample bottles, from sample handling during field operations, shipping, or storage at the laboratory.

Trip blanks were included with shipments containing samples for BTEX and GRO analysis and were free of target analytes with the exceptions noted below.

Laboratory Work Order 580-28053

• GRO was detected at concentrations greater than the detection limit but less than the LOQ in the two trip blanks shipped with samples on 8/15/11 at concentrations of 1.1 ug/kg and 1.9 ug/kg. It was unclear as to which samples were associated with each trip blank and all associated detected results <10 times the highest trip blank concentration were B qualified to indicate the potential for high bias. No qualifiers were assigned to GRO results ≥10 the highest trip blank concentration.

Laboratory Work Order 580-28112

• All trip blank results for BTEX and GRO not detected.

Laboratory Work Order 580-28198

- Toluene was detected in the second run for Trip Blank 6 (50 ug/kg) and in the second run for Trip Blank 7 (56 ug/kg). Toluene was not detected in the initial runs indicating the contamination was introduced at the laboratory rather than shipping procedures. Qualification was limited to results reported in the same analytical batches as the trip blanks (280-84815 and 280-84731). Method blanks for those batches had toluene detections at similar concentrations and associated results were B qualified due to the method blank contamination. Further qualification was not required.
- GRO was detected at concentrations greater than the detection limit but less than the LOQ in the seven trip blanks shipped with samples on 8/22/11 at concentrations ranging from 1.7 ug/kg to 2.9 ug/kg. It was unclear as to which samples were associated with each trip blank and all associated detected results <10 times the

highest trip blank concentration were B qualified to indicate the potential for high bias. No qualifiers were assigned to GRO results $\geq \! 10$ the highest trip blank concentration.

2.11 SAMPLE QUALIFIERS

Sample qualifiers are presented in Table 2-11.

Table 2-11 Sample Qualifiers

Field Sample	Laboratory	Compounds	D	Fla.:	Dies
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS037-2	580-28198-1	Toluene	Hold time	QL	Low
11NC28SS037-3	580-28198-3		exceedance and low		
11NC28SS038-2.75	580-28198-6		surrogate recovery		
11NC28SS039-1.5	580-28198-8				
11NC28SS040-1.5	580-28198-12				
11NC28SS042-1	580-28198-15				
11NC28SS042-2	580-28198-18				
11NC28SS042-2.5	580-28198-17				
11NC28SS044-3	580-28198-24				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS046-0.75	580-28198-27				
11NC28SS047-3	580-28198-32				
11NC28SS048-1	580-28198-33				
11NC28SS053-1	580-28198-50				
11NC28SS037-2.5	580-28198-2	Toluene	Hold time	QL	Low
			exceedance		
11NC28SS044-2	580-28198-22	Ethylbenzene	Hold time	QL	Low
11NC28SS047-2	580-28198-30	m&p-Xylene	exceedance and low		
11NC28SS047-2.5	580-28198-31	o-Xylene	surrogate recovery		
		Toluene	" " " " " " " " " " " " " " " " " " "		
11NC28SS043-1.5	580-28198-19	Ethylbenzene	Hold time	QL	Low
		m&p-Xylene	exceedance and low		
		o-Xylene	surrogate recovery		
11NC28SS044-2.5	580-28198-23	o-Xylene	Hold time	QL	Low
	333 23 .33 23	Toluene	exceedance and low	~-	
			surrogate recovery		
11NC28SS053-1.5	580-28198-51	m&p-Xylene	Hold time	QL	Low
11110200000 110	000 20100 01	o-Xylene	exceedance and low	Ψ_	20
		0 71310110	surrogate recovery		
11NC28SS053-2.5	580-28198-52	o-Xylene	Hold time	QL	Low
11NC28SS053-2	580-28198-53	O Ayleric	exceedance and low	QL	LOW
11102000003	300 20130 33		surrogate recovery		
11NC28SS070-0.75	580-28198-103	Ethylbenzene	Hold time	QL	Low
111102033070-0.73	300-20130-103	Luiyiberizerle	exceedance and low	QL	LOW
11NC28SS070-1.25	580-28198-104	m 9 n Vulana	surrogate recovery Hold time	QL	Low
111102055070-1.25	300-20190-104	m&p-Xylene		QL	Low
		o-Xylene	exceedance and low		
		Toluene	surrogate recovery		

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS043-2	580-28198-20	Ethylbenzene	Hold time	QN	Unknown
11NC28SS043-2.5	580-28198-21	m&p-Xylene	exceedance and		
		o-Xylene	high surrogate		
			recovery		
11NC28SS070-1.75	580-28198-105	Ethylbenzene	Hold time	QN	Unknown
		m&p-Xylene	exceedance and		
		Toluene	high surrogate		
44N00000047.05	500 00440 4	DTEV	recovery	Datasta	I II ada
11NC28SS017-0.5	580-28112-1	BTEX	High surrogate	Detects:	High
11NC28SS017-2 11NC28SS019-0.5	580-28112-2 580-28112-8		recovery	QH	
11NC28SS025-1	580-28112-26				
11NC28SS026-1	580-28112-29				
11NC28SS030-1	580-28112-41				
11NC28SS060-0.5	580-28198-73	Ethylbenzene	High surrogate	Detects:	High
11NC28SS060-0.3	580-28198-74	Luiyiberizerie	recovery	QH	riigii
11NC28SS060-2	580-28198-75		iccovery	Q I I	
11NC28SS060-1.5	580-28198-76	o-Xylene	High surrogate	Detects:	High
11NC28SS070-1.75	580-28198-105	0 74,10110	recovery	QH	19
11NC28SS074-1.5	580-28198-118		1000.0.9		
11NC28SS061-1.5	580-28198-78	Ethylbenzene	High surrogate	Detects:	High
11NC28SS063-1.75	580-28198-84	m&p-Xylene	recovery	QH	lg.
		o-Xylene			
11NC28SS069-1.5	580-28198-100	Benzene	High surrogate	Detects:	High
		Ethylbenzene	recovery	QH	
		m&p-Xylene			
		o-Xylene			
11NC28SS033-1	580-28112-52	Benzene	Low surrogate	QL	Low
11NC28SS033-1.5	580-28112-53	Ethylbenzene	recovery		
11NC28SS034-0.5	580-28112-54	m&p-Xylene			
11NC28SS034-1	580-28112-55	o-Xylene			
11NC28SS034-1.5 11NC28SS035-0.5	580-28112-56 580-28112-57	Toluene			
11NC28SS035-0.5	580-28112-60				
11NC2833036-0.5 11NC081711TripBlank1	580-28112-64				
11NC081711TripBlank2	580-28112-65				
11NC081711TripBlank3	580-28112-66				
11NC28SS038-1.75	580-28198-4				
11NC28SS039-2	580-28198-9				
11NC28SS040-0.5	580-28198-10				
11NC28SS040-1	580-28198-11				
11NC28SS041-1	580-28198-13				
11NC28SS041-1.33	580-28198-14				
11NC28SS042-1.5	580-28198-16				
11NC28SS046-1.25	580-28198-28				
11NC28SS046-1.75	580-28198-29				
11NC28SS052-1.5	580-28198-49				
11NC28SS054-0.5	580-28198-54				
11NC28SS056-1.25	580-28198-61				
11NC28SS056-1.75	580-28198-62				
11NC28SS057-1.5	580-28198-63				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS058-2	580-28198-68				
11NC28SS059-1.5	580-28198-72				
11NC28SS066-2	580-28198-95				
11NC28SS067-1	580-28198-97				
11NC28SS069-2.5	580-28198-102				
11NC28SS071-1	580-28198-106				
11NC28SS071-1.5	580-28198-108				
11NC28SS072-1.25	580-28198-110				
11NC28SS072-1.75	580-28198-111				
11NC28SS073-2.5	580-28198-116				
11NC28SS074-1	580-28198-117				
11NC28SS074-2	580-28198-119				
11NC28SS076-1.5	580-28198-123				
11NC28SS076-2	580-28198-124				
11NC28SS076-2.5	580-28198-125				
11NC28SS077-1.5	580-28198-126				
11NC28SS077-2	580-28198-127				
11NC28SS077-2.5	580-28198-128				
11NC082211TripBlank2	580-28198-144				
11NC082211TripBlank6	580-28198-148				
11NC28SS053-2.5	580-28198-52	Benzene	Low surrogate	QL	Low
11NC28SS053-2	580-28198-53	Ethylbenzene	recovery		
11NC28SS070-0.75	580-28198-103	m&p-Xylene			
		Toluene			
11NC28SS044-2	580-28198-22	Benzene	Low surrogate	QL	Low
11NC28SS047-2	580-28198-30		recovery		
11NC28SS070-1.25	580-28198-104	Benzene	Low surrogate	QL	Low
		Ethylbenzene	recovery		
11NC28SS044-2.5	580-28198-23	Benzene	Low surrogate	QL	Low
		Ethylbenzene	recovery		
		m&p-Xylene			
11NC28SS053-1.5	580-28198-51	Benzene	Low surrogate	QL	Low
		Ethylbenzene	recovery		
		Toluene			
11NC28SS037-2	580-28198-1	Benzene	Low surrogate	QL	Low
11NC28SS037-3	580-28198-3	Ethylbenzene	recovery		
11NC28SS039-1.5	580-28198-8	m&p-Xylene			
11NC28SS040-1.5	580-28198-12	o-Xylene			
11NC28SS042-2	580-28198-18				
11NC28SS042-2.5	580-28198-17				
11NC28SS044-3	580-28198-24				
11NC28SS045-1	580-28198-25				
11NC28SS046-0.75	580-28198-27				
11NC28SS048-1	580-28198-33				
11NC28SS053-1	580-28198-50				
11NC28SS075-2	580-28198-121	Benzene	Exceedingly low	R	Low
		Ethylbenzene	surrogate recovery		
		m&p-Xylene			
		o-Xylene			
		Toluene			

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS024-1	580-28112-23	m&p-Xylene	Method blank	B	High
11NC28SS024-1	580-28112-32	παρ-λуιепе	contamination	Ь	riigii
11NC28SS027-0.75	580-28112-33		contamination		
11NC28SS027-1.75	580-28112-34				
11NC28SS031-0.5	580-28112-45				
11NC28SS031-1	580-28112-46				
11NC28SS036-0.5	580-28112-60				
11NC28SS036-1	580-28112-61				
11NC28SS017-1.5	580-28112-4	Benzene	Low MS/MSD	ML	Low
11110200017 110	000 20112 1	Ethylbenzene	recoveries		
		Toluene			
11NC28SS031-1.5	580-28112-47	Benzene	Low MSD recovery	ML	Low
	000 20112 11	Ethylbenzene	and high MS/MSD		
		m&p-Xylene	RPD		
		o-Xylene			
		Toluene			
11NC28SS038-2.75	580-28198-6	Toluene	High MS recovery	MH	High
	000 20.00 0		and high MS/MSD		19
			RPD		
11NC28SS044-3	580-28198-24	m&p-Xylene	Low MS recovery	ML	Low
		o-Xylene	, ,		
11NC28SS037-2.5	580-28198-2	Toluene	Method blank	В	High
11NC28SS037-3	580-28198-3		contamination		
11NC28SS038-2.75	580-28198-6				
11NC28SS039-1.5	580-28198-8				
11NC28SS040-1.5	580-28198-12				
11NC28SS042-1	580-28198-15				
11NC28SS042-2.5	580-28198-17				
11NC28SS042-2	580-28198-18				
11NC28SS044-2	580-28198-22				
11NC28SS044-2.5	580-28198-23				
11NC28SS044-3	580-28198-24				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS046-0.75	580-28198-27				
11NC28SS047-2	580-28198-30				
11NC28SS047-2.5	580-28198-31				
11NC28SS047-3	580-28198-32				
11NC28SS048-1	580-28198-33				
11NC28SS037-2	580-28198-1	m&p-Xylene	Low LCS recovery	QL	Low
11NC28SS037-2.5	580-28198-2	(Analysis batch 280-	,		
11NC28SS037-3	580-28198-3	84140)			
11NC28SS038-1.75	580-28198-4	-,			
11NC28SS038-2.25	580-28198-5				
11NC28SS038-2.75	580-28198-6				
11NC28SS039-1	580-28198-7				
11NC28SS039-1.5	580-28198-8				
11NC28SS039-2	580-28198-9				
11NC28SS040-0.5	580-28198-10				
11NC28SS040-1	580-28198-11				
11NC28SS040-1.5	580-28198-12				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS041-1	580-28198-13	Allected	Neason	ı iag	Dias
11NC28SS041-1.33	580-28198-14				
11NC28SS042-1	580-28198-15				
11NC28SS042-1.5	580-28198-16				
11NC28SS042-1.5	580-28198-18	Ethylbenzene	Low LCS recovery	QL	Low
11NC28SS042-2.5	580-28198-17	m&p-Xylene	Low Los recovery	QL	LOW
11NC28SS044-3	580-28198-24	o-Xylene			
11NC28SS045-1	580-28198-25	(Analysis batch 280-			
11NC28SS045-1.5	580-28198-26	84082)			
11NC28SS046-0.75	580-28198-27	04002)			
11NC28SS046-1.25	580-28198-28				
11NC28SS046-1.75	580-28198-29				
11NC28SS047-3	580-28198-32				
11NC28SS048-1	580-28198-33				
11NC28SS044-2.5	580-28198-23	Ethylbenzene	Low LCS recovery	QL	Low
111402000044 2.0	000 20100 20	m&p-Xylene	Low Loo recovery	QL	2011
		(Analysis batch 280-			
		84082)			
11NC081511TripBlank1	580-28053-41	GRO	High surrogate	QH	High
11NC081711TripBlank1	580-28112-64		recovery	Q. i	1 11911
11NC081711TripBlank2	580-28112-65		10001019		
11NC081711TripBlank3	580-28112-66				
11NC28SS002-2	580-28053-3	GRO	Low MS and or MSD	ML	Low
11NC28SS008-1	580-28053-17		recovery	IVIL	2011
11NC28SS017-1.5	580-28112-4		10001019		
11NC28SS053-2	580-28198-53				
11NC28SS061-0.25	580-28198-77				
11NC28SS065-3	580-28198-92				
11NC28SS001-0.5	580-28053-1	GRO	Trip blank	В	High
11NC28SS003-2.5	580-28053-6		contamination		
11NC28SS003-3.5	580-28053-8				
11NC28SS006-1	580-28053-13				
11NC28SS011-0.5	580-28053-23				
11NC28SS012-0.5	580-28053-27				
11NC28SS013-0.5	580-28053-31				
11NC28SS013-1	580-28053-32				
11NC28SS014-1	580-28053-34				
11NC28SS014-1.5	580-28053-35				
11NC28SS014-2	580-28053-36				
11NC28SS016-0.5	580-28053-39				
11NC28SS037-2.5	580-28198-2				
11NC28SS037-3	580-28198-3				
11NC28SS038-1.75	580-28198-4				
11NC28SS038-2.25	580-28198-5				
11NC28SS038-2.75	580-28198-6				
11NC28SS040-0.5	580-28198-10				
11NC28SS041-1	580-28198-13				
11NC28SS042-2	580-28198-18				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS046-0.75	580-28198-27				

Table 2-11 Sample Qualifiers (continued)

	T		1		
Field Sample	Laboratory	Compounds	_		
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS046-1.25	580-28198-28				
11NC28SS046-1.75	580-28198-29				
11NC28SS048-1	580-28198-33				
11NC28SS048-1.5	580-28198-34				
11NC28SS048-2	580-28198-35				
11NC28SS050-0.75	580-28198-41				
11NC28SS050-1.25	580-28198-42				
11NC28SS050-1.75	580-28198-43				
11NC28SS051-0.5	580-28198-44				
11NC28SS051-1	580-28198-45				
11NC28SS051-1.5	580-28198-46				
11NC28SS052-0.5	580-28198-47				
11NC28SS052-1	580-28198-48				
11NC28SS052-1.5	580-28198-49				
11NC28SS053-2.5	580-28198-52				
11NC28SS054-1	580-28198-55				
11NC28SS054-1.5	580-28198-56				
11NC28SS055-1.5	580-28198-57				
11NC28SS055-2	580-28198-58				
11NC28SS055-2.5	580-28198-59				
11NC28SS056-0.75	580-28198-60				
11NC28SS056-1.25	580-28198-61				
11NC28SS057-1.5	580-28198-63				
11NC28SS058-1	580-28198-67				
11NC28SS058-1.5	580-28198-69				
11NC28SS058-2	580-28198-68				
11NC28SS059-0.5	580-28198-70				
11NC28SS059-1	580-28198-71				
11NC28SS059-1.5	580-28198-72				
11NC28SS062-0.25	580-28198-80				
11NC28SS063-0.25	580-28198-82				
11NC28SS064-0.25	580-28198-85				
11NC28SS064-0.5	580-28198-86				
11NC28SS065-3	580-28198-92				
11NC28SS067-0.5	580-28198-96				
11NC28SS070-0.75	580-28198-103				
11NC28SS070-1.25	580-28198-104				
11NC28SS070-1.75	580-28198-105				
11NC28SS071-2	580-28198-109				
11NC28SS073-1.5	580-28198-114				
11NC28SS074-1	580-28198-117				
11NC28SS074-1.5	580-28198-118				
11NC28SS074-2	580-28198-119				
11NC28SS075-1.5	580-28198-120				
11NC28SS075-2	580-28198-121				
11NC28SS075-2.5	580-28198-122				
11NC28SS076-1.5	580-28198-123				
11NC28SS076-2	580-28198-124				
11NC28SS076-2.5	580-28198-125				
11NC28SS077-1.5	580-28198-126				
11NC28SS077-2	580-28198-127				

Table 2-11 Sample Qualifiers (continued)

Field Sample Identification	Laboratory Sample Number	Compounds Affected	Reason	Flag	Bias
11NC28SS077-2.5	580-28198-128			J	
11NC28SS014-2	580-28053-36	DRO	Low MS or MSD	ML	Low
11NC28SS014-2 11NC28SS027-1.25	580-28112-33	DRO	recovery	IVIL	LOW
11NC28SS053-2	580-28198-53		recovery		
11NC28SS065-3	580-28198-92	DRO	High MS or MSD	МН	High
111102000000	000 20 100 02	5.10	recovery		g
11NC28SS071-2	580-28198-109	DRO	High and low	MN	Unknown
			MS/MSD recoveries		
11NC28SS078-2.5	580-28198-131	DRO with silica gel	Method blank	В	High
11NC28SS078-3	580-28198-132		contamination		
11NC28SS051-1.5	580-28198-46				
11NC28SS014-2	580-28053-36	DRO with silica gel	Low MS or MSD	ML	Low
11NC28SS027-1.25	580-28112-33		recovery		
11NC28SS071-2	580-28198-109	550 111 111 1			
11NC28SS065-3	580-28198-92	DRO with silica gel	High MS or MSD	MH	High
11NC2000052.2	E00 20100 E2	DDO	recovery	N // I	Low
11NC28SS053-2 11NC28SS071-2	580-28198-53 580-28198-109	RRO	Low MS or MSD recovery	ML	Low
11NC28SS080-3.75	580-28198-138		recovery		
11NC28SS008-1	580-28053-17	RRO	High MS or MSD	MH	High
11NC28SS027-1.25	580-28112-33	10	recovery		9
11NC28SS065-3	580-28198-92				
11NC28SS075-2.5	580-28198-122				
11NC28SS051-1.5	580-28198-46	RRO with silica gel	Method blank	В	High
		_	contamination		_
11NC28SS006-0.5	580-28053-12	RRO	High surrogate	Detects:	High
11NC28SS017-1	580-28112-3		recovery	QH	
11NC28SS020-1	580-28112-12				
11NC28SS022-2	580-28112-18				
11NC28SS023-2.5	580-28112-20				
11NC28SS023-1.5	580-28112-21				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS023-2	580-28112-22	Affected	Neason	i iag	Dias
11NC28SS023-2 11NC28SS024-1.5	580-28112-24				
11NC28SS024-1.5	580-28112-30				
11NC28SS026-2 11NC28SS030-2	580-28112-31				
11NC28SS031-0.5	580-28112-43 580-28112-45				
11NC28SS031-0.5	580-28112-46				
11NC28SS031-1.5	580-28112-47				
11NC28SS031-1.5	580-28112-48				
11NC28SS032-0.5	580-28112-49				
11NC28SS034-1.5	580-28112-56				
11NC28SS035-1.5	580-28112-59				
11NC28SS036-1	580-28112-61				
11NC28SS036-1	580-28112-62				
11NC28SS036-2 11NC28SS036-1.5	580-28112-63				
11NC28SS030-1.5	580-28198-1				
11NC28SS037-2	580-28198-2				
11NC28SS038-1.75	580-28198-4				
11NC28SS038-1.75	580-28198-5				
11NC28SS038-2.75	580-28198-6				
11NC28SS039-2	580-28198-9				
11NC28SS040-1	580-28198-11				
11NC28SS040-1.5	580-28198-12				
11NC28SS041-1.33	580-28198-14				
11NC28SS055-1.5	580-28198-57				
11NC28SS075-2.5	580-28198-122				
11NC28SS081-1.25	580-28198-139				
11NC28SS081-1.75	580-28198-140				
11NC28SS081-2.25	580-28198-141				
11NC28SS081-2.5	580-28198-142				
11NC28SS035-0.5	580-28112-57	RRO	Low surrogate	QL	Low
11NC28SS067-1.5	580-28198-98		recovery	~-	
11NC28SS040-0.5	580-28198-10	RRO with silica gel	High surrogate	Detects:	High
		l	recovery	QH	9
11NC28SS067-1	580-28198-97	RRO with silica gel	Low surrogate	QL	Low
11110200001	000 20100 07	Tare war smed ger	recovery	Q.L	2011
11NC28SS053-2	580-28198-53	RRO with silica gel	High MS or MSD	MH	High
11NC28SS061-0.25	580-28198-77	Tire with omoti go.	recovery	1411.1	ı ligil
11NC28SS065-3	580-28198-92		10001019		
11NC28SS075-2.5	580-28198-122				
11NC28SS003-3.5	580-28053-8	Naphthalene	High surrogate	Detects:	High
11NC28SS005-0.5	580-28053-10	1-Methylnaphthalene	recovery	QH	g
11NC28SS010-1	580-28053-21	2-Methylnaphthalene	10001019	ζ	
11NC28SS013-1	580-28053-32				
11NC28SS014-1.5	580-28053-35				
11NC28SS033-1	580-28112-52				
11NC28SS033-0.5	580-28112-51				
11NC28SS037-2.5	580-28198-2				
11NC28SS037-3	580-28198-3				
11NC28SS039-1	580-28198-7				
11NC28SS039-1.5	580-28198-8				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS039-2	580-28198-9	Arrected	ICCCOOL	i iag	Dias
11NC28SS040-0.5	580-28198-10				
11NC28SS040-1	580-28198-11				
11NC28SS031-1	580-28112-46	1-Methylnaphthalene	Method blank	В	High
11NC28SS031-1.5	580-28112-47	1-ivieti iyinapi tirlalerle	contamination	Ь	riigii
11NC28SS032-0.5	580-28112-48		Contamination		
11NC28SS032-0.5	580-28112-49				
11NC28SS032-1.5	580-28112-50				
11NC28SS033-0.5	580-28112-51				
11NC28SS033-1.5	580-28112-53				
11NC28SS034-1	580-28112-55				
11NC28SS034-1.5	580-28112-56				
11NC28SS045-1	580-28198-25				
11NC28SS031-1	580-28112-46	2-Methylnaphthalene	Method blank	В	High
11NC28SS031-1.5	580-28112-47	2 Metrymaphthalene	contamination		riigii
11NC28SS032-0.5	580-28112-48		Contamilation		
11NC28SS032-1	580-28112-49				
11NC28SS032-1.5	580-28112-50				
11NC28SS033-0.5	580-28112-51				
11NC28SS033-0.5	580-28112-53				
11NC28SS034-0.5	580-28112-54				
11NC28SS034-0.5	580-28112-55				
11NC28SS034-1.5	580-28112-56				
11NC28SS045-1	580-28198-25				
11NC28SS031-1	580-28112-46	Naphthalene	Method blank	В	High
11NC28SS031-1.5	580-28112-47	Napritrialerie	contamination	ь	riigii
11NC28SS032-0.5	580-28112-48		Contamination		
11NC28SS032-0.5	580-28112-52				
11NC28SS033-1.5	580-28112-53				
11NC28SS034-0.5	580-28112-54				
11NC28SS034-0.5	580-28112-56				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS046-1.75	580-28198-29				
11NC28SS002-2	580-28053-3	All PCBs	Low surrogate	QL	Low
11NC28SS002-3	580-28053-5	All 1 OBS	recovery	QL.	LOW
11NC28SS002-3	580-28053-6		recovery		
11NC28SS003-2.5	580-28053-7				
11NC28SS004-2.5	580-28053-9				
11NC28SS004-2.5	580-28053-3				
11NC28SS007-1.5	580-28053-15				
11NC28SS010-0.5	580-28053-20				
11NC28SS017-0.5	580-28112-1				
11NC28SS017-0.5	580-28112-2				
11NC28SS017-1	580-28112-3				
11NC28SS018-0.5	580-28112-5				
11NC28SS018-1	580-28112-6				
11NC28SS018-1.5	580-28112-7				
11NC28SS019-0.5	580-28112-8				
11NC28SS019-0.5	580-28112-9				
11NC28SS019-1.5	580-28112-10				
111102000013-1.0	JUU-20112-10				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS020-0.5	580-28112-11	Affected	Neason	i iag	Dias
11NC28SS020-0.5	580-28112-11				
11NC28SS020-1	580-28112-13				
11NC28SS021-1 11NC28SS021-1.5	580-28112-14 580-28112-15				
11NC28SS021-1.5	580-28112-16				
11NC28SS022-1	580-28112-19				
11NC28SS023-1	580-28112-19				
11NC28SS023-2.5	580-28112-21				
11NC28SS023-1.5	580-28112-22				
11NC28SS025-2	580-28112-25				
11NC28SS025-0.5	580-28112-26				
11NC28SS025-1.5	580-28112-27				
11NC28SS026-0.5	580-28112-28				
11NC28SS026-0.5	580-28112-29				ļ
11NC28SS026-1.5	580-28112-30				
11NC28SS026-1.5	580-28112-31				
11NC28SS020-2	580-28112-32				
11NC28SS027-0.75	580-28112-33				
11NC28SS027-1.25	580-28112-34				
11NC28SS027-1.75	580-28112-35				
11NC28SS028-0.5	580-28112-36				
11NC28SS028-1.5	580-28112-37				
11NC28SS029-0.5	580-28112-38				
11NC28SS029-1	580-28112-39				
11NC28SS029-1.5	580-28112-40				
11NC28SS031-0.5	580-28112-45				
11NC28SS031-1	580-28112-46				
11NC28SS031-1.5	580-28112-47				
11NC28SS035-0.5	580-28112-57				
11NC28SS035-1	580-28112-58				
11NC28SS040-0.5	580-28198-10				
11NC28SS040-1	580-28198-11				
11NC28SS041-1	580-28198-13				
11NC28SS041-1.33	580-28198-14				
11NC28SS043-2.5	580-28198-21				
11NC28SS044-2	580-28198-22				
11NC28SS044-2.5	580-28198-23				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS054-0.5	580-28198-54				
11NC28SS060-1	580-28198-74				
11NC28SS062-0.75	580-28198-81				
11NC28SS065-3	580-28198-92				
11NC28SS066-2	580-28198-95				
11NC28SS067-0.5	580-28198-96				
11NC28SS068-1	580-28198-99				
11NC28SS069-1.5	580-28198-100				
11NC28SS069-2	580-28198-101				
11NC28SS069-2.5	580-28198-102				
11NC28SS070-0.75	580-28198-103				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory Sample Number	Compounds Affected	Reason	Flag	Bias
		Affected	Reason	Flag	DIdS
11NC28SS070-1.25	580-28198-104				
11NC28SS071-1	580-28198-106				
11NC28SS071-1.5	580-28198-108				
11NC28SS071-2	580-28198-109				
11NC28SS071-2.5	580-28198-107				
11NC28SS072-1.25	580-28198-110				
11NC28SS072-1.75	580-28198-111				
11NC28SS072-2.5	580-28198-113				
11NC28SS073-1.5	580-28198-114				
11NC28SS073-2	580-28198-115				
11NC28SS077-2	580-28198-127				
11NC28SS077-2.5	580-28198-128				
11NC28SS019-1.5	580-28112-10	All PCBs	Low MS/MSD	ML	Low
11NC28SS027-1.25	580-28112-33		recoveries		
11NC28SS044-3	580-28198-24				
11NC28SS030-1.5	580-28112-42	PCB 1260	High MS recovery	Detects: MH	High
11NC28SS071-2	580-28198-109	PCB 1260	Low MS recovery	ML	Low
11NC28SS061-1.5	580-28198-78	All PCBs	Peak overlaps due	Detects:	Unknown
11NC28SS066-0.75	580-28198-93		to the presence of	MN	
11NC28SS066-1.25	580-28198-94		more than one		
			Aroclor		
11NC28SS030-1	580-28112-41	PCB 1254 and 1260	PCB pattern did not	Detects:	Unknown
11NC28SS030-1.5	580-28112-42		match calibration	MN	
11NC28SS030-2	580-28112-43		standards due to		
11NC28SS030-2.5	580-28112-44		weathering		
11NC28SS036-0.5	580-28112-60				
11NC28SS042-1	580-28198-15				
11NC28SS067-1	580-28198-97				
11NC28SS067-1.5	580-28198-98				
11NC28SS073-2.5	580-28198-116				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS069-1.5	580-28198-100	Total Organic	Hold time	QL	Low
11NC28SS069-2	580-28198-101	Carbon	exceedance	QL	LOW
11NC28SS069-2.5	580-28198-102	Carbon	CAGCCGGIIGC		
11NC28SS070-0.75	580-28198-103				
11NC28SS070-1.25	580-28198-104				
11NC28SS070-1.75	580-28198-105				
11NC28SS071-1	580-28198-106				
11NC28SS071-2.5	580-28198-107				
11NC28SS071-1.5	580-28198-108				
11NC28SS071-2	580-28198-109				
11NC28SS072-1.25	580-28198-110				
11NC28SS072-2.25	580-28198-112				
11NC28SS078-1.5	580-28198-129				
11NC28SS078-2	580-28198-130				
11NC28SS078-2.5	580-28198-131				
11NC28SS078-3	580-28198-132				
11NC28SS079-2.5	580-28198-133				
11NC28SS079-3	580-28198-134				
11NC28SS079-3.5	580-28198-135				
11NC28SS080-2.75	580-28198-136				
11NC28SS080-3.25	580-28198-137				
11NC28SS080-3.75	580-28198-138				
11NC28SS081-1.25	580-28198-139				
11NC28SS081-1.75	580-28198-140				
11NC28SS081-2.25	580-28198-141				
11NC28SS081-2.5	580-28198-142				
11NC28SS032-1	580-28112-49	Total Organic	High MS/MSD	Detects:	High
		Carbon	recovery	MH	
11NC28SS001-0.5	580-28053-1	Chromium	Low MS recovery	ML	Low
11NC28SS001-1	580-28053-2				
11NC28SS002-2	580-28053-3				
11NC28SS002-2.5	580-28053-4				
11NC28SS002-3	580-28053-5				
11NC28SS003-2.5	580-28053-6				
11NC28SS003-3	580-28053-7				
11NC28SS003-3.5	580-28053-8				
11NC28SS004-2.5	580-28053-9				
11NC28SS005-0.5	580-28053-10				
11NC28SS005-1	580-28053-11				
11NC28SS006-0.5	580-28053-12				
11NC28SS006-1	580-28053-13				
11NC28SS006-2	580-28053-14				
11NC28SS007-1.5	580-28053-15				
11NC28SS008-0.5	580-28053-16				
11NC28SS008-1	580-28053-17				
11NC28SS009-0.5	580-28053-18				
11NC28SS009-1	580-28053-19				
11NC28SS010-0.5	580-28053-20		<u> </u>		
11NC28SS022-2	580-28112-18	Chromium	Low MS recovery	ML	Low
11NC28SS023-1	580-28112-19				
11NC28SS023-1.5	580-28112-21				

Table 2-11 Sample Qualifiers (continued)

Field Comple	Laboratory	Compounds			
Field Sample Identification	Laboratory Sample Number	Compounds Affected	Reason	Floa	Bias
		Affected	Reason	Flag	Dias
11NC28SS023-2 11NC28SS023-2.5	580-28112-22				
11NC28SS023-2.5	580-28112-20				
	580-28112-23				
11NC28SS024-1.5	580-28112-24				
11NC28SS025-0.5 11NC28SS025-1	580-28112-25 580-28112-26				
11NC28SS025-1.5	580-28112-27				
11NC28SS025-1.5	580-28112-28				
11NC28SS026-1	580-28112-29				
11NC28SS026-1.5	580-28112-30				
11NC28SS026-1.5	580-28112-31				
11NC28SS027-0.75	580-28112-32				
11NC28SS027-0.75	580-28112-33				
11NC28SS027-1.75	580-28112-34				
11NC28SS073-2	580-28198-115	Chromium	High MSD recovery	Detects:	High
11NC28SS073-2.5	580-28198-116	Chiomium	I light wide recovery	MH	1 "9"
11NC28SS074-1	580-28198-117			IVIII	
11NC28SS074-1.5	580-28198-118				
11NC28SS074-2	580-28198-119				
11NC28SS075-1.5	580-28198-120				
11NC28SS075-2	580-28198-121				
11NC28SS075-2.5	580-28198-122				
11NC28SS076-1.5	580-28198-123				
11NC28SS076-2	580-28198-124				
11NC28SS076-2.5	580-28198-125				
11NC28SS077-1.5	580-28198-126				
11NC28SS077-2	580-28198-127				
11NC28SS077-2.5	580-28198-128				
11NC28SS022-2	580-28112-18	Lead	High MSD recovery	Detects:	High
11NC28SS023-1	580-28112-19			MH	
11NC28SS023-1.5	580-28112-21				
11NC28SS023-2	580-28112-22				
11NC28SS023-2.5	580-28112-20				
11NC28SS024-1	580-28112-23				
11NC28SS024-1.5	580-28112-24				
11NC28SS025-0.5	580-28112-25				
11NC28SS025-1	580-28112-26				
11NC28SS025-1.5	580-28112-27				
11NC28SS026-0.5	580-28112-28				
11NC28SS026-1	580-28112-29				
11NC28SS026-1.5	580-28112-30				
11NC28SS026-2	580-28112-31				
11NC28SS027-0.75	580-28112-32				
11NC28SS027-1.25	580-28112-33				
11NC28SS027-1.75	580-28112-34		10.1.1.1		
11NC28SS022-2	580-28112-18	Nickel	High laboratory	Detects:	Unknown
11NC28SS023-1	580-28112-19		duplicate RPD	QN	
11NC28SS023-1.5	580-28112-21				
11NC28SS023-2	580-28112-22				
11NC28SS023-2.5	580-28112-20				
11NC28SS024-1	580-28112-23				l

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS024-1.5	580-28112-24	Affected	Neason	i iag	Dias
11NC28SS024-1.5 11NC28SS025-0.5	580-28112-25				
11NC28SS025-0.5	580-28112-26				
11NC28SS025-1.5	580-28112-27				
11NC28SS025-1.5	580-28112-28				
11NC28SS026-0.5	580-28112-29				
11NC28SS026-1.5	580-28112-30				
11NC28SS026-2	580-28112-31				
11NC28SS027-0.75	580-28112-32				
11NC28SS027-0.75	580-28112-33				
11NC28SS027-1.75	580-28112-34				
11NC28SS028-0.5	580-28112-35	Cadmium	High laboratory	Detects:	Unknown
11NC28SS028-1	580-28112-36	Cadmidin	duplicate RPD	QN	OTIKITOWIT
11NC28SS028-1.5	580-28112-37		duplicate N D	QIV	
11NC28SS029-0.5	580-28112-38				
11NC28SS029-1	580-28112-39				
11NC28SS029-1.5	580-28112-40				
11NC28SS030-1	580-28112-41				
11NC28SS030-1.5	580-28112-42				
11NC28SS030-2	580-28112-43				
11NC28SS030-2.5	580-28112-44				
11NC28SS031-0.5	580-28112-45				
11NC28SS031-1	580-28112-46				
11NC28SS031-1.5	580-28112-47				
11NC28SS032-0.5	580-28112-48				
11NC28SS032-1	580-28112-49				
11NC28SS032-1.5	580-28112-50				
11NC28SS033-0.5	580-28112-51				
11NC28SS063-0.25	580-28198-82	Cadmium and Lead	High laboratory	Detects:	Unknown
11NC28SS063-0.75	580-28198-83		duplicate RPD	QN	
11NC28SS063-1.75	580-28198-84		,		
11NC28SS064-0.25	580-28198-85				
11NC28SS064-0.5	580-28198-86				
11NC28SS064-1.75	580-28198-87				
11NC28SS064-2.25	580-28198-88				
11NC28SS064-2.5	580-28198-89				
11NC28SS065-2	580-28198-90				
11NC28SS065-2.5	580-28198-91				
11NC28SS065-3	580-28198-92				
11NC28SS066-0.75	580-28198-93				
11NC28SS066-1.25	580-28198-94				
11NC28SS066-2	580-28198-95				
11NC28SS067-0.5	580-28198-96				
11NC28SS067-1	580-28198-97				
11NC28SS067-1.5	580-28198-98				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory	Compounds			
Identification	Sample Number	Affected	Reason	Flag	Bias
11NC28SS037-2	580-28198-1	Silver	Method blank	B	High
11NC28SS037-2 11NC28SS037-2.5	580-28198-2	Silvei	contamination	Ь	nign
11NC28SS037-2.5	580-28198-3		Contamination		
11NC28SS037-3					
11NC28SS038-1.75 11NC28SS038-2.25	580-28198-4 580-28198-5				
11NC28SS038-2.75					
	580-28198-6 580-28198-7				
11NC28SS039-1 11NC28SS039-1.5					
11NC28SS039-1.5	580-28198-8				
11NC28SS040-0.5	580-28198-9				
11NC28SS040-0.5	580-28198-10 580-28198-11				
11NC28SS040-1.5					
	580-28198-12				
11NC28SS041-1	580-28198-13				
11NC28SS041-1.33 11NC28SS042-1	580-28198-14				
	580-28198-15				
11NC28SS042-1.5	580-28198-16				
11NC28SS042-2.5	580-28198-17	NA	LP-L I-L	Detecto	11.1
11NC28SS042-2	580-28198-18	Mercury	High laboratory	Detects:	Unknown
11NC28SS043-1.5	580-28198-19		duplicate RPD	QN	
11NC28SS043-2	580-28198-20				
11NC28SS043-2.5	580-28198-21				
11NC28SS044-2	580-28198-22				
11NC28SS044-2.5	580-28198-23				
11NC28SS044-3	580-28198-24				
11NC28SS045-1	580-28198-25				
11NC28SS045-1.5	580-28198-26				
11NC28SS046-0.75	580-28198-27				
11NC28SS046-1.25	580-28198-28				
11NC28SS046-1.75	580-28198-29				
11NC28SS047-3	580-28198-32				
11NC28SS048-1	580-28198-33				
11NC28SS048-2	580-28198-35				
11NC28SS048-2.5	580-28198-36				
11NC28SS017-0.5	580-28112-1	1-Methylnaphthalene	High field duplicate	QN	Unknown
11NC28SS017-2	580-28112-2		RPD		
11NC28SS071-1	580-28198-106				
11NC28SS071-2.5	580-28198-107				
11NC28SS072-2.25	580-28198-112				
11NC28SS072-2.5	580-28198-113				
11NC28SS017-0.5	580-28112-1	2-Methylnaphthalene	High field duplicate	QN	Unknown
11NC28SS017-2	580-28112-2		RPD		
11NC28SS066-1.25	580-28198-94				
11NC28SS066-2	580-28198-95				
11NC28SS072-2.25	580-28198-112				
11NC28SS072-2.5	580-28198-113				
11NC28SS017-0.5	580-28112-1	Fluorene	High field duplicate	QN	Unknown
11NC28SS017-2	580-28112-2		RPD		
11NC28SS072-2.25	580-28198-112				
11NC28SS072-2.5	580-28198-113				
11NC28SS066-1.25	580-28198-94	Naphthalene	High field duplicate	QN	Unknown
11NC28SS066-2	580-28198-95		RPD		

Table 2-11 Sample Qualifiers (continued)

Field Comple	Loborotomy	Compoundo			
Field Sample Identification	Laboratory Sample Number	Compounds Affected	Reason	Flag	Bias
		Affected	Reason	гіау	DidS
11NC28SS071-1 11NC28SS071-2.5	580-28198-106				
	580-28198-107				
11NC28SS072-2.25	580-28198-112				
11NC28SS072-2.5	580-28198-113	Danasa	Link field double ate	ON	I I al . a a a
11NC28SS030-2	580-28112-43	Benzene	High field duplicate	QN	Unknown
11NC28SS030-2.5	580-28112-44		RPD	0.1	+
11NC28SS017-0.5	580-28112-1	Ethylbenzene	High field duplicate	QN	Unknown
11NC28SS017-2	580-28112-2		RPD		
11NC28SS023-1	580-28112-19				
11NC28SS023-2.5	580-28112-20				
11NC28SS030-2	580-28112-43				
11NC28SS030-2.5	580-28112-44				
11NC28SS023-1	580-28112-19	m,p-Xylene	High field duplicate	QN	Unknown
11NC28SS023-2.5	580-28112-20	o-Xylene	RPD		
11NC28SS030-2	580-28112-43	Total Xylenes			
11NC28SS030-2.5	580-28112-44				
11NC28SS006-1	580-28053-13	GRO	High field duplicate	QN	Unknown
11NC28SS006-2	580-28053-14		RPD		
11NC28SS030-2	580-28112-43				
11NC28SS030-2.5	580-28112-44				
11NC28SS036-1	580-28112-61				
11NC28SS036-2	580-28112-62				
11NC28SS048-2	580-28198-35				
11NC28SS048-2.5	580-28198-36				
11NC28SS049-2	580-28198-38				
11NC28SS049-3	580-28198-39				
11NC28SS053-1.5	580-28198-51				
11NC28SS053-2.5	580-28198-52				
11NC28SS058-1	580-28198-67				
11NC28SS058-2	580-28198-68				
11NC28SS064-0.25	580-28198-85				
11NC28SS064-0.5	580-28198-86				
11NC28SS064-2.25	580-28198-88				
11NC28SS064-2.5	580-28198-89				
11NC28SS069-2	580-28198-101				
11NC28SS069-2.5	580-28198-102				
11NC28SS011-1	580-28053-24	DRO	High field duplicate	QN	Unknown
11NC28SS011-2	580-28053-25		RPD		
11NC28SS064-0.25	580-28198-85				
11NC28SS064-0.5	580-28198-86				
11NC28SS064-2.25	580-28198-88				
11NC28SS064-2.5	580-28198-89				
11NC28SS066-1.25	580-28198-94				
11NC28SS066-2	580-28198-95				
11NC28SS011-1	580-28053-24	DRO with silica gel	High field duplicate	QN	Unknown
11NC28SS011-2	580-28053-25		RPD		
11NC28SS042-1.5	580-28198-16				
11NC28SS042-2.5	580-28198-17				
11NC28SS058-1	580-28198-67				
11NC28SS058-2	580-28198-68				
11NC28SS064-0.25	580-28198-85				

Table 2-11 Sample Qualifiers (continued)

Field Sample	Laboratory Sample Number	Compounds Affected	Reason	Flag	Bias
11NC28SS064-0.5	580-28198-86	Allected	Neason	i iag	Dias
11NC28SS064-0.3	580-28198-88				
11NC28SS064-2.5	580-28198-89				
11NC28SS066-1.25	580-28198-94				
11NC28SS066-2 DUP	580-28198-95				
11NC28SS078-2.5	580-28198-131	RRO	High field duplicate	QN	Unknown
11NC28SS078-3	580-28198-132		RPD		
11NC28SS042-1.5	580-28198-16	RRO with silica gel	High field duplicate	QN	Unknown
11NC28SS042-2.5	580-28198-17		RPD '		
11NC28SS066-1.25	580-28198-94				
11NC28SS066-2	580-28198-95				
11NC28SS006-1	580-28053-13	Arsenic	High field duplicate	QN	Unknown
11NC28SS006-2	580-28053-14	Nickel	RPD		
		Vanadium			
11NC28SS066-1.25	580-28198-94	Barium	High field duplicate	QN	Unknown
11NC28SS066-2	580-28198-95	Cadmium	RPD		
		Lead			
11NC28SS011-1	580-28053-24	Chromium	High field duplicate	QN	Unknown
11NC28SS011-2	580-28053-25		RPD		
11NC28SS069-2	580-28198-101	Mercury	High field duplicate	QN	Unknown
11NC28SS069-2.5	580-28198-102		RPD		
11NC28SS071-1	580-28198-106	TOC	High field duplicate	QN	Unknown
11NC28SS071-2.5	580-28198-107		RPD		

3.0 SUMMARY

This Report evaluates the analytical data generated during the NE Cape Remedial Actions conducted at Site 28 during August 2011. This assessment evaluated whether program objectives and data quality goals were met. The assessment reviewed sample receipt conditions, extraction and analytical procedures, sampling procedures, and correspondence to method criteria and project DQOs. The following conclusions were drawn based on this assessment of the analytical data:

 Sample receipt conditions were acceptable based on temperatures upon receipt and CoC correspondence to submitted sample set with the exception that sample labels did not match the CoC for two samples. Samples were logged in per the CoC. Affected samples were:

CoC ID	Label ID
11NC28SS062-0.75	11NC28SS062-0. 25
11NC28SS063-0.25	11NC28SS0 62 -0.25

- Holding times were met with the following exceptions:
 - Several samples for BTEX analysis were re-analyzed outside the 14 day hold time due to either surrogate or LCS recovery outliers. Results were reviewed and, to be conservative, the highest detected value was selected for reporting. One or more analytes in the BTEX list were qualified as estimated with a low bias (QL) due to hold time exceedance in 29 samples. In most cases, these results were also associated with surrogate outliers. For three samples a high surrogate recovery was observed and these results were qualified as estimated with an unknown bias (QN) for the others a low surrogate recovery was observed and the QL qualifier is correct.
 - TOC results for 26 samples were qualified as estimated with a low bias (QL) due to a hold time exceedance.
- Extraction and analytical procedures were acceptable based on MBs, LCS/LCSDs, MS/MSDs, and surrogates except as noted below:
 - Detected results were qualified as estimated with a high bias (QH) due to high surrogate recoveries as follows:
 - One or more analyte on the BTEX list for 15 samples,
 - GRO results for four trip blank samples,
 - Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene results for 14 samples,
 - RRO results for 36 samples,
 - RRO results with silica gel cleanup for 1 sample, and

- Results were qualified as estimated with a low bias (QL) due to low surrogate recoveries as follows:
 - One or more analyte on the BTEX list for 63 samples,
 - RRO results for 2 samples,
 - RRO results with silica gel cleanup for 1 sample, and
 - PCBs for 80 samples.
- BTEX results in one sample were qualified as rejected (R) due to an exceedingly low (<10%) surrogate recovery.
- The following results were B qualified due to associated method blank contamination at a concentration <10x the sample concentration:
 - Toluene results for 18 samples,
 - m&p-xylene results for 12 samples,
 - DRO with silica gel cleanup results for 3 samples,
 - RRO with silica gel cleanup results for 1 sample,
 - 1-methylenaphthalene, 2-methylnaphthalene, and naphthalene results in 10,
 11, and 10 samples, respectively, and
 - Silver for 17 samples.
- One or more analyte on the BTEX list was QL qualified in 27 samples due to a low LCS recovery.
- Samples were qualified due to either high (MH) or low (ML) MS/MSD recoveries to indicate potential bias due to a matrix effect. For organic compounds (BTEX, GRO, DRO/RRO, PAHs and PCBs) qualification was limited to the spiked sample since several MS/MSD pairs were analyzed and no trends were observed. An MN qualifier was used to indicate a matrix effect with an unknown bias when both a high and low MS/MSD recovery were observed or for a high MS/MSD RPD, unassociated with bias. Qualified organic samples were:
 - BTEX results associated with low recoveries were ML qualified for three samples and detected BTEX results associated with high recoveries were MH qualified for one sample,
 - GRO results were ML qualified for six samples,
 - DRO results were ML qualified in three samples, MH qualified in one sample, and, MN qualified in one sample.
 - DRO results with silica gel cleanup were ML qualified for three samples and MH qualified for one sample,
 - RRO results were ML qualified in three samples and MH qualified in one sample,
 - RRO results with silica gel cleanup were MH qualified in four samples,
 - PCB results were ML qualified in four sample and detected PCB results were MH qualified in one sample,
 - TOC results for MH qualified for one sample.
- For metals samples when either a low or high MS/MSD recovery is observed, all associated results are qualified to indicate a potential matrix effect. Qualified samples were:

- Chromium results for 37 were ML qualified,
- Detected chromium results for 15 samples were MH qualified, and
- Detected lead results for 17 samples were MH qualified.
- Laboratory duplicates were outside control criteria for nickel, cadmium, lead and mercury. Associated detected results were qualified as estimated with an unknown bias (QN) as follows:
 - Nickel results for 17 samples,
 - Cadmium results for 34 samples,
 - Lead results for 17 samples, and
 - Mercury results for 16 samples.
- Detected PCB results for three samples were MN qualified due to the presence of more than one PCB which resulted in peak overlap.
- Detected PCB 1254 and 1260 results in nine samples were MN qualified because the PCB pattern did not match calibration standards due to weathering.
- Field quality control results met QAPP criteria with the following exceptions:
 - Imprecision was observed in field duplicate samples for 1-methylnaphthalene, 2-methylnaphthalene, fluorene, naphthalene, benzene, ethylbenzene, m&p-xylene, o-xylene, total xylene, GRO, DRO, DRO with silica gel cleanup, RRO, RRO with silica gel cleanup, arsenic, barium, cadmium, chromium, nickel, lead, mercury, vanadium and TOC in one to nine of the 22 field duplicate pairs. In all cases, the majority of duplicate sample results met the RPD criteria and qualification was limited to the field duplicate pair.
 - GRO results for 84 samples were B qualified due to associated trip blank contamination at a concentration <10x the sample concentration.

Based on this review, the analytical data generated during the NE Cape Remedial Action at Site 28 are complete, correct, consistent, and compliant with method procedures and QC requirements, and are usable as qualified with the exception of BTEX results for one sample.

Contract No.W911KB-06-D-0007 Bristol Project No. 34110008

(Intentionally blank)

APPENDIX E

Response to Comment Forms

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska

U.S. ARMY CORPS OF ENGINEERS

DATE: November 10, 2011 REVIEWER: Carey Cossaboom Action taken on comment by:

PHONE: 753-2689 **Drawing** COMMENTS **BRISTOL RESPONSE** COMMENTOR REPLY Item Sheet No., (A-AGREE) No. Spec. Para. (D-DISAGREE) Pg. 3, 1st Should reword somehow. This sentence has been reworded and moved to a later "Surface water run-off and groundwater below the MOC par., last Α paragraph in response to J. Craner's comments. gravel pad impacts this tundra and wetland area." sen. Check the first Sample ID; 1991 is not mentioned as a Pg. 10 table This sample ID was incorrect and has been changed to Α sampling year on page 9. "94NE28SW/SD110". Pg. 11, 2nd With reference to Figure 6, are samples 58 and 59 in the Site These samples were collected in the Site 28 drainage, not the 28 drainage or in the Suqi River? The figure makes them look par., last Sugi River. Samples were collected near the southern bank of Α in the river. If so, it should be mentioned in the text here. sen. the Suqi River. "....in chromatograms, and biogenics ..." Pg. 12, Sec. 4.2.2. 1st (nit picky) Change was made as suggested. Α sen. Did you actually task someone from the ADEC to review Pg. 12, Sec. Then for clarification, I 4.2.2, 5th your sample results? suggest you add a clause at sen. the front of this sentence, ADEC was not contacted for review of silica gel treated such as: "With confirmation DRO/RRO results. sampling (in the future at this site), a qualified person Pg. 13, last "This suggests that fuel is present at concentrations far in 6. exceedance of NOM (biogenics) in the diesel range and less sen. so in the residual range." Wording is misleading? How Sentence was reworded as suggested. Α about: This suggests that the NOM signature occurs mostly in the residual range on chromatograms. I think it would be better if red were used only on samples Figure 6 D that exceed cleanup levels AFTER silica-gel extraction. It is not clear that ADEC will allow use of silica gel treated That would eliminate the red from 7 samples (Transect 3 -#s results to demonstrate cleanup levels have been met. I think they will. 13,15,16 and Transect 6, #s 32, 36, 38 39). I like the sediment cross-hatching, and think it would be General Figures will be modified with cross-hatching and orange for helpful to show on every colored circle, regardless if it's red **Figures** sediments. Per other comments, separate figures for soil and Α or green. The orange from Table 1 should be in the colored sediment will be provided in final report. circles as well (not just red).

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

Location: St. Lawrence Island, Alaska **DOCUMENT:** Site 28 Technical Memorandum Rev 0 – October 2011

Action taken on comment by:

U.S. ARMY CORPS OF
ENGINEERS

DATE: November 10, 2011 **REVIEWER:** Carey Cossaboom PHONE: 753-2689

THONE:	133-2003

PHONE: 753-2689				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	BRISTOL RESPONSE	COMMENTOR REPLY (A-AGREE) (D-DISAGREE)
9.	Pg. 17, last par.	Should mention that your analyses did not distinguish trivalent from hexavalent chromium and that hexavalent Cr (the bad stuff) is unlikely to occur at a non-industrial settin like NE Cape. Trivalent Cr has much higher cleanup levels and Cr is not considered a COC at NE Cape.	chromium was detected in samples 11NC28SS075 and	A
10.	Figure 17	The Zone 1 excavation area could shrink considering comment #7 above.	Waiting for ADEC to review and acceptance of silica gel treated results. Volumes will be calculated based on acceptance or non-acceptance of silica gel treated results.	A
11.	Figure 17	Digging Zone 2 to four feet could be a nightmare. It could change the hydraulic gradient such that a mini-canyon wou form along the stream route and cause havoc with the Suqi River. Should we consider a much less aggressive vacuum device, say only going 1 foot deep?	Excavation depths and volumes are being modified based on sediment removal to 6 inches below present sediment	A
12.	Pg. 17, 2 nd par.,	"Figure 17 shows three areas of potential soil/sediment removal, along with removal depths and estimated volumes for each zone. "Remediation decisions will need to take into consideration whether aggressive soil/sediment remove would cause more harm than good.	The text has been changed based on your comment	A
13.	Figure 17	SITE 28 POTENTIAL SEDIMENT REMOVAL AREAS, ESTIMATED VOLUMES, AND POTENTIAL ROAD LOCATION	The Figure 17 caption has been modified as suggested.	A

REVIEW PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007 **COMMENTS DOCUMENT:** Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska DATE: November 10, 2011 Action taken on comment by: U.S. ARMY CORPS OF **REVIEWER: Carey Cossaboom ENGINEERS** PHONE: 753-2689 COMMENTS **BRISTOL RESPONSE** COMMENTOR REPLY Item Drawing (A-AGREE) No. Sheet No., Spec. Para. (D-DISAGREE) Figure 18 SITE 28 POTENTIAL SOIL REMOVAL

The Figure 18 caption has been modified as suggested.

AREAS, ESTIMATED VOLUMES, AND

POTENTIAL ROAD LOCATION

Α

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

U.S. ARMY CORI ENGINEERS	PS OF DATE: 21 Nov 2011 REVIEWER: Aaron Shewman PHONE: 753-5558	Action taken on comme	ent by: Bristol	
Item No. Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
1. FIGURES	General — Please add labels for the Western, Middle, and Eastern Drainages, as well as the former AST footprints to all figures; On figures with "transects", please add "Transect-1" to legend; Define primary and secondary contours in the legend. Figure 17 — Display soil and sediment results on separate figures. Label more contours near the surface water. Add slope indicators to all depressions, including pond since topo labels do not exist on all primary and second contours. Add blue hatch to indicate areas of ponded water. Consider turning off the "2010 UVOST Locations". Define the purple, light blue (and light blue hatch). Define the UVOST results polygon including green/yellow/orange/red polygon shading, and show it on the "soil figure". On the new soil figure, refine the zone boundaries by excluding topographic high areas such as the one locate north of Transect-5. Include area values in the assumptions for each zone;	s, lary	Drainage and AST footprint labels will be added to all figures Transect will be added to legend Primary and secondary contours will be added to legend. Separate figures will be prepared for soil and sediment. Cross hatchings will be added to figures to show depressions (no slope indicators). Blue cross hatches will be added to figures to show ponded water. Topo labels will be bolded; more topo labels will be added to final figures. 2010 UVOST locations will be removed. Text will note when UVOST results were used in calculating estimated volumes. Legend will be revised to define purple, light blue and light blue hatch on figures. UVOST results polygon and shading will be defined and included in soil results. UVOST locations will be "turned off" on figure. Zone boundaries will be refined and topographic high areas will be excluded.	A, but I would like to see revised Figure 17 from the draft Tech Memo before the Tech Memo becomes final.

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

U.S. ARMY CORPS OF ENGINEERS DATE: 21 Nov 2011 REVIEWER: Aaron Shewman PHONE: 753-5558		Action taken on comment by: Bristol				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
2.	TABLES	In the "Soil Sample Diagram", If a portion of a circle is white, does the white portion indicate a sample was not collected? If so, what interval was not sampled? Please clarify. It is not clear what a circle with half shading and half white represents, please clarify. Split soil and sediment data into two separate tables. Please add a column for total PCBs. When this is complete, Transect-1 and others may have PCB results greater than either soil or sediment cleanup levels. Please define colored highlights in the table notes.			Area values will be added to volumes for each zone. The "Soil Sample Diagram' as part of the legend shows that each location had up to 3 depths. On the figure there are no white portions shown at any of the sample locations. This symbol information will be better clarified in the text. Separate soil and sediment tables will be included in revision. Total PCBs column will be added to tables. Red and orange highlights had defined soil and sediment results. Separate tables will remove highlights. Positive soil results exceeding the appropriate cleanup level will be red highlighted. Sediment results (separate table per comments) will be orange highlighted. Non-detect results exceeding cleanup levels will be blue highlighted on both soil and sediment tables.	A
3.	Section 2.0	3 rd paragraph – Consider re-writing as follows to clarify "Soil staining has been observed near the head of the Ea Drainage and at the former AST locations. The Western Drainage originated from a manhole and small, concrete supporting structure just north of the perimeter access rewhich emptied into an artificially created swale. The manhole likely served as a cleanout for the drain leading	astern n e oad,		The suggested edits have been made to the 3 rd and 4 th paragraphs of Section 2.0.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

	U.S. ARMY CORPS OF ENGINEERS DATE: 21 Nov 2011 REVIEWER: Aaron Shewman PHONE: 753-5558 Action			ent by: Bristol	,
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
	Spotiers	from Building 110 (Heat and Electrical Power Building the MOC. In 2010, the concrete manhole structure was cleaned and removed. A 12-inch corrugated metal pipe which was attached to the manhole and continued upgratoward the MOC, was cut and 63 feet of the pipe was removed. The open end of the pipe was then filled with bentonite and welded shut. In the Middle Drainage, and 12-inch corrugated metal pipe, measuring 32 feet in lenguas completely removed. Sediments in the upper portion Site 28 Drainage Basin have been described as stained a will produce sheen when disturbed. Prior to 2011, samp activities occurred at the drainage basin between 1994 at 2001. Based on data available prior to 2011, the primal contaminants of concern (COCs) in sediments were chromium, lead, zinc, PCBs, polynuclear aromatic hydrocarbons (PAHs), DRO, and residual range organic (RRO). The highest concentrations of contaminants we located proximal to the edge of the MOC gravel pad." 4 th paragraph, last sentence – Consider modifying to real "Data indicated the most heavily contaminated areas of drainage basin were found immediately below the formulocation of two culverts, located in the Western and Mic Drainages.	e, adient cother gth, con of and coling and ry cs are dd the er ddle		
4.	Section 3.1.1	3 rd sentence – consider adding "(e.g., ponded areas)" to end of the sentence. Then follow with a sentence descrithese areas.		Suggested change was made. A sentence which reads "Shorter transects may have less samples than longer ones, with sample locations being more densely populated in stream channels and standing water." was added.	A
5.	Section 3.3	Please change "lathe" to "lath".		Change was made as directed.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

U.S. ARMY CORPS OF ENGINEERS DATE: 21 Nov 2011 REVIEWER: Aaron Shewman PHONE: 753-5558		Action taken on comment by: Bristol				
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	A	REVIEW CONFERENCE - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
6.	Section 3.4	Consider modifying from "DRO, RRO, DRO and RRO silica gel cleanup" to read "DRO/RRO, and DRO/RRO silica gel cleanup".			Change was made as suggested.	A
7.	Section 4.0				"was" was inserted between "level" and "not". Sentence in the third paragraph was changed to read "The Site 28 laboratory Level IV data reports are provided electronically along with electronic data deliverables."	A
8.	Section 4.1	Please tabulate DRO and RRO data from 2001 and 2011 similar to PCB results. Please darken the gray shade in the existing table.			The historical DRO and RRO results will be included in a table	A
9.	Section 4.2.1	1 st paragraph, 9 th sentence – Please insert "(i.e., straight chain)" after "non-polar compounds" to clarify the link between these two terms.			Change was made as suggested by client.	A
10.	Section 4.2.2	1 st paragraph, 2 nd sentence – Please change "alternation" "alternation".	" to		Change was made.	A
11.	Section 4.2.2.1	Please add a discussion of POL results for samples collected from the Middle Drainage, or describe why there is not a section specific to the Middle Drainage.			The middle drainage was added to section 4.2.2.2. (western drainage) because of the close proximity of the drainages as well as exhibiting similar DRO concentrations.	A
12.	Section 4.6	1st paragraph, 1st sentence – Consider modifying to read "The point source(s) of contamination that have impacted Site 28 appear to originate from several locations within MOC, including the former aboveground storage tanks the Eastern Drainage, and from two former culverts that terminated in the Western and Middle Drainages." 2nd paragraph, 1st sentence – I believe lead was also determinated above cleanup levels, but please confirm.	ed n the near t		Change was made to the 1 st paragraph as suggested. Lead did exceed cleanup levels in sample 11NC28SS066-0_75. Lead was added to the list of contaminants exceeding cleanup levels in the first sentence of the 2 nd paragraph. Change was made to the 2 nd paragraph, 2 nd	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

II	U.S. ARMY CORPS OF ENGINEERS DATE: 21 Nov 2011 REVIEWER: Aaron Shewman PHONE: 753-5558			ion taken on comme	nt by: Bristol		
Item No.	Drawing Sheet No., Spec. Para.		COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
		on the to most fre It appear please or levels, the present of historic 4 th and 5 appropria 4 th parage this state 6 th parage "only".	graph, 2 nd sentence – Consider rewriting to "Babtal number of exceedances, DRO is the COC to quently observed." rs zinc was not present above cleanup levels, be confirm. If zinc was not present above cleanup then consider adding a statement that zinc was rabove cleanup levels in these samples as it was samples (see Section 2, page 3). Sth paragraph – please add "sediment" to "soil" interior in the discussion to be more correct. Graph, last sentence – Be certain to update or deferment in the final memo. Graph, first sentence – Consider replacing "just"	that is ut not in where		sentence as suggested. Sentence now reads "Based on the total number of exceedances, DRO is the COC that is most frequently observed." The contractor did not analyze for zinc because it was not in the Scope of Work. "sediment" was added to paragraphs 3 and 4 to more fully describe the nature of each zone being discussed. 4 th para, last sentence will be deleted 6 th para: "just" was replaced with "only".	
13.	Section 5.0	9 th sente "samplii	nce – change "by" to "to". nce – strike "the" and insert commas after ng", and "filtration". tence – Change "material" to "sediments".			Changes were made as directed.	A
14.		Zust sometime to seemens .					
15.							
16.							
		End	l of Comments				

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska

U.S. ARMY CORPS OF **ENGINEERS**

DATE: 17 Nov 2011

REVIEWER: Gordon Osgood

Action taken on comment by: Bristol

ENGINEERS		PHONE: 753-5599		
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	BRISTOL RESPONSE	COMMENTOR REPLY (A-AGREE) (D-DISAGREE)
1.	GIS	Vector spatial data was not delivered. Review cannot be conducted. Reference: 2009 MED Section 5.1.	Figures were created in AutoCAD	Acknowledged.
2.	GIS	Imagery used as background in Figures 4, 12, 17 was not delivered.	Bristol will include the Aerial image in the next deliverable.	Acknowledged
3.	Drawings	Native format drawing files were not delivered. Review cannot be conducted. Reference: 2009 MED Section 4.1	Native files will be delivered with the Final Tech Memo report.	Note this approach opens the possibility of an additional deliverable after the "Final". If Bristol prefers, a pre-final package of just the drawings, survey data, and GIS-related portions of the electronic deliverable could be submitted to enable review in advance of the "Final".
4.	Survey	Survey data was not delivered in delimited format indicate in 2009 MED section 6.1.	d Survey data will be delivered electronically with the Final Tech Memo report.	Acknowledged. See comment 3 reply.
5.	Survey App D Labeled Sheet 2of3	Survey Note 6 references an accompanying printed report with field survey data. The report was not delivered. Surve data should be provided in delimited format. Minor - this sheet is probably supposed to indicate "Sheet 20f 4".	Survey reports will be provided electronically with the final report.	Acknowledged. See comment 3 reply.
6.	Survey App D Sheet 4of4	Sample location data shown on sheet is needed in delimite format. Excel spreadsheet is acceptable.	d Files will be delivered with the final report.	Acknowledged. See comment 3 reply.
7.	Survey App D Sheet 3of4	Transect point location data shown on sheet is needed in delimited format. Excel spreadsheet is acceptable.	Files will be delivered with the final report.	Acknowledged. See comment 3 reply.
8.	General	Per 2009 MED, spatial data should be delivered under a folder titled Supplemental Data.	Spatial data will be delivered with the final report in a subfolder within a folder titled "Supplemental Data"	Acknowledged.
9.	General	If there is concern about delivering survey and GIS data at draft stage, POA can hold the draft submittal on disk instea of loading it to our server. Upon receipt of the final, POA can destroy or return the draft disk.		
10.				

REVIEW PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007 DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska **COMMENTS DATE: 17 Nov 2011** Action taken on comment by: Bristol U.S. ARMY CORPS OF **REVIEWER: Gordon Osgood ENGINEERS** PHONE: 753-5599 Drawing COMMENTS BRISTOL RESPONSE COMMENTOR REPLY Item Sheet No., (A-AGREE) No. Spec. Para. (D-DISAGREE) 11. 12.

13. 14.

PROJECT: Northeast Cape DOCUMENT: Site 28 Technical Memorandum COMMENTS

U.S. ARMY CORPS OF ENGINEERS CEPOA-EN-ES-M DATE: 18 November 2011 REVIEWER: Teresa Lee PHONE: 907-753-2788 Action taken on comment by: Bristol						
Item No.	Drawing Sht. No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
1.	Section 4.0 3 rd paragraph	It states that if an analyte was not detected but was greater than the cleanup level, the ana considered above the cleanup level. However for possible estimation for removal purposes for case scenario, these samples should not be mass contaminated. Please split out those analytes that contamination at the cleanup level be discerned due to elevated LODs from those known contaminated. Only include in extotals throughout the document, figures, an analytes that have hits above the cleanup criter. The contract requires this data be dealt with a data review as stated below: "Data qualifier flags: a comparison shall be more between the laboratory LOD/LOQ for each sample ID and the project established LOD/LOQ for the method/analyte/matrix in the QAPP. If the Laboratory's LOD/LOQ exceeds the project's action limits established for the method/analyte/matrix in the UFP-QAPP, then the data shall be flagged."	alyte was ever useful for a worst referenced multiple evel cannot se that are exceedence and tables ria. during the	in print conditions and conditions are conditions and conditions are conditional conditions are conditional conditions are conditional conditions.	Contaminated sample totals will be revised to indicate only exceedances where the analyte was positively identified. A separate discussion will include result totals that were non-detect above cleanup levels. In most instances samples were diluted due to high target analyte concentrations, such as PCBs where Aroclor 1260 was present above cleanup levels. Regarding the LOD/LOQ exceeding project action limits, if non-detects exceed cleanup levels, the result will be highlighted in blue on the table and the blue highlight well be defined in the table notes. Positive results exceeding PALs will be red on the soil results tables and orange on the sediment tables.	A
2.	Section 4.0 2 nd paragraph	After a brief review of the data, it became app there were multiple factors contributing to the LODs/LOQs to include dilutions and for SW and SW8082, insufficient sample size.	e elevated	iı	Text was added to include other factors such as nsufficient sample mass that resulted in elevated LOD/LOQs.	A

PROJECT: Northeast Cape

DOCUMENT: Site 28 Technical Memorandum **COMMENTS**

U.S. ARMY CORPS DATE: 18 November 2011 Action taken o OF ENGINEERS REVIEWER: Teresa Lee PHONE: 907-753-2788		en on comment by:	Bristol			
Item No.	Drawing Sht. No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
3.	All figures	Those sample points where there are not hits a clean-up criteria, just nondetects with elevated should not be depicted as exceeding the clean. However an alternate highlight color and/or dualifier with legend denotation for this may be Please revise.	l LODs, up level. lata	1 2	Figures will be revised to only highlight sample points will positive results above the project action limits (cleanup levels). Results tables will have non-detect results greater than cleanup levels blue highlighted.	A
4.	Section 4.2 1 st paragraph Table 1	It states that the nine non-detect samples with LODs are presented in Table 1 as exceeding levels. The assumption should not be made a samples exceed cleanup levels. Please revise these samples should be either highlighted a color or bolded with an appropriate footnote this data quality issue can be easily viewable taken into consideration.	cleanup that these e. Rather, different so that		Paragraph was rewritten to state that 67 primary sample results exceeded cleanup levels for PAHs with positive detections and nine sample results were non-detect with reported LODs greater than cleanup levels. Regarding the LOD/LOQ exceeding project action limits, if non-detects exceed cleanup level, the result will be highlighted blue on the table and the blue highlight well be defined in the table notes. Positive results exceeding PALs will be red on the soil results tables and orange on the sediment tables.	A
5.	Section 4.6	If estimated volumes are increased due to area exceedences due to elevated LODs only, this revised not to include those areas.			Volumes will be revised to include only areas with positive results exceeding cleanup levels.	A
6.	Table 1	Define in the legend what the colors red a denote.	nd orange	S S S I	Red noted soil sample, orange noted sediment sample. Per Craner comment (Item 28) Table 1 will be separated into 2 tables (soil and sediment) with proper labeling of soil and sediment in the headers, a note will be added to the legend stating that red shading indicates positive detected exceedances in soil, sediment exceedances will be orange, non-detect exceedances will be blue.	A

PROJECT: Northeast Cape
DOCUMENT: Site 28 Technical Memorandum COMMENTS

COI	COMMENTS DOCUMENT. Site 20 Technical Memorandum						
U.S. A	RMY COR	PS DATE: 18 November 2011 A	Action take	en on comment by:	Bristol		
OF EN	NGINEERS	REVIEWER: Teresa Lee					
CEPO	A-EN-ES-M	PHONE: 907-753-2788					
Item No.	Drawing Sht. No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	
7.	Table 1 Some areas are highlighted to indicate an exceedance that in fact are not (such as 11NC28SS016-0_5 for PCBs). Please remedy.			Table results will be reviewed for exceedances and corrected when error is found.	A		
8.	Table 1	A column should be added for total PCBs.			A column will be added for total PCBs.	A	
9.	Table 1	Please us the Unit mg/Kg throughout.			Units will be changed to mg/Kg	A	

Alaska Department of Environmental Conservation (ADEC)

Contaminated Sites Program

Document Reviewed: Draft 2011 Site 28 Technical Memorandum **Commenter:** Curtis Dunkin-ADEC **Date Submitted:** January 18, 2012

#	Page #	Section	ADEC Comment	Response
1.	14	4.2.2.2	Last sentence of first bullet in this section, the reference of 15% for the difference from 3,200 to 1,700 mg/Kg is incorrect for the silica gel cleanup reduction of the RRO result (the difference of 1,500 is not equivalent to 15% of 3,200).	The text incorrectly stated the silica gel result. It was 2,700 mg/kg, which is 84.4% of 3200, which gives the 15% reduction. The text has been corrected.
2.	14-15	4.2.3-4.2.4 and Silica Gel Cleanup Chromatograms	Will silica gel cleanup comparisons be proposed to determine whether the cleanup level has been achieved or will the background silica gel cleanup chromatograms alone be proposed as the basis for clean determinations? Either way, all chromatograms from the 2011 site characterization effort should be provided in the technical memorandum; including the chromatograms with silica gel cleanup from samples taken within the drainage as well as both sets (w/ and w/o silica gel cleanup) of the chromatograms from all four background samples – not just the one sample provided in figures 13 and 14.	Based on conversations with the USACE the revised draft tech memo figures and tables used the silica gel cleanup comparisons to determine whether the cleanup level were achieved. All chromatograms and full lab reports will be provided electronically to the USACE and ADEC for review. The background sample results will be used to show the magnitude of potential bias due to biogenics and will not be used to set any cleanup levels.
3.	16	4.4	Are naturally occurring background levels of metals in the site 28 drainage basin being considered and if so how will these be determined and evaluated (given metals were not analyzed for in the background samples)?	Bristol has not been scoped to evaluate naturally occurring background levels of metals.
4.	17	4.6 and Figure 17	The Zone 1 soil removal estimate is unclear as discussed in the narrative and depicted in Figure 17 and should be revised. It states that the 'estimate incorporates the area from the 2010 UVOST	The 15 foot depth and 13,000 to 22,000 tons of potential contamination was based on interpretation of the

#	Page #	Section	ADEC Comment	Response
			investigationbut does not take in to accountthe off-pad estimates from the 2010 UVOST results.' All of the area depicted as Zone 1 is considered off-pad. Is the soil removal estimate 13,000-22,000 tons from the 2010 UVOST investigation area, plus an additional 14,095 cubic yards as stated in Figure 17; or are these the total estimates for Zone 1? This information needs to be elaborated on in the narrative and reconciled with the information presented in the figure(s) for clarity. Is three feet bgs, as stated in Figure 17 being used as an estimate due to the overall average estimated depth to groundwater observed at the site? This needs to be explained in the narrative.	2010 UVOST results – that volume was not used to calculate the Zone 1 removal estimate. The 14,095 cubic yards for Zone 1 was the total estimate for Zone 1, with an assumed removal depth of 3 feet throughout Zone 1 based on the depth of contamination found during the 2011 Site 28 investigation. The text has been modified for clarification. NOTE: Figure 17 has been separated into two figures: Figure 17 showing potential sediment removal areas and Figure 18 showing potential soil removal areas. Some removal volumes have now changed and the new estimate for Zone 1 is 13,311 cubic yards for Zone 1, and is still based on a 3 feet removal depth.
5.	17	4.6	Does the soil removal estimate for the Zone 1 area north of transect 4 include the entire area to 3ft bgs, or only for areas adjacent to transects 3, 5, and 6 and sample 11NC28SS011? This should be clearly explained in the narrative.	The removal estimate for Zone 1 assumes a 3-foot depth throughout the whole zone.
6.	17	4.6	Although the Zone 2 removal estimate was confined to the drainage area with standing and flowing water, actual removal volumes and confirmation samples will need to be determined and managed as the removal action progresses in each zone. The extent of removal required by ADEC will involve all contaminated soil and sediment exceeding the ADEC and/or site-specific cleanup level down to 2ft below the water table – not just for the areas with standing and	The text and figures showing removal areas have been revised (e.g., Figure 17 has been split into two separate figures for sediment (Fig. 17) and soil (Fig. 18)). Zone 2 on Figure 18 assumes a 4 foot excavation depth for contaminated soil. Zone 2 is not

#	# Page # Section ADEC Comment		ADEC Comment	Response
			flowing water. Perhaps this would also be better explained if the narrative and figures more accurately described/defined what is meant by 'bank topography' in regards to the boundary for Zone 2.	limited to areas of standing and flowing water: the western boundary of the zone follows the bank that is topographically higher than the drainage basin, and the eastern boundary loosely follows some ponds and the stream channel. NOTE: Based on the 2012 Scope of Work, the focus at Site 28 will be further sediment characterization and a Phase I Sediment Removal Study to target the upper 24" of contaminated sediment in the standing and flowing water where the sediment is continuously submerged and not associated with living vegetated mat.
7.	Table	Table	What is the difference between the orange and red shaded cells? This needs to be stated in the legend.	Orange represents sediment and red represents soil samples that exceed cleanup levels. Separate tables for each matrix will be included in the final report and the shading will be defined in the table notes.
8.		Misc. Figures depicting cleanup level exceedances	Many of the soil sample locations that are all green or all red do not depict whether the upper 6 inches of the sample was determined to be sediment (i.e. Transect 1 has two sample locations within the area where surface water is depicted however there is no distinction whether or not the upper 6 inches was sediment). Other figure(s) don't have any reference to sediment cleanup levels (i.e. figure 16).	All figures have been revised. Sediment sample locations have been hatched. There are many samples that were collected in surface water locations that contain a lot of veg mat/peat and no sediment.
9.		Proposed Road	Has landowner approval been requested for the proposed road? Could construction of the proposed road (disturbance, culvert	The road has not been approved by the landowner and is not being considered

#	Page #	Section	ADEC Comment	Response	
			installation, backfilling) result in new preferential pathways and subsequent contaminant migration?	at this time for construction based on the USACE revising the 2012 Scope of Work. The sediment removal areas and minimally invasive excavation approaches will be evaluated in 2012.	
10.	19	5.0	What is the proposed plan to stabilize the areas within the drainage after removal actions occur? Have the 'sedimentation pond and other appropriate controls' as required by the decision document been taken in to consideration? Will these be implemented prior to commencing removal actions in the drainage? Will dewatering alone eliminate the potential down gradient migration of contaminated sediment and water? In what manner and location(s) would the dewatered and treated water be discharged?	A Site 28 Phase I Sediment Removal using sediment controls to minimize downstream suspended sediment migration is part of the 2012 Scope of Work. Only the top 24" of contaminated sediment will be removed and therefore no stabilization is planned. All of the dewatering and discharge issues will be clarified in the 2012 Work Plan.	
11.	19	5.0	Monitoring of ground and surface waters during all activities associated with future removal actions should be added to this section. ADEC will require that future work plans for remediating the site 28 drainage to include water monitoring at the beginning of, during, and at the end of each season of work.	In the 2012 Scope of Work surface water samples will be collected from 3 locations in Site 28: pre, during, and post-sediment removal.	
12.		Figure 17	What is meant by the header "DIESEL evaluation failed) in the reference information at the top right of Figure 17?	This header for the file path information is automatically created by AutoCAD when pulling in all the layers to create the figure. We believe this header is related to the UVOST data that was pulled into Figure 17. Bristol will attempt to remove this from the figure in the Final Report.	
13.			End of ADEC Comments		

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

U.S. ARMY CORPS OF ENGINEERS DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628		Action taken on comm	ent by: Bristol		
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
1.	General Comment	The overall report outline is sufficient, however, there as several areas within the report that contain text not follo the correct heading/subheading or in a logical sequence nature and extent of contamination before presentation of sample results). Relocating this text would make the remuch easier to read and understand. Comments are add below to reorganize sentences and paragraphs where the appropriate.	owing (i.e., of port ed ough	Comments and organization have been reviewed and text modified for clarity.	A
2.	General Comment	Section 2.0 is difficult to follow due mostly to the order which the text is presented. Also, background and site description information is very vague with few details at does not give the reader a good description of site featur Comments were added below in an attempt to reorganizand add pertinent background information to this leading section.	nd res. e	Section 2 has been edited and restructured. Text has been added for clarity.	A
3.	Pg. 3, Section 2.0, first paragraph	Suggest rewording first paragraph: "The Site 28 drainage basin is located north of the MOC and drains north into Suqitughneq (Suqi) River, as shown on Figure 3. This is contains variable surface features consisting of wetlands rolling tundra, ponds and flowing streams. The most significant source of surface water emerges from the growing in the form of seeps immediately north of the MOC grave pad and periodically throughout the drainage basin. Two distinct sub-drainages containing feeder streams original as seeps drain into the main stream approximately 1/4 of way down the drainage. Surface water runoff, usually during and immediately following occasional rainfall even can contribute significant amounts of water to the basin. The general area also contains subsurface discontinuous permafrost which significantly impacts the appearance of surface topography."	the site site s, ound well so ting the sents,	The first paragraph has been reworded as suggested by client. The sentence that mentions fuel releases has been moved to paragraph 3.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007
DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska

	U.S. ARMY CORPS OF ENGINEERS DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628			Action taken on comment by: Bristol		
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
4.	Pg. 3., Section 2.0, first paragraph, second sentence	Move original second sentence "This site has been impaby" to a later paragraph when discussing site contamination. It is located awkwardly in the middle of site description.			Sentence has been moved to later paragraph in Section 2.	A
5.	Pg. 3, second paragraph	First sentence: Insert the words "distinct" before "drainages" and "upgradient" before "MOC". Second sentence: change "originated" to "originates", i the word "located" before "downgradient". Need to ref a figure (preferably Figure 4) containing the locations o western, middle, and eastern drainages.	er to		Paragraph has been changed as recommended. Figure 4 has been referenced in the paragraph. Callouts for the locations of these drainages will be added to the figure	A
6.	Figure 4	Label the MOC, western, middle, and eastern drainages metal pipes and former metal pipes. Suggest somehow shading or delineating the entire extent of ONLY the drainage basin – it is tough to see the lateral extent of the basin.			Drainage labels will be added to figures. The location of the culverts and manhole will be shown on the figure. Additional contours and blue cross-hatching showing water will be added to figure 4.	A
7.	Pg. 3, third paragraph, first sentence	Move sentence to another location where contamination discussed. It is not a good introductory sentence to this paragraph and its location is confusing to the reader.			This section has been rewritten for clarity. Paragraphs 1 and 2 discuss the general nature of the site and background information. Paragraphs 3 and 4 discuss contamination and historical sample results.	A
8.	Pg. 3, third paragraph	Need to reword to clearly describe in an organized man the western, middle, and eastern drainages. Middle drais not mentioned. Relocate 8 th sentence "Sediments in this area" to a following paragraph Break "Sampling activities have occurred" and follow sentences into a separate paragraph. Add the introductor sentence from previous paragraph to state "Site 28 has be impacted by historic MOC bulk fuel releases and other	inage ving ory		Paragraph has been reworded and edited for clarification. A. Shewman also had comments regarding this section which were also addressed.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

DOCUMENT: Site 28 Technical Memorandum Rev 0. October 2011 Location: St. Lawrence Island, Alaska

COMMENTS	DOCUMENT: Site 28 Technical W	1emorandum Rev 0 – October 2011	Location: St. Lawrence Island, Alaska
U.S. ARMY CORPS OF ENGINEERS	DATE: 8 November 2011 REVIEWER: Jeremy Craner	Action taken on comment by: Bristol	

ENGINEERS REVIEWER: Jeremy Craner PHONE: 753-2628					
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
		MOC sources Sediments in this area have been described" Reword slightly to clarify: "Previous soil and sedime sampling activities have occurred at the drainage basi between 1994 and 2011. These results indicated that primary COCs in soil/sediment are chromium, lead, z PCBs, PAHs, and DRO/RRO and that the highest concentrations of contaminants are located proximal MOC."	the cinc,		
9.	Pg. 3, fourth paragraph	First sentence: Change "samples were collected in" t "samples were collected from" Last sentence: Reword to clarify "The most heavily contaminated surface water of the drainage basin was the head of the western and middle drainages, which formerly contaminated culverts that drained the grave of the MOC."	s near	First sentence: Change was made as requested Last sentence now reads: "Data indicated that the most heavily contaminated surface waters of the drainage basin were found at the head of the western and middle drainages, located at the terminus of the former culverts."	A
10.	Pg. 5, Section 3.1.1, first paragraph	Third sentence: remove period after accumulate, reportant parentheses accordingly. Fourth sentence: Reword to further clarify "Originally total of 70 sample locations were planned, with samply collected not to exceed 7 locations along a transect from three different depths Fifth sentence: Reword to "This general procedure we followed, though some variability occurred due to site conditions. For example:"	ly, a les om	This paragraph has been reworded for clarity. The edited sections now read: "Figure 4 shows transect and sample locations. Originally, a total of seventy sample locations were planned, having seven locations along a transect at three different depths (0.5 feet below ground surface [bgs], 1.0 foot bgs, and 1.5 feet bgs), for a total of 210 samples. This general procedure was followed wherever possible, though some variability occurred due to site conditions, for example:"	A
11.	Pg. 5, Section 3.1.1	Suggest adding another bullet stating "The total number sample locations collected along each transect varied depending upon total transect length and site features		A bullet was added, which states: Shorter transects may have less samples than longer ones, with sample locations being more densely	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007
DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska

	RMY CORF NEERS	PS OF DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628	Acti	on taken on comme	nt by: Bristol	
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
					populated in stream channels and standing water.	
12.	Pg 5, Section 3.1.2	Second sentence: Reword to clarify "Following the sampling of the initially selected transects, a surplus of samples remained. Therefore, it was decided that thes remaining samples should be collected at other discrete locations within the drainage that: 1) historically conta elevated contaminant concentrations, and 2) currently a low lying depositional areas where contaminants have likely accumulated."	e ined ire		This paragraph was changed to incorporate these suggestions. Now reads: "Following sampling of the initially selected transects, thirty-two surplus samples remained. It was decided that these remaining samples would be collected at other discrete locations within the drainage that met the following conditions: 1. Discrete samples were collocated with historical samples that contained elevated contaminant concentrations, particularly PCBs; and 2. Samples were in low-lying depositional areas where contaminants most likely accumulated."	A
3.	Pg. 6, Section 3.1.2, second paragraph	Second sentence: change "deeper" to "greater" Third sentence: add "was" following the first "sample"	,		Changes were made as directed by client.	A
4.	Pg. 6, Section 3.2	Fourth sentence: Add text for clarification: "All bank samples collected along the basin slope located topographically higher than the stream, ponds, and wet were considered to be a soil matrix." Fifth sentence: Add text: "In the low lying marshy are			Changes were made as suggested.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

S	DOCUMENT: Site 28 Technical N	Iemorandum Rev 0 – October 2011	Location: St. Lawrence Island, Alaska
	DATE: 9 November 2011	Action tokon on comment by: Prictal	

U.S. ARMY CORPS OF ENGINEERS

DATE: 8 November 2011
REVIEWER: Jeremy Craner
REVIEWER: Jeremy Craner

	1			
		ponds, and active stream channels,"		
5.	Pg. 6, Section 3.2	Suggest adding a last sentence stating: "Thus, the determining that a sample is either "soil" or "sediment" can have a significant impact concerning future removal actions."	A final sentence was added which reads: "As a result, characterization of the sample's physical properties can have a significant impact on future removal actions."	A
6.	Pg. 6, Section 3.3, first paragraph	First sentence: Add detail: "Site 28 samples were collected using a 4-inch diameter AMS® hand auger with T-handle." Discuss in this section how sluffing in the boreholes was dealt with and how the specific sample depths were measured in the field. Where the samples collected of high integrity? Also, discuss specifically how decon of the auger and bowl was conducted (alconox solution, DI water, brushes, etc.).	Edits have been made as suggested, as follows: "Site 28 samples were collected using a 4-inch diameter hand auger with T-handle. Sample depths were measured by marking the auger handle at the ground surface at its sample collection depth. The distance between this reference mark and the sample contained within the auger barrel is equal to the depth bgs. Samples were collected from within the auger barrel, but not from any area within the barrel where the possibility for slough could cross-contaminate samples (e.g., the uppermost exposed soil in the auger barrel). The sampling method, combined with the prevalent silts and clays, resulted in strong auger borehole structural integrity, as well as a high integrity sample collection protocol." Decontamination procedures were elaborated upon, as follows: "Decontamination procedures consisted of an Alconox® wash followed by a double rinse of tap water and de-ionized (DI) water. Brushes were used during the initial wash to aid in the removal of solid particles."	A
18	Pg. 7,	First sentence: Add a comma following "arsenic"	Comma was added.	A

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

	U.S. ARMY CORPS OF ENGINEERS DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628			on taken on comme	nt by: Bristol	
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)
	Section 3.3, second paragraph					
19	Pg. 7, Section 3.4, second paragraph	First sentence: Reword to "Background samples were analyzed for DRO/RRO, DRO/RRO with silica gel clean and TOC."	up,		Comment was addressed on A. Shewman's comment sheet.	A
20	Pg. 8, Section 3.5	First sentence: Mention that the surveying work was conducted by "licensed professional surveyors" Following third sentence: Refer in text to delineation of drainage areas in Figure 4 for visualization.			The text "licensed professional surveyors at" was added to the first sentence. Reference to Figure 4 was added.	A
21	Pg. 9, Section 4.0	Third paragraph under Section 4.0: This is partially a summary of analytical results. Why is it presented before data results? Suggest relocating this text to a latter section that makes more sense and leaving in place the text that do not summarize results.	n		This paragraph serves as an introduction to the upcoming sections regarding sample results. It provides the broad caveats and general information that the reader may want to keep in mind during his/her reading of the detailed analytical results sections that follow.	A – OK, but this paragraph is a summary of specific analytical sample results/exceedances that have not yet been presented or discussed in Section 4.0. Not sure how this helps the reader with broad and general understandings. Sentences within the paragraph that state the initial reference to the table and figure

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

DOCUMENT: Site 28 Technical Memorandum Rev 0 – October 2011 Location: St. Lawrence Island, Alaska

ENGINEERS			DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628	Acti	Action taken on comment by: Bristol			
Item No.	Drawing Sheet No., Spec. Para.		COMMENTS		REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	
							make sense.	
22	Pg. 9, Section 4.1, First paragraph	First sentence: after "2001", suggest adding "and to asses current COC concentrations." Second sentence: Reword to clarify "Discrete samples we collected at six locations that historically contained elevate PCB results."				Paragraph was changed as suggested.	A	
23	Pg.10, Embedded Table	 Make shading darker for historic data. Suggest adding brief 1-2 sentences discussing the correlation between historic and recent PCB resu Suggest adding another table similar to this one the compares historic vs. current DRO results. 		esults.		Shading was made darker. Historical PCB results will be briefly discussed Added a column to the table with DRO results.	A	
24	Pg. 11, Section 4.2, Second paragraph	This paragraph discusses extent of contamination. Suggest relocating to Section 4.6.		gest		This section discusses fuel constituents specifically and serves to provide a more detailed, compartmentalized fuels-specific discussion. Much of this information is repeated in section 4.6, but the contractor believes it is relevant here in Section 4.2.	A	
25	Pg. 14, Second bullet item	Add "RI	RO" following 13,000 mg/kg			Change was made as requested.	A	
26	Pg. 16, Section 4.5	Only mentions that the data verification and the ADEC checklists were completed, but does not mention overall validation results. Was the data deemed usable for project objectives? Please state as necessary.		ll ject		Data has been submitted to third party (AECOM) for review. Review to be completed on January 30, 2012 and submitted with HTRW final report.	A	
27	Pg. 17, Section 4.6	It would be helpful if the square footage of Zones 1, 2, and 3 were added to the text and Figure 17 so that volumes could be verified.				Square footage will be added to Zones 1-3 in the text and on Fig. 17	A	
28	Table 1	-	Highly suggest separating into two tables: on containing only soil results and one containing sediment results. USACE intends on removir	g only		Table 1 will be separated into soil and sediment tables. Additional tables will be created that showed only samples with	A	

Appendix

C, Boring

32

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

	RMY CORF NEERS	PS OF DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628	Action taken on comment by: Bristol			
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	
		sediment in the future; separation of soil and sediment will aid in clarifying the presentation communication of data to stakeholders. - Suggest adding a third related table that summa only exceedances of site specific analytes as determined in the 2009 decision document. The enable the reader to easily disseminate only the analytes that require cleanup actions. Tough to determine from this huge table with small notes limited shading. - Both actions can be completed somewhat easily using excel sorting functions.	rizes is will se s and	exceedances for the final report.		
29	Figure 4	Shade or delineate extent of drainage area for visualizationabel western, middle, and eastern drainage; label current former pipes, manhole, etc.; label MOC (all mentioned in previous comments and initially in comment 6).	t and	Figure 4 is being revised based on multiple comments that should clarify extent of water. Labels will be added showing drainages and culvert locations	A	
30	Figures 5, 6, 15, 16, and 17.	USACE intends to remove only sediment in the future. I order to visualize, delineate, and determine volumes of sediment, it is highly suggested that the exceedances for media are separated instead of displayed as combined. Symbols with hatching currently attempt to distinguish the samples that contain sediment, however, it is difficult to visualize and the hatching does not always coincide with Table 1. Separate figures for soil and sediment will aid it communicating with stakeholders early in the decision making process.	oil vs. each hose	Bristol was not scoped in 2011 to sample sediment that is always submerged and from areas not associated with a tundra mat. Therefore showing just the sediment on the maps we believe would not necessarily present what the USACE would need to remove in the future. Further sediment characterization is recommended for 2012. The sediment shown on the figures and on the table will be made consistent in the Final Site 28 Tech Memo	A	
31	Figure 17	 Suggest removing blurry UVOST data points. What are the purple lines shown in Zone 1? 		The blurry UVOST labels will be removed. The purple lines are the areas that were used to	A	

Please add the "Depth (ft)" values to the far left column of

each boring log. It is difficult to determine the specific

Α

delineate plume volumes in the wetland area north of the MOC pad

Depth values will be added to the left column

of each boring log

PROJECT: NE Cape HTRW Remedial Actions W911KB-06-D-0007 Task Order 0007

U.S. ARMY CORPS OF ENGINEERS		PS OF DATE: 8 November 2011 REVIEWER: Jeremy Craner PHONE: 753-2628	Action taken on comment by: Bristol			
Item No.	Drawing Sheet No., Spec. Para.	COMMENTS	REVIEW CONFERENCE A - comment accepted W - comment withdrawn (if neither, explain)	CONTRACTOR RESPONSE	USAED/ADEC RESPONSE ACCEPTANCE (A-AGREE) (D-DISAGREE)	
	Logs	sample depths/intervals and the associated lithology of borehole.	of each			
33	Appendix D	Hard copy of topographic survey report not included.		Survey data will be included in the final report	A	
		End of Comments				

STATE OF ALASKA

DEPT. OF ENVIRONMENTAL CONSERVATION

DIVISION OF SPILL PREVENTION AND RESPONSE CONTAMINATED SITES PROGRAM

SEAN PARNELL, GOVERNOR

555 Cordova Street Anchorage, AK 99501 PHONE: (907) 269-3053 FAX: (907) 269-7649 www.dec.state.ak.us

File: 475.38.013

June 4, 2012

Carey Cossaboom USACE Alaska District (PM-C) P.O. Box 6898 JBER, AK 99506-6898

Re: ADEC Approval of the Final February 2012 Northeast Cape Site 28

Technical Memorandum (TM)

Dear Mr. Cossaboom:

Thank you for providing the Alaska Department of Environmental Conservation's Contaminated Sites program (ADEC) with a copy of the final Northeast Cape Site 28 TM which is dated February 2012 and was received by ADEC on March 13, 2012. ADEC has completed its review of the final TM and determined that ADEC's comments and revision requests have been adequately addressed. ADEC approves the final TM and has filed it as the final document on record.

Please contact me at 907.269.3053 or <u>curtis.dunkin@alaska.gov</u> if you have any questions regarding this letter.

Sincerely,

Curtis Dunkin

Environmental Program Specialist

cc: Molly Welker – BERS, Inc. (via email)