Phase IV Remedial Investigation Northeast Cape St. Lawrence Island, Alaska

June 2005

Submitted To: U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

> By: Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 Phone: 907-561-2120 Fax: 907-561-4483

Project Number: 32-1-16821

F10AK096903_03.10_0020_a 200-1e

EXECUTIVE SUMMARY

This report presents the results of our 2004 Phase IV Remedial Investigation (RI) at Northeast Cape, St. Lawrence Island, Alaska. The Phase IV RI was conducted by Shannon & Wilson, Inc. under Hazardous, Toxic, and Radioactive Waste (HTRW) Contract DACA85-03-D-0003, Task Order 0006. Northeast Cape is the site of a former military installation on St. Lawrence Island, which operated from the 1950's to 1972. The project was conducted in general accordance with Shannon & Wilson's August 2004 document, "Work Plan, Phase IV Remedial Investigation Northeast Cape, St. Lawrence Island, Alaska."

The Phase IV RI tasks were to prepare work plans and implement the field investigation and sample analysis program, and prepare this RI data report on the results of the field activities as specified in the US Army Corps of Engineers' (USACE) 30 January and 15 July, 2004 statement of work (SOW) documents. The Phase IV RI program was developed to address data gaps identified in previous investigations and refine estimates of impacted soil volumes. The 2004 Phase IV RI data may also be used with previous RI and risk assessment results to develop site-specific cleanup goals, determine possible remedial alternatives, and support a feasibility study.

The Phase IV RI consisted of data collection from fifteen discrete sites within the Northeast Cape installation. At each site, field and analytical samples were collected to document the presence, magnitude, and distribution of target constituents of potential concern (COPCs) in the surface soil, subsurface soil, sediment, surface water, and/or groundwater media. At selected sites where petroleum hydrocarbons were detected, samples were further tested to evaluate relative contributions from potential anthropogenic sources (fuel releases) and biogenic sources (peat and other naturally-occurring hydrocarbons). In addition, background samples were collected outside the installation boundary from 18 surface soil, 10 sediment, and 10 surface water locations.

The field activities conducted at each site are listed in Table ES-1, along with the number of analytical samples from each target media. As indicated in the table, the Phase IV RI included drilling 21 borings, and installing seven monitoring wells and five well points. Subsurface soil samples were collected from 86 discrete locations, surface soil samples were collected from 74 locations, and sediment samples were collected from 20 locations. Water samples included 14 surface water samples and 25 groundwater samples. In addition, Quality Control/Quality Assurance (QC/QA) replicate samples were collected from 18 soil sample locations and five

water sample locations. Note that these totals do not include field screening samples that were not submitted for laboratory analysis.

The Phase IV RI scope does not include identifying applicable or relevant and appropriate requirements or assessing the sites' regulatory status, however, the chemical data are compared to state of Alaska cleanup criteria in 18 AAC 70 and 75 to provide a conceptual context for the intended data uses. COPCs exceeding the most stringent Alaska Department of Environmental Conservation (ADEC) cleanup levels for soil and/or groundwater were measured at 11 of the 15 Northeast Cape sites investigated. COPCs that exceed ADEC cleanup levels for soil and sediment include gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO), arsenic, chromium and polychlorinated biphenyls (PCBs). Compounds encountered in surface water or groundwater that exceed ADEC cleanup levels are GRO, DRO, RRO, benzene, arsenic, barium, chromium and lead.

TABLE ES-1 - 2004 PHASE IV REMEDIAL INVESTIGATION SAMPLE COLLECTION SUMMARY

	Soil	Monitoring Wells/	Sample Loc	ations (LOCII	D)		tical Samples* A/QC replicates)	
SITE	Borings	Well Points	Surface or Near Surface Soil	Sediment	Surface Water	Soil & Sediment	Surface Water & Groundwater	Notes
SITE 1 - BURN SITE SOUTHEAST OF AIRSTRIP	-	-	01SS101-1 01SS102-1 01SS103-1 01SS104-1	-	-	4	0	
SITE 3 - FUEL LINE CORRIDOR AND PUMPHOUSE	03B1 03B2 03B3	03WP5 03WP6	-	03SD107 03SD108	-	8	4	Groundwater samples collected from 2 new well points and 2 existing well points
SITE 6 - CARGO BEACH DRUM FIELD	06B1 06B2 06B3 06B4 06B5	06WP5 06WP6 06WP7	-	-	-	12	4	Groundwater samples collected from 3 new well points and 1 existing well point
SITE 7 - CARGO BEACH ROAD LANDFILL	-	-	07SS101-1/07SS101-4 07SS103-2/07SS103-3 07SS108-1 07SS109-1 07SS1110-1 07SS111-1 07SS112-1 07SS113-1 07SS114-1 07SS115-1	-	-	12	0	
SITE 8 - POL SPILL SITE	-	-	-	08SD102 08SD103	08SW101	2	1	
SITE 10 - BURIED DRUMS	10B1 10B2	-	-	-	-	6	0	
SITE 11 - FUEL STORAGE TANKS	-	-	-	-	-	0	2	Groundwater samples collected from existing monitoring wells

KEY DESCRIPTION

-

* Samples shown are for chemical analyses only; samples collected for field screening and/or geotechnical purposes are not listed

LOCID Location Identification: "01SS101-1" signifies Site 1 Surface Sample 101 collected at 1 foot below ground surface

No samples collected for Phase IV RI

TABLE ES-1 - 2004 PHASE IV REMEDIAL INVESTIGATION SAMPLE COLLECTION SUMMARY

	Soil	Monitoring Wells/	Sample Loc	ations (LOCII	D)		tical Samples* A/QC replicates)	
SITE	Borings	Well Points	Surface or Near Surface Soil	Sediment	Surface Water	Soil & Sediment	Surface Water & Groundwater	Notes
SITE 13 - ELECTRICAL POWER BUILDING								
Near Transformer Pad #13-1	-	-	13SS105-1/13SS105-4 13SS106-1 13SS107-1/13SS107-4 13SS109-1 13SS110-1/13SS110-4 13SS111-1 13SS112-1/13SS112-4 13SS113-1/13SS113-4 13SS114-1	-	-	15	0	
Near Transformer Pad #13-2	-		1388132-1 1388133-1 1388134-1 1388135-3	-	-	5	0	
North of Building 110	-	-	1388115-1/1388115-3 1388116-1/1388116-3 1388117-1 1388118-1 1388119-1/1388119-4	-	-	8	0	
MAIN OPERATIONS COMPLEX	13B1 19B1	17MW1 18MW1 20MW1	(88SS101-1) (88SS102-1) (Geotechnical)	-	-	16	11	Groundwater samples collected from 3 new monitoring wells and 8 existing monitoring wells
SITE 14 - EMERGENCY POWER/OPERATIONS BUILDING	-	-	14SS101-1/14SS101-2 14SS102-1/14SS102-2	-	-	4	0	
SITE 16 - PAINT AND DOPE STORAGE BLDG.	-	-	-	-	-	-	-	Insufficient water level for sampling 3 existing wells
SITE 22 - WATER STORAGE BUILDING	22B1	22MW2 22MW3	-	-	-	13	2	
SITE 26 - FORMER CONSTRUCTION CAMP	26MW2	26MW1 26MW3	-	-	-	0	2	Well 26MW2 not installed

KEY DESCRIPTION

* Samples shown are for chemical analyses only; samples collected for field screening and/or geotechnical purposes are not listed

LOCID Location Identification: "01SS101-1" signifies Site 1 Surface Sample 101 collected at 1 foot below ground surface

- No samples collected for Phase IV RI

TABLE ES-1 - 2004 PHASE IV REMEDIAL INVESTIGATION SAMPLE COLLECTION SUMMARY

	Soil	Monitoring Wells/	Sample Loc	ations (LOCII	D)		tical Samples* A/QC replicates)	
SITE	Borings	Well Points	Surface or Near Surface Soil	Sediment	Surface Water	Soil & Sediment	Surface Water & Groundwater	Notes
SITE 29 - SUQITUGHNEQ RIVER & ESTUARY	-	-	-	29SD104 29SD105 29SD106 29SD107 29SD108 29SD109	29SW101 29SW102 29SW103	6	3	
SITE 31 - WHITE ALICE SITE AST Farm	31B1 31B2	-	-	-	-	4	0	
Fuel Pipe Corridor	-	-	31SB105-3 31SB106-3 31SB107-3 31SB108-4 31SB109-4	-	-	5	0	
Suspected AST Drainage Area			31SB110-1			1	0	
Area North of ASTs	-	-	31SS111-1 31SS112-2/31SS112-4 31SS114-1 31SS115-2/31SS115-6	-	-	6	0	
PCB Sampling Grid Area	-	-	31SS117-2/31SS117-4 31SS119-1 31SS120-2/31SS120-4 31SS122-1 31SS123-2/31SS123-4 31SS125-1	-	-	9	0	
Antenna AST Areas	-	-	31SS126-2/31SS126-4 31SS128-2/31SS128-4 31SS130-1	-	-	5	0	
Septic Outfall Area	-	-	31SS131-2/31SS131-3 31SS132-2/31SS132-4 31SS135-1 31SS136-1/31SS136-4 31SS138-1 31SS138-1 31SS139-2	-	-	9	0	

KEY DESCRIPTION

* Samples shown are for chemical analyses only; samples collected for field screening and/or geotechnical purposes are not listed

LOCID Location Identification: "01SS101-1" signifies Site 1 Surface Sample 101 collected at 1 foot below ground surface

- No samples collected for Phase IV RI

	Monitoring Sample Locations (LOCID) Soil Wells/	D)		tical Samples* A/QC replicates)				
SITE	Borings	Well Points	Surface or Near Surface Soil	Sediment	Surface Water	Soil & Sediment	Surface Water & Groundwater	Notes
BACKGROUND			BGSS101	BGW101	BGW101			
bitekokotitb			BGSS102	BGW102	BGW102			
			BGSS103	BGW103	BGW103			
			BGSS104	BGW104	BGW104			
			BGSS105	BGW105	BGW105			
			BGSS106	BGW106	BGW106			
			BGSS107	BGW107	BGW107			
			BGSS108	BGW108	BGW108			
			BGSS109	BGW109	BGW109	28	10	
	-	-	BGSS110	BGW110	BGW110	20	10	
			BGSS111					
			BGSS112					
			BGSS113					
			BGSS114					
			BGSS115					
			BGSS116					
			BGSS117					
			BGSS118					

KEY DESCRIPTION

* Samples shown are for chemical analyses only; samples collected for field screening and/or geotechnical purposes are not listed

LOCID Location Identification: "01SS101-1" signifies Site 1 Surface Sample 101 collected at 1 foot below ground surface

- No samples collected for Phase IV RI

TABLE OF CONTENTS

Volume 1 of 2

EXEC	CUTIVE	E SUMMARY	i
1.0	INTR	ODUCTION	1
	1.1	Project Purpose and Objectives	1
	1.2	Project Team	
2.0	ENVI	RONMENTAL SETTING	3
	2.1	Site Description	3
	2.2	Geographic Setting and Topography	3
	2.3	Demographics and Land Use	3
	2.4	Geology	4
	2.5	Hydrology	4
	2.6	Climate and Ecology	5
3.0	FIELI	O INVESTIGATION METHODS	6
	3.1	Workplan Variances	
	3.2	Mobilization and Demobilization	6
	3.3	Soil Sampling	6
		3.3.1 Surface Soil and Sediment Sample Collection	7
		3.3.2 Shallow Subsurface Soil Sample Collection	7
		3.3.3 Soil Borings – Drilling and Sample Collection	7
		3.3.4 Field Screening Method	8
		3.3.5 Analytical Soil Sample Collection	
		3.3.6 Geotechnical Soil Sample Collection and Testing	9
	3.4	Water Sampling	9
		3.4.1 Surface Water Sampling	
		3.4.2 Well Point Installation	10
		3.4.3 Monitoring Well Installation	10
		3.4.4 Well Development and Sampling	11
		3.4.5 Measuring Groundwater Elevation	
	3.5	Sampling Equipment Decontamination	13
	3.6	Surveying	14
	3.7	Waste Management	
4.0	ANAI	LYTICAL DATA	
	4.1	Data Collection Objectives	
	4.2	Sample Identification	
	4.3	Sample Packaging and Transport	
		4.3.1 Sample Preservation	
		4.3.2 Sample Packaging	
		4.3.3 Sample Shipping and Contacts	
	4.4	Analytical Parameters	
	4.5	QA/QC Samples	
		4.5.1 Field Replicate Samples	
		4.5.2 Trip Blanks	
		4.5.3 Equipment Blanks	
		4.5.4 Temperature Blanks	22

	4.6	Chemi	cal Laboratory Deliverables	22
	4.7	Chemi	cal Data Assessment	23
	4.8	Data P	resentation	23
5.0	SITE-S	SPECIF	IC ACTIVITIES	25
	5.1	Site 1:	Burn Site Southeast of Airstrip	25
		5.1.1	Site Description	25
		5.1.2	Data Collection Objectives	25
		5.1.3	Field Investigation	
		5.1.4	Analytical Results	27
	5.2	Site 3:	Fuel Line Corridor and Pumphouse	
		5.2.1	Site Description	
		5.2.2	Data Collection Objectives	28
		5.2.3	Work Plan Variances	
		5.2.4	Field Investigation	29
		5.2.5	Analytical Results	31
	5.3		Cargo Beach Drum Field	
		5.3.1	Site Description	
		5.3.2	Data Collection Objectives	
		5.3.3	Work Plan Variances	
		5.3.4	Field Investigation	
		5.3.5	Analytical Results	
	5.4	Site 7:	0	
		5.4.1	Site Description	
		5.4.2	Data Collection Objectives	
		5.4.3	Work Plan Variances	
		5.4.4	Field Investigation	
		5.4.5	Analytical Results	
	5.5		POL Spill Site	
		5.5.1	Site Description	
		5.5.2	Data Collection Objectives	
		5.5.3	Field Investigation	
		5.5.4	Analytical Results	
	5.6		: Buried Drums	
		5.6.1	Site Description	
		5.6.2	Data Collection Objectives	
		5.6.3	Work Plan Variances	
		5.6.4	Field Investigation	
		5.6.5	Analytical Results	
	5.7		: Fuel Storage Tanks	
		5.7.1	Site Description	
		5.7.2	Data Collection Objectives	
		5.7.3	Work Plan Variances	
		5.7.4	Field Investigation	
		5.7.5	Analytical Results	
	5.8		E: Electrical Power Building	
		5.8.1	Site Description	45

	5.8.2 Data Collection Objectives	45
	5.8.3 Work Plan Variances	45
	5.8.4 Field Investigation	46
	5.8.5 Analytical Results	47
5.9	Main Operations Complex	48
	5.9.1 Site Description	48
	5.9.2 Data Collection Objectives	48
	5.9.3 Work Plan Variances	
	5.9.4 Field Investigation	49
	5.9.5 Analytical Results	52
5.10	Site 14: Emergency Power/Operations Building	53
	5.10.1 Site Description	
	5.10.2 Data Collection Objectives	53
	5.10.3 Field Investigation.	53
	5.10.4 Analytical Results	53
5.11	Site 16: Paint and Dope Storage Building	54
	5.11.1 Site Description	
	5.11.2 Data Collection Objectives	54
	5.11.3 Work Plan Variances	54
	5.11.4 Field Activities	54
5.12	Site 22: Water Storage Building	55
	5.12.1 Site Description	55
	5.12.2 Data Collection Objectives	55
	5.12.3 Work Plan Variances	55
	5.12.4 Field Investigation	56
	5.12.5 Analytical Results	57
5.13	Site 26: Former Construction Camp	59
	5.13.1 Site Description	
	5.13.2 Data Collection Objectives	59
	5.13.3 Work Plan Variances	59
	5.13.4 Field Investigation	60
	5.13.5 Analytical Results	61
5.14	Site 29: Suqitughneq River and Estuary	62
	5.14.1 Site Description	
	5.14.2 Data Collection Objectives	62
	5.14.3 Work Plan Variances	
	5.14.4 Field Investigation	62
	5.14.5 Analytical Results	
5.15	Site 31: White Alice Site	
	5.15.1 Site Description	65
	5.15.2 Data Collection Objectives	
	5.15.3 Work Plan Variances	
	5.15.4 Field Investigation	
	5.15.5 Analytical Results	
5.16	Background Sample Collection	
	5.16.1 Site Description	68

	5.16.2 Data Collection Objectives	
	5.16.3 Work Plan Variances	
	5.16.4 Field Investigation	69
	5.16.5 Analytical Results	
6.0	CLOSURE/LIMITATIONS	
	REFERENCES	

LIST OF TABLES

Table ES-1	2004 Phase IV Remedial Investigation Sample Collection Summary
Table 4-4	Analytical Methods
Table 5-1a	Sample Locations and Descriptions – Site 1: Burn Site Southeast of Airstrip
Table 5-1b	Summary of Soil Analytical Results – Site 1: Burn Site Southeast of Airstrip
Table 5-2a	Sample Locations and Descriptions – Site 3: Fuel Line Corridor and Pumphouse
Table 5-2b	Summary of Soil Analytical Results – Site 3: Fuel Line Corridor and Pumphouse
Table 5-2c	Groundwater Sampling Log – Site 3: Fuel Line Corridor and Pumphouse
Table 5-2d	Summary of Water Analytical Results – Site 3: Fuel Line Corridor and
10010 0 20	Pumphouse
Table 5-3a	Sample Locations and Descriptions – Site 6: Cargo Beach Road Drum Field
Table 5-3b	Summary of Soil Analytical Results – Site 6: Cargo Beach Road Drum Field
Table 5-3c	Groundwater Sampling Log – Site 6: Cargo Beach Road Drum Field
Table 5-3d	Summary of Water Analytical Results – Site 6: Cargo Beach Road Drum Field
Table 5-4a	Sample Locations and Descriptions – Site 7: Cargo Beach Road Landfill
Table 5-4b	Summary of Soil Analytical Results – Site 7: Cargo Beach Road Landfill
Table 5-5a	Sample Locations and Descriptions – Site 8: POL Spill Site
Table 5-5b	Summary of Soil Analytical Results – Site 8: POL Spill Site
Table 5-5c	Summary of Water Analytical Results – Site 8: POL Spill Site
Table 5-6a	Sample Locations and Descriptions – Site 10: Buried Drums
Table 5-6b	Summary of Soil Analytical Results – Site 10: Buried Drums
Table 5-7a	Sample Locations and Descriptions – Site 11: Fuel Storage Tanks
Table 5-7b	Groundwater Sampling Log – Site 11: Fuel Storage Tanks
Table 5-7c	Summary of Water Analytical Results – Site 11: Fuel Storage Tanks
Table 5-8a	Sample Locations and Descriptions – Site 13: Electrical Power Building
Table 5-8b	Summary of Soil Analytical Results – Site 13: Electrical Power Building
Table 5-9a	Sample Locations and Descriptions – Main Operations Complex
Table 5-9b	Summary of Soil Analytical Results – Main Operations Complex
Table 5-9c	Groundwater Sampling Log – Main Operations Complex
Table 5-9d	Summary of Water Analytical Results – Main Operations Complex
Table 5-9e	Summary of Soil Testing Results – Main Operations Complex
Table 5-10a	Sample Locations and Descriptions – Site 14: Emergency Power/Operations
	Building
Table 5-10b	Summary of Soil Analytical Results - Site 14: Emergency Power/Operations
	Building
Table 5-11a	Groundwater Sampling Log - Site 16: Paint and Dope Storage Building
Table 5-12a	Sample Locations and Descriptions – Site 22: Water Storage Building
Table 5-12b	Summary of Soil Analytical Results – Site 22: Water Storage Building
Table 5-12c	Groundwater Sampling Log – Site 22: Water Storage Building
Table 5-12d	Summary of Water Analytical Results – Site 22: Water Storage Building
Table 5-13a	Sample Locations and Descriptions – Site 26: Former Construction Camp
Table 5-13b	Summary of Soil Testing Results – Site 26: Former Construction Camp
Table 5-13c	Groundwater Sampling Log – Site 26: Former Construction Camp

- Table 5-14a
 Sample Locations and Descriptions Site 29: Suqitughneq River and Estuary
- Table 5-14b
 Summary of Soil Analytical Results Site 29: Suqitughneq River and Estuary
- Table 5-14cSummary of Water Analytical Results Site 29: Suqitughneq River and Estuary
- Table 5-15a
 Sample Locations and Descriptions Site 31: White Alice Site
- Table 5-15bSummary of Soil Analytical Results Site 31: White Alice Site
- Table 5-16a
 Sample Locations and Descriptions Background
- Table 5-16bSummary of Soil Analytical Results Background
- Table 5-16c
 Summary of Water Analytical Results Background
- Table 5-16dSummary of Soil Testing Results Background

LIST OF FIGURES

- Figure 2-1 Project Location
- Figure 2-2 Vicinity Map
- Figure 2-3 Site Map
- Figure 5-1 Site 1: Burn Site Southeast of Airstrip
- Figure 5-2 Site 3: Fuel Line Corridor and Pumphouse
- Figure 5-3 Site 6: Cargo Beach Road Drum Field
- Figure 5-4 Site 7: Cargo Beach Road Landfill
- Figure 5-5 Site 8: POL Spill Site
- Figure 5-6 Site 10: Buried Drums
- Figure 5-7 Site 11: Fuel Storage Tanks
- Figure 5-8 Site 13: Electrical Power Building
- Figure 5-9 Main Operations Complex
- Figure 5-10 Site 14: Emergency Power/Operations Building
- Figure 5-12 Site 22: Water Storage Building
- Figure 5-13 Site 26: Former Construction Camp
- Figure 5-14 Site 29: Suqitughneq River and Estuary
- Figure 5-15 Site 31: White Alice Site
- Figure 5-16a Background Sample Locations
- Figure 5-16b Site Boundary

LIST OF APPENDICES

- Appendix A Select Site Photographs
- Appendix B Boring Logs, Monitoring Well Construction Details, and Grain Size Distributions
- Appendix C Chemical Data Quality Assessment Report and Chemical Quality Assurance Report (on compact disk)
- Appendix D Table D-1 Assessment of Biogenic Influence on DRO/RRO, and Table D-2 Summary of Analytical Results - Trip and Equipment Blanks
- Appendix E Waste Disposal Documentation
- Appendix F Important Information About Your Geotechnical/Environmental Report
- Appendix G Survey Report
- Appendix H Field Sampling Forms
- Appendix I Field Log Books

LIST OF ACRONYMS AND ABBREVIATIONS

°F	Degrees Fahrenheit
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AST	Aboveground Storage Tank
ASTM	American Society for Testing and Materials
BG	Background Sample
bgs	Below Ground Surface
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes
CDQAR	Chemical Data Quality Assessment Report
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COC	Chain of Custody
COELT	Corps of Engineers Electronic Loading Tool
COPC	Constituent Of Potential Concern
CQAR	Chemical Quality Assurance Report
DI	Deionized
DQO	Data Quality Objective
DRO	Diesel Range Organics
EDD	Electronic Data Deliverable
EPA	U.S. Environmental Protection Agency
GAC	Granular Activated Carbon
GPS	Global Positioning System
GRO	Gasoline Range Organics
GW	Groundwater Sample
HPC	Heterotrophic Plate Count
HTRW	Hazardous, Toxic, and Radiological Waste
IDW	Investigation-derived Waste
LOCID	Location Identification for COELT
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Liter
mL	Milliliter
MOC	Main Operations Complex
MWH	Current name for company formerly known as Montgomery Watson Harza
NE Cape	Northeast Cape (former military installation)
ORP	Oxygen Reduction Potential
PAHs	Polynuclear Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyl
PID	Photoionization Detector
PPE	Personal Protective Equipment
PQL	Practical Quantitation Limit
PVC	Polyvinyl Chloride
QA	Quality Assurance
QC	Quality Control
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation

ACRONYM LIST (continued)

RRO	Residual Range Organics
SB	Subsurface Soil Sample
SD	Sediment Sample
SGS	SGS Environmental Services, Inc.
SOP	Standard Operating Procedure
SOW	Scope of Work
SQ	Soil Quality Control (blank) Sample
SS	Surface Soil Sample
SVOCs	Semi-Volatile Organic Compounds
SW	Surface Water Sample
TAH	Total Aromatic Hydrocarbons
TaqH	Total Aqueous Hydrocarbons
TICs	Tentatively Identified Compounds
TKN	Total Kjeldahl Nitrogen
TOC	Total Organic Carbon
USACE	U.S. Army Corps of Engineers
USCS	Unified Soil Classification System
USDOD	United States Department of Defense
UST	Underground Storage Tank
WP	Work Plan
WQ	Water Quality Control (blank) Sample

SUMMARY REPORT PHASE IV REMEDIAL IN VESTIGATION NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

1.0 INTRODUCTION

This summary report presents the results of the Phase IV Remedial Investigation (RI) at Northeast Cape, St. Lawrence Island, Alaska. Northeast Cape (NE Cape) was the site of former military surveillance and communications stations that operated from about 1954 until 1972. The Phase IV RI was performed to collect data to address data gaps identified in previous investigations, and to collect data that may be used by others to refine estimates of impacted media volumes.

This work was performed for the Alaska District of the U.S. Army Corps of Engineers (USACE) under Shannon & Wilson's Hazardous, Toxic, and Radiological Waste (HTRW) Contract DACA85-03-D-0003, Task Order 0006. The scope of services for this project is based on the Scope of Work provided by the Alaska District of the USACE, and dated January 30 and July 15, 2004 (Modification #1).

Guidance for performing the RI and preparing this report was gathered from the following documents, as applicable:

- Shannon & Wilson's August 2004 Work Plan documents;
- USACE construction quality program and engineering manuals;
- ADEC reporting requirements for a Release Investigation, as specified in 18 AAC 75, *"Oil and Other Hazardous Substances Pollution Control,"* (ADEC 2004), and *"Guidance for Cleanup of Petroleum Contaminated Sites,"* (ADEC 2000); and
- US Environmental Protection Agency (EPA) "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA."

1.1 <u>Project Purpose and Objectives</u>

Following closure of the military installation, NE Cape has been subject to phased remedial investigations and removal actions. The USACE's remedial strategy at NE Cape has been to investigate and potentially remove physical and chemical hazards that the previous military activities may present to the landowners. The objectives of the Phase IV RI were to perform specific field work activities and laboratory analyses to address data gaps identified in previous investigations. Towards this end, the Phase IV RI consisted of data collection from 15 discrete sites at NE Cape, and from background locations outside of the general installation boundaries. The 2004 data are intended to be considered with previous RI and risk assessment work to recommend site-specific cleanup goals, refine estimates of impacted soil volumes, and/or support a cleanup feasibility study under future project phases.

1.2 <u>Project Team</u>

For Shannon & Wilson, Senior Environmental Engineer Matt Hemry, P.E., was the Program Manager, responsible for ensuring that work performed under the HTRW contract was in accordance with the contract and applicable regulations. Mr. John Spielman, C.P.G., was the Delivery Order Manager, managing the day-to-day tasks associated with the project and supervising the preparation of the project submittals. Jon Lindstrom, our Senior Chemist, oversaw the chemical data review. Randy Hessong acted as the Field Team Lead and Site Safety & Health Officer, and had the principal role in preparing project submittals. Randy was supported in the field by Julie Keener and Ben Heavner.

Discovery Drilling, Inc. of Anchorage, Alaska was subcontracted to provide drilling, monitoring well installation, and related services. Discovery Drilling subcontracted Winninger and Sons Drilling to provide these services. SGS Environmental Services, Inc. (SGS) of Anchorage, Alaska was subcontracted to provide analytical testing and consulting services. SGS is an Alaska Department of Environmental Conservation (ADEC)-approved and USACE-Certified Laboratory. Mammoth Consulting provided a Professional Land Surveyor to survey sampling locations and reduce the data into graphic form. The temporary field camp and cook were provided by Alaska Minerals Exploration Service. Arsenault-Legg was subcontracted to assist in the chemical data quality review.

2.0 ENVIRONMENTAL SETTING

2.1 <u>Site Description</u>

NE Cape is located on St. Lawrence Island in the Bering Sea, approximately 135 miles southwest of Nome, Alaska, as shown in Figure 2-1. The Village of Savoonga is the closest community, and is located approximately 60 miles northwest of NE Cape. The site is located near the northeast end of the island at around 63°19' North, 168°58' West, approximately 9 miles west of the northeastern cape of St. Lawrence Island. According to land acquisition records, the size of the NE Cape site, as a whole complex, is approximately 4,800 acres, or 7.5 square miles, and is bounded by Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south.

The former military installation operated from about 1954 until 1972 as a surveillance station and a White Alice Communications station. In 1982, the Navy obtained the former White Alice property (26 acres), but did not utilize the site as a communications site. The land transfer was later deemed invalid and property ownership reverted to Sivuqaq, Inc. and Savoonga Native Corporation. Demolition of the buildings and the majority of other structures has been completed under multiple USACE contracts. The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact.

2.2 <u>Geographic Setting and Topography</u>

The area occupied by the former installation consists mainly of rolling tundra which rises from the Bering Sea on the north toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level roughly 3 miles from the coastline, as shown on Figure 2-2. The installation activities spanned from the beach to the mountain summit. The main area of operation, termed the Main Operations Complex (MOC), is located at about 100 feet in elevation, just north of a glacier-carved valley that opens to the tundra. The former installation layout is shown in Figure 2-3.

2.3 <u>Demographics and Land Use</u>

There are currently no year-round residents in the vicinity of the NE Cape complex. Seasonal dwellings on Kitnagak Bay, at the end of Cargo Beach Road, are used for subsistence hunting, gathering, and fishing during the summer months. The establishment of a permanent community at NE Cape is being discussed by the residents of St. Lawrence Island.

2.4 <u>Geology</u>

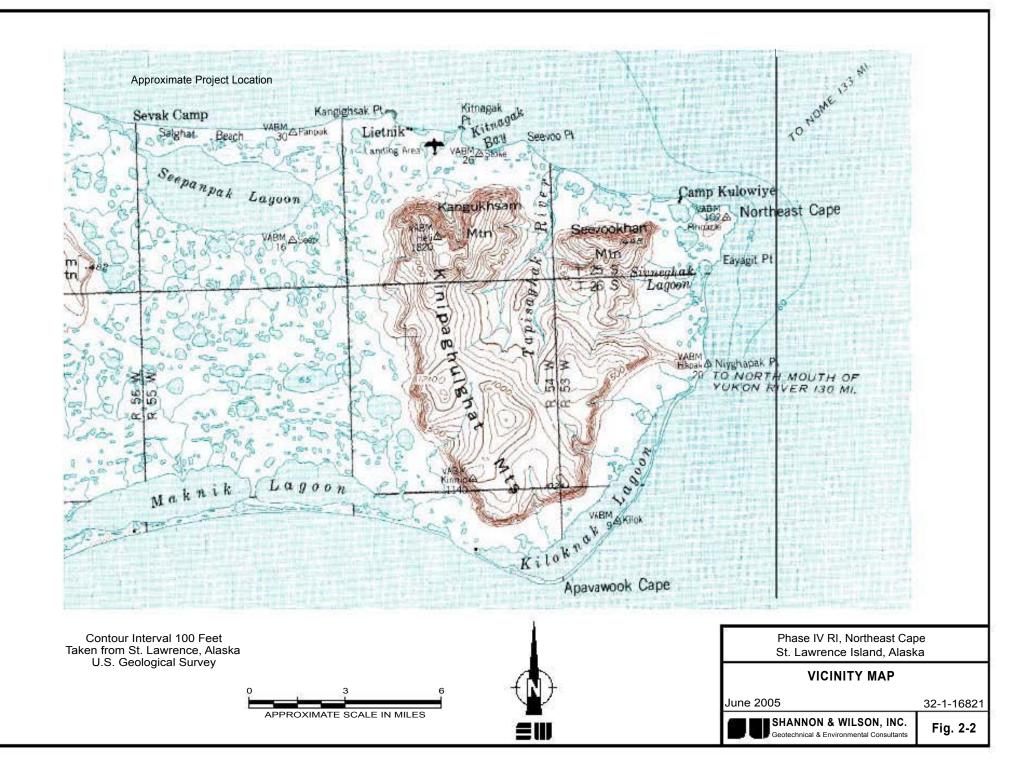
The topography at the eastern end of St. Lawrence island is dominated by the uplift of granitic rock know as the Kinipaghulghat Mountains. Kangukhsam Mountain and the highest ridges of the Kinipaghulghat Mountains, which are shown on Figure 2-2, delineate the southern extent of the installation. There have been no focused geological studies of the NE Cape morphology. The following observations were made during this project.

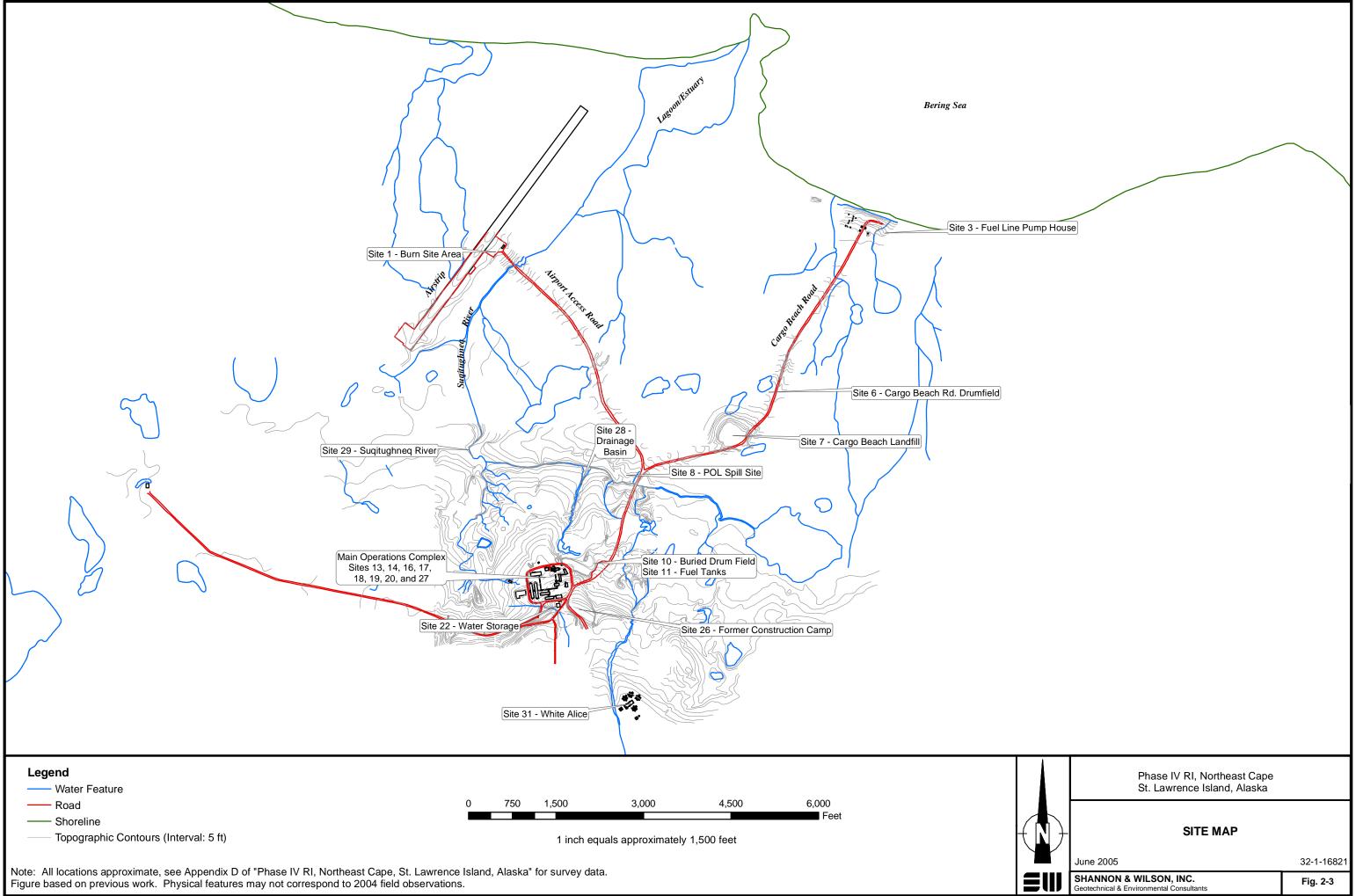
The formation of the glacial valley draining north from Kangukhsam Mountain appears to have created the majority of the unconsolidated surficial deposits on which the installation was constructed. Glacial landforms include melt-out till, moraines, drumlins, a residual rock glacier, and basal till at depth. This alpine valley now holds the southern branch of the Suqitughneq (Suqi.) River, a small stream that arcs through the heart of the installation, trending north to the Bering Sea. Periglacial processes, such as frost rubble (talus) on the steeper slopes and frost patterning on the flats, are superimposed over the glacial landforms. Frost rubble from the valley walls appears to have been transported by the glacier, and comprises a significant amount of the melt-out till distributed across the site. Alluvial process are superimposed on the periglacial forms in limited areas along the southern branch of the Suqi. River in the vicinity of the White Alice Site (Site 31) and the Main Operations Complex (MOC).

Granitic bedrock is exposed at low tide in the western part of Kitnagak Bay. Investigators from the consulting firm MWH suggested that "quartz monzonitic bedrock underlies the unconsolidated materials at a relatively shallow depth on a wave-cut erosional platform." (MWH, 2003) The alignment of three large drumlins (including the Cargo Beach Road Landfill location) suggests that the former glacier transitioned from alpine to piedmont as it flowed toward Kitnagak Bay. The rocks around the Suqitughneq Lagoon and at Kitnagak Point resemble those on the drumlins. Breaking waves off shore of Kitnagak Bay may be due to a submarine terminal moraine, and the glacier may have had a tidewater terminus.

Soil and vegetation development is typical of sub-arctic to arctic tundra. Relatively flat areas that are poorly drained due to ice-rich permafrost and/or fine silt have well developed peat bogs. Thinner tundra vegetation and scant organic horizons are found on well drained areas. Over 1,000 feet in elevation, vegetation consists primarily of lichen.

2.5 <u>Hydrology</u>


The hydrogeology of the Northeast Cape installation is complex. Groundwater moving through bedrock fractures is likely to be significant in the mountains. Beyond the mountain front, shallower aquifers in the depositional materials are present. These shallow aquifers are influenced by permafrost and active seasonal thawing. Shallow subsurface water has been observed perched on ice rich frozen ground in boggy areas. This is a relatively shallow (2 to 4 feet) active layer due to the insulative effects of thick tundra vegetation and peat. In areas of thin soil and exposed cobbles and boulders, heat conduction is greater, the active layer appears to be significantly deeper, and permafrost may be discontinuous. This aquifer typically consists of coarse granular material with high permeability. The water table in these areas has been encountered as shallow as 5 feet and as deep as 37 feet below ground surface (bgs). While it is difficult to recover rocky, course-grained soil with a drill rig without thawing it, frozen soil was suspected beneath this "medium depth" aquifer at several locations and confirmed at a few. The medium depth aquifer (and permafrost) may be perched on basal till from past glaciations. Evidence exists that this till, which was found to be frozen at two locations, acts as a confining layer for a deeper aquifer.


2.6 <u>Climate and Ecology</u>

St. Lawrence Island has a subarctic, maritime climate with some continental influences during winter, when the surrounding Bering Sea is frozen. Winds and fog are common, and precipitation occurs up to 300 days per year as light rain, mist, or snow. Annual precipitation is about 16 inches per year, and more than half falls as light rain between June and September. Summer temperatures average between 48 and 34 degrees Fahrenheit (°F), with a record high of 65°F. Winter temperatures average from minus 2°F to 10°F, with an extreme low of -30°F (URS, 1985).

Additional information on the climate and ecology of the NE Cape area has been included in several of the previous RI work plans and reports, and will not be duplicated here.

3.0 FIELD INVESTIGATION METHODS

The following section describes the general field methods and procedures used to complete the Phase IV RI fieldwork. Methods unique for an individual project site or background location are discussed by site in Section 5. Photographs 1 through 16 in Appendix A include images of many of the field methods in use.

3.1 <u>Workplan Variances</u>

In general, the Phase IV RI fieldwork conducted using the methods specified in Shannon & Wilson's August 2004 Work Plan (WP). However, variances from the WP were necessary due to actual physical field conditions that were different from those presented in the scope of work (SOW). The variances are discussed for each individual project site in Section 5.

3.2 <u>Mobilization and Demobilization</u>

A Hercules C-130 Transport operated by Lynden Air Cargo was used to transport equipment and supplies to the site in two flights. The Hercules C-130 is shown in Photograph 1 in Appendix A after unloading its cargo. The Lynden Hercules and a DC-6 cargo airplane charted from Everts Air Cargo were used to return the gear to Anchorage. Field personnel traveled to and from Northeast Cape on aircraft charted from Bering Air Service out of Nome. Bering Air was also chartered to transfer sample coolers from the site to Nome, where they were forwarded to Anchorage on Alaska Airlines Goldstreak Service.

A temporary camp, provided by Alaska Mineral Exploration Service, was set up to provide room and board for the field crew, which consisted of three environmental professionals from Shannon & Wilson, a two-person field crew from Discovery Drilling, a cook provided by Alaska Minerals Exploration Service, and a surveyor from Mammoth Consulting. The camp was erected on the gravel pad adjacent to the airstrip as illustrated in Photograph 2. Electricity was supplied by gasoline-fuelled generators. Surface water was pumped from the Suqi. River for filtration through a particulate filter and granular activated carbon for drinking and cleaning water.

3.3 <u>Soil Sampling</u>

Soil samples were collected in general accordance with ADEC's Underground Storage Tanks Procedures Manual (November 2002), and Shannon & Wilson's August 2004 Field Sampling Plan. The soil sampling efforts included the collection of surface soil, sediment and subsurface soil samples for chemical and geotechnical testing.

3.3.1 Surface Soil and Sediment Sample Collection

Surface soil and sediment samples were collected from depths of roughly 0 to 2 feet below the ground (or sediment) surface. To the extent practical, samples were collected from beneath the vegetation mat, and were representative of the particle size distribution of nearby soil or sediment. Steel shovels were used as necessary to remove vegetation, expose mineral soil, or reach a depth specified in the WP. Once the desired sample depth was exposed, material that may have been in contact with the shovel was swept away with a gloved hand or clean sampling spoon.

3.3.2 Shallow Subsurface Soil Sample Collection

Shallow subsurface soil samples (2 to 5 feet bgs) were collected, often at the same location as a corresponding surface soil sample (co-located). In soft soils, the target sample depth was accessed using a shovel and/or pickaxe. At locations with harder/denser soil and/or deeper sample intervals, a hand-cleaned (See Section 3.5) hollow-stem auger was advanced using the drill rig to access the sample interval. The auger was extracted from the hole, and the sample was collected from the auger flights. Care was taken to sample soil that was not in contact with the auger blade.

3.3.3 Soil Borings – Drilling and Sample Collection

A portable rotary drill rig equipped with hollow-stem auger and down-hole hammer capabilities was used to advance soil borings and install monitoring wells. Split-spoon samplers with 3-inch outside diameters were used to collect soil samples at intervals as boreholes were advanced. Photograph 5 shows a recovered sample in an open split-spoon, and Photograph 10 shows a split-spoon sampler in the foreground and the drill rig advancing a soil boring. Surface soil samples (to a depth of about 1.5 feet) were collected directly from the borehole using a stainless steel spoon. Split-spoon samplers were driven ahead of the auger or hammer at least 18 inches, if possible. Upon retrieval, the split-spoon sampler was opened and the samples were recovered from the center portion, excluding potentially disturbed soils at the top and bottom of the sampler. In some cases, the volume of soil required to fill the required containers exceeded the volume of soil recovered by the sampler. In these situations, the split-spoon sampler was driven a second time to obtain sufficient soil. Split-spoon samplers were decontaminated between each use. Soil Borings were documented on "Field Log of Boring" forms which included the project name, driller, drilling method, boring number, location, sample time, number, and depth, field screening results, and material descriptions.

Subsurface soil samples were collected from each sample interval for field headspace screening and potential laboratory analysis. A subset of the collected soil samples were selected

for laboratory analysis based on field observations, the highest headspace screening readings, and the intervals designated in the WP. Borings not completed as monitoring wells were backfilled with the drill cuttings following the completion of soil sampling.

3.3.4 Field Screening Method

An HNU HW101 photoionization detector (PID) with a 11.7 electron-volt lamp or an OVM Model 580B PID with a 10.0 electron-volt lamp were used to screen soil for volatile hydrocarbons. Both instruments were calibrated using 100 part per million (ppm) isobutylene standard gas on each day used. Headspace screening was used as a semi-quantitative indication of contamination to aid in the identification and delineation of impacted areas and select soil samples for laboratory analysis. The HNU PID was used for all recorded headspace samples for consistency. Following ADEC headspace sampling procedures, headspace screening was accomplished by placing soil in a self sealing plastic bag to approximately one-half of its capacity using a clean spoon. The samples were then allowed to warm to a uniform temperature of at least 40 degrees Fahrenheit (10 minutes to one hour). To screen, the sample was agitated for about 15 seconds, the seal of the bag was opened slightly, the instrument probe was inserted into the air space above the soil, and the bag was held closed around the probe. The maximum ionization response as the PID drew vapor from the sample bag was recorded.

3.3.5 Analytical Soil Sample Collection

Once the desired sampling location was exposed, all soil and sediment samples were collected using clean new disposable stainless steel spoons. The soil screening bag (if required) was filled and sealed first, followed by the analytical sample containers in order of decreasing analyte volatility. Analytical samples, with the exceptions of gasoline range organics (GRO) and benzene, toluene, ethylbenzene, and xylenes (BTEX), were collected by quickly and completely filling the appropriate laboratory-provided jars. Samples for analysis of GRO and BTEX were collected by placing approximately 50 to 60 grams of soil into a pre-weighed, laboratory-supplied 4-ounce (oz.) jar and adding the contents (25 milliliters) of one or more surrogated methanol vials to submerge the soil. If more than one methanol vial was used, it was noted on the sample container lid, as well as the Chain of Custody. To prevent leakage, the rim of each sample container was quickly wiped free of soil particles with a piece of clean paper towel before capping. The level of the methanol was marked on the sample jar to detect future leakage. Each soil sample was visually classified for soil type and field-screened for volatile hydrocarbons.

3.3.6 Geotechnical Soil Sample Collection and Testing

Where practicable, bulk density was measured at background soil and sediment sample locations using a balloon volumeter. Once a background sample location was selected, surface vegetation was cleared, and the soil surface was leveled to accept the base plate of the volumeter. The volumeter was placed on the base plate and an initial volume was recorded (essentially zeroing the instrument). The instrument was then set aside and roughly one gallon of soil was excavated through the base plate opening to make a smooth hole. The excavated soil was placed in a double plastic bag carefully to avoid sample loss. The balloon device was returned to the base plate and the volume of the soil removed was calculated by subtracting the initial volume from the final volume. The mass of soil removed, the moisture content of the soil, and the grainsize distribution (for granular soil) were measured in Shannon & Wilson's fixed laboratory from the contents of the sealed bag.

Geotechnical samples for moisture content and grainsize analyses were collected from the MOC area. Soil recovered with a split spoon sampler was placed in a pre-labeled plastic bag, sealed, and placed in a second plastic bag. Bulk soil samples were collected with a shovel and placed in plastic bag-lined woven poly sand bags or 5-gallon polyethylene buckets with lids to prevent moisture loss.

3.4 <u>Water Sampling</u>

Water samples were collected in general accordance with Shannon & Wilson's August 2004 Field Sampling Plan and, for groundwater, ADEC's Underground Storage Tanks Procedures Manual. Water sampling included collection of surface samples from bodies of water and groundwater samples from existing and new well points and monitoring wells.

3.4.1 Surface Water Sampling

Surface water samples were collected from the Suqitughneq River drainage and background locations. Surface water samples were collected by slowly submerging and raising clean, laboratory grade glass containers to minimize the disturbance of the water and surrounding sediment. The water was transferred into the appropriate laboratory-supplied containers. Several "dips" were often required to fill the appropriate sample containers. Slight shifts in the sample location were sometimes necessary to avoid turbid water that had developed from the sampling. Two surface water sampling locations are shown in Photographs 9 and 13.

Field observations, including surface water type (pond, stream, etc.), size, and depth of water were recorded at each sampling location. If the sample location was some distance from

shore, the survey lath marker was placed at the edge of the stream/river, perpendicular to the channel, and the horizontal offset was recorded on the lath.

3.4.2 Well Point Installation

Well points are tubes that have points on the end and slots or holes to allow passage of water. Manufactured well points were driven directly into the ground and used to sample shallow groundwater at Sites 3 and 6 for the Phase IV RI. The manufactured well points consisted of 1.25-inch inside diameter, wire-wound stainless steel screens connected to an appropriate length of 1.25-inch inside diameter galvanized blank steel pipe with threaded connectors. The well points had a nominal slot size of 0.010 inches and typically had 3 feet of screen length. The well points and riser pipe were cleaned with a high pressure detergent wash, freshwater rinse, and de-ionized water rinse then packaged in polyethylene prior to mobilization.

Site 6 well points were driven into the ground using the drill rig air hammer after using the hammer to establish a pilot hole in the rocky ground. Site 3 well points were inaccessible to the drill rig, and were installed manually using a sledge hammer. The well point pipes were completed to approximately 3 feet above the ground, and included a locking cap and padlock. A well point construction log was completed for each well point installation. A typical well point installation is shown in Photograph 7.

3.4.3 Monitoring Well Installation

New monitoring wells were installed at the Main Operations Complex, Site 22, and Site 26 to sample deeper groundwater. A boring used to install a monitoring well at the Main Operation Complex is depicted in Photograph 10. Monitoring wells were installed in completed soil borings using 2-inch-diameter schedule 40 polyvinyl chloride (PVC) well-screen with 0.010 inch machined-slots threaded to the appropriate length of 2-inch-diameter blank PVC. The screened interval was placed at a depth intended to span the zone of water table fluctuation. A sand filter pack consisting of #10-20 silica sand was used to backfill around the well screen to a depth approximately one to two feet above the top of the screen. Bentonite chips were used to seal the riser casing at the top of the sand pack. The drill cuttings generated during the soil boring were used to fill the annular space between the blank casing and the formation above the bentonite seal, or surface spread on-location.

The wells were completed with flush-mounted monitoring well monuments set in concrete. The PVC casings were sealed with padlocked expansion plugs, and magnets were placed in the monument covers to aid in future location. A monitoring well construction log was completed following each monitoring well installation. Each monitoring well number was marked clearly on the monument cover, the wood form for the concrete, and the expansion plug.

3.4.4 Well Development and Sampling

Groundwater samples were collected from both the new and the previously existing monitoring wells and well points. Before sampling, new wells were developed and purged, and existing wells were purged. The water produced during development and purging of the wells was containerized and treated, as discussed in Section 3.7.

3.4.4.1 New Monitoring Well and Well Point Development

New well points were developed using a peristaltic pump and new disposable tubing. Water was removed while periodically raising and lowering the tubing until a visible decrease in turbidity was noted and at least three well volumes had been removed, or the well point was pumped dry. If the well was pumped dry, it was allowed to recover to within 90% of its original water level or to sit overnight before development continued or purging started. Development was complete when the well point was pumped dry at least three times.

New monitoring wells were developed with a submersible pump and disposable tubing. Development did not begin for at least 24 hours after installation to allow seals and monuments to hydrate. Initially, the pump was slowly lowered and raised through the water column while pumping at up to 4 liters per minute. The pump and tubing were periodically raised and lowered vigorously as development continued. After there was a visual decline in turbidity, even after agitation, the pumping rate was reduced, and the purging procedures discussed in Section 3.4.4.4 commenced. A minimum of three wells volumes were removed during the development process. The pump was decontaminated between each monitoring well as described in Section 3.5.

3.4.4.2 Low-Flow Well Purging and Sample Recovery

Both existing and new monitoring wells and well points were purged prior to sample recovery to obtain groundwater samples that are representative of the surrounding aquifer formation. Monitoring wells were purged and sampled with a Grundfos Redi-Flo 2 variable-speed submersible pump and new disposable tubing. A peristaltic pump was used to purge and sample each well point using new disposable tubing. Purging was performed at up to 2 liters per minute, with the rate declining toward a sampling rate of approximately 500 mL per minute as the turbidity decreased. Note, however, that the submersible pump would loose prime and act like it was out of water under some conditions as the flow rate approached 500 mL per minute. In these cases sampling was performed at roughly 750 mL per minute.

Water quality parameters, including temperature, specific conductance, dissolved oxygen (DO), pH, oxidation-reduction potential (ORP), and turbidity were monitored during purging

using hand held meters and a flow-through cell. Purging was considered complete when the following stabilization of water quality parameters was measured between casing volumes:

- ORP within 10 mV
- pH within 0.2 units,
- conductivity within 3%, and
- temperature within 1 degree Celsius.

DO and turbidity values were recorded, but only used as informational stabilization data. If the well was purged dry while pumping at less than 1 liter per minute, the well was allowed to recover to within 90% of its original water level or to sit overnight, then purged dry a second time. Sampling began once the well had recovered.

Once purging was complete, groundwater samples were transferred directly from the pump tubing into the appropriate laboratory-supplied containers. Glass 1-liter containers were not filled completely to allow for expansion and contraction during shipping. At monitoring well and well point locations where natural attenuation indicators were collected, alkalinity and ferrous iron were measured using Hach field test reagents and a digital spectrophotometer after analytical samples were obtained. Finally, at "natural attenuation wells" water was pumped through the flow-through cell for the post-sampling measurement of dissolved oxygen, pH, temperature, and ORP. The final or stabilized, field-measured, water quality parameters are presented in the site-specific Groundwater Sampling Log tables in Section 5.

Caution should be used when using the field-measured water parameters. At low flow rates temperatures can be elevated due to the residence time in tubing exposed to warmer air. Oxygen concentrations can be biased low because oxygen sensors are consumptive, and low flow rates are inadequate to maintain fresh water at the sensor face. These effects were observed in the field when the submersible pump would loose prime. To resume pumping the pump was turned of, then started at a relatively high flow rate that was then diminished. Samplers could observe temperatures drop and oxygen concentrations rise when fresh water at the high flow rate reached the sensors.

3.4.5 Measuring Groundwater Elevation

Electronic water level indicators were used to measure the depth to water in below the top of the well or well point casing (TOC) to within 0.01 feet. New wells were marked on the casing to provide a reference point from which to measure. Existing casings with no mark were measured from the highest point of the casing, and a mark was made on the casing for future reference and surveying. Water levels were measured before performing development, purging, or sampling and sequentially by site at least 24 hours after sampling. The sequential

measurements were performed to gather groundwater elevation data for specific areas in a small window of time. The elevation of well casing measuring points was determined as part of the survey (see Section 3.6), and water level elevation was calculated by subtracting the measured depth to water from the surveyed TOC elevation. Water level indicators were decontaminated as describe in Section 3.5.

3.5 Sampling Equipment Decontamination

Decontamination of split-spoons and hand tools was performed by washing with an Alconox solution, rinsing with potable water and rinsing again with deionized (DI) water after collecting each sample. If a split spoon or tool was not to be reused directly after cleaning, it was placed in a clean plastic bag to prevent contact with contaminants. If a petroleum product or sheen was visible on any sampling equipment, a "coarse" soapy water wash, clear water rinse, and alcohol rinse was performed before the normal decontamination procedures. To determine if cleaning procedures were adequate, equipment blank samples were collected by running DI water over tools that may contact analytical samples. Equipment blanks are discussed in Section 4.6.3

Drill augers and rods used for soil borings were decontaminated between borings at each site by hand using scrub brushes and a drum of soapy water followed by a clean water rinse. Drums of soapy and clean water were carried on the drill rig for this decontamination procedure (See Photograph 6). Augers and rod were further decontaminated between each site in the Northeast Cape complex by immersing and scrubbing them in a trough of soapy water, followed by a clean water rinse in a second trough. The water from the troughs and drums was treated as described in Section 3.7.

Submersible groundwater sampling pumps were decontaminated by disposing attached tubing and scrubbing the pump in water with Alconox. After scrubbing, the soapy water was run through the pump. The pump was rinsed by submerging it and running it first in potable water and then in DI water. Pump decontamination is illustrated in Photograph 11. To determine if cleaning procedures were adequate, equipment blank samples of DI water run through a cleaned pump. Equipment blanks are discussed in Section 4.6.3

Water level indicators were decontaminated between well measurements by, at a minimum, rinsing the lower two feet with DI water and drying with a clean paper towel. Indicator probes and measuring cord were cleaned with a laboratory grade detergent (Alconox) and potable water solution followed by potable and DI water rinses if used to sound a well for total depth, if a well had known contaminants, or if a petroleum odor was noted in a well.

3.6 <u>Surveying</u>

The field survey commenced September 3, 2004 and was substantially completed on September 8. Additional Global Positioning System (GPS) data for background samples were collected between September 8 and September 13th. The full survey report is included as Appendix D.

In general, rod and transit surveying techniques were used to survey sample locations. Northings and eastings were determined by measuring angles and distances from existing local baselines, and elevations were determined using differential leveling techniques. Horizontal locations were reported to 0.01 feet. Vertical elevations were reported to 0.01 feet for new and existing monitoring wells and well points and 0.1 feet for other sample locations. The locations and elevations of monitoring wells were determined at sampling reference marks on the well casings. For the well points at Sites 3 and 6, the horizontal positions were measured at the casing center at ground surface, and the elevations were measured at the TOC reference mark.

The locations of the Background Sample Sites were determined using differentiallycorrected GPS data. Positions were collected using a Trimble GeoXT receiver. Horizontal precisions for the points collected were in the 6-meter range before processing, and the 1-meter range after correction using data from a continuously operating reference station (CORS station).

Swing-tie measurements from surveyed points were used to determine locations of three samples at Site 7, three samples at Site 13, and two bulk soil samples at the MOC. Swing tie measurements were made by the sampling crew with a fiberglass tape.

3.7 <u>Waste Management</u>

Investigation Derived Waste (IDW) generated during field activities included water from well/well point development and purging, water from decontamination of sampling and drilling equipment, drill cuttings from borings and monitoring wells, analytical soil samples that were not selected for analysis, used granular activated carbon (GAC), personal protective equipment (PPE), and miscellaneous disposable sampling equipment. Other wastes included water from precipitation in the fuel storage containment, waste generated by a small (1-2 gallon) diesel fuel spill to the ground from a camp heater during a storm; a leaking 5-gallon container of air cooler cleaning solvent found on the beach by a NE Cape resident and removed at his request; and general camp-related wastes such as garbage, gray water, and sanitary waste.

Groundwater was pumped or bailed from new monitoring wells and well points (developed) to remove sediment and/or turbid water resulting from the well installation. Similarly, existing monitoring wells and well points were purged of potentially stagnant water

prior to sampling. Development and/or purge water was contained in 55-gallon steel drums at the site where it was generated. The water in the drums was processed on site using a GAC filter, and discharged to the ground surface. Decontamination water and rainwater that accumulated in the fuel storage containment cell were also pumped through the GAC filter and discharged to the ground surface.

Potentially contaminated soil generated during the investigation included headspace screening samples, soil samples from borings (including methanol preserved samples) which were not selected for analysis (excess), and drill cuttings. Headspace screening samples were returned to their original location or placed in the cuttings of the boring of origin. Excess unpreserved soil samples from borings were also placed in the cuttings of the boring of origin when practical. Some excess unpreserved samples and all excess methanol preserved soil samples were placed in the waste soil drum (see below). Drill cuttings and soil samples from monitoring wells were screened with a PID during drilling. Drill cuttings from monitoring wells were used to be contaminated based on visual, olfactory, or headspace screening results, and were used were used to fill the annular space above the screened interval seal or spread on the ground surface in the vicinity of the monitoring well. Drill cuttings from borings were used to backfill the boring of origin as completely as practicable.

A non-IDW soil was generated by a small (1-2 gallon) diesel fuel spill to the ground from a camp heater during a storm. Soil was excavated from the spill area by hand and placed in a 55gallon drum. The excavation proceeded until field screening with a PID did not detect further impacted soil. The volume of excavated soil occupied approximately 1/3 the volume of the drum. Solids that settled out of the decontamination and development water and excess soil samples that were not submitted for analytical testing were placed in the drum with the soil excavated from diesel spill area. The drum was handled as contaminated soil, and transported to Anchorage for analysis and disposal by Emerald Alaska, Inc.

Used PPE, homogenization pans, paper towling for cleaning the exterior of sample containers, and emptied headspace bags were stored in polyethylene bags labled "PPE". Used pump tubing and bailers were stored in polyethylene bags labled "Used Tubing", and used sampling spoons were stored in polyethylene bags labels "Dirty Spoons". Disposable sampling equipment and PPE were transported in heavy drum liner bags to Anchorage on cargo aircraft and disposed at the Municipality of Anchorage's Hiland Road Landfill.

A pit toilet was constructed for human waste in the gravel pad near the intersection of the runway and the Camp Pad. The pit depth was three to five inches less than the specified minimum of 4 feet because frozen ground was encountered at 3 ft. bgs. and the soil was grading to ice rich

silt. The pit toilet was filled with the original soil on the day of demobilization. Grey water from domestic washing was strained for solid particles and allowed to infiltrate into the gravel Camp Pad. The solid particles were incinerated.

Sorbent pads used during the transfer of fuel to prevent drips or spills were contained in a closed container labeled "Used Sorbents." These Sorbent pads were burned with domestic trash to assist with combustion. Residual ash from domestic trash was packaged in plastic garbage bags and contained in "drum liner" polyethylene bags with non-burnable camp garbage. The bags were either flown to Nome for disposal in the bcal landfill by the charted air service or to Anchorage at demobilization for disposal in the Hiland Road Landfill.

A member of the local community observed a leaking 5-gallon container labeled "air cooler cleaner" on the beach to the north-northeast of the airstrip and requested a spill response from Shannon & Wilson's field personnel. The constituents diesel fuel and nonylphenol were visible on the battered product label. Shannon & Wilson notified the USACE Project Manager the unanticipated waste and the proposed treatment/disposal method. The air cooler cleaning solvent was over-packed and transported as flammable product for energy recovery from Northeast Cape to Anchorage. Emerald Alaska characterized the contents of the container, identified Xylenol and 1,2-dichlorobenzene, and transported it to their facility as non-hazardous waste for disposal.

At the completion of the field work, the Waste Tracking Log, presented as Table E-1 in Appendix E, was checked to ensure that generated wastes were staged for removal from the site or had been treated and disposed at the site. The Waste Tracking Log was used to verify that waste materials were not inadvertently left behind after demobilization, in accordance with the WP. Table E-1, and other documentation for the handling and disposal of generated wastes from the site, is provided in Appendix E.

4.0 <u>ANALYTICAL DATA</u>

The project's chemical data was generated using methods that conform to the USDOD Quality Systems Manual for Environmental Laboratories, Version 2; the USACE QA Shell Document, EM-200-1-3; and the ADEC Underground Storage Tanks Procedures Manual.

4.1 <u>Data Collection Objectives</u>

The data collection objective of the Phase IV RI was to generate defensible definitive chemical data from the sample locations and methodologies specified in the SOW. Samples for chemical and/or geotechnical analyses were collected from the surface soil, subsurface soil, surface water, groundwater and sediment at the former NE Cape facility.

4.2 <u>Sample Identification</u>

Samples were assigned unique identification numbers in the field. The sample identification numbers were unique eleven-character strings of the form YYNESNSSXXX, where:

- YY is the year (04);
- NE is the project location (Northeast Cape);
- SN is the discrete site within the general Northeast Cape project area (e.g. "06" for Site 6 or "BG" for background samples);
- SS is the sample matrix (GW for groundwater, SS for surface soil, SD for sediment, SB for soil boring or subsurface soil, SQ for soil quality control blanks, and SW for water quality control blanks); and
- XXX is the sample number, incrementing upwards from 101 at each discrete site. Quality control duplicates were indicated by 2XX, and replicates by 3XX, where XX matched the sample identification, which was of the form 1XX.

For example, Sample 04NE03SB105 would be assigned to a subsurface soil sample collected at Site 3, and would reflect the fifth analytical soil/sediment sample collected at this site ("105"). If replicate samples were collected from this location, the duplicate and triplicate sample numbers would be "04NE03SB205" and "04NE03SB305," respectively. In this report, the suffix "04NE" has been omitted for brevity and readability.

Sample locations were also assigned discrete location identification (LOCID) numbers for use in the electronic data deliverables system. Where multiple samples were collected from different depths at the same horizontal location, the approximate depth, in feet bgs, follows a dash in the LOCID. For example, the LOCID for Sample 04NE03SB103 was "03B1-2" which

signifies the sample was collected from Site 3, Boring 1, 2 to 3.5 feet (bgs). Background surface water and sediment sample locations were given the same LOCID. Sample identification numbers, LOCIDs, sample location descriptions, and depths are summarized in the Section 5 tables "Sample Location and Descriptions".

Sample labels that contained the sample identification numbers, date and time of collection, and analyses to be performed were prepared and applied in the field prior to sample transport to the project and QA laboratories.

4.3 <u>Sample Packaging and Transport</u>

Environmental samples were preserved, packaged and shipped to the project and QA laboratories using the methods outlined in Shannon & Wilson's August 2004 Work Plan. Precautions for sample preservation, hazardous material shipping, cross contamination avoidance, and environmental and physical stress mitigation were addressed to ensure that samples reached the laboratory in good condition.

4.3.1 Sample Preservation

Each laboratory sample was preserved at a cool temperature by placing the sample in an insulated cooler shortly after collection. Frozen gel packs (blue ice) were used to establish and maintain sample temperatures of 4° Celsius (C) plus or minus 2° C. Methanol was used in 25 mL aliquots to preserve soil samples collected for volatiles analysis. Hydrochloric and sulfuric acids were used to preserve water samples at or below a pH of 2 for various analyses. These preservatives are considered hazardous materials for shipping and required special handling. Due to regulations governing nitric acid shipment on commercial aircraft, water samples for metals analyses were collected and submitted to the laboratory in unpreserved containers. The laboratory then added the appropriate amount of nitric acid at least 24 hours prior to analysis.

4.3.2 Sample Packaging

After labeling, sample containers were individually padded with bubble-wrap. The containers for soil samples preserved with methanol were pre-weighed with labels applied at the laboratory. To meet shipping requirement for a secured lid, these containers were placed in thin plastic bags and then wrapped with tape to avoid adding mass to the container. To reduce the risk of volatile compounds from other samples or the environment migrating into a sample container, each container (or sample set) was placed in a sealable plastic bag. Samples collected from locations with strong fuel odors were stored and shipped in separate coolers.

Coolers were prepared for shipment by ensuring that the cooler drain was taped closed from both sides, then adding sorbent material (vermiculite). The bagged samples were placed inside a plastic garbage bag in the cooler, and ice packs were placed around and among the sample containers. The liner bag was then tied or taped closed, and additional inert cushioning was added to protect and insulate the samples. Adequate cushioning was double checked by ensuring that no movement was audible in the closed cooler with moderate shaking. A resealable plastic bag was taped to the inside lid of the cooler to contain the Chain-of-Custody (COC). Finally, shipping labels were placed on the exterior of the cooler and the laboratory address was secured to the top.

Final packaging was completed at the time of shipment. The COC was relinquished and sealed inside the cooler. Two custody seals were applied to opposite corners, and clear tape was placed over the seals to protect them from abrasion. A minimum of two full wraps of strapping tape were placed around the cooler in two places to secure the lid, and a shipping form was affixed to the top.

4.3.3 Sample Shipping and Contacts

The time and temperature sensitive nature of environmental samples were discussed with commercial shipping personnel in Nome. The project and QA laboratories were informed of cooler shipments through the Delivery Order Manager. The laboratories completed a cooler receipt form upon sample receipt to document sample conditions at the time of receipt. The Delivery Order Manager was notified of discrepancies by the laboratory.

4.4 <u>Analytical Parameters</u>

Table 4-4 lists the analyses and analytical methods specified in the SOW, and includes the abbreviations applied in this report. The analyses to be performed on samples from individual sites were specified in the SOW and are discussed in Section 5.

The influence of biogenic compounds on the diesel and residual range organic (DRO, and RRO) results from specific sites identified in the Work Plan were assessed by the project laboratory. Background soil and sediments were assessed for biogenic compounds by running a library search on DRO/RRO extracts by Method SW8270. The laboratory project manager reviewed the tentatively identified compounds (TICs) from the library search and the DRO/RRO chromatograms to comment on whether petroleum hydrocarbons were the likely source of reported DRO and RRO concentrations. This methodology is not nationally published, relies largely on the skills of the project laboratory, and will not be subject to the same level of QC as the primary project samples. The assessments are summarized in the site-specific summary of

analytical results tables. The laboratory project manager's comments are included in Table D-1 of Appendix D.

ANALYSIS/ANALYTE	ABBREVIATION	METHOD
Gasoline Range Organics	(GRO)	AK101
Diesel Range Organics	(DRO)	AK102
Residual Range Organics	(RRO)	AK103
Total Organic Carbon	(TOC)	TOC - SGS SOP
Aromatic Volatile Organics (benzene, toluene, ethylbenzene, xylenes)	(BTEX)	SW8260B
Polynuclear Aromatic Hydrocarbon	(PAH)	PAH SIM
Semi-volatile Organic Compound	(SVOC)	SW8270C
Polychlorinated Biphenyl	(PCB)	SW8082
Pesticides		SW8081A
Total Metals (excluding Mercury)		SW6020
Mercury (water / soil)		SW7470A / 7471A
Natural Attenuation Parameters		
Nitrate		EPA300.0
Ammonia		SM4500
Total Kjeldal Nitrogen		SM4500
Orthophosphate (soluble reactive phosphate)		ASA 24-5
Potassium		SW6020
Sulfate		EPA300.0
Iron, total		SW6010B
Heterotrophic Plate Count	(HPC)	SM9215B
Oil Degrading Bacteria		Sheen Screen
Physical (Geotechnical)		
Grain Size Classification		ASTM C136/D422
Moisture Content	(% M)	ASTM D2216
Bulk Density		ASTM D2167M

TABLE 4-4 ANALYTICAL METHODS

KEY	DESCRIPTION
AK	Alaska Method
SW	Solid Waste Method
SGS	SGS Environmental Services, Inc.
SOP	Standard Operating Procedures
SIM	Selective Ion Monitoring
EPA	Environmental Protection Agency
ASTM	American Society for Testing Materials

Shannon & Wilson's Work Plan stated that total aromatic hydrocarbons (TAH) and total aqueous hydrocarbons (TAqH) were to be calculated using the aromatic volatile organics (BTEX) and polynuclear aromatic hydrocarbon (PAH) results. TAH and TAqH values were requested for the following surface water samples: 08SW101, 29SW101 through 29SW103, and BGSW101 through BGSW110, plus associated QC/QA samples. TAH was calculated by adding

the total concentration of the BTEX analytes. Similarly, TAqH was calculated as the sum of the BTEX and the PAH analytes. Estimated concentrations were included in the calculation, and $\frac{1}{2}$ of the practical quantitation limit (PQL) was used when an analyte was not detected.

The natural attenuation parameters nitrate, ammonia, total kjeldahl nitrogen (TKN), ortho-phosphate, potassium, sulfate, total iron, heterotrophic plate count (HPC), and oil degrading bacteria were analyzed. These results can be used along with field measurements of groundwater alkalinity and ferrous iron to evaluate the capability of natural systems to degrade contaminants. Natural attenuation parameter results are presented in the site-specific Summary of Analytical Results tables in Section 5. Alkalinity and ferrous iron field results are presented in the site-specific Groundwater Sampling Log tables in Section 5.

4.5 <u>QA/QC Samples</u>

4.5.1 Field Replicate Samples

Replicate samples are collected in the field and submitted for analysis of regulated compounds to evaluate both the sample matrix heterogeneity and variability in sampling and analytical practices. Field quality control (QC) duplicate, and quality assurance (QA) triplicate samples were co-collected with project samples and analyzed at a rate of one QC/QA set per ten project samples for each method and matrix, with the exception of natural attenuation parameters and TOC. The QC samples were submitted to the project laboratory and the QA samples were submitted to North Creek Analytical in Bothell Washington.

Soil and sediment replicate samples were collected by quickly adding an appropriate amount of soil or sediment to the three methanol-preserved containers for GRO and/or BTEX one at a time as soon as fresh soil was exposed. Once the methanol preserved containers were sealed, the soil in the sample hole was mixed with the sample spoon, and containers were filled simultaneously to provide a more homogeneous sample set. Split-spoon samplers do not contain enough soil volume to fill the containers of a replicate sample set with a long analyte list. Therefore, the majority of replicate sets were collected from near-surface samples. Analytic sets were broken up (such as GRO/BTEX replicates from one split-spoon, and metals from another) when necessary to maintain the 10-percent replicate frequency.

Replicate surface water and groundwater water samples were collected by completely filling the appropriate container for GRO and BTEX. The remaining containers were partially homogenized by moving the pump discharge tube alternately between the three containers for each analysis. The wells selected for replicate samples exhibited good yield, so that pumping the well dry was avoided in the middle of a sample set.

4.5.2 Trip Blanks

Trip (or travel) blank samples are used to determine if sample containers become contaminated during storage and shipment to and from the project. At least one trip blank for each matrix (soil/sediment or water) was included with each sample cooler shipped from the field with samples for gasoline range organics (GRO) and BTEX. Trip blanks were prepared by the project and QA laboratories before mobilization. Trip blank results are summarized in Table D-2 in Appendix D.

4.5.3 Equipment Blanks

Equipment blanks demonstrate that reusable sampling equipment has been cleaned effectively to prevent cross-contamination of samples. Equipment blank samples were collected by pouring DI water over split-spoon samplers and the sediment dredge or pumping DI water through the RediFlo 2 submersible pump. Rinse water was captured in clean laboratory-grade containers for transfer to the appropriate sample containers. One equipment blank was collected for every 20 samples collected from reused (decontaminated) sampling equipment. Equipment blank results are summarized in Appendix D Table D-2

4.5.4 Temperature Blanks

Temperature blanks are containers of water that travel in the coolers with samples. The project and QA laboratories measured the temperature of the water upon arrival at the laboratory. One laboratory-provided temperature blank was included with each sample cooler shipped from the field.

4.6 <u>Chemical Laboratory Deliverables</u>

Analytical data were supplied by the project laboratory to Shannon & Wilson and by the QA laboratory to the USACE in hard copy and electronic formats. A separate data package was prepared for each laboratory sample delivery group, commonly called a work order. A work order typically consists of a batch of samples that were submitted to the laboratory at one time, although separate work orders were often prepared for water samples and for soil/sediment samples. The data packages include both the analytical results, and sufficient information to demonstrate that the project's data quality objectives (DQOs) have been satisfied. The DQOs include the numerical measurement quality objectives for precision, accuracy, representativeness, comparability, and sensitivity.

Hard copy packages were submitted as discrete definitive data packages for each sample delivery group. In accordance with EM 200-1-6, each definitive data package is a sequentially-

numbered submittal that contains a cover sheet, table of contents, case narrative, the analytical results, laboratory reporting limits, sample documentation information, and internal laboratory QA/QC information. Each sample delivery group data package was also submitted as an electronic data deliverable (EDD) using the COELT format. The EDDs were prepared in accordance with the *Alaska District Corps of Engineers Environmental Program Manual for Electronic Deliverables* (USACE 2003). Hard copy packages and EDDs have been provided to the USACE for archiving.

4.7 <u>Chemical Data Assessment</u>

Shannon & Wilson's role in the data assessment process included implementing chemical data quality management procedures to identify data quality discrepancies, and preparing a chemical quality assurance report (CQAR) that conforms to EM 200-1-6, Table 3-1, "Data Evaluation," (USACE, 1997). Per EM 200-1-6, data evaluation is ultimately the responsibility of the USACE, and the final determination of data usability is made by the USACE project chemist. The draft CQAR prepared by Shannon & Wilson was reviewed and utilized by the USACE project chemist to help assess the data usability and prepare the Chemical Data Quality Assessment Report (CDQAR). Appendix C includes a hard copy of the CDQAR and a CD-ROM of both the CQAR and the CDQAR in electronic Portable Document Format (pdf).

4.8 Data Presentation

Results of laboratory analyses are presented in the summary of analytical results tables provided at the end of each site-specific subsection of Section 5. Separate tables were prepared for soil/sediment and for water matrices. The abbreviation "PQL" is used in the text and in the table legends for the laboratory-established practical quantitation limit. PQLs are sometimes know as method reporting limits or detection limits. The data qualifiers established through the chemical data assessment process are incorporated into the summary of analytical results tables.

Comparison of the laboratory results to regulatory standards or established site-specific criteria was not included in the SOW. However, to provide a conceptual regulatory context and a basis for further data evaluation, the USACE and Shannon & Wilson agreed to compare the data to standard soil and groundwater cleanup levels promulgated by the State of Alaska through the ADEC, as published in 18 AAC 75, *Oil and Other Hazardous Substances Pollution Control* (ADEC 2003b, 2004). Sediment and soil sample results are compared to the most stringent Method 2 soil cleanup levels listed in Tables B1 and B2, 18 AAC 75.341, for the "Under 40 Inches" precipitation zone. The most stringent levels are typically in the migration to groundwater exposure pathway. If the most stringent level is for a different exposure pathway, the pathway has been noted in the summary of results tables in Section 5. Those compounds

with surface water and groundwater results are compared to the groundwater cleanup levels listed in Table C, 18 AAC 75.345. TAH and TAqH results are compared to 18 AAC 70, *Water Quality Standards* (ADEC, 2003a).

5.0 <u>SITE-SPECIFIC ACTIVITIES</u>

The NE Cape complex has been subdivided by previous investigators into separate sites. The Phase IV RI was focused on additional site characterization at those sites where data gaps remain. The following sections describe the site conditions, scope of investigation, and analytical results for the 15 individual sites investigated and data collected from background locations during the 2004 Phase IV RI.

5.1 <u>Site 1: Burn Site Southeast of Airstrip</u>

Visual reconnaissance, 20 field screening samples, and analytical soil samples from four locations (01SS101, 01SS102, 01SS103, and 01SS104) were collected at Site 1.

5.1.1 Site Description

An area near the airstrip was reportedly used as a burn pit or perhaps for fire training. Previous investigations did not collect samples from the reported burn area. The airport terminal area on the southeast side of the airstrip, where the road connects, shows the greatest degree of human disturbance (grading, debris, etc.), presumably because initial construction and later investigation/demolition activities were staged from this location. Figure 5-1 presents the location of the scoped study area.

The airstrip is located on a low, relatively flat northeast/southwest trending ridge paralleling the lower Suqi. River Drainage. The topography around the airstrip is depositional, with permafrost within a few feet of ground surface, and is suggestive of a lateral moraine from a former piedmont glacier. No bedrock outcrops were observed in the vicinity of the airstrip. The airstrip appears to have been constructed by plowing back the active layer of peaty soil to frozen ground, placing rocky fill on the frozen ground, and grading the surface with gravel and sand. Windrows of the removed tundra are visible as mounds around the airstrip, and areas between the mounds and the airstrip have become ponds due to differential permafrost melting.

5.1.2 Data Collection Objectives

Three types of data were gathered. The first is whether or not visual evidence of a fire training or burned area exists in the vicinity of the airstrip, with a focus on the southeast side. The second is headspace screening of soil for volatile hydrocarbons, and the third is laboratory analysis of soil sampled from four locations based on screening results.

5.1.3 Field Investigation

Field activities at Site 1 commenced on August 9, 2004 and were completed on September 3, 2004.

5.1.3.1 Visual Observation and Headspace Screening

The developed airstrip area and adjacent tundra were observed during a site reconnaissance when the field team arrived at NE Cape. The walk-through was partially to look for potential burn areas, and partially to familiarize the crew with camp environs. A more thorough investigation was performed by collecting field screening samples from 20 locations. Photograph 3 in Appendix A shows the typical topography and screening sample location FS1-8. The approximate locations of the field screening and analytical soil samples are shown on Figure 5-1. No apparent fire training or burn area was identified by visual observation or field screening methods.

5.1.3.2 Soil Sampling

Samples were collected using a hand shovel to cut out a "plug" of vegetation and roots to access the soil beneath. Stainless steel spoons were then used to collect the headspace samples. The headspace samples were warmed to a common temperature and screened with the HNU HW101 PID. Analytical samples were then collected at the four locations with the highest screening results. Soil descriptions and screening results are presented in Table 5-1, and sample locations are shown in Figure 5-1.

Sample location 01SS103 is outside the study area boundary, and was the largest area of distressed tundra observed. The distressed tundra consisted of two areas of desiccated (orange, yellow and dark brown to black) vegetation at the same elevation as the surrounding tundra. One area was roughly ten feet in diameter, and the other was rectangular, roughly 15 feet wide by 30 feet long. The underlying root mats and peat were intact.

5.1.3.3 IDW

The soil in the headspace bags was returned to the appropriate sample location and the removed vegetation replaced. The plastic bags were place in the project IDW waste bag.

5.1.3.4 Field Observations

Distressed tundra where previous field camps had discharged gray water was observed, and some recently charred lumber was found on the gravel "Camp Pad" during the initial field

reconnaissance. Debris and remnants from airfield communications and weather systems were also found.

In general, the tundra vegetation mat was intact across the study area with the exception of the developed road, airstrip, and gravel pad. Root mats and peat were found beneath the vegetation at all but two sampling locations. These two sample locations (01SS101 and 01SS102) were adjacent to the former air terminal, and showed signs of disturbance from recent demolition activities.

5.1.4 Analytical Results

The selected soil samples were analyzed for GRO, DRO, RRO, SVOCs, and RCRA Metals. Table 5-1b presents the analytical results for Site 1. All DRO results plus RRO results from locations 01SS103 and 01SS104 exceed ADEC cleanup criteria, likely due to biogenic compounds in the organic soil. GRO and SVOC results were not reported above the PQLs. GRO and pentachlorophenol were reported at estimated concentrations ("J" flag) less than the PQL at location 01SS103. Many of the SVOC PQLs exceed the ADEC cleanup criteria, likely due to matrix interference because of high moisture and biogenic contents. Arsenic was measured at concentrations above cleanup criteria that may be attributable to natural soil content. Chromium and selenium exceeded their respective cleanup levels at one location each, although it is possible that the chromium is not hexavalent.

TABLE 5-1a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 1: BURN SITE SOUTHEAST OF AIRSTRIP

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-1)	(feet)	(ppm) ^	Sample Classification [†]
<u>Soil Sample</u>	<u>s</u>					
* 01SS101	01SS101-1	9/2/04	Low, muddy area NE of former air terminal at FS1-1	0.5	0.6	Dark brown, silty PEAT; moist to wet - sparse vegetation
FS1-2	-	9/2/04	Low area N of former air terminal, base of gravel pad	0.3	0.2	Brown, silty angular GRAVEL; moist
* 01SS102	01SS102-1	9/3/04	Mound at NE corner of air terminal pad	0.7-0.9	1.0	Dark brown, silty PEAT; trace gravel; moist - bits of lumber
FS1-4	-	9/2/04	E of former terminal	0.3	< 0.2	Dark brown, slightly silty PEAT; wet
FS1-5	-	9/2/04	200 ft. SE of former terminal, N of bridge	0.3	< 0.2	Dark brown PEAT; wet
FS1-6	-	9/3/04	SW of gravel Camp Pad, SE of airstrip	0.2	< 0.2	Dark brown PEAT; traces of silt and gravel; moist - on high mound
FS1-7	-	9/3/04	SE of FS1-6 on low mound	0.2	< 0.2	Brown, slightly gravelly, silty SAND; moist; with organics (roots)
FS1-8	-	9/3/04	S of SE corner Camp Pad, SE of FS107	0.2	0.2	Brown, silty PEAT; moist
FS1-9	-	9/3/04	Low mound SW of FS1-8	0.2	0.1	Brown, slightly gravelly, sandy PEAT; moist; with roots
FS1-10	-	9/3/04	N of wooden platform, S of FS1-6	0.2	< 0.2	Brown, silty PEAT; moist; with roots
FS1-11	-	9/3/04	E of widened area of airstrip, SW of FS1-6	0.2	< 0.2	Brown, slightly gravelly, silty PEAT; moist
* 01SS104	01SS104-1	9/3/04	SE of widened area of airstrip, at FS1-12, SW of	0.5-0.7	0.8	Brown, silty PEAT; wet
FS1-13	-	9/3/04	W corner of proposed study area	0.6	0.3	Brown, silty PEAT; moist
FS1-14	-	9/3/04	SE of FS1-13 along SW border of Site 1 study area	0.4	< 0.2	Brown PEAT; wet
FS1-15	-	9/3/04	SE of FS1-14 along SW border of Site 1study area	0.5	< 0.2	Dark brown PEAT; wet
FS1-16	-	9/3/04	NW of Suqi. River, SW border of Site 1study area	0.5	< 0.2	Brown, silty PEAT; wet
FS1-17	-	9/3/04	Low mound NW of Suqi. R	0.5	0.4	Brown, silty PEAT; moist
FS1-18	-	9/3/04	In line with SW edge of Camp Pad	0.5	< 0.2	Brown, silty PEAT; wet
FS1-19	-	9/3/04	S of corner of Camp Pad, W of road	0.5	0.2	Brown, silty PEAT; wet
* 01SS103	01SS103-1	9/3/04	SE of Suqi R., near E corner of Site 1 study area	0.5-0.7	1.7	Dark brown, slightly silty PEAT; wet - distressed vegetation
* 01SS203	01SS103-1	9/3/04	QC replicate of 01SS103	0.5-0.7	1.7	Dark brown, slightly silty PEAT; wet - distressed vegetation
* 01SS303	01SS103-1	9/3/04	QA replicate of 01SS103	0.5-0.7	1.7	Dark brown, slightly silty PEAT; wet - distressed vegetation

KEY DESCRIPTION

* Sample analyzed by the project or QA laboratory (See Table 5-1b)

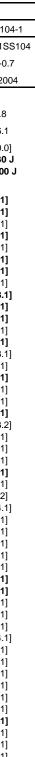
** The full sample number is preceded by "04NE", for example 01SS101 is sample 04NE01SS101

[^] Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp

† Sample classification applies to the portion of the specified sample interval from which the sample was collected

- Measurement not recorded or not applicable

ppm parts per million, calibrated to 100 ppm isobutylene


LOCID Location Identification: "01SS101-1" signifies Site 1, Surface Sample 101 at 1-foot depth (depth is rounded to the nearest foot)

			Sample Type:			SURF	ACE SOIL		
			Location ID:	01SS101-1	01SS102-1		01SS103-1		01SS104
Site 1 - Burn Site Se	outheast of Ail	rstrip	Sample ID:	04NE01SS101	04NE01SS102	04NE01SS103	04NE01SS203	04NE01SS303	04NE01SS
	.	-	Depth (ft):	0.5	0.7-0.9	0.5-0.7	0.5-0.7	0.5-0.7	0.5-0.7
Soli	Aatrix		Sample Date:	9/2/2004	9/3/2004	9/3/2004	9/3/2004	9/3/2004	9/3/2004
Parameter Tested	Test Method	Units	Cleanup Level	0/2/2001	0/0/2001	Primary	Duplicate	Triplicate	0/0/200
			-	0.6	1.0			1.7	0.8
PID Headspace Reading	HNU HW101 PID	ppm	-		1.0	1.7	1.7		
Percent Moisture	A2540G / E160.3M	%	-	44.2	41.7	76.5	77.6	78.2	76.1
Gasoline Range Organics (GRO)	AK101	mg/kg	300	[5.83]	[5.57]	2.05 J	[24.4]	2.05 J	[20.0]
Diesel Range Organics (DRO) Residual Range Organics (RRO)	AK102 AK103	mg/kg mg/kg	250 10,000 (ing)	895 J 7260 J	1200 J 7920 J	1870 J 13800 J	1970 J 19300 J	387 4550	1230 J 10600 、
Semivolatile Organic Compounds (SVOC)	,	mg/ng	10,000 (ilig)	12000	10200	100000	100000	1000	10000
1,2,4-Trichlorobenzene	SW8270C	mg/kg	2	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
1,2-Dichlorobenzene	SW8270C	mg/kg	7	[4.51]	[4.54]	[11.6]	[11.1]	[1.38]	[11]
1,3-Dichlorobenzene	SW8270C	mg/kg	_	[4.51]	[4.54]	[11.6]	[11.1]	[1.38]	[11]
1,4-Dichlorobenzene	SW8270C	mg/kg	0.8	[4.51]	[4.54]	[11.6]	[11.1]	[1.38]	[11]
2,4,5-Trichlorophenol	SW8270C	mg/kg	90	[4.51]	[4.54]	[11.6]	[11.1]	[11]	[11]
2,4,6-Trichlorophenol	SW8270C	mg/kg	0.6	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
2,4-Dichlorophenol	SW8270C	mg/kg	0.45	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
2,4-Dimethylphenol	SW8270C	mg/kg	4	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
2,4-Dinitrophenol	SW8270C	mg/kg	0.2	[36.1]	[36.3]	[92.9]	[88.5]	[11.7]	[88.1]
2,4-Dinitrotoluene	SW8270C	mg/kg	0.005	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
2,6-Dinitrotoluene	SW8270C	mg/kg	0.0044	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
2-Chloronaphthalene	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
2-Chlorophenol	SW8270C	mg/kg	1.4	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
2-Methyl-4,6-dinitrophenol	SW8270C	mg/kg	-	[36.1]	[36.3]	[92.9]	[88.5]	[13.8]	[88.1]
2-Methylnaphthalene	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[4.82]	[11]
2-Methylphenol (o-cresol)	SW8270C	mg/kg	7	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
2-Nitroaniline	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[11.7]	[11]
2-Nitrophenol	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
3,3'-Dichlorobenzidine	SW8270C	mg/kg	0.02	[4.51]	[4.54]	[11.6]	[11.1]	[11]	[11]
3-Methylphenol/4-Methylphenol coelution	SW8270C	mg/kg	-	[5.41]	[4.54]	[13.9]	[13.3]	[2.27]	[13.2]
3-Nitroaniline	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[11.7]	[11]
4-Bromophenyl phenyl ether	SW8270C SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
4-Chloro-3-methyl phenol 4-Chloroaniline	SW8270C SW8270C	mg/kg	- 0.5	[4.51]	[4.54]	[11.6]	[11.1]	[2.27] [2.27]	[11] [11]
4-Chlorophenyl phenyl ether	SW8270C	mg/kg mg/kg	0.5	[4.51] [4.51]	[4.54] [4.54]	[11.6] [11.6]	[11.1] [11.1]	[2.27]	[11]
4-Oniorophenyi phenyi ether 4-Nitroaniline	SW8270C	mg/kg	_	[4.51]	[4.54]	[23.2]	[22.1]	[11.7]	[22]
4-Nitrophenol	SW8270C	mg/kg	_	[18]	[18.1]	[46.5]	[44.2]	[11.7]	[44.1]
Acenaphthene	SW8270C	mg/kg	210	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Acenaphthylene	SW8270C	mg/kg	210	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Aniline	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Anthracene	SW8270C	mg/kg	4,300	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Azobenzene	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]		[11]
Benzo(a)anthracene	SW8270C	mg/kg	6	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Benzo(a)pyrene	SW8270C	mg/kg	1 (ing)	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Benzo(b)fluoranthene	SW8270C	mg/kg	21	[4.51]	[4.54]	[11.6]	[11.1]	[5.57]	[11]
Benzo(g,h,i)perylene	SW8270C	mg/kg	1,500	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Benzo(k)fluoranthene	SW8270C	mg/kg	1,500	[4.51]	[4.54]	[11.6]	[11.1]	[5.64]	[11]
Benzoic acid	SW8270C	mg/kg	390	[18]	[18.1]	[46.5]	[44.2]	[6.88]	[44.1]
Benzyl alcohol	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Benzyl butyl phthalate	SW8270C	mg/kg	5,600	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Bis(2-chloroisopropyl)ether	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
Chrysene	SW8270C	mg/kg	620	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
Di-n-butyl phthalate	SW8270C	mg/kg	1,700	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Di-n-octyl phthalate	SW8270C	mg/kg	2,000 (ing)	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Dibenzo(a,h)anthracene	SW8270C	mg/kg	1 (ing)	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Dibenzofuran	SW8270C	mg/kg		[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Diethyl phthalate	SW8270C	mg/kg	190	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Dimethyl phthalate	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]

Analytes continued on next page

Key on next page

SHANNON & WILSON, INC.

TABLE 5-1b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 1: BURN SITE SOUTHEAST OF AIRSTRIP

			Sample Type:			SURF	ACE SOIL		
	• • • • • •		Location ID:	01SS101-1	01SS102-1		01SS103-1		01SS104
Site 1 - Burn Site	Southeast of Ai	rstrip	Sample ID:	04NE01SS101	04NE01SS102	04NE01SS103	04NE01SS203	04NE01SS303	04NE01SS
Sec.	Soil Matrix				0.7-0.9	0.5-0.7	0.5-0.7	0.5-0.7	0.5-0.7
501			Sample Date:	9/2/2004	9/3/2004	9/3/2004	9/3/2004	9/3/2004	9/3/2004
Parameter Tested	Test Method	Units	Cleanup Level			Primary	Duplicate	Triplicate	
SVOCs (continued)									
Fluoranthene	SW8270C	mg/kg	2100	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Fluorene	SW8270C	mg/kg	270	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Hexachlorobenzene	SW8270C	mg/kg	0.73	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Hexachlorobutadiene	SW8270C	mg/kg	8	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Hexachlorocyclopentadiene	SW8270C	mg/kg	7 (inh)	[18]	[18.1]	[46.5]	[44.2]	[2.27]	[44.1]
Hexachloroethane	SW8270C	mg/kg	1.6	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
Indeno(1,2,3-cd)pyrene	SW8270C	mg/kg	11 (ing)	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Isophorone	SW8270C	mg/kg	3	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Naphthalene	SW8270C	mg/kg	21	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Nitrobenzene	SW8270C	mg/kg	0.06	[4.51]	[4.54]	[11.6]	[11.1]	[2.27]	[11]
Pentachlorophenol	SW8270C	mg/kg	0.01	[18]	[18.1]	[46.5]	[44.2]	0.459 J	[44.1]
Phenanthrene	SW8270C	mg/kg	4,300	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
Phenol	SW8270C	mg/kg	67	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
Pyrene	SW8270C	mg/kg	1,500	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
bis-(2-chloroethoxy)methane	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
bis-(2-chloroethyl)ether	SW8270C	mg/kg	0.002	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
bis-(2-ethylhexyl)phthalate	SW8270C	mg/kg	590 (ing)	[4.51]	[4.54]	[11.6]	[11.1]	[2.75]	[11]
n-Nitrosodi-n-propylamine	SW8270C	mg/kg	0.00036	[4.51]	[4.54]	[11.6]	[11.1]	[4.82]	[11]
n-Nitrosodimethylamine	SW8270C	mg/kg	-	[4.51]	[4.54]	[11.6]	[11.1]	[3.44]	[11]
n-Nitrosodiphenylamine	SW8270C	mg/kg	3.4	[4.51]	[4.54]	[11.6]	[11.1]	[6.12]	[11]
Total Metals									
Arsenic	SW6020	mg/kg	2	4.51	7.23	4.98 J	3.59 J	4.32 J	3.64 J
Barium	SW6020	mg/kg	1,100	124	172	21.1	22.7	30.5 J	49.8
Cadmium	SW6020	mg/kg	5	0.225 J	0.405	[0.806]	[0.87]	0.669 J	[0.82]
Chromium	SW6020	mg/kg	26 (total Cr)	26.4	25.9	9.8	12.5	10.8 J	3.93
Lead	SW6020	mg/kg	400 (inh/ing)	11.6	32.6	4.21	4.2	4.90 J	1.5
Mercury	SW7471A	mg/kg	1.4	0.0709	0.103	[0.169]	0.0924 J	0.0998 J	0.256
Selenium	SW6020	mg/kg	3.5	1.12	0.931	2.39	3.68	3.25 J	2.52
Silver	SW6020	mg/kg	21	[0.176]	0.105 J	[0.403]	[0.435]	2.82 J	[0.41]

KEY DESCRIPTION

Analysis not reques	ested or cleanup level not established	

parts per million ppm

percent

mg/kg

PID

ing

inh

. milligrams per kilogram

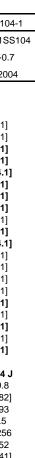
Photoionization detector

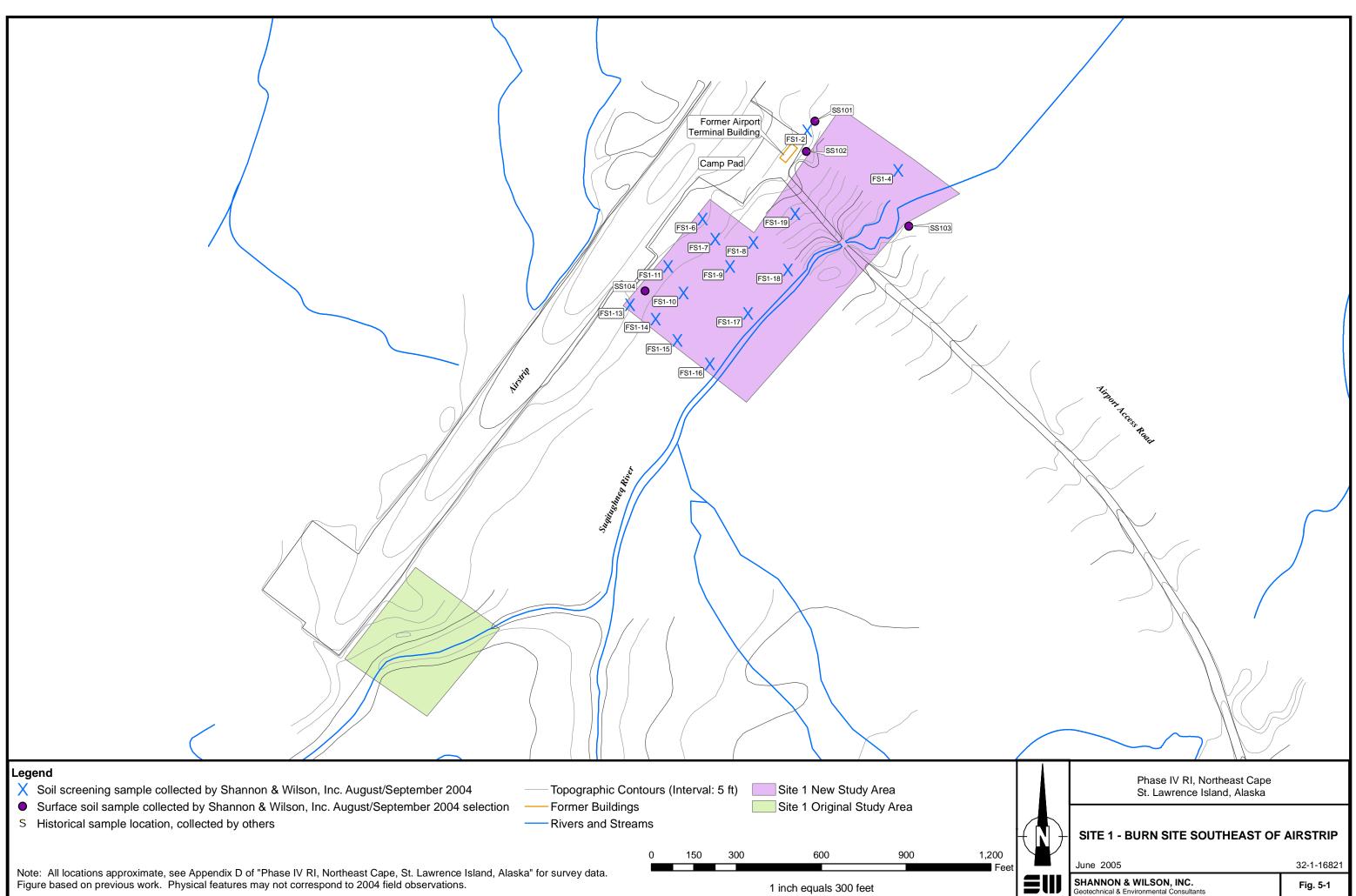
Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway

Cleanup level based on inhalation pathway

Estimated concentration; refer to Appendix C for data qualification information J 36


Concentration detected


2900

[0.0072] [0.037]

Reported concentration exceeds the regulatory cleanup leve Analyte not detected above Practical Quantitation Limit (PQL) Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve

SHANNON & WILSON, INC.

5.2 Site 3: Fuel Line Corridor and Pumphouse

Soil borings 03B1, 03B2, and 03B3 were advanced with two samples from each submitted for laboratory analysis, well points 03WP5 and 03WP6 were installed and sampled, existing well points 03WP102 and 03WP3 were sampled, and sediment samples 03SD107 and 03SD108 were collected from Site 3. Table 5-2a provides a description of the samples.

5.2.1 Site Description

Phase IV work was performed in the vicinity of a former pumphouse that was used to transfer fuel from barges to the MOC. The site is located just south of Cargo Beachon Kitnagak Bay, and is shown on Figure 5-2. The pumphouse is roughly 1.5 miles from the MOC and over 60 feet lower in elevation. Three seasonal dwellings with associated fuel containers, ATVs, and scrap machinery are located within 100 feet of the pumphouse location.

The site topography generally slopes toward the beach to the north-northeast. The area between the pumphouse and the beach has what appear to be former dunes covered with tundra. The general topography of Site3 is visible in Photograph 4. The area south of the pumphouse appears to contain unconsolidated deposits, likely of glacial origin, with a thick tundra mat cover. Permafrost and ice-rich soil underlie the tundra.

5.2.2 Data Collection Objectives

Data was collected to further delineate the lateral extent of the shallow groundwater contamination, the vertical extent of soil contamination, and the potential for contaminant transport through overland flow. Soil, sediment, and groundwater samples were analyzed for GRO, DRO, RRO, BTEX; and select samples were analyzed for PAHs. Biogenic influence on DRO and RRO concentrations, likely due to the thick tundra and peat, was also assessed.

5.2.3 Work Plan Variances

Conditions found in the field led to alterations in the planned sampling activities. The plan called for two soil borings to be drilled through the approximately 5-foot thick gravel pad on either side of the former pumphouse, with each boring advanced to bedrock (or up to 15 feet). Three analytical samples were to be selected from each boring. Upon arrival at the site, the gravel pad was found to be less than 2 feet thick at the boring locations, and frozen ground was encountered between 3 and 4 feet below ground surface (bgs). Ice recovered from 5 feet bgs is shown in Photograph 5. Because vertical migration of contaminants is presumably restricted by the ice-rich ground, three shallow soil borings were advanced, with two analytical samples selected from each boring.

Well Point 01NE03WP104 was not sampled. The riser pipe and location stake for the well point were found laying on the ground surface, but the screened section was not found.

5.2.4 Field Investigation

Field activities at Site 3 commenced on August 18, 2004, and were completed on September 5, 2004.

5.2.4.1 Soil Sampling

Three soil borings were drilled through the perimeter of the former pumphouse gravel pad at the locations shown in Figure 5-2. The borings were advanced into ice-rich ground, to a maximum depth of 7.5 feet bgs. Three soil samples were collected from each boring and field screened, and two of these samples were selected for laboratory analysis. Screening results and sample descriptions are included on Table 5-2a, and boring logs are presented in Appendix B.

5.2.4.2 Groundwater Sampling

Two well points were installed by driving 1.25" ID screen and riser pipe with a sledge hammer. Well Point 03WP06 is located between the former pumphouse and the beach, down hill from two existing well points. Well Point 03WP05 is located uphill from the pumphouse. The general slope and drainage of the fuel line corridor is downward to the northeast, toward Well Point 03WP05 and the pumphouse. The new well points were developed first by surging with a micro bailer, then by purging three well volumes with a peristaltic pump. The two previously existing well points, 03WP102 and 03WP103, were purged and sampled using the peristaltic pump. Well point locations are shown on Figure 5-2, and a groundwater sampling log is provided as Table 5-2c. Well Points 03WP103 and 03WP05 had very low water yields, and required several days to purge and sample.

5.2.4.3 Surface Water and Sediment Sampling

To evaluate whether site contaminants may be migrating from the site in surface runoff, two surface water samples (one upgradient and one downgradient) were to be collected from the intermittent stream which drains the area east of the former Fuel Pumphouse. Flowing surface water was not present during the period of field work. This possibility was anticipated in the Work Plan, and two sediment samples were collected as specified. The sample locations are shown on Figure 5-2 and sediment descriptions are in Table 5-2a. Sediment Sample 03SD107 was collected from a downstream location where the topographic drainage from the site joins with a larger drainage to the east. Sediment Sample 03SD108 was collected from an upstream location of the topographic drainage. Sample 03SD107 was selected for PAH analysis.

5.2.4.4 IDW

Headspace samples were returned to the soil surface at the corresponding soil boring location. Soil cuttings were used to backfill the boring of origin. Headspace bags and sampling gloves were placed in the project IDW bag. Groundwater sampling tubing was placed in a tubing-specific IDW bag. The well point purge water was treated and discharged to the gravel surface at the site.

5.2.4.5 Field Observations

The ground surface at Site 3 appeared to have been disturbed by heavy equipment in the last few years. A large portion of the pumphouse gravel pad had been excavated and placed in a pile near the center of the site. The gravel pile and excavation restricted drill rig access, leading to some adjustment of boring locations (See Photograph 4). The excavation also exposed the underlying dark peat, leading to melting and formation of a pond. Areas of sheen on the water surface, some of which had the "stringy" flow characteristics of petroleum and some of which had the "crackly" or brittle characteristics of biogenic material, were observed.

Another shallow excavation was observed at the boundary between the beach and tundra northeast of the pumphouse. Visible tire tracks suggest the shallow excavation was created by a front loader. Sandy soil in the bottom of the excavation was stained and had a weathered diesel odor. The stained soil is an estimated 25 feet from Well Point 03WP06.

Permafrost was encountered in the soil borings, and Well Points 03WP102, 03WP103, and 03WP05 appear to be in the active layer of wet tundra above the ice. Well Point 03WP104 was likely lifted from the ground by frost jacking, and the 03WP102 screen was exposed at the ground surface. Well Point 03WP102 was driven to refusal before sampling during the Phase IV RI. Well Point 03WP06 is located near the beach, and was driven to a depth of 7.5 ft bgs without encountering frozen ground. Groundwater level measurements varied significantly (3 ft.) in this well, suggesting a tidal influence.

The intermittent stream along the east side of the site appears to be a series of linked low spots in the tundra rather than an active erosional channel. The stream "bed" consists of dense grassy vegetation with deep roots in saturated peat. Surface water was not flowing in late August or early September. Mineral soils were not encountered within 1 foot of the surface while collecting sediment samples. The up-gradient stream sample location shown in the Work Plan does not flow past Site 3, but turns to flow to the beach further east. The location marked in the Work Plan is in a trench that, according to seasonal resident Eugene Toolie, was created during the original construction of NE Cape. The contractor plowed away vegetation to create a "permafrost road" for access to a quarry for road construction material. Sample 03SD108 was located to represent surface drainage up-gradient of the site and is in the same topographic drainage as former Well Point 03WP104.

5.2.5 Analytical Results

Table 5-2b presents the Site 3 soil and sediment analytical results. The soil samples from Borings 03B1 and 03B3 contained DRO concentrations that exceed the ADEC Method Two soil cleanup criterion, with concentrations ranging from 373 to 20,500 mg/kg. The biogenic assessment of DRO and RRO results only noted typical diesel-range petroleum hydrocarbon patterns for Boring 03B3 Samples 03SB105 and 03SB106 (See Appendix D). The DRO and RRO results for the other soil samples were attributed to biogenics. Toluene was detected in three samples, with the highest estimated concentration of 1,620 µg/kg measured in Sample 03SB104 from Boring 03B1. Benzene was not detected above the PQL in the six soil samples, however the PQLs exceeded the ADEC criterion for three of the samples. The elevated PQLs are likely due to the high moisture contents and organic nature of the soils.

Sediment Samples 03SD107 and 03SD108 both contained DRO and RRO concentrations that exceed the ADEC soil cleanup criteria. The up-gradient sample, Sample 03SD108, contained the highest estimated concentrations, with 3,720 mg/kg DRO and 28,500 mg/kg RRO. The hydrocarbons measured in the sediment samples were attributed to biogenics by SGS. Toluene was detected in Sample 03SD108 at an estimated concentration of 677 mg/kg which is below the ADEC cleanup criterion. Benzene was not detected, but the PQL for benzene exceeded the cleanup criterion for both wet, organic sediment samples.

Groundwater sample results are presented in Table 5-2d. Samples from Well Points 03WP102 and 03WP5 contained DRO and RRO concentrations that exceed the ADEC cleanup criteria. The RRO concentration in Sample 03GW103, from Well point 03WP6, also exceeds the criterion. The highest concentrations were measured in Sample 03GW104 from 03WP102, with 3.40 mg/L DRO and 3.40 mg/L RRO. Sample 03GW104 was the only water sample in which the laboratory noted typical DRO petroleum compounds. Sample 03GW101 contained 1.70 mg/L DRO, and 2.60 mg/L RRO. Although not detected, the detection limits for the PAHs benzo(a)pyrene and and dibenzo(a,h)anthracene exceed the ADEC cleanup criteria in Sample 03GW101. Samples 03GW101 through 03GW103 were not run through the mass spectrometer to assess TICs due to a mistake on the COC. The fuel chromatograms were reviewed by the laboratory project manager and typical biogenic hydrocarbon patterns were observed.

TABLE 5-2a - SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 3: FUEL LINE CORRIDOR AND PUMPHOUSE

					T2.14	
Gammla			Communication	Donth	Field Screening	
Sample Number**	LOCID	Date	Sample Location	Depth (feat)	(ppm) ^	Sample Classification ⁺
Number**	LUCID	Date	(See Figure 5-2 for borehole locations)	(feet)	(ppm) ~	
<u>Soil Samples</u>						
B1S1	-	8/18/04	Boring 03B1	1	< 0.2	Dark brown, gravelly SILT; moist; organic (sewage) odor
* 03SB103	03B1-2	8/18/04	Boring 03B1	2 - 3.5	< 0.2	Brown, sandy SILT; trace organics; moist
* 03SB104	03B1-6	8/18/04	Boring 03B1	4 - 5.5	0.7	Brown SILT; with organics; ice rich (frozen)
B2S1	-	8/18/04	Boring 03B2	0 - 1.5	< 0.2	Brown, gravelly medium SAND; wet; slight hydrocarbon odor
* 03SB101	03B2-2	8/18/04	Boring 03B2	2 - 3.5	0.4	Brown to dark gray SILT; wet to frozen and ice rich
* 03SB102	03B2-6	8/18/04	Boring 03B2	4 - 5.5	< 0.2	Gray SILT; frozen; with 1/4 to 1/2-inch lenses of ICE
B3S4	-	8/18/04	Boring 03B2	6 - 7.5	< 0.2	Gray SILT; frozen; with ICE strata less than 1/4-inch thick
* 03SB105	03B3-1	8/18/04	Boring 03B3	1 - 2.5	9.6	Dark brown alternating layers of SILT and PEAT; wet; mild hydrocarbon and sewage odors
* 03SB106	03B3-3	8/18/04	Boring 03B3	3 - 4.5	6.5	Dark brown, silty PEAT; wet
B3S3	-	8/18/04	Boring 03B3	5 - 6.5	3.0	Dark brown, sandy PEAT; frozen (field screen) and ICE
Sediment Sam	ples					
* 03SD107	03SD107	8/20/04	Down-gradient, junction of surface drainages to east	0.8	-	Brown organic SILT in active grass roots; wet
* 03SD108	03SD108	8/20/04	Up-gradient in eastern surface drainage	0.8	-	Brown organic SILT in active grass roots; wet
Groundwater	Samples					
* 03GW101	03WP5	8/24/04	Up-gradient (south) Well Point 03WP5 (installed in 2004)	WL 0.5	-	Near-surface groundwater in active organic layer - 2 day sample
* 03GW102	03WP103	8/24/04	Well Point 03WP103, east of site (installed in 2001)	WL 0.1	-	Near-surface groundwater in active organic layer - 2 day sample
* 03GW103	03WP6	8/24/04	Down-gradient (NE) Well Point 03WP6 (installed in 2004)	WL 2-3	-	Shallow groundwater near beach - water level variations suggest tidal influence
* 03GW104	03WP102	8/24/04	Down-gradient (north) Well Point 03WP102 (installed in 2001)	WL 0-1	-	Near-surface groundwater in active layer - multi-day sample - water level sensitive to weather

KEY DESCRIPTION

* Sample analyzed by the project or QA laboratory (See Tables 5-2b and 5-2d)

** The full sample number is preceded by "04NE", for example 03SB103 is sample 04NE03SB103

^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp

+ Sample classification applies to the portion of the specified sample interval from which the sample was collected

- Measurement not recorded or not applicable

ppm parts per million, calibrated to 100 ppm isobutylene

WL approximate static water level in feet below ground surface after installation

LOCID Location Identification: "03B1-2" signifies Site 3, Boring 1 at 2-foot depth (depth is rounded to the nearest foot)

TABLE 5-2b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 3: FUEL LINE CORRIDOR AND PUMPHOUSE

			Sample Type: BOREHOLE 03B1		BOREHO	OLE 03B2	BOREHO	DLE 03B3	SEDIMENT		
Site 2 Eucl Line Corrie	lar and Dumph	01100	Location ID:	03B1-2	03B1-6	03B2-2	03B2-6	03B3-1	03B3-3	03SD107	03SD108
Site 3 - Fuel Line Corric	Sample ID:	04NE03SB103	04NE03SB104	04NE03SB101	04NE03SB102	04NE03SB105	04NE03SB106	04NE03SD107	04NE03SD108		
Soil Ma	triv		Depth (ft):	2 - 3.5	4 - 5.5	2 - 3.5	4 - 5.5	1 - 2.5	3 - 4.5	0.8	0.8
			Sample Date:	8/18/2004	8/18/2004	8/18/2004	8/18/2004	8/18/2004	8/18/2004	8/20/2004	8/20/2004
Parameter Tested	Test Method	Units	Cleanup Level								
PID Headspace Reading	HNU HW101 PID	ppm	-	<0.2	0.7	0.4	<0.2	9.6	6.5	-	-
Percent Moisture	A2540G / E160.3M	%	-	42.9	55.2	50	34.3	49.9	44.5	88.8	91.0
Gasoline Range Organics (GRO)	AK101	mg/kg	300	1.26 J	7.08 J	3.63 J	0.717 J	2.94 J	34.5 J	8.07 J	11.2 J
Diesel Range Organics (DRO)	AK102	mg/kg	250	373 J	971 J	168	126	20,500 J	15,900 J	2,610 J	3,720 J
Laboratory Assessment of Hydrocarbon Origint	_	-	_	biogenic	biogenic	biogenic	biogenic	diesel	diesel	biogenic	biogenic
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	2,790 J	6,120 J	1,160	1,150 J	4,000 J	3,020 J	17,300 J	28,500 J
Laboratory Assessment of Hydrocarbon Origin†	-	-		biogenic	biogenic	biogenic	biogenic	biogenic	biogenic	biogenic	biogenic
Aromatic Organic Compounds (BTEX)											
Benzene	SW8260B	µg/kg	20	[15.3]	[59.5]	[16.1]	[16.4]	[22.3]	[40.9]	[126]	[148]
Ethylbenzene	SW8260B	µg/kg	5,500	[29.3]	[114]	[30.9]	[31.6]	[42.9]	[78.6]	[243]	[284]
Toluene	SW8260B	µg/kg	5.400	[58.7]	1620 J	859 J	[63.2]	[85.9]	145 J	[486]	677 J
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[29.3]	[114]	[30.9]	[31.6]	[42.9]	77.1 J	[243]	[284]
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	[58.7]	[229]	[61.7]	[63.2]	[85.9]	[157]	[486]	[569]
Polynuclear Aromatic Hydrocarbons (PAH)											
Acenaphthene	PAH SIM	µg/kg	210,000	-	_	[151]	_	-	[89.8]	[738]	-
Acenaphthylene	PAH SIM	µg/kg	210,000	-	_	[151]	_	_	[89.8]	[738]	-
Anthracene	PAH SIM	µg/kg	4,300,000	_	_	[151]	_	_	[89.8]	[738]	-
Benzo(a)anthracene	PAH SIM	µg/kg	6.000	_	_	[151]	_	_	[89.8]	[738]	-
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	_	[151]	_	-	[89.8]	[738]	-
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	-	[151]	-	-	[89.8]	[738]	-
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	_	_	[151]	_	-	[89.8]	[738]	-
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	-	[151]	-	-	[89.8]	[738]	-
Chrysene	PAH SIM	µg/kg	620,000	-	-	[151]	-	-	[89.8]	[738]	-
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	[151]	-	-	[89.8]	[738]	-
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	-	[151]	-	-	[89.8]	[738]	-
Fluorene	PAH SIM	µg/kg	270,000	-	-	[151]	-	-	[89.8]	[738]	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	_	_	[151]	_	-	[89.8]	[738]	-
Naphthalene	PAH SIM	µg/kg	21,000	-	-	[151]	-	-	[89.8]	[738]	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	_	[151]	_	-	[89.8]	[738]	-
Pyrene	PAH SIM	µg/kg	1,500,000	-	_	[151]	-	-	[89.8]	[738]	-

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
†	Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341,
	Tables B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
J	Estimated concentration; refer to Appendix C for data qualification information
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve

SHANNON & WILSON, INC.

TABLE 5-2cGROUNDWATER SAMPLING LOGSITE 3: FUEL LINE CORRIDOR AND PUMPHOUSE

WELL POINT INSTALLATION DATA

WELL ID	03WP102	03WP103	03WP05	03WP06
DATE WELL INSTALLED	2001	2001	8/7/04	8/7/04
GROUND SURFACE ELEVATION (ft)	13.43	13.01	18.61	8.30
WELL MP ELEVATION (ft)	15.71	16.06	21.16	8.69
INTERVAL OF SCREENED SECTION BELOW MP (ft)			2.54-5.48	5.01-8.07
TOTAL DEPTH OF WELL BELOW MP (ft)	6.12	6.09	5.48	8.07
DIAMETER OF WELL CASING (inches)	1.25	1.25	1.25	1.25
DEVELOPMENT DATA				
DATE OF DEVELOPMENT	-	-	8/20-21/2004	8/21/2004
TIME DEVELOPMENT INITIATED	-	-	10:15	16:13
DEVELOPMENT COMPLETED	-	-	8/23/04	8/23/04
DEPTH TO WATER BELOW MP (ft)	-	-	3.01	3.46
WATER COLUMN IN WELL (ft)	-	-	2.47	4.61
GALLONS PER FOOT	0.064	0.064	0.064	0.064
GALLONS IN WELL	-	-	0.16	0.30
DEVELOPMENT METHOD	-	-	micro bailer	micro bailer
VOLUME WATER REMOVED (gallons)	-	-	Dry 6 times	Dry 4 times
PURGING & SAMPLING DATA				
LOCID	03WP102	03WP103	03WP5	03WP6
SAMPLE ID	04NE03GW104	04NE03GW102	04NE03GW101	04NE03GW103
DATE (Purging)	8/22-23/2004 ¹	8/22-23/2004 ¹	8/22-23/2004 ¹	8/22-23/2004 ¹
TIME PURGING INITIATED	16:10	16:25	14:31	15:40
TIME SAMPLE INITIATED	15:38, 8/24/04	12:04, 8/24/04	11:16, 8/24/04	14:33, 8/24/04
DEPTH TO WATER BELOW MP (ft)	3.94	3.11	3.08	2.50
WATER COLUMN IN WELL (ft)	2.18	2.98	2.40	5.57
GALLONS IN WELL	0.14	0.19	0.15	0.36
PURGING METHOD	Peristaltic	Peristaltic	Peristaltic	Peristaltic
VOLUME WATER REMOVED (gallons)	Dry 2 times	Dry 2 times	Dry 2 times	Dry 2 times
WATER QUALITY DATA - YSI 556				
DATE MEASURED	8/23/04	8/22/04	8/22/04	8/22/04
TIME MEASURED	17:45	18:23	16:57	17:53
TEMPERATURE (°C)	9.1	9.7	6.9	4.8
SPECIFIC CONDUCTANCE (mS/cm)	0.41	0.38	0.78	0.89
DISSOLVED OXYGEN (mg/L)	2.2	5.7-3.5	4.2	0.93
pH (Standard Units)	6.0	5.5-5.6	6.0	6.6
OXYGEN REDUCTION POTENTIAL (mV)	75	76-80	40-60	-102
TURBIDITY (NTUs) - Oakton	527	-	-	-
WATER LEVEL MEASUREMENT DATA				
DATE WATER LEVEL MEASURED	9/14/04	9/14/04	9/14/04	9/14/04
TIME WATER LEVEL MEASURED	10:50	10:53	10:45	10:56
DEPTH TO WATER BELOW MP (ft)	2.29	3.11	3.36	3.65
WATER LEVEL ELEVATION (ft)	13.42	12.95	17.80	5.04

¹ Purging and sampling of well points occurred over an extended time duration due to low flow volun

KEY DESCRIPTION

- Not developed or not measured
- °C Degrees Celsius
- ft Feet
- mg/L Milligrams per liter
- MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-2d SUMMARY OF WATER ANALYTICAL RESULTS - SITE 3: FUEL LINE CORRIDOR AND PUMPHOUSE

			Sample Type:		GROUNDWATER				
Site 2 Fuel Line Corridor of			Location ID:	03WP102	03WP103	03WP5	03WP6		
Site 3 - Fuel Line Corridor a	Sample ID:	04NE03GW104	04NE03GW102	04NE03GW101	04NE03GW103				
Water Matrix	Depth (ft):	WL 0-1	WL 0.1	WL 0.5	WL 2-3				
			Sample Date:	8/24/2004	8/24/2004	8/24/2004	8/24/2004		
Parameter Tested	Test Method	Units	Cleanup Level						
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0196 J	0.0643 J	0.405 J	0.0277 J		
Diesel Range Organics (DRO)	AK102	mg/L	1.5	3.40	0.433	1.70	0.826		
Lab Assessment of Hydrocarbon Origin†	-	-	-	diesel	biogenic*	biogenic*	biogenic*		
Residual Range Organics (RRO)	AK103	mg/L	1.1	3.40	0.641	2.60	1.38		
Lab Assessment of Hydrocarbon Origin†	-	-	-	biogenic	biogenic*	biogenic*	biogenic*		
Aromatic Organic Compounds (BTEX)									
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	0.27 J	[0.4]		
Ethylbenzene	SW8260B	µg/L	700	[1]	[1]	[1]	[1]		
Toluene	SW8260B	µg/L	1000	[1]	6.03	252	[1]		
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]		
m & p-Xylenes	SW8260B	µg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	[2]		
Polynuclear Aromatic Hydrocarbons (PAH SIM)									
Acenaphthene	PAH SIM	µg/L	2,200	[0.0549]	[0.0543]	[0.538]	0.02 J		
Acenaphthylene	PAH SIM	µg/L	2,200	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Anthracene	PAH SIM	µg/L	11,000	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Benzo(a)anthracene	PAH SIM	µg/L	1	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Benzo(a)pyrene	PAH SIM	µg/L	0.2	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Benzo(b)fluoranthene	PAH SIM	µg/L	1	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Benzo(k)fluoranthene	PAH SIM	µg/L	10	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Chrysene	PAH SIM	µg/L	100	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Fluoranthene	PAH SIM	µg/L	1,460	[0.11]	[0.109]	[1.08]	[0.111]		
Fluorene	PAH SIM	µg/L	1,460	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	[0.0549]	[0.0543]	[0.538]	[0.0556]		
Naphthalene	PAH SIM	µg/L	700	0.0309 J	0.0195 J	[0.538]	0.0339 J		
Phenanthrene	PAH SIM	µg/L	11,000	[0.11]	[0.109]	[1.08]	[0.111]		
Pyrene	PAH SIM	µg/L	1,100	[0.0549]	[0.0543]	[0.538]	[0.0556]		
	KEY	DESCRIP	TION		-	-	-		

DESCRIPTION

_ Measurement not recorded or not applicable

† Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin

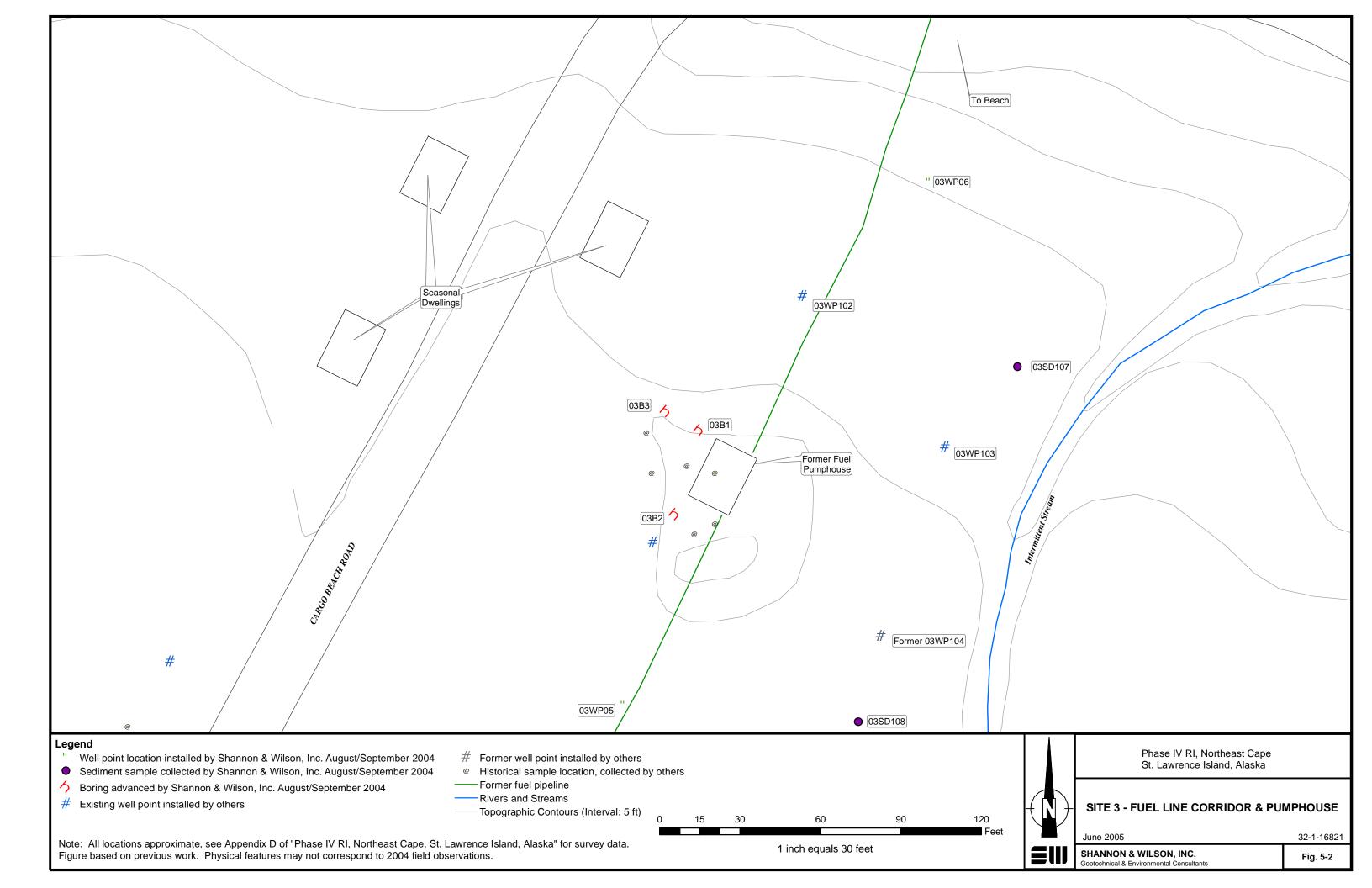
milligrams per liter mg/L

µg/L micrograms per liter

Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C Cleanup Levels

Estimated concentration; refer to Appendix C for data qualification information J

Library search not performed. Assessment based on DRO/RRO chromatograms. *


36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup level

Analyte not detected above Practical Quantitation Limit (PQL) [0.0072]

[0.037] Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup level

WL Approximate depth to water below ground surface

5.3 Site 6: Cargo Beach Drum Field

Six soil borings (06B1 through 06B6) were advanced with two samples from each submitted for laboratory analysis, well points 06WP5, 06WP6, and 06WP7 were installed and sampled, and existing well point 06WP103 was sampled at Site 6.

5.3.1 Site Description

The Cargo Beach Drum Field is located west of Cargo Beach Road, between Cargo Beach Road Landfill and the Fuel Line Pumphouse (see Figure 2-3). Scattered drums were removed under prior removal actions. Site 6 is located on the trailing (northeast) side of the large glacial drumlin where the Site 7 landfill is located. The unconsolidated surface deposits resemble lodgment till, and appear to be frost segregated. Topographical depressions to the west-northwest and south contain only boulders and large cobbles at the surface, and relatively fine soils amongst cobbles are exposed in the center of the site. Figure 5-3 shows site features sketched by others, historical sampling points, and Phase IV RI well point and boring locations. The sketched features do not match the conditions observed in 2004 very well.

5.3.2 Data Collection Objectives

Previous investigations at Site 6 identified petroleum impacts in soil and elevated concentrations of some metals in the shallow groundwater. The Phase IV RI objectives were to evaluate the lateral and vertical extent of petroleum impacts in soil, and lateral extent of metals in shallow groundwater. Six soil borings were advanced to assess soil quality around the perimeter of the site. Shallow groundwater quality was assessed by installing and sampling three well points and sampling one existing well point. Soil and groundwater samples were analyzed for GRO, DRO, RRO, BTEX, PCBs, and RCRA metals. Soil samples were also tested for PAHs. The groundwater DRO and RRO results were assessed for the presence of natural organics versus petroleum derived compounds.

5.3.3 Work Plan Variances

The Work Plan specified sampling the Site 6 borings at 5-foot intervals. The rocky nature of the soil often led to inadequate sample recovery at the specified interval. Actual sample intervals varied, and were based on drill action to maximize soil recovery. The Work Plan stated that the borings would be drilled up to a maximum depth of 20 feet. Groundwater was encountered between 4 and 8 feet bgs, and frozen ground was suspected at 12 to 15 feet bgs in the first two borings, which were drilled to total depths of 16 and 21.5 feet, respectively. Because determining depth and extent of contamination was our objective, the final four borings

were completed to 11.5 feet bgs, rather than the specified 20 feet bgs. This depth was well into the aquifer, but above suspected frozen ground.

Due to the rocky nature of the soil, the three new well points were installed by drilling pilot holes with the air hammer before driving the well points with the drill rig. The first location for Well Point 06WP7 did not yield adequate water for sampling, and the water yield in Well Point 06WP5 was marginal. Well Point 06WP7 was installed in a new location, and Well Point 06WP5 was driven deeper using the drill rig.

5.3.4 Field Investigation

Field activities at Site 6 commenced on August 20, 2004, and were completed on September 11, 2004.

5.3.4.1 Soil Sampling

Six soil borings, located around the perimeter of Site 6 as shown on Figure 5-3, were advanced to depths ranging from 11.5 to 21.5 feet bgs. Soil samples were collected for field screening and potential laboratory analysis at approximately 5-foot intervals, and two soil samples were selected from each boring for laboratory analysis. Table 5-3a includes headspace screening results, sample descriptions, and collection depths. Boring Logs are included in Appendix B for each boring.

5.3.4.2 Groundwater Sampling

Three well points were installed along the western boundary of Site 6, as shown in Figure 5-3. Existing Well Point 06WP103 was sampled along with new Well Points 06WP5, 06WP6, and 06WP7. A typical setup for sampling well points with a peristaltic pump is depicted in Photograph 7 of Appendix A. Well Points 06WP103 and 06WP5 had low water yields, and required two days to collect analytical samples. The GRO and BTEX vials for Samples 06GW101 and 06GW201, from 06WP7, were frozen at the laboratory. Samples 06GW105, 06GW205, and 06GW305 were collected from 06WP7 at a later date to replace the GRO and BTEX QC/QA replicate set. Table 5-3c is a Well Point Sampling Log for Site 6.

5.3.4.3 IDW

Soil cuttings were used to backfill the boring of origin. Headspace samples were returned to the soil surface at the boring location. Headspace bags and sampling gloves were place in the project IDW bag. Groundwater sampling tubing was place in a tubing-specific IDW bag. The well point purge water was treated and discharged to the ground surface at the site.

5.3.4.4 Field Observations

The Work Plan suggests that the drum field is a constructed gravel pad. Observations suggest that the native materials were simply graded to level the site. The area appears to be subject to the forces of frost segregation, resulting in areas of uplifted fines and areas of rock. The central/west-central area of soil staining is in an area with fines. Smaller particles with adhered contaminants may tend to be lifted toward the surface by frost in the winter, and move with runoff to the west during the summer. Boring 06B5 and Well Points 06WP103 and 06WP6 are in the area where the majority of surface runoff flows westward from the stained portion of the site.

The 2001/2002 RI report suggests that bedrock at Site 6 is roughly 5 feet bgs. Based on our borings and observations, bedrock is at a depth greater than 21.5 feet bgs in the vicinity of Site 6. Based on the log of 1950 Boring DH-53, and the fact that glacial till (basal) was not encountered at 21.5 feet bgs (in our boring 06B3), bedrock may be over 40 feet bgs (near sea level).

An excavation and stockpile were present on the north side of the site access road, between the site and Cargo Beach Road (pipe ends were visible in the north wall of the excavation). The stockpile is visible in the lower left corner of Photograph 6. Boring 06B2 was placed as close as practicable to the western slope of this stockpile to characterize the eastern extent of apparent site activities. The area directly north of Boring 06B2 is a low rise with old vegetation and little evidence of disturbance.

The water table elevation is higher at 06WP6 than at the other three well points, suggesting northeastern or southeastern trending groundwater flow. Surface topography in the greater Site 6 vicinity suggests on overall runoff gradient to the north-northeast. Shallow groundwater flow is likely to be complex. The first location for Well Point 06WP7 was in an area of fines, and yielded insufficient groundwater. The final location is at a boundary between fines and rock, and has excellent yield.

5.3.5 Analytical Results

Tables 5-3b and 5-3d summarize the Site 6 analytical results for soil and water samples, respectively.

5.3.5.1 Soil Results

GRO was detected at less than the PQL and the cleanup criterion in all six borings. DRO was reported at concentrations above the PQL only in Boring 06B5. A QC/QA replicate set was

collected from 5 to 6.5 feet bgs in this boring. Sample 06SB107 and QC duplicate (Sample 06SB207) were reported to contain 48.3 mg/kg and 55.0 mg/kg DRO, respectively, while the QA replicate, Sample 06SB307, contained 358 mg/kg DRO, exceeding the 250 mg/kg cleanup criterion. The results for Samples 06SB107 and 06SB207 were selected as the preferred results in the CQAR due to the 40-time dilution of 06SB307. RRO concentrations were all less than the ADEC cleanup criterion, with the highest concentrations being measured in Boring 06B5. Arsenic exceeded the 2 mg/kg cleanup criterion in all soil samples, at concentrations that may be attributable to natural soil content.

5.3.5.2 Groundwater Results

Groundwater Sample 06GW102 from Well Point 06WP6 contained levels of arsenic, barium, chromium, and lead that are elevated above the ADEC cleanup criteria. The concentrations are 67.8 μ g/L, 2980 μ g/L, 792 μ g/L, and 144 μ g/L, respectively. Sample 06GW103 from 06WP5 contained 19.8 μ g/L of lead, which exceeds the 15 μ g/L cleanup criterion. DRO and RRO detections were too low to reasonably assess biogenic influence. No detectable concentrations of BTEX or PCBs were measured in the Site 6 groundwater samples.

TABLE 5-3a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 6: CARGO BEACH ROAD DRUM FIELD

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-3 for borehole locations)	(feet)	(ppm) ^	Sample Classification [†]
<u>Soil Sample</u>	<u>s</u>					
B2S1	06B2-2	8/19/04	Boring 06B2	1.5-2	< 0.2	Brown coarse SAND; moist
B2S2	06B2-5	8/19/04	Boring 06B2 - minimal recovery	5-6.5	-	Brown, coarse SAND and granitic rock chips; wet
B2S3	06B2-6.5	8/19/04	Boring 06B2 - no recovery	6.5-8	-	Fractured granitic rock in sampler
* 06SB101	06B2-10	8/19/04	Boring 06B2 - 2 split spoons driven at this depth	10-11.5	0.4	Light gray, slightly silty, fine to medium SAND; wet
* 06SB102	06B2-15	8/19/04	Boring 06B2 - bottom of borehole	14.5	16	Light gray, slightly silty, fine to medium SAND; wet
B3S1	06B3-0.5	8/20/04	Boring 06B3	0.5	0.8	Brown, sandy SILT; moist
* 06SB103	06B3-3	8/20/04	Boring 06B3 - just above water	3-4.5	1.2	Brown, sub-angular gravelly, fine sandy SILT; moist
* 06SB104	06B3-5	8/20/04	Boring 06B3 - just into water	5-6.5	0.6	Light gray, silty, sandy GRAVEL; wet
B3S3	06B3-10	8/20/04	Boring 06B3	10-11.5	< 0.2	Light gray, slightly silty medium SAND; wet
B3S4	06B3-15	8/20/04	Boring 06B3	15-16.5	0.7	Light gray, slightly silty SAND; trace angular gravel; wet
B3S5	06B3-20	8/20/04	Boring 06B3 - bottom of borehole	20-21.5	0.4	Light gray, slightly silty, medium to coarse angular SAND; wet
* 06SB105	06B4-4	8/20/04	Boring 06B4	3.5-5	1.2	Brown, silty GRAVEL; moist
B4S2	06B4-5	8/20/04	Boring 06B4 - at water level, sample may be slough	5-6.5	0.6	Brown, silty, gravelly SAND; moist to wet
* 06SB106	06B4-10	8/20/04	Boring 06B4 - bottom of borehole	10-11.5	< 0.2	Light brown, slightly silty, angular gravelly SAND; wet
B5S1	06B5-3	8/21/05	Boring 06B5	3-4.5	0.6	Brown, silty GRAVEL; moist
* 06SB107	06B5-5	8/21/04	Boring 06B5	5-6.5	0.4	Light brown to reddish brown, sandy SILT; trace gravel; moist
* 06SB207	06B5-5	8/21/04	QC replicate of 06SB107	5-6.5	0.4	Light brown to reddish brown, sandy SILT; trace gravel; moist
* 06SB307	06B5-5	8/21/04	QA replicate of 06SB107	5-6.5	0.4	Light brown to reddish brown, sandy SILT; trace gravel; moist
* 06SB108	06B5-10	8/21/04	Boring 06B5 - bottom of borehole	10-11.5	0.7	Light brown, silty GRAVEL; wet
* 06SB109	06B6-2	8/21/04	Boring 06B6	2-3.5	0.4	Brown and gray, slightly gravelly SILT; moist
* 06SB110	06B6-7	8/21/04	Boring 06B6	6.5-8	0.2	Brown/gray/rusty orange, slightly gravelly SILT; thin lenses of dark gray fine SAND; wet
B6S3	06B6-10	8/21/04	Boring 06B6 - bottom of borehole	10-11.5	0.2	Brown and gray, slightly gravelly SILT; moist
B1S1	06B1-5		Boring 06B1 - no recovery	5-6.5	-	Fractured granitic rock in sampler; wet
* 06SB111	06B1-7		Boring 06B1	6.5-8	0.3	Light brown, silty, subangular coarse GRAVEL; wet
* 06SB112	06B1-10	8/21/04	Boring 06B1 - bottom of borehole	10-11.5	0.3	Silty SAND; wet

TABLE 5-3a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 6: CARGO BEACH ROAD DRUM FIELD

Sample			Sample Location	Depth	Screeni ng	
Number**	LOCID	Date	(See Figure 5-3 for borehole locations)	(feet)	(ppm) ^	Sample Classification [†]
Groundwate	er Samples					
* 06GW101	06WP7	9/5/04	Well Point 06WP7, (installed in 2004)	WL 6.1	-	Groundwater
* 06GW201	06WP7	9/5/04	QC replicate of 06GW101	WL 6.1	-	Groundwater
* 06GW301	06WP7	9/5/04	QA replicate of 06GW101	WL 6.1	-	Groundwater
* 06GW105	06WP7	9/11/04	Replacement for frozen sample 06GW101	WL 6.1	-	Groundwater
* 06GW205	06WP7	9/11/04	Replacement for frozen sample 06GW201	WL 6.1	-	Groundwater
* 06GW305	06WP7	9/11/04	QA replicate of 06GW105	WL 6.1	-	Groundwater
* 06GW102	06WP6	9/5/04	Well Point 06WP6 (installed in 2004)	WL 5.1	-	Groundwater
* 06GW103	06WP5	9/5/04	Well Point 06WP5 (installed in 2004)	WL 4.1	-	Groundwater
* 06GW104	06WP103	9/5/04	Well Point 06WP103 (installed in 2001)	WL 6.8	-	Groundwater

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-3b and 5-3d)
- ** The full sample number is preceded by "04NE", for example 06SB101 is sample 04NE06SB101
- ^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- ppm parts per million, calibrated to 100 ppm isobutylene
- WL Approximate static water level in feet below ground surface after installation
- LOCID Location Identification: "06WP7" signifies Site 6, Well Point 06WP7

TABLE 5-3b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 6: CARGO BEACH ROAD DRUM FIELD

		Sample Type:	BOREHO	OLE 06B1	BOREH	OLE 06B2	BOREHO	DLE 06B3	BOREHO	DLE 06B4		BOREH	DLE 06B5		BOREHO	DLE 06B6	
Cite C. Cerre Deech I			Location ID:	06B1-7	06B1-10	06B2-10	06B2-15	06B3-3	06B3-5	06B4-4	06B4-10		06B5-5		06B5-10	06B6-2	06B6-7
Site 6 - Cargo Beach F	koad Drum	Field	Sample ID:	04NE06SB111	04NE06SB112	04NE06SB101	04NE06SB102	04NE06SB103	04NE06SB104	04NE06SB105	04NE06SB106	04NE06SB107	04NE06SB207	04NE06SB307	04NE06SB108	04NE06SB109	04NE06SB110
Soil Matr	·iv		Depth (ft):	6.5-8	10-11.5	10-11.5	14.5	3-4.5	5-6.5	3.5-5	10-11.5	5-6.5	5-6.5	5-6.5	10-11.5	2-3.5	6.5-8
			Sample Date:	8/21/2004	8/21/2004	8/19/2004	8/19/2004	8/20/2004	8/20/2004	8/20/2004	8/20/2004	8/21/2004	8/21/2004	8/21/2004	8/21/2004	8/21/2004	8/21/2004
Parameter Tested	Test Method	Units	Cleanup Level									Primary	Duplicate	Triplicate			
PID Headspace Reading	HNU HW101 PID	ppm	-	0.3	0.3	0.4	16	1.2	0.6	1.2	<0.2	0.4	0.4	0.4	0.7	0.4	0.2
Percent Moisture	A2540G / E160.3M	%	-	11.7	10.3	13.1	19.1	4.8	9.2	6.7	20	18.5	20.1	20.6	21	35.1	15.3
Gasoline Range Organics (GRO)	AK101	mg/kg	300	0.584 J	0.687 J	0.497 J	0.658 J	1.140 J	0.642 J	0.628 J	0.666 J	0.808 J	0.810 J	0.306 J	0.666 J	0.838 J	0.913 J
Diesel Range Organics (DRO)	AK102	mg/kg	250	8.24 J	1.52 J	3.69 J	18.2 J	13.5 J	4.77 J	3.54 J	5.7 J	48.3	55.0	358	166	18 J	6.21 J
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	24.1	13.6 J	9.95 J	43.0	77.1	21.9	[20.8]	24 J	473	605	3,600	1600 J	174	24.4
Aromatic Organic Compounds (BTEX)																	
Benzene	SW8260B	µg/kg	20	[8.33]	[9.3]	[7.49]	[9.95]	[11]	[7.86]	[8.39]	[8.36]	[11.1]	[12.9]	[100]	[9.64]	[12]	[11.1]
Ethylbenzene	SW8260B	µg/kg	5.500	[16]	[17.9]	[14.4]	[19.1]	[21.2]	[15.1]	[16.1]	[16.1]	[21.4]	[24.8]	[100]	[18.5]	[23.2]	[21.3]
Toluene	SW8260B	µg/kg	5,400	[32]	[35.8]	[28.8]	[38.3]	[42.3]	[30.2]	[32.3]	[32.1]	[42.8]	[49.6]	[100]	[37.1]	[46.3]	[42.5]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[16]	[17.9]	[14.4]	[19.1]	[21.2]	[15.1]	[16.1]	[16.1]	[21.4]	[24.8]	[100]	[18.5]	[23.2]	[21.3]
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	[32]	[35.8]	[28.8]	[38.3]	[42.3]	[30.2]	[32.3]	[32.1]	[42.8]	[49.6]	[200]	[37.1]	[46.3]	[42.5]
Polynuclear Aromatic Hydrocarbons (PAH)		-99	,	[]	[00.0]	[]	[0000]	[]	[]	[0=:0]	[0=0.0]	[]	[]	[===]	[0.1.]	[]	[]
Acenaphthene	PAH SIM	µg/kg	210,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Acenaphthylene	PAH SIM	µg/kg	210,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Anthracene	PAH SIM	µg/kg	4,300,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Benzo(b)fluoranthene	PAH SIM	µg/kg	21.000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Chrysene	PAH SIM	µg/kg	620,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	3.81 J	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Fluoranthene	PAH SIM	µg/kg	2,100,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Fluorene	PAH SIM	µg/kg	270,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Naphthalene	PAH SIM	µg/kg	21,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Phenanthrene	PAH SIM	µg/kg	4,300,000	[5.68]	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	[6.19]	[6.28]	[10]	[6.28]	[7.76]	[5.89]
Pyrene	PAH SIM	µg/kg	1,500,000	2.73 J	[5.35]	[5.81]	[5.93]	[5.24]	[5.56]	[5.29]	[6.16]	4.07 J	4.06 J	[10]	2.61 J	[7.76]	[5.89]
Polychlorinated Biphenyls (PCBs)			Sum of congeners:														
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.050]	[0.0646]	[0.0775]	[0.0583]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg		[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	[0.056]	[0.0547]	[0.0573]	[0.0605]	[0.0526]	[0.0543]	[0.053]	[0.0625]	[0.0618]	[0.0612]	[0.025]	[0.0646]	[0.0775]	[0.0583]
Total Metals																	
Arsenic	SW6020	mg/kg	2	2.9	2.03	2.59	2.84	2.78	3.25	5.78	2.72	4.25	4.81	5.27 J	4.72	3.28	9.90
Barium	SW6020	mg/kg	1,100	21.4	10.5	13.1	14.9	24.0	14.5	19.7	21.0	56.4 J	62.0	78.3 J	47.9 J	57.9 J	133
Cadmium	SW6020	mg/kg	5	0.173 J	0.105 J	0.136 J	0.155 J	0.13 J	0.122 J	0.123 J	0.122 J	0.128 J	0.468 J	0.252 J	0.123 J	[0.294]	0.173 J
Chromium	SW6020	mg/kg	26 (total Cr)	8.89	4.71	6.06	6.71	8.62	5.54	6.43	13.9	14.8	15.9	17.9 J	13.8	8.25	22.2
Lead	SW6020	mg/kg	400 (ing/inh)	16.3	11.7	15.4	17.5	14.0	14.3	13.0	15.2	12.0	11.6	14.9 J	12.3	6.32	16.6
Mercury	SW7471A	mg/kg	1.4	0.0234 J	0.0186 J	[0.0456]	[0.0487]	[0.0419]	[0.0434]	[0.0423]	[0.0496]	0.334	0.188	0.0497	0.0875	0.0905	0.0851
Selenium	SW6020	mg/kg	3.5	0.248 J	[0.555]	[0.56]	0.265 J	0.2 J	0.21 J	0.319 J	[0.604]	0.487 J	[0.607]	0.749 J	0.568 J	[0.736]	[0.677]
Silver	SW6020	mg/kg	21	[0.111]	[0.111]	[0.112]	[0.119]	0.0323 J	[0.105]	[0.104]	0.0912 J	0.652	0.414	0.896 J	0.148	[0.147]	0.0811 J

KEY	DESCRIPTION	KEY
-	Analysis not requested or cleanup level not established	J
ppm	parts per million	36
%	percent	2900
mg/kg	milligrams per kilogram	[0.0072]
µg/kg	micrograms per kilogram	ing
PID	Photoionization detector	inh

	DESCRIPTION
	Estimated concentration; refer to Appendix C for data qualification information
	Concentration detected
	Reported concentration exceeds the regulatory cleanup leve
]	Analyte not detected above Practical Quantitation Limit (PQL)

Cleanup level based on ingestion pathway Cleanup level based on inhalation pathway

KEY DESCRIPTION

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

TABLE 5-3cGROUNDWATER SAMPLING LOGSITE 6: CARGO BEACH ROAD DRUM FIELD

WELL POINT INSTALLATION DATA

WELL ID	06WP103	06WP5	06WP6	06WP7
DATE WELL INSTALLED	2001	8/21/04	9/1/04	9/1/04
GROUND SURFACE ELEVATION (ft)	45.88	45.24	46.16	46.57
WELL MP ELEVATION (ft)	48.33	48.35	50.57	49.87
TOP OF SCREENED SECTION, BELOW MP (ft)	est. 6.25	7.80	12.9	9.9
TOTAL DEPTH OF WELL BELOW MP (ft)	9.24	10.78	15.85	12.9
DIAMETER OF WELL CASING (inches)	1.25	1.25	1.25	1.25
DEVELOPMENT DATA				
DATE OF DEVELOPMENT	-	8/23-9/3/2004	9/2-3/2004	9/2-3/2004
TIME DEVELOPMENT INITIATED	-	17:00	11:00	11:26
TIME DEVELOPMENT COMPLETED	-	12:34	11:56	12:21
DEPTH TO WATER BELOW MP (ft)	-	7.18	9.57	9.36
WATER COLUMN IN WELL (ft)	-	3.60	6.28	3.54
GALLONS PER FOOT	0.064	0.064	0.064	0.064
GALLONS IN WELL	-	0.23	0.40	0.23
DEVELOPMENT METHOD	-	Peristaltic	Peristaltic	Peristaltic
VOLUME WATER REMOVED (gallons)	-	0.9	1.5	4.0
PURGING & SAMPLING DATA				
LOCID	06WP103	06WP5	06WP6	06WP7
SAMPLE ID	04NE06GW104	04NE06GW103	04NE06GW102	04NE06GW101
DATE	9/4-5/2004	9/4-5/2004	9/4-5/2004	9/4-5/2004
TIME PURGING INITIATED	16:00	15:34	17:20	16:45
TIME SAMPLE INITIATED	16:54, 9/5/04	16:12, 9/5/04	15:35, 9/5/04	13:27, 9/5/04
DEPTH TO WATER BELOW MP (ft)	7.75	7.96	10.83	9.50
WATER COLUMN IN WELL (ft)	1.49	2.82	5.02	3.40
GALLONS IN WELL	0.10	0.18	0.32	0.22
PURGING METHOD	Peristaltic	Peristaltic	Peristaltic	Peristaltic
VOLUME WATER REMOVED (gallons)	1.0	0.3	0.4	1.0
WATER QUALITY DATA - YSI 556				
DATE MEASURED	09/04/04	09/04/04	09/04/04	09/04/04
TIME MEASURED	16:28	15:45	17:28	17:05
TEMPERATURE (°C)	6.4	5.0	5.4	4.2
SPECIFIC CONDUCTANCE (mS/cm)	0.13	0.32	0.41	0.07
DISSOLVED OXYGEN (mg/L)	8.5	5.0	0.7	9.0
pH (Standard Units)	5.6	6.9	6.5	5.9
OXYGEN REDUCTION POTENTIAL (mV)	181	-99	-258	102
TURBIDITY (NTUs) - Oakton	-	-	-	-
WATER LEVEL MEASUREMENT DATA				
DATE WATER LEVEL MEASURED	09/13/04	09/13/04	09/13/04	09/13/04
TIME WATER LEVEL MEASURED	18:25	18:20	18:17	18:15
DEPTH TO WATER BELOW MP (ft)	7.80	8.03	10.00	9.59
WATER LEVEL ELEVATION (ft)	40.53	40.32	40.57	40.28
KE				
	 Not developed or 	r not measured		

- Not developed or not measured
- °C Degrees Celsius
- ft Feet
- mg/L Milligrams per liter
- MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-3d SUMMARY OF WATER ANALYTICAL RESULTS - SITE 6: CARGO BEACH ROAD DRUM FIELD

			Sample Type:					GROUNDWATER	R			
		Location ID:	06WP103	06WP5	06WP6			06	SWP7			
Site 6 - Cargo Beach Road Drum Field Water Matrix			Sample ID:	04NE06GW104	04NE06GW103	04NE06GW102	04NE06GW101	04NE06GW105*	04NE06GW201	04NE06GW205#	04NE06GW301	04NE06GW305#
			Depth (ft):	WL 6.8	WL 4.1	WL 5.1	WL 6.1	WL 6.1	WL 6.1	WL 6.1	WL 6.1	WL 6.1
vvater water		Sample Date:	9/5/2004	9/5/2004	9/5/2004	9/5/2004	9/11/2004	9/5/2004	9/11/2004	9/5/2004	9/11/2004	
Parameter Tested	Test Method	Units	Cleanup Level				Primary	Primary	Duplicate	Duplicate	Triplicate	Triplicate
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0120 J	0.0175 J	.0482 J	_	0.0187 J	_	0.0204 J	0.0239 J	0.0148 J
Diesel Range Organics (DRO)	AK102	mg/L	1.5	0.164 J	0.385	0.213 J	0.189 J	_	0.213 J	_	0.0794 J	_
Lab Assessment of Hydrocarbon Origint	-	-	-	^	^	^	^	-	^	-	-	-
Residual Range Organics (RRO)	AK103	mg/L	1.1	0.217 J	0.728	0.268 J	0.204 J	_	0.185 J	_	[0.75]	_
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	^	^	^	-	^	-	-	-
Aromatic Organic Compounds (BTEX)												
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	[0.4]	-	[0.4]	-	[0.4]	[0.5]	[0.5]
Ethylbenzene	SW8260B	µg/L	700	[1]	[1]	[1]	-	[1]	-	[1]	[1]	[1]
Toluene	SW8260B	µg/L	1,000	[1]	[1]	[1]	-	[1]	-	[1]	0.360J	[1]
o-Xylene	SW8260B	μg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	-	[1]	-	[1]	[1]	[1]
m & p-Xylenes	SW8260B	µg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	-	[2]	-	[2]	[2]	[2]
Polychlorinated Biphenyls (PCBs)												
PCB-1016 (Aroclor 1016)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1221 (Aroclor 1221)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1232 (Aroclor 1232)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1242 (Aroclor 1242)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1248 (Aroclor 1248)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1254 (Aroclor 1254)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1260 (Aroclor 1260)	SW8082	µg/L	0.5	[0.108]	[0.108]	[0.112]	[0.109]	-	[0.109]	-	[0.5]	-
PCB-1262 (Aroclor 1262)	SW8082	µg/L	0.5	-	-	-	-	-	-	-	[0.5]	-
PCB-1268 (Aroclor 1268)	SW8082	µg/L	0.5	-	-	-	-	-	-	-	[0.5]	-
Total Metals												
Arsenic	SW6020	µg/L	50	[10]	12.7	67.8	[10]	-	3.52 J	-	0.650 J	-
Barium	SW6020	μg/L	2,000	15	588	2,980	12.5	-	9.68	-	11.7 J	-
Cadmium	SW6020	µg/L	5	[2]	[2]	1.97 J	[2]	-	[2]	-	[1]	-
Chromium	SW6020	μg/L	100 (Total)	1.88 J	91	792	[4]	-	[4]	-	1.13 J	-
Lead	SW6020	µg/L	15	[1]	19.8	144	1.8	-	1.16	-	2.82 J	-
Mercury	SW7470A	µg/L	2	[0.2]	[0.2]	0.176 J	[0.2]	_	[0.2]	-	0.0952 J	-
Selenium	SW6020	µg/L	50	[10]	[10]	9.74 J	[10]	-	[10]	-	0.480 J	-
Silver	SW6020	µg/L	180	[2]	[2]	1.2 J	[2]	_	[2]	_	0.240 J	-

DECSRIPTION KEY

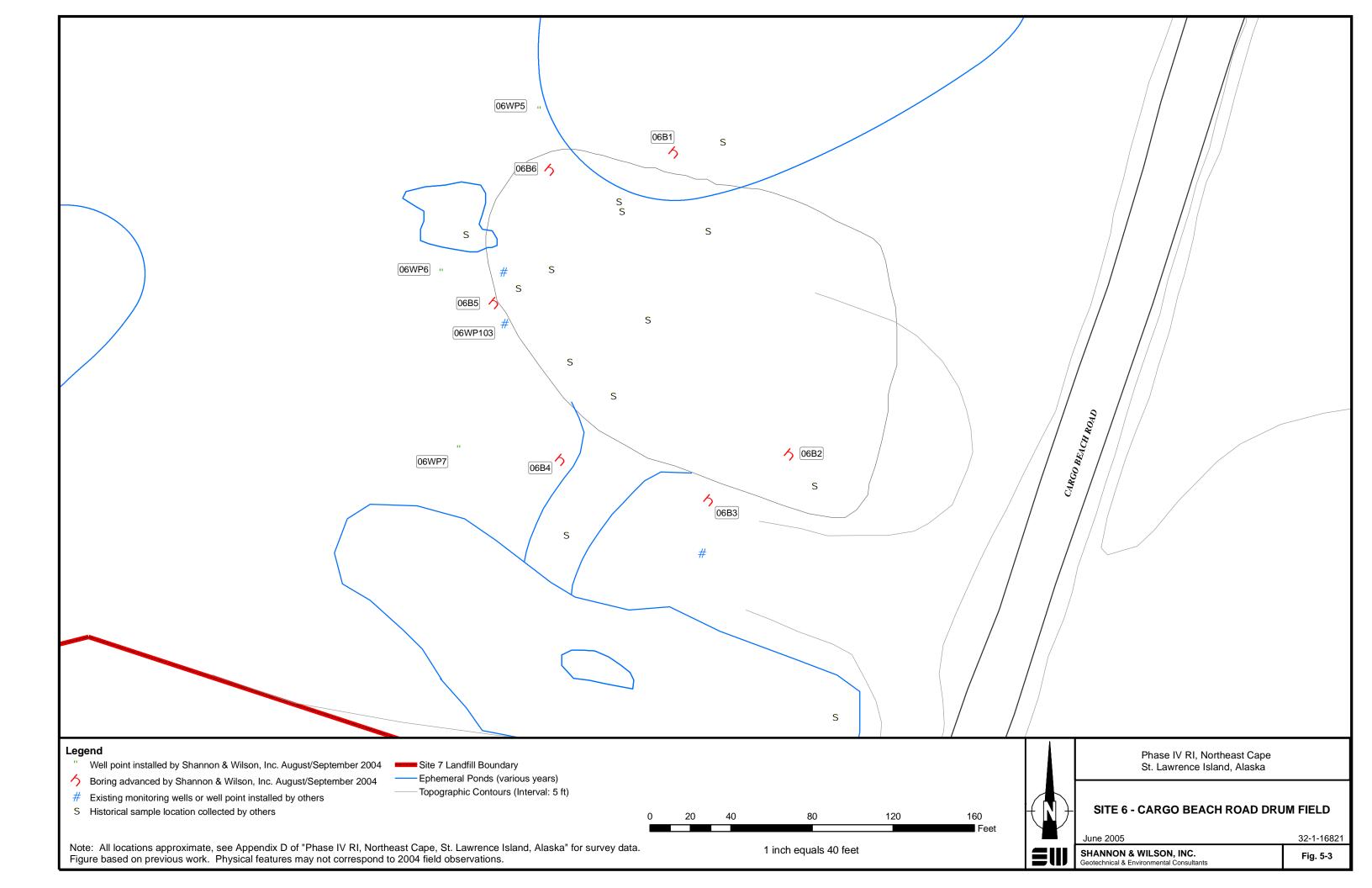
-	Measurement not recorded or not applicable
---	--

Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin † Δ

Tentatively identified compounds not reviewed due to low concentration

- # Replacement samples for original and frozen GRO/BTEX samples collected from 06WP7
- mg/L milligrams per liter
- micrograms per liter µg/L

Cleanup Levels Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C J Estimated concentration; refer to Appendix C for data qualification information


36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup leve

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

WL Approximate depth to water below ground surface

SHANNON & WILSON, INC.

5.4 Site 7: Cargo Beach Road Landfill

Ten surface soil samples and two near-surface samples were collected from Site 7. See Figure 5-4 and Table 5-4a for locations and descriptions.

5.4.1 Site Description

This site is an unpermitted solid waste landfill located about mid-way between the MOC and Cargo Beach, as shown on Figure 2-3. The landfill was used between 1965 and 1974. Scattered drums and metal debris were removed from the site during previous removal actions. The landfill appears to have been created by dumping debris off the sides of a large glacial drumlin. The debris appear to have been covered frequently by grading soil out from the top of the drumlin. Debris remain visible around the perimeter of the drumlin (a more extreme example is shown in Photograph 8), except where Cargo Beach Road crosses.

5.4.2 Data Collection Objectives

Two surface soil samples collected in 2001 suggest an area with potential PCB impacts. Additional soil sampling was performed to further delineate the PCB-impacted areas.

5.4.3 Work Plan Variances

The stake marking the location of 2001 sample 01NE07SS127 was not found. The area had been re-graded within the last two years, based on the heavy equipment tracks and lack of vegetation. The 2004 sample locations were selected using the relationship between physical features and the 2001 sample location shown on the site plan. The surveyor later identified the surveyed location of 01NE07SS127, which was about 30 feet northeast of the estimated location due to scaling discrepancies on the site plans. Therefore, samples 07SS101 through 07SB104 intended to be east and south of Sample 07SS127 are actually west and southwest of the 2001 sample location. Laboratory testing of the three original samples 07SS105 through 07SS107 was cancelled, and new samples 07SS113 to 07SS115 were collected to represent the north and east areas. The supply of disposable booties had been depleted, so the samplers decontaminated their rubber boots at the edge of the study area.

5.4.4 Field Investigation

The Site 7 field activities were completed between August 20, 2004 and September 13, 2004. Figure 5-4 shows the layout of the study area and the sampled locations.

5.4.4.1 Soil Sampling

Analytical soil samples were collected from five locations around each of two previous sample locations, as shown in Figure 5-4. Sample descriptions are included in Table 5-4a. Five near surface and two co-located subsurface samples were collected from the vicinity of previous sample location 01NE07SS127. The co-located surface and sub-surface samples (07SS101/07SB102 and 07SS103/07SB104) were collected from auger flights with the help of the drill rig. Five near surface soil samples were collected from the vicinity of previous sample location 01NE07SS125 with hand tools. Samples 07SS110 through 07SS112 were collected from native soil at the base of the debris/fill.

5.4.4.2 IDW

The augers and shovels used to access the samples and the drillers' boots were decontaminated before leaving the site. The samplers wore disposable booties and gloves, which were placed in a polyethylene bag along with the sampling spoons before returning to Cargo Beach Road.

5.4.5 Analytical Results

Site 7 analytical results are summarized in Table 5-4b. The PCB Aroclor 1260 was the only congener detected at Site 7, and was reported in each of the seven samples collected near the 01NE07SS127 location. Three samples contained concentrations greater than the 1 mg/kg inhalation/ingestion PCB cleanup criterion. Samples 07SS101 and 07SS103 contained 2.37 mg/kg and 2.18 mg/kg, respectively. Sample 07SS113 contained the highest concentration, with an estimated "J" value of 50.8 mg/kg. In addition, an estimated concentration of 0.998 mg/kg is reported for Sample 07SS115. Aroclor 1260 was detected at three of the five sample locations around the 01NE07SS125 location. Only Sample 07SS112 exceeded the 1 mg/kg criterion with 4.76 mg/kg.

The highest PCB concentration was measured in surface soil Sample 07SS113, collected north of the recently graded soil in the vicinity of location 01NE07SS127. The deepest samples in the vicinity (LOCID 07SS101-4 at 4 to 4.5 feet bgs and Sample 07SS104 at 2.8 to 3 feet bgs) had the lowest concentrations of Aroclor 1260. Sample 07SS112 was located just below the top of the fill slope above Sample 01NE07SS125 and contained the second highest concentration of Aroclor 1260. These observations suggest that the PCB release occurred at the ground surface, and that soil with relatively high concentrations was either removed or relocated when the area was graded.

TABLE 5-4a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 7: CARGO BEACH ROAD LANDFILL

Sample			Sample Location	Depth	
Number**	LOCID	Date	(See Figure 5-4)	(feet)	Sample Classification [†]
Soil Sample	<u>:s</u>				
* 07SS101	07SS101-1	9/1/04	Roughly 10 ft. SW of 2001 Sample 01NE07SS127	1.1	Brown, gravelly, sandy SILT and cobbles; moist
* 07SB102	07SS101-4	9/1/04	Roughly 10 ft. SW of 2001 Sample 01NE07SS127	4-4.5	Light brown, silty, sandy GRAVEL; some cobbles; moist
* 07SB202	07SS101-4	9/1/04	QC replicate of 07SB102	4-4.5	Light brown, silty, sandy GRAVEL; some cobbles; moist
* 07SB302	07SS101-4	9/1/04	QA replicate of 07SB102	4-4.5	Light brown, silty, sandy GRAVEL; some cobbles; moist
* 07SS103	07SS103-2	9/1/04	Roughly 35 ft. SW of 2001 Sample 01NE07SS127	1.4-1.8	Brown, silty, sandy GRAVEL; moist
* 07SB104	07SS103-3	9/1/04	Roughly 35 ft. SW of 2001 Sample 01NE07SS127	2.8-3	Redish brown, silty, sandy GRAVEL; trace cobbles; moist
07SS105	07SS105-2	9/1/04	Analysis cancelled - too far west of 01NE07SS127	1.8-2.1	Brown, silty, gravelly SAND; trace cobbles; moist
07SS106	07SS106-1	9/1/04	Analysis cancelled - too far west of 01NE07SS127	1.1-1.2	Redish brown, sandy SILT in coarse gravel; moist; traces of debris
07SS107	07SS107-1	9/1/04	Analysis cancelled - too far west of 01NE07SS127	0.7-0.9	Gray and rusty brown, sandy SILT in gravel/cobble matrix; moist
* 07SS108	07SS108-1	9/1/04	Roughly 12 feet SE of 2001 Sample 01NE07SS125	0.5-0.6	Light brown, sandy SILT / dark brown PEAT interface; moist
* 07SS109	07SS109-1	9/1/04	Roughly 15 feet S of 2001 Sample 01NE07SS125	0.7-0.8	Gray and light brown, slightly sandy SILT; trace organics; moist
* 07SS110	07SS110-1	9/1/04	Roughly 12 feet W of 2001 Sample 01NE07SS125	0.8-0.9	Brown, silty SAND; trace organics; moist
* 07SS111	07SS111-1	9/1/04	Roughly 8 feet N of 2001 Sample 01NE07SS125	0.5-0.6	Brown, silty SAND; moist; with bits of rust and paper debris
* 07SS112	07SS112-1	9/1/04	Roughly 14 feet NNW of 2001 Sample	0.6-0.8	Light brown, gravelly, sandy SILT; moist; with small roots
* 07SS113	07SS113-1	9/13/04	Roughly 10 ft. N of Sample 01NE07SS127	0.8-0.9	Brown, slightly gravelly SILT; trace roots and debris; moist
* 07SS114	07SS114-1	9/13/04	Roughly 15 ft. E of Sample 01NE07SS127	0.7-0.9	Brown, sandy, angular gravelly SILT; moist
* 07SS115	07SS115-1	9/13/04	Roughly 13 ft. SE of Sample 01NE07SS127	0.8	Brown, sandy, angular gravelly SILT; moist

KEY DESCRIPTION

* Sample analyzed by the project or QA laboratory (See Table 5-4b)

** The full sample number is preceded by "04NE", for example 07SS101 is sample 04NE07SS101

† Sample classification applies to the portion of the specified sample interval from which the sample was collected

LOCID Location Identification: "07SS101-1" signifies Site 7, Surface Sample 101 at 1-foot depth (depth is rounded to the nearest foot)

TABLE 5-4b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 7: CARGO BEACH ROAD LANDFILL

			Sample Type:	Sample Type: SURFACE AND SHALLOW SUBSURFACE SOIL NEAR 01NE07SS127							SURFACE SOIL NEAR 01NE07SS125						
Site 7 - Cargo Beach Road Landfill Sample ID Soil Matrix			Location ID:	07SS101-1		07SS101-4		07SS103-2	07SS103-3	07SS113-1	07SS114-1	07SS115-1	07SS108-1	07SS109-1	07SS110-1	07SS111-1	07SS112-
			Sample ID:	04NE07SS101	04NE07SB102	04NE07SB202	04NE07SB302	04NE07SS103	04NE07SB104	04NE07SS113	04NE07SS114	04NE07SS115	04NE07SS108	04NE07SS109	04NE07SS110	04NE07SS111	04NE07SS1
			Depth (ft):	1.1	4-4.5	4-4.5	4-4.5	1.4-1.8	2.8-3	0.8-0.9	0.7-0.9	0.8	0.5-0.6	0.7-0.8	0.8-0.9	0.5-0.6	0.6-0.8
3011	Iali IX		Sample Date:	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/13/2004	9/13/2004	9/13/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004
Parameter Tested	Test Method	Units	Cleanup Level		Primary	Duplicate	Triplicate										
Percent Moisture	A2540G / E160.3M	%	-	12.8	5.3	4.8	4.5	7.5	6.5	4.8	6.7	5.4	33.0	18.6	10.7	12.2	7.0
Polychlorinated Biphenyls (PCBs)			Sum of congeners:														
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0565]	[0.0521]	[0.0516]	[0.025]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	[0.0565]	[0.0521]	[0.0516]	[0.050]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	[0.0565]	[0.0521]	[0.0516]	[0.025]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.0565]	[0.0521]	[0.0516]	[0.025]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.0565]	[0.0521]	[0.0516]	[0.025]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	н	[0.0565]	[0.0521]	[0.0516]	[0.025]	[0.0533]	[0.0544]	[0.0516]	[0.0532]	[0.0533]	[0.0754]	[0.0621]	[0.0569]	[0.0582]	[0.0537]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	2.37	0.0806	0.0307 J	0.0278	2.18	0.029 J	50.8 J	0.715 J	0.998 J	0.0972	[0.0621]	[0.0569]	0.286	4.76

KEY DESCRIPTION

Analysis not requested or cleanup level not established

% percent

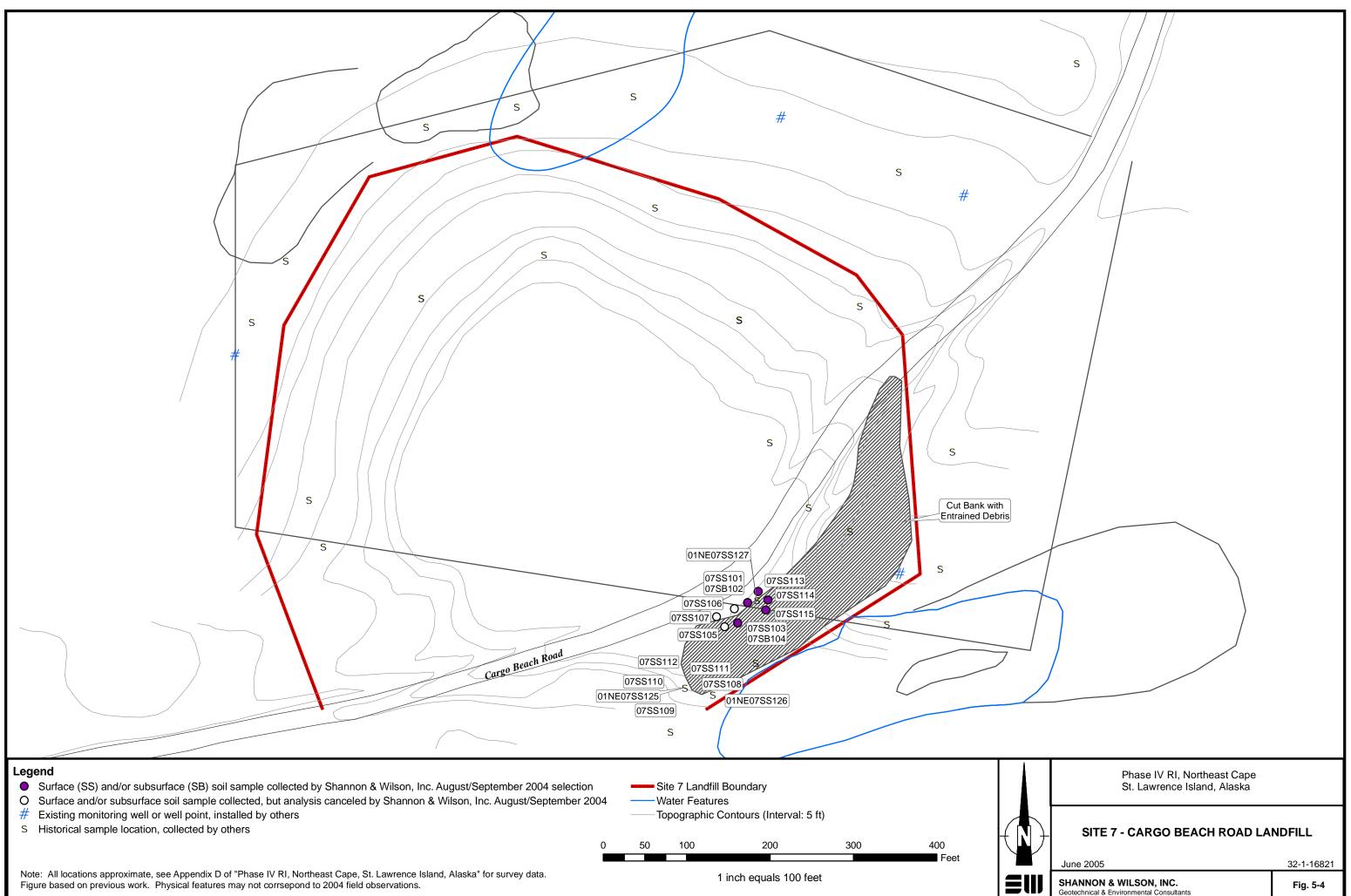
mg/kg milligrams per kilogram

-

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the

"Under 40 inches" precipitation zone.

ing Cleanup level based on ingestion pathway


inh Cleanup level based on inhalation pathway

J Estimated concentration; refer to Appendix C for data qualification information

36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup leve

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

5.5 <u>Site 8: POL Spill Site</u>

Sediment samples from two locations (08SD102 and 08SD103) and surface water sample 08SW101 were collected from Site 8 (see Figure 5-5 and Table 5-5a).

5.5.1 Site Description

The POL Spill Site is a wetland with thick surface vegetation, typical of locations along roads and the Airstrip where a thick tundra mat was removed before construction. The roughly 40-foot wide wetland slopes southward for approximately 300 feet toward the Suqi. River. Photograph 9 is a view across the site from the bank of the Suqi. River. The wetland narrows as it approaches the river.

A steel fuel pipeline extended from the Site 3 fuel pumphouse to the three large fuel storage tanks at Site 11. The fuel pipeline was drained and removed during a recent removal action. Community members recalled a break in the pipeline near the intersection of Cargo Beach Road and the Airport Access Road, and a patch or expansion joint was observed before removal. The reported break location is on the west side of the main road embankment, south of the Cargo Beach Road intersection and north of the Middle Suqitughneq River (Mid-Suqi.) Bridge (See Figure 5-5).

5.5.2 Data Collection Objectives

To assess possible fuel impacts to the wetland, sediment samples were collected and analyzed for DRO, RRO, GRO, PAHs, and BTEX. Additionally, assessment of the biogenic influence on the DRO and RRO results was performed to assess fuel impacts. A surface water sample was collected and analyzed for PAHs, and BTEX to investigate water quality where drainage from the wetland gathers to enter the Suqi. River. TAH and TAqH values were calculated from the results of the water analysis.

5.5.3 Field Investigation

Sampling was performed at Site 8 on August 15, 2004. The approximate location of the pipeline break was suggested by disturbed ground and a petroleum odor in the gravelly soil that has accumulated at the base of the road embankment.

5.5.3.1 Sediment and Surface Water Sampling

Two sediment sample locations were selected to represent down-gradient wetlands. A hand shovel was used to cut into the vegetation, and a clean stainless steel spoon was used to

pick as many soil particles as possible out of the resulting water-filled hole. A clean laboratorysupplied jar was used to dip water from a spring at the toe of the wetland, a few feet from a high water mark left by the Suqi. River.

5.5.3.2 IDW

The samplers wore disposable gloves, which were placed in the project IDW polyethylene bag. Used sampling spoons were placed in the dirty spoon bag.

5.5.3.3 Field Observations

The work plan figure was not representative of conditions observed by the project field team. The apparent location of the pipeline break is further south than depicted on the work plan figure, less than 50 feet from the 08SD103 location. The drainage shown on Figure 5-5 is farther west than found in the field, although it roughly resembles the wetland/tundra boundary.

Water flowed clear and cold at several gallons per minute from the spring that was sampled. A stringy sheen, possibly indicating petroleum hydrocarbons, was observed when the sediment in the spring was disturbed. It is possible that the water emanating from the spring is not drainage from the active surface of the wetland. Permafrost channeling may bring the water from a source not apparent from the ground surface. At the time of sampling, the spring was the only apparent surface flow, although water from the wetland may enter the Suqi. River as near surface flow through the vegetation mat.

The material encountered in the wetland consisted of dense, grassy vegetation and roots with little soil or peat development. Some sand was encountered between cobbles under the vegetation mat at the 08SD102 Location. Sheen and odors that may have been biogenic with a hint of petroleum were noted while collecting Sample 08SS102. A sheen and apparent petroleum odor were observed while digging at the Sample 08SD103 location. The vegetation in the wetland did not appear to be stressed or petroleum stained.

5.5.4 Analytical Results

5.5.4.1 Sediment

Table 5-5b summarizes the analytical results for sediment from Site 8. DRO concentrations in excess of the cleanup criterion were measured at both sediment sample locations. Sample 08SD102 was reported to contain 19,500 mg/kg DRO, and Sample 08SD103 contained 6,760 mg/kg DRO. The chromatographic patterns and TICs resembled weathered middle distillate fuel (diesel). RRO test results of 3,880 mg/kg in Sample 08SD102 and 4,360

mg/kg in primary sample 08SD103 are below the soil cleanup criterion and assessed as biogenic. Benzene was not detected, however the PQLs are above cleanup criteria, likely due to the high water and organic contents of the samples. The PAHs chrysene, flourene, naphthlene, and phenanthrene were detected at concentrations below soil cleanup criteria in Sample 08SD102. Samples 08SD203 and 08SD303 are QC and QA replicates of Sample 08SD103 with comparable DRO and RRO results.

5.5.4.2 Water

PAH and BTEX compounds were not detected above the PQLs in water Sample 08SW101. The PQLs, shown on Table 5-5c, are all below the cleanup criteria, resulting in low TAH and TAqH values.

TABLE 5-5a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 8: POL SPILL SITE

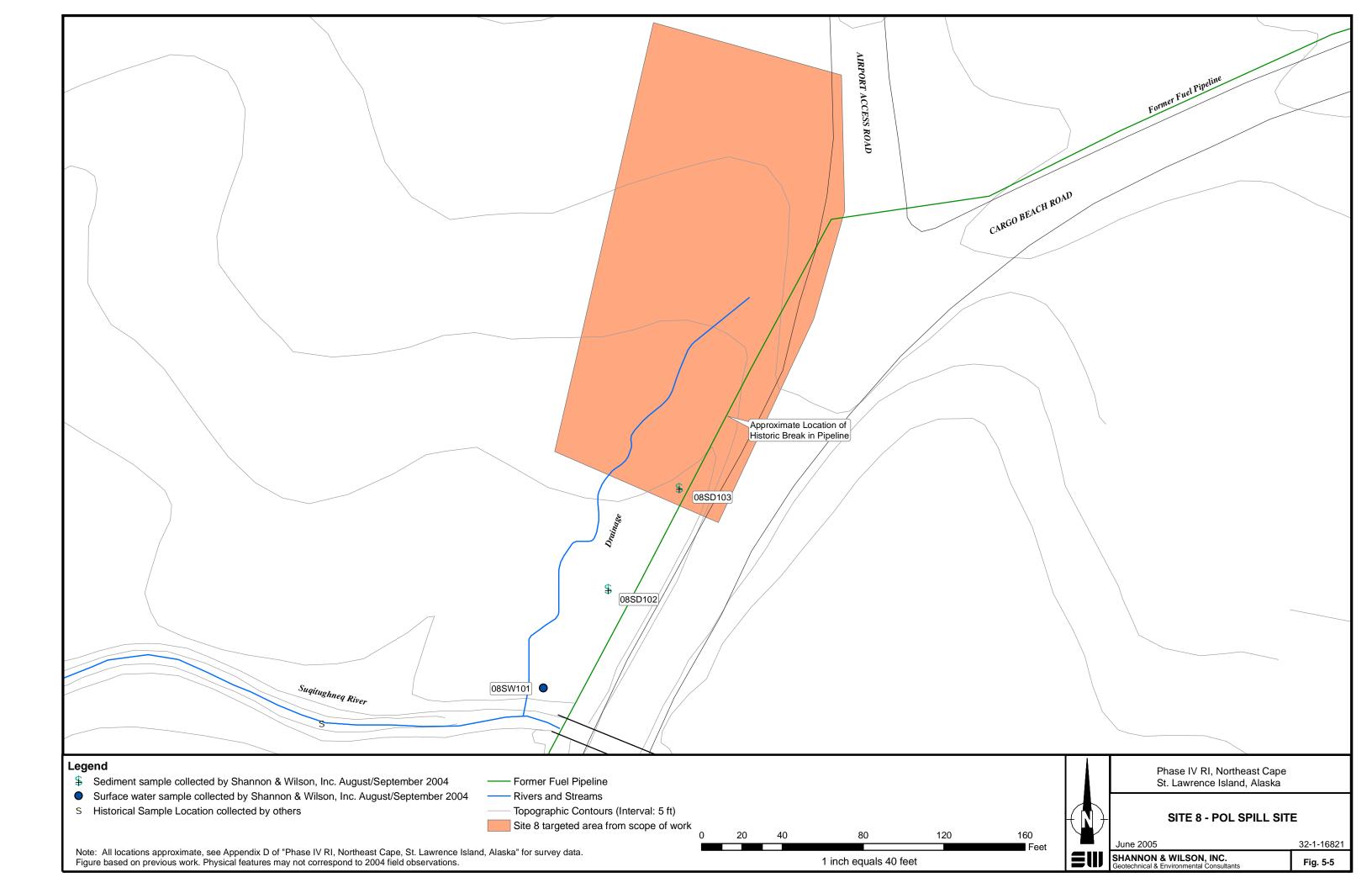
					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-5)	(feet)	(ppm) ^	Sample Classification [†]
<u>Sediment Sa</u>	<u>imples</u>					
* 08SD102	08SD102	8/15/04	Wetland on W side of road, about 80 ft. N of Suqi. R.	0.5-0.6	4.2	Brown organic SILT and active roots; wet; Cobbles and boulders with a trace of coarse sand encountered under vegetation mat
* 08SD103	08SD103	8/15/04	55 ft. NE of 08SD102, near signs of pipeline	0.6-0.8	5.3	Brown organic SILT in active roots; wet; weathered diesel odor
* 08SD203	08SD103	8/15/04	QC replicate of 08SD103	0.6-0.8	5.3	Brown organic SILT in active roots; wet; weathered diesel odor
* 08SD303	08SD103	8/15/04	QA replicate of 08SD103	0.6-0.8	5.3	Brown organic SILT in active roots; wet; weathered diesel odor
Surface Wat	ter Sample					
* 08SW101	08SW101	8/15/04	Spring at bottom of wetland, 15 ft from Suqi. R.	-	-	Clear surface water. Sheen observed when sediment disturbed.

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-5b and 5-5c)
- ** The full sample number is preceded by "04NE", for example 08SD102 is sample 04NE08SD102
- ^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- ppm parts per million, calibrated to 100 ppm isobutylene
- LOCID Location Identification: "08SD102" signifies Site 8, Sediment Sample 102

			Sample Type:		SEDIMENT, WE	ETLANDS AREA	
Site 9 DOL Sn			Location ID:	08SD102			
Site 8 - POL Sp	iii Sile		Sample ID:	04NE08SD102	04NE08SD103	04NE08SD203	04NE08SD303
Soil Matrix			Depth (ft):	0.5-0.6	0.6-0.8	0.6-0.8	0.6-0.8
Soli Matrix			Sample Date:	8/15/2004	8/15/2004	8/15/2004	8/15/2004
Parameter Tested	Test Method	Units	Cleanup Level		Primary	Duplicate	Triplicate
PID Headspace Reading	HNU HW101 PID	ppm	-	4.2	5.3	5.3	5.3
Percent Moisture	A2540G / E160.3M	%	-	69.3	57.5	56.9	51
Gasoline Range Organics (GRO) Diesel Range Organics (DRO) Laboratory Assessment of Hydrocarbon Origin † Residual Range Organics (RRO) Laboratory Assessment of Hydrocarbon Origin †	AK101 AK102 - AK103	mg/kg mg/kg _ mg/kg _	300 250 - 10,000 (ing) -	15.3 J 19,500 diesel 3,880 biogenic	2.50 J 6,760 diesel 4,360 biogenic	2.27 J 6,700 diesel 3,430 biogenic	[3.07] B 8,920 - 2,920 J -
Aromatic Organic Compounds (BTEX) Benzene Ethylbenzene Toluene o-Xylene m & p-Xylenes	SW8260B SW8260B SW8260B SW8260B SW8260B	µg/kg µg/kg µg/kg µg/kg	20 5,500 5,400 78,000 (total Xylenes) 78,000 (total Xylenes)	[80] [154] [308] [154] [308]	[43.3] [83.2] [166] [83.2] [166]	[44] [84.6] [169] [84.6] [169]	[123] [123] 34.4 J [369] total
Polynuclear Aromatic Hydrocarbons (PAH) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	PAH SIM PAH SIM	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	210,000 210,000 4,300,000 6,000 1,000 (ing) 21,000 1,500,00 1,500,00 1,000 (ing) 2,100,000 270,000 11,000 (ing) 21,000 4,300,000 1,500,000	[247] [247] [247] [247] [247] [247] [247] [247] [247] [247] [247] 1,240 852 J [247]	[160] [160] [160] [160] [160] [160] [160] [160] [160] [160] [160] [160] [160]	[154] [154] [154] [154] [154] [154] [154] [154] [154] [154] [154] [154] [154] [154]	[204] [204] [204] [204] [204] [204] [204] [204] [204] [204] [204] [204] [204] [204] [204]

KEY DESCRIPTION


KEY	DESCRIPTION
_	Analysis not requested or cleanup level not established
†	Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC
	75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
J	Estimated concentration; refer to Appendix C for data qualification information
[3.07] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve

SHANNON & WILSON, INC.

TABLE 5-5c SUMMARY OF WATER ANALYTICAL RESULTS - SITE 8: POL SPILL SITE

			Sample Type:	SURFACE WATER	
Site 9 BOL Spi			Location ID:	08SW101	
Site 8 - POL Spi	II SILE		Sample ID:	04NE08SW101 - 8/15/2004	
Water Matrix			Depth (ft):		
			Sample Date:		
Parameter Tested	Test Method	Units	Cleanup Level		
Aromatic Organic Compounds (BTEX)					
Benzene	SW8260B	µg/L	5	[0.4]	
Ethylbenzene	SW8260B	µg/L	700	[1]	
Toluene	SW8260B	µg/L	1,000	[1]	
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	
m & p-Xylenes	SW8260B	µg/L	10,000 (Total Xylenes)	[2]	
Polynuclear Aromatic Hydrocarbons (PAH SIM)					
Acenaphthene	PAH SIM	µg/L	2,200	[0.0532]	
Acenaphthylene	PAH SIM	µg/L	2,200	[0.0532]	
Anthracene	PAH SIM	µg/L	11,000	[0.0532]	
Benzo(a)anthracene	PAH SIM	µg/L	1	[0.0532]	
Benzo(a)pyrene	PAH SIM	µg/L	0.2	[0.0532]	
Benzo(b)fluoranthene	PAH SIM	µg/L	1	[0.0532]	
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	[0.0532]	
Benzo(k)fluoranthene	PAH SIM	µg/L	10	[0.0532]	
Chrysene	PAH SIM	µg/L	100	[0.0532]	
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	[0.0532]	
Fluoranthene	PAH SIM	µg/L	1,460	[0.106]	
Fluorene	PAH SIM	µg/L	1,460	[0.0532]	
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	[0.0532]	
Naphthalene	PAH SIM	µg/L	700	[0.0532] B	
Phenanthrene	PAH SIM	µg/L	11,000	[0.106]	
Pyrene	PAH SIM	µg/L	1,100	[0.0532]	
Calculated Total aromatic hydrocarbons (TAH) †	(see text)	µg/L	10	2.7	
Calculated Total aqueous hydrocarbons (TAqH) ‡	(see text)	µg/L	15	3.2	

KEY	DESCRIPTION
-	Measurement not recorded or not applicable
µg/L	micrograms per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC
	75.345, Table C and, for TAH/TAqH, surface water levels in 18 AAC 70.
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.0532] B	Result qualified as not detected due to method, trip, or equipment blank detection
	TAH equals the sum of BTEX analyte concentrations estimated below the PQL or
†	detected above the PQL, plus 1/2 the PQL of analytes not reported above the Method
	Detection Limit (MDL).
	TAgH equals the sum of BTEX and PAH analyte concentrations estimated below the
‡	PQL or detected above the PQL, plus 1/2 the PQL of analytes not reported above the
+	Method Detection Limit (MDL).

5.6 <u>Site 10: Buried Drums</u>

Soil borings 10B1 and 10B2 were advanced, and three samples from each submitted for laboratory analysis at Site 10 (see Figure 5-6 and Table 5-6a). Monitoring Well MW10-1 was sampled in association with Site 11 field activities, and is discussed in that section.

5.6.1 Site Description

Site 10 is located along the main access road due east of the MOC, and currently appears to be a wide gravel area on the northwest side of the road. The embankment on the northwest side has a few pieces of decomposing drums exposed, and a shallow wetland basin is at the base of the embankment.

5.6.2 Data Collection Objectives

Previous investigations indicate the presence of petroleum hydrocarbons; however, the total depth of contamination was uncertain. To evaluate the vertical extent of hydrocarbons, two soil borings were advanced to 15 feet bgs and soil samples were collected at 5-foot intervals. Three soil samples from each boring were analyzed for DRO, RRO, GRO, and BTEX. One sample from each boring was analyzed for PAHs and TOC.

5.6.3 Work Plan Variances

One near-surface sample was collected from the borehole wall of each boring before drilling to 5 feet and driving a split-spoon sampler. Sampling and screening the near-surface soil was not specified in the Work Plan. It was performed to provide the sampler with a baseline headspace reading and soil type to assist in selecting analytical samples. An extra sample was driven in Boring 10B2 from 11 to 11.5 feet because a soil transition was detected near 11 feet bgs. A rock in the sampler shoe prevented recovery of soil from the deeper formation. The high blow counts and loose, wet soil recovered in the extra sample suggested a transition from thawed to frozen ground.

5.6.4 Field Investigation

Soil Borings 10B1 and 10B2 were advanced with hollow stem augers on August 23, 2004, and are located as shown on Figure 5-6. Soil screening results and sample descriptions are listed in Table 5-6a, and lithology is presented in Boring Log Figures B-10a and B-11a in Appendix B. Equipment decontamination and IDW disposal were handled in the standard manner.

Boring 10B1 was located near the northern extent of the gravel fill area. The transition from fill to native soil was not clear based on the recovered samples, but was likely between 1.5 and 5 feet bgs. Frozen ground was suspected between 10 and 11 feet bgs and strongly indicated at 16 feet bgs. Boring 10B2 was located in the area where the fill appeared to be the thickest, up gradient of the wetland basin and Monitoring Well MW 10-1. The transition from fill to native soil was at 5 feet bgs, and frozen ground appeared to start at 11 to 12 feet bgs.

5.6.5 Analytical Results

Samples 10SB104 and 10SB106 from Boring 10B1 contained DRO concentrations that exceed the 250mg/kg ADEC cleanup criterion. Sample 10SB104 was collected from soil with a trace of organics and some discoloration at 5 to 6.5 feet bgs, and contained an estimated concentration of 619 mg/kg DRO. Sample 10SB106 was collected from what appeared to be a transition to frozen ground 15 to 16.5 feet bgs, and contained an estimated concentration of 275 mg/kg DRO. GRO, BTEX, and PAHs were not detected above their PQLs. RRO concentrations were reported at estimated values ranging from 25 mg/kg to 1,270 mg/kg, all less than the cleanup criterion. Table 5-6b summarizes the Site 10 analytical results.

TABLE 5-6a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 10: BURIED DRUMS

Sample			Sample Location	Depth	Screeni ng	
Number**	LOCID	Date	(See Figure 5-6 for borehole locations)	(feet)	(ppm) ^	Sample Classification [†]
Soil Sample	<u>s</u>					
B1S1	10B1-1	8/23/04	Boring 10B1	0-1.5	0.4	Brown, slightly silty, gravelly SAND; trace organics (roots); moist, hydrocarbon odor (resembles used motor oil)
* 10SB104	10B1-5	8/23/04	Boring 10B1	5-6.5	0.2	Dark to orange-brown, silty, gravelly SAND; trace roots; moist
* 10SB105	10B1-10	8/23/04	Boring 10B1	10-11.5	< 0.2	Brown to dark brown, silty, angular gravelly SAND; moist
* 10SB106	10B1-15	8/23/04	Boring 10B1	15-16.5	< 0.2	Gray/brown, silty, gravelly angular SAND; moist or frozen
B2FS1	10B2-1	8/23/04	Boring 10B2	01.5	0.4	Brown SILT; moist; with organics, grass, cobbles
* 10SB101	10B2-5	8/23/04	Boring 10B2	5-6.5	1.3	Brown, gravelly, sandy SILT; trace organics (roots); moist
* 10SB102	10B2-10	8/23/04	Boring 10B2	10-11	0.7	Brown, gravelly SILT and cobbles; trace organics (roots); moist
B2S3	10B2-11	8/23/04	Boring 10B2	11-11.5	0.4	Brown, gravelly SILT and cobbles; wet - suspect frozen ground
* 10SB103	10B2-15	8/23/04	Boring 10B2	15-16.5	0.3	Brown, silty, gravelly SAND and cobbles; wet - frozen likely

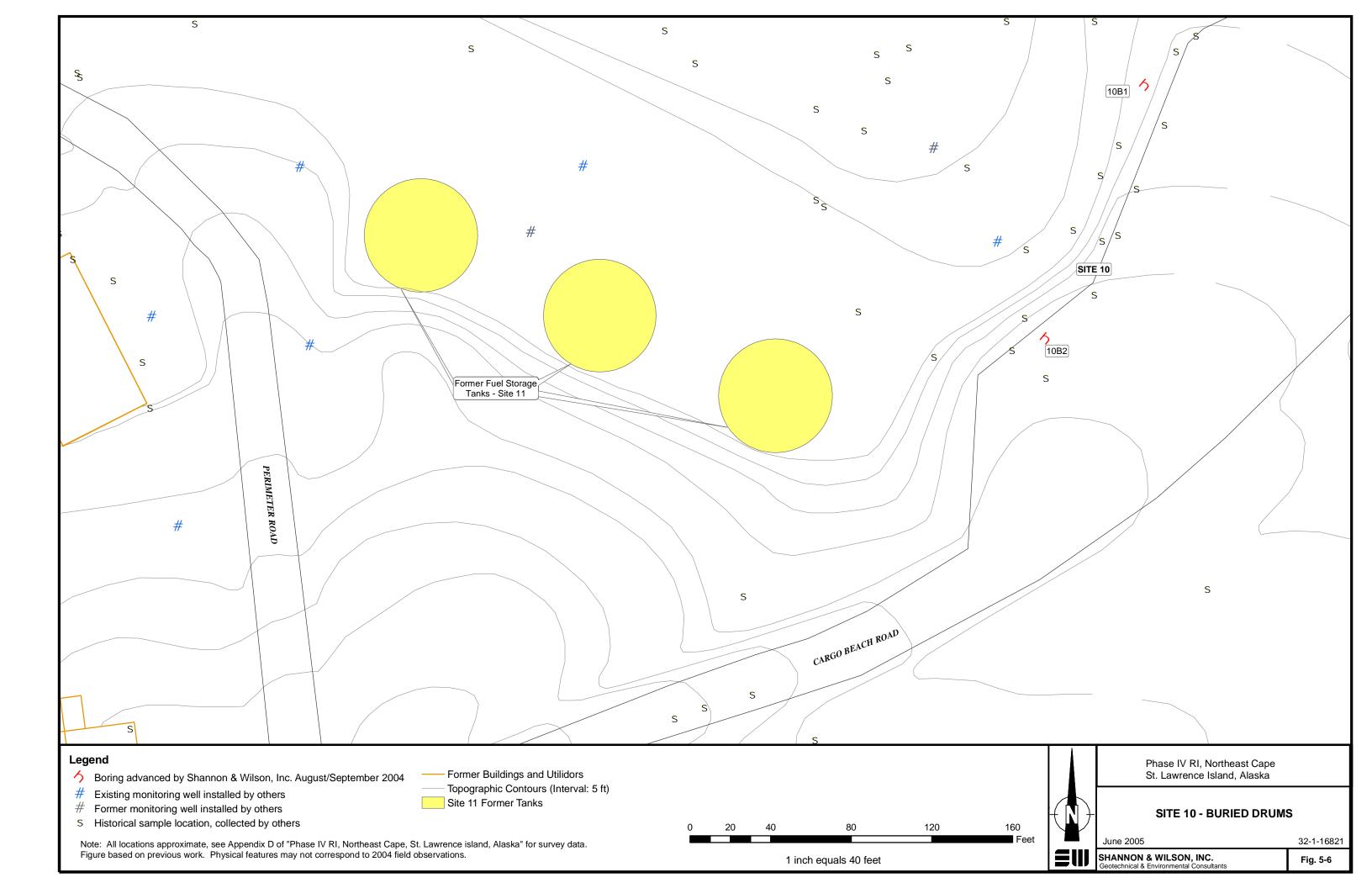
KEY DESCRIPTION

Sample analyzed by the project or QA laboratory (See Table 5-6b) *

** The full sample number is preceded by "04NE", for example 10SB104 is sample 04NE10SB104

۸ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp

Sample classification applies to the portion of the specified sample interval from which the sample was collected † Measurement not recorded or not applicable _


ppm parts per million, calibrated to 100 ppm isobutylene

LOCID Location Identification: "10B1-1" signifies Site 10, Boring 1 at 1-foot depth (depth is rounded to the nearest foot)

TABLE 5-6b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 10: BURIED DRUMS

			Sample Type:					BOREHOLE 10B2			
Site 10 - Burie	d Drumo		Location ID:	10B1-5	10B1-10	10B1-15	10B2-5	10B2-10	10B2-15		
Site IU - Durie	a Drums		Sample ID:	04NE10SB104	04NE10SB105	04NE10SB106	04NE10SB101	04NE10SB102	04NE10SB103		
Soil Matr	iv		Depth (ft):	5-6.5	10-11.5	15-16.5	5-6.5	10-11	15-16.5		
			Sample Date:	8/23/2004	8/23/2004	8/23/2004	8/23/2004	8/23/2004	8/23/2004		
Parameter Tested	Test Method	Units	Cleanup Level								
PID Headspace Reading	HNU HW101 PID	ppm	-	0.2	<0.2	<0.2	1.3	0.7	0.3		
Percent Moisture	A2540G / E160.3M	%	-	7.8	6.8	19.3	10.2	10.4	10.9		
Gasoline Range Organics (GRO) Diesel Range Organics (DRO) Residual Range Organics (RRO)	AK101 AK102 AK103	mg/kg mg/kg mg/kg	300 250 10,000 (ing)	[1.55] B 619 J 1,270 J	[1.62] B 159 J 313 J	[2.74] B 275 J 524 J	[1.64] B 21.6 J 137 J	[1.85] B 8.78 J 46.6 J	[1.76] B 5.95 J 25 J		
Aromatic Organic Compounds (BTEX) Benzene Ethylbenzene Toluene o-Xylene m & p-Xylenes	SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B	µg/kg µg/kg µg/kg µg/kg	20 5,500 5,400 78,000 (total Xylenes) 78,000 (total Xylenes)	[8.07] [15.5] [31.0] [15.5] [31.0]	[8.44] [16.2] [32.5] [16.2] [32.5]	[14.3] [27.4] [54.9] [27.4] [54.9]	[8.51] [16.4] [32.7] [16.4] [32.7]	[9.62] [18.5] [37.0] [18.5] [37.0]	[9.15] [17.6] [35.2] [17.6] [35.2]		
Polynuclear Aromatic Hydrocarbons (PAH) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	PAH SIM PAH SIM	10 10 10 10 10 10 10 10 10 10	210,000 210,000 4,300,000 6,000 1,000 (ing) 21,000 1,500,00 620,000 1,000 (ing) 2,100,000 270,000 11,000 (ing) 21,000 4,300,000 1,500,000	$\begin{array}{c} [54.4]\\$					$\begin{array}{c} [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \\ [5.62] \end{array}$		
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	6,600	-	-	-	-	[552]		
	KEY	DESCRIPT			1	1	1		1		

-	Analysis not requested or cleanup level not established
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18
	ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
J	Estimated concentration; refer to Appendix C for data qualification information
[1.760] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup level
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)

5.7 <u>Site 11: Fuel Storage Tanks</u>

Two of four existing monitoring wells were scoped to be sampled based on observations of site conditions. Monitoring wells MW 11-3 and MW 10-1 were selected and sampled as part of the Site 11 field activities (see Figure 5-7 and Table 5-7a).

5.7.1 Site Description

Three large fuel storage tanks (~400,000 gallons each) were formerly located on the northeast corner of the Main Operations Complex, between the perimeter access road and Site 10, as shown in Figure 5-7. The tanks have been dismantled, and the steel is piled on two of the three oil sand foundations. The tanks sat on a constructed gravel pad, and the gravel embankment drops to a shallow tundra basin on the northeast. The center tank was punctured during snow removal operations in the late 1960s and approximately 180,000 gallons of diesel fuel were released to the surrounding area.

5.7.2 Data Collection Objectives

Two of the four existing monitoring wells were sampled to gather current information regarding the site's groundwater quality. The samples were analyzed for DRO, RRO, GRO, BTEX, metals (Cr, Pb, Zn, and Hg), and natural attenuation parameters.

5.7.3 Work Plan Variances

Groundwater from Site 11 was to be tested for natural attenuation parameters, including field measurements of alkalinity and ferrous iron. The Hach colorimeter display failed while testing water from Monitoring Well MW 10-1, and ferrous iron values were not obtained from either well.

5.7.4 Field Investigation

Monitoring Wells MW 10-1 and MW 11-3 were purged and sampled on September 5, 2004 using a Redi-Flo 2 submersible pump. Table 5-7a describes the samples, and a groundwater sampling log is attached as Table 5-7b. Groundwater sampling, equipment decontamination and IDW disposal were handled as described in Section 3.

5.7.4.1 Field Observations

Four monitoring wells had been installed at Site 10/Site 11 previously, and are located as shown on Figure 5-6. MW 10-1 exhibited frost damage. The PVC casing extended a few inches above the 4-inch-diameter stick-up monument, and the concrete anchoring the monument was

broken, leaving a void at the ground surface. Monitoring Well MW 10-4 was frost-jacked to the point the well screen was exposed above ground. Both of these wells are located in the shallow wetland basin, where the frost level is shallow beneath the thick, intact tundra. MW 11-3 was intact. Well MW 11-2 was found broken off near the ground surface. Both of these wells are located on the gravel pad constructed for the ASTs.

5.7.5 Analytical Results

Laboratory results for Site 11 samples are presented in Table 5-7c. Groundwater Sample 11GW102, from Monitoring Well MW11-3 contained 15.2 mg/L DRO, which exceeds the ADEC Table C cleanup criterion by an order of magnitude.

TABLE 5-7a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 11: FUEL STORAGE TANKS

Sample Number**	LOCID	Date	Sample Location (See Figure 5-7)	Depth (feet)	Sample Classification
Groundwate	er Samples				
* 11GW101	MW10-1		Existing Monitoring Well MW10-1; installation date not determined	WL 2.3	Groundwater - remained turbid after purging
* 11GW102	MW11-3		Existing Monitoring Well MW11-3; installation date not determined	WL 7.0	Groundwater - weathered diesel odor, nearly clear

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Table 5-7b)
- ** The full sample number is preceded by "04NE", for example 11GW102 is sample 04NE11GW102
- WL Approximate static water level in feet below ground surface
- LOCID Location Identification: "MW11-3" signifies Monitoring Well MW11-3

TABLE 5-7b GROUNDWATER SAMPLING LOG SITE 11: FUEL STORAGE TANKS

MONITORING WELL INSTALLATION DATA

MW10-1	MW11-3
Unknown	Unknown
68.87	69.63
71.42	72.33
Unknown	Unknown
11.52	20.30
2	2
-	-
-	-
-	-
-	-
-	-
0.16	0.16
-	-
-	-
-	-
MW10-1	MW11-3
04NE11GW101	04NE11GW102
9/5/04	9/5/04
13:23	16:57
13:50	17:25
4.89	9.72
6.63	10.58
1.06	1.69
Redi-Flo 2	Redi-Flo 2
5.0	5.0
9/5/04	9/5/04
16:18	17:34
10.2	7.1
0.10	0.15
3.8	1.7
5.4	5.1
215	181
86.3	18.6
-	15-20
9/13/04	9/13/04
15:08	15:05
	0.00
5.27	9.80
	68.87 71.42 Unknown 11.52 2 - - - - - - - - - - - - - - - - -

KEY DESCRIPTION


- Not developed or not measured
- °C Degrees Celsius

- ft Feet mg/L Milligrams per liter MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-7c SUMMARY OF WATER ANALYTICAL RESULTS - SITE 11: FUEL STORAGE TANKS

			Sample Type:	GROUNI	OWATER
Site 11 Eucl Store	aga Tanka		Location ID:	MW10-1	MW11-3
Site 11 - Fuel Stora	aye ranks		Sample ID:	04NE11GW101	04NE11GW102
Water Matri	~		Depth (ft):	WL 2.3	WL 7.0
water water	X		Sample Date:	9/5/2004	9/5/2004
Parameter Tested	Test Method	Units	Cleanup Level		
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	[0.090]	0.333
Diesel Range Organics (DRO)	AK102	mg/L	1.5	[0.333] B	15.2
Residual Range Organics (RRO)	AK103	mg/L	1.1	[0.556] B	0.940 B
Aromatic Organic Compounds (BTEX)					
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]
Ethylbenzene	SW8260B	µg/L	700	[0.4]	[0:4]
Toluene	SW8260B	μg/L	1,000	[1]	0.37 J
o-Xylene	SW8260B	μg/L	10,000 (Total Xylenes)	[1]	[1]
m & p-Xylenes	SW8260B		10,000 (Total Xylenes) 10,000 (Total Xylenes)	[1]	[1]
III & p-Aylenes	3000200B	µg/L	10,000 (Total Xylenes)	[2]	[2]
Polynuclear Aromatic Hydrocarbons (PAH SIM)	5				(= oo)
Acenaphthene	PAH SIM	µg/L	2,200	-	[5.26]
Acenaphthylene	PAH SIM	µg/L	2,200	-	[5.26]
Anthracene	PAH SIM	µg/L	11,000	-	[0.0526]
Benzo(a)anthracene	PAH SIM	µg/L	1	-	[0.0526]
Benzo(a)pyrene	PAH SIM	µg/L	0.2	-	[0.0526]
Benzo(b)fluoranthene	PAH SIM	µg/L	1	-	[0.0526]
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	-	[0.0526]
Benzo(k)fluoranthene	PAH SIM	µg/L	10	-	[0.0526]
Chrysene	PAH SIM	µg/L	100	-	[0.0526]
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	-	[0.0526]
Fluoranthene	PAH SIM	µg/L	1,460	-	[0.105]
Fluorene	PAH SIM	µg/L	1,460	_	[5.26]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	-	[0.0526]
Naphthalene	PAH SIM	µg/L	700	_	2.09J
Phenanthrene	PAH SIM	µg/L	11,000	-	0.561
Pyrene	PAH SIM	μg/L	1,100	-	[0.0526]
Fotal Metals		-			
Chromium	SW6020	ua/I	100 (Total)	32.8	[4]
	SW6020 SW6020	µg/L		32.8 4.57	[4] 1.35 B
Lead	SW6020 SW7470A	µg/L	15 2		0.068 J
Mercury		µg/L	-	[0.2]	
Zinc	SW6020	µg/L	11,000	18.7 J	19.2 J
Natural Attenuation Parameters					
Nitrate	E300.0	mg/L	-	[0.1]	[0.1]
Sulfate	E300.0	mg/L	-	9.83	13.5
Iron	SW6010B	mg/L	-	4.8	6.01

KEY	DESCRIPTION
-	Measurement not recorded or not applicable
mg/L	milligrams per liter
μg/L	micrograms per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels
	listed in 18 ACC 75.345, Table C
J	Estimated concentration; refer to Appendix C for data qualification information
[0.0532] B	Result qualified as not detected due to method, trip, or equipment blank detection
1.11 B	Analyte concentration biased due to detection in method, trip, or equipment blank
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup level
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
WL	Approximate depth to water below ground surface

5.8 <u>Site 13: Electrical Power Building</u>

Twenty-eight soil samples from three areas were collected and analyzed by the laboratory for PCBs from Site 13 (see Figure 5-8 and Table 5-8a).

5.8.1 Site Description

This site contained the central heating and power generating facilities for the Main Operations Complex. Building 110 contained three transformer banks, diesel generators, and underground storage tanks. The building has been demolished to the concrete floor slab, and the tanks and transformers have been removed. An interim removal action removed 25 tons of PCB-contaminated soil from the site. At the time of the Phase IV RI, the concrete floor slab remained exposed, and rocky soil had been recently graded around the site (See Photograph 11 in Appendix A). The layout of Site 13 and the former sampling and excavation locations are shown in Figure 5-8.

5.8.2 Data Collection Objectives

Confirmation sampling indicates that soils adjacent to the building still contain elevated levels of PCBs. Historical sampling results indicate that other areas of PCB contamination may exist north of Building 110. The objective of the Phase IV effort was to gather additional data on the depth and extent of PCB soil contamination in three areas, which will help reduce uncertainties during the design phase of any future remedial actions.

5.8.3 Work Plan Variances

The Work Plan specified that near-surface samples would be collected from 1 foot bgs, and co-located subsurface samples would be collected from 3 feet bgs surrounding Transformer Pad #13-1. The Work Plan implied less specific sample depths for the other locations. Some of the surface soil at Site 13 appeared to be recently imported from the talus quarry, and same appeared to contain building demolition debris. In an effort to sample soil that had not been recently imported, sample depths were adjusted to compensate for the depth of new or disturbed soil on a location-specific basis.

Soil covered former Transformer Pad #13-2, therefore the location was estimated based on measurements from exposed site features and the Work Plan figure. Four soil samples were collected near the estimated 1998 Sample 98NE13SS802 location (see Figure 5-8). The surveyor later found the estimated location of the 1998 sample to be 24 feet from the surveyed coordinates. Analyses of three of the four samples (13SS121, 13SS122, and 13SS123) collected at the initial locations were cancelled. Sample 13SS120 had already been analyzed at the time the error was discovered, and the results are included in Table 5-8b. Replacement samples 13SS132, 13SS133, 13SS134, and 13SB135 were collected based on the surveyed location of 98NE13SS802. The location coordinates for Samples 13SS132, 13SS133, and 13SS134 were calculated using swing-ties from surveyed locations, and Sample 13SB135 was collected beneath the surveyed location of Sample 98NE13SS802. The supply of disposable booties had been depleted at the time of resampling, so samplers decontaminated their rubber boots at the edge of the study area.

5.8.4 Field Investigation

Field sampling was performed at Site 13 between August 27 and September 13, 2004. Sample descriptions are summarized in Table 5-8a, and locations are shown on Figure 5-8.

5.8.4.1 Soil Sampling

To further characterize the extent of PCB contamination surrounding the former Transformer Pad #13-1, ten near-surface soil samples and 5 co-located subsurface soil samples, plus three sets of QC/QA replicates, were collected. West of former transformer pad #13-2, surface soil samples were collected from three locations approximately 5 to 7 feet from previous sample location 98NE13SS802, and one subsurface soil sample (3 feet bgs) was collected from beneath the approximate location of 98NE13SS802. Five surface soil samples and three co-located subsurface samples were collected from an area north of Building 110, approximately 10 to 15 feet from previous Samples 96NW13SS108 and 96NE13SS107. The soil samples were analyzed for PCBs by Method SW 8082.

5.8.4.2 IDW

The augers and shovels used to access the samples, and the drillers boots were decontaminated with an Alconox solution and potable water rinse before leaving the site. The samplers wore disposable booties and gloves, which were placed in a polyethylene bag along with the sampling spoons.

5.8.4.3 Field Observations

The southwest corner of the west transformer pad (Pad #13-1) was partially exposed among the rocks from the recent fill, allowing measurements to be made to select locations for the Transformer Pad #13-1 samples. Concrete and re-bar debris were encountered when digging to collect samples. The rocky ground was very difficult to dig by hand, so co-located subsurface soil samples were collected using the drill rig to bring up soil on the auger flights. A peat lense was encountered approximately 3 feet bgs at the northeastern-most sample location (13SB131) suggesting that this corner of the site was built on fill.

5.8.5 Analytical Results

Fifteen project samples from around Transformer Pad#13-1 were analyzed. Aroclor 1260 was reported in samples from 13 of the 15 locations, and eight locations contained more than 1 mg/kg of the PCB (See Table 5-8b). The highest measured concentration is 574 mg/kg in Sample 13SS109, collected near the northwest corner of the former transformer pad. The second highest concentration is 12.4 mg/kg in Sample 13SS110, collected near the southwest corner of the transformer pad. The co-located sub-surface samples tended to have the lowest PCB concentrations.

The results for samples collected from five locations on the west side of former Transformer Pad #13-2 are summarized in Table 5-8b. Samples 13SS132 and 13SS133 contained estimated concentrations of 17.1 mg/kg and 14.1 mg/kg Aroclor 1260, respectively. These samples consisted of rounded beach gravel and sand similar to the aggregate observed in concrete across the complex, suggesting fill imported during the construction of the facility. Sample 13SS120, which was collected further west than scoped and analyzed before the cancellation request was received, contained 2.51 mg/kg Aroclor 1260, exceeding the 1 mg/kg cleanup criterion.

Eight samples were collected from the area north of Building 110, between Monitoring Wells MW 88-5 and MW 88-6. Only Sample 13SS117 contained greater than 1 mg/kg PCBs (See Table 5-8b). Sample 13SS117 was collected in beach gravel and sand at a depth of 1 foot bgs, and contained 15.7 mg/kg Aroclor 1260.

TABLE 5-8a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 13: ELECTRICAL POWER BUILDING

Sample			Sample Location	Depth	
Number**	LOCID	Date	(See Figure 5-8)	(feet)	Sample Classification ⁺
Soil Sample					* · ·
* 13SS105	13SS105-1	8/27/04	Ammon 24 ft N of Transformer Ded 12.1 (west	1.5	Drown grouply gilty SAND, moist
* 1355105 * 1355106	13SS105-1 13SS106-1	8/27/04	Approx. 24 ft. N of Transformer Pad 13-1 (west Approx. 10 ft. N of Transformer Pad 13-1	1.5	Brown, gravelly, silty SAND; moist
	13SS106-1 13SS107-1	8/27/04 8/27/04			Brown, slightly gravelly, silty SAND; moist; debris in test pit
			Approx. 5 ft. from SW building corner, S of Pad 13-1	1.2 1.3	Brown, slightly gravelly, silty SAND; moist; scattered roots
	13SS108-1	8/27/04	Approx. 18 ft. NW of corner Transformer Pad 13-1		Brown, slightly gravelly, silty SAND; moist
	13SS109-1	8/27/04	Approx. 7 ft. W of N end Transformer Pad 13-1	1.4	Brown, slightly gravelly, silty SAND; moist; trace glass and tile
	13SS110-1	8/27/04	Approx. 6 ft. W of S end Transformer Pad 13-1	1.2	Brown, slightly gravelly, silty SAND; moist
* 13SS111	13SS111-1	8/27/04	Approx. 9 ft. SSW of Transformer Pad 13-1	1.1	Brown, silty, gravelly SAND; trace roots; moist
* 13SS112	13SS112-1	8/27/04	Approx. 18 ft. WNW of corner Transformer Pad 13-	1.1	Brown, silty, gravelly SAND; moist
* 13SS113	13SS113-1	8/27/04	Approx. 14 ft. W of W-center Transformer Pad 13-1	1.1	Brown, silty, sandy GRAVEL; moist
* 13SS114	13SS114-1	8/27/04	Approx. 15 ft. SW of SW corner Transformer Pad 13-	1-1.2	Brown, silty, gravelly SAND; trace roots; moist
* 13SS214	13SS114-1	8/27/04	QC replicate of Sample 13SS114-1	1-1.2	Brown, silty, gravelly SAND; trace roots; moist
* 13SS314	13SS114-1	8/27/04	QA replicate of Sample 13SS114-1	1-1.2	Brown, silty, gravelly SAND; trace roots; moist
* 13SS115	13SS115-1	8/27/04	North of Building 110, SE of 96NE13SS107	0.65	Gray-brown, rounded gravelly SAND; moist; dark, oily stain
* 13SS116	13SS116-1	8/27/04	North of Building 110, N of 96NE13SS108	0.95	Brown, slightly silty, sandy GRAVEL; moist; scattered roots
* 13SS117	13SS117-1	8/27/04	North of Building 110, SW of 96NE13SS107	1.15	Gray-brown, rounded gravelly SAND; moist
* 13SS118	13SS118-1	8/27/04	North of Building 110, NW of 96NE13SS108	1	Brown, silty, gravelly SAND; moist
* 13SS119	13SS119-1	8/27/04	North of Building 110, WSW of 96NE13SS108	1.1	Brown, silty, gravelly SAND; moist
* 13SS120	13SS120-1	8/29/04	Cancelled - Wrong location W of 98NEC13SS802 ^a	1.2-1.3	Brown, slightly silty, sandy GRAVEL; moist [Fill]
13SS121	13SS121-1	8/29/04	Cancelled - Wrong location W of 98NEC13SS802	1-1.3	Brown, slightly silty, sandy GRAVEL; moist [Fill]
13SS221	13SS121-1	8/29/04	Cancelled QC replicate of 13SS121	1-1.3	Brown, slightly silty, sandy GRAVEL; moist [Fill]
13SS321	13SS121-1	8/29/04	Cancelled QA replicate of 13SS121	1-1.3	Brown, slightly silty, sandy GRAVEL; moist [Fill]
13SS122	13SS122-1	8/29/04	Cancelled - Wrong location W of 98NEC13SS802	1.3-1.4	Brown, slightly silty, sandy GRAVEL; moist [Fill]
13SS123	13SS123-1	8/29/04	Cancelled - Wrong location W of 98NEC13SS802	3-3.2	Dark brown, medium SAND and cobbles; moist; with debris
* 13SB124	13SS107-4	9/1/04	Beneath Sample 13SS107	4	Brown, slightly silty, sandy GRAVEL; moist
* 13SB224	13SS107-4	9/1/04	QC replicate of Sample 13SS124	4	Brown, slightly silty, sandy GRAVEL; moist
* 13SB324	13SS107-4	9/1/04	QA replicate of Sample 13SS124	4	Brown, slightly silty, sandy GRAVEL; moist
* 13SB125	13SS110-4	9/1/04	Beneath Sample 13SS110	3.8-4	Brown, slightly silty, sandy GRAVEL; moist
* 13SB126	13SS113-3	9/1/04	Beneath Sample 13SS113	3.5-3.8	Brown, slightly silty, sandy GRAVEL; moist
* 13SB127	13SS112-4	9/1/04	Beneath Sample 13SS112		Brown, slightly silty, sandy GRAVEL; moist
* 13SB128	13SS105-4	9/1/04	Beneath Sample 13SS105		Brown, slightly silty, sandy GRAVEL; moist
* 13SB228	13SS105-4	9/1/04	QC replicate of Sample13SS128	3.6-3.9	Brown, slightly silty, sandy GRAVEL; moist
* 13SB328	13SS105-4	9/1/04	QA replicate of Sample13SS128		Brown, slightly silty, sandy GRAVEL; moist

TABLE 5-8a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 13: ELECTRICAL POWER BUILDING

Sample Number**	LOCID	Date	Sample Location (See Figure 5-8)	Depth (feet)	Sample Classification†
Soil Sample	<u>s</u>				
* 13SB129	13SS119-4	9/1/04	Beneath Sample 13SS119	3.4-3.6	Gray, sandy GRAVEL; trace silt; moist
* 13SB130	13SS116-3	9/1/04	Beneath Sample 13SS116	3.3-3.5	Brown, slightly silty, sandy GRAVEL; moist
* 13SB131	13SS115-3	9/1/04	Beneath Sample 13SS115	3-3.2	Dark brown, fibrous PEAT; moist - strong weathered diesel odor
* 13SS132	13SS132-1	9/12/04	Approx. 5 ft. N of 98NEC13SS802 location	1-1.1	Gray-brown, rounded gravelly SAND; moist
* 13SS232	13SS132-1	9/12/04	QC replicate of Sample 13SS132	1-1.1	Gray-brown, rounded gravelly SAND; moist
* 13SS332	13SS132-1	9/12/04	QA replicate of Sample 13SS132	1-1.1	Gray-brown, rounded gravelly SAND; moist
* 13SS133	13SS133-1	9/12/04	Approx. 7 ft. NW of 98NEC13SS802 location	1-1.1	Gray-brown, rounded gravelly SAND; moist
* 13SS134	13SS134-1	9/12/04	Approx. 7 ft. SW of 98NEC13SS802 location	1-1.1	Gray-brown, rounded gravelly SAND; moist
* 13SB135	13SB135-	9/13/04	At former 98NEC13SS802 location	2.8-3.1	Brown, gravelly SAND; trace silt; moist - below concrete

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Table 5-8b)
- ** The full sample number is preceded by "04NE", for example 13SS105 is sample 04NE13SS105
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- LOCID Location Identification: "13SS119-4" signifies Site 13, Surface Sample 119 at 4-foot depth (depth is rounded to the nearest foot)
 - ^a Sample analyzed by laboratory before cancel request received. Results included in table 5-8b.

TABLE 5-8b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 13: ELECTRICAL POWER BUILDING

			Sample Type:							TRANSFORM	ER PAD # 13-1						
	Down Dui	به ما ام	Location ID:	13SS105-1		13SS105-4		13SS106-1	13SS107-1		13SS107-4		13SS108-1	13SS109-1	13SS110-1	13SS110-4	13SS111-1
Site 13 - Electrica	Power Bui	laing	Sample ID:	04NE13SS105	04NE13SB128	04NE13SB228 *	04NE13SB328	04NE13SS106	04NE13SS107	04NE13SB124	04NE13SB224	04NE13SB324	04NE13SS108 *	04NE13SS109	04NE13SS110	04NE13SB125	04NE13SS111
Soil N	latriv		Depth (ft):	1.5	3.6-3.9	3.6-3.9	3.6-3.9	1.2	1.2	4.0	4.0	4.0	1.3	1.4	1.2	3.8-4	1.1
3011			Sample Date:	8/27/2004	9/1/2004	9/1/2004	9/1/2004	8/27/2004	8/27/2004	9/1/2004	9/1/2004	9/1/2004	8/27/2004	8/27/2004	8/27/2004	9/1/2004	8/27/2004
Parameter Tested	Test Method	Units	Cleanup Level		Primary	Duplicate	Triplicate			Primary	Duplicate	Triplicate					
Percent Moisture	A2540G / E160.3M	%	-	3.7	7.8	10.2	9.6	6.1	12	10.6	7.6	10.4	8.0	8.8	9.6	5.4	9.5
Polychlorinated Biphenyls (PCBs)			Sum of congeners:														
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0529]	[0.0546]	[0.0533]	[0.025]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.025]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	[0.0529]	[0.0546]	[0.0533]	[0.050]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.050]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	[0.0529]	[0.0546]	[0.0533]	[0.025]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.025]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.0529]	[0.0546]	[0.0533]	[0.025]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.025]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.0529]	[0.0546]	[0.0533]	[0.025]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.025]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.0529]	[0.0546]	[0.0533]	[0.025]	[0.0533]	[0.0572]	[0.0546]	[0.0554]	[0.025]	[0.0553]	[0.0547]	[0.0564]	[0.0576]	[0.0546]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	1.15	0.575	0.68	0.671	8.57	8.3	5.34	0.411 J	0.330	0.0668	547	12.4	0.0450 J	4.09
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	-	-	-	[0.025]	-	-	-	-	[0.025]	-	-	-	-	-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	"	-	-	-	[0.025]	-	-	-	-	[0.025]	-	-	-	-	-

DESCRIPTION KEY

Analysis not requested or cleanup level not established _

% percent

mg/kg

milligrams per kilogram Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 Cleanup Levels ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing Cleanup level based on inhalation pathway inh

Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

2900

Reported concentration exceeds the regulatory cleanup leve Analyte not detected above Practical Quantitation Limit (PQL) [0.0072]

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

TABLE 5-8b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 13: ELECTRICAL POWER BUILDING

			Sample Type:			TRAN	ISFORMER PAD	# 13-1					TRAN	ISFORMER PAD	# 13-2		
		lal'ra ar	Location ID:	13SS112-1	13SS112-4	13SS113-1	13SS113-3	13SS114-1				13SS132-1		13SS133-1 13SS134-1	13SS134-1	13SB135-3	13SS120-1
Site 13 - Electrica	al Power Bui	laing	Sample ID:	04NE13SS112	04NE13SB127	04NE13SS113	04NE13SB126	04NE13SS114	04NE13SS214	04NE13SS314	04NE13SS132	132 04NE13SS232	04NE13SS332	04NE13SS133	3 04NE13SS134	04NE13SB135	04NE13SS120
Soil Matrix			Depth (ft): Sample Date:	1.1 8/27/2004	3.5-3.8 9/1/2004	1.1 8/27/2004	3.5-2.8 9/1/2004	1.0-1.2 8/27/2004	1.0-1.2 8/27/2004	1.0-1.2 8/27/2004	1.0-1.1 9/12/2004	1.0-1.1 9/12/2004	1.0-1.1 9/12/2004	1.0-1.1 9/12/2004	1.0-1.1 9/12/2004	2.8-3.1 9/13/2004	1.2-1.3 8/29/2004
Parameter Tested	Test Method	Units	Cleanup Level					Primary	Duplicate	Triplicate	Primary	Duplicate	Triplicate				
Percent Moisture	A2540G / E160.3M	%	-	6.6	7.5	9.4	11.2	9.8	9.1	10.3	7.3	6.5	8.4	12.2	5.1	5.6	2.9
Polychlorinated Biphenyls (PCBs)			Sum of congeners:														
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.025]	[0.053]	[0.0545]	[0.025]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg		[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.050]	[0.053]	[0.0545]	[0.050]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg		[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.025]	[0.053]	[0.0545]	[0.025]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg		[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.025]	[0.053]	[0.0545]	[0.025]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg		[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.025]	[0.053]	[0.0545]	[0.025]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg		[0.0547]	[0.0541]	[0.0556]	[0.0559]	[0.0564]	[0.0549]	[0.025]	[0.053]	[0.0545]	[0.025]	[0.0572]	[0.0535]	[0.0519]	[0.0555]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg		0.761	[0.0541]	0.919	[0.0559]	2.15	2.82	1.56	17.1 J	8.13 J	12.2 J	14.1 J	0.0323 J	0.142 J	2.51
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	-	-	-	-	-	-	[0.025]	-	-	[0.025]	-	-	-	-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	н	-	-	-	-	-	-	[0.025]	-	-	[0.025]	-	-	-	-

KEY DESCRIPTIONS

Measurement not recorded or not applicable -

% percent

mg/kg , milligrams per kilogram (ppm)

Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18
	ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing

inh Cleanup level based on inhalation pathway

Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup leve Analyte not detected above Practical Quantitation Limit (PQL)

[0.0072]

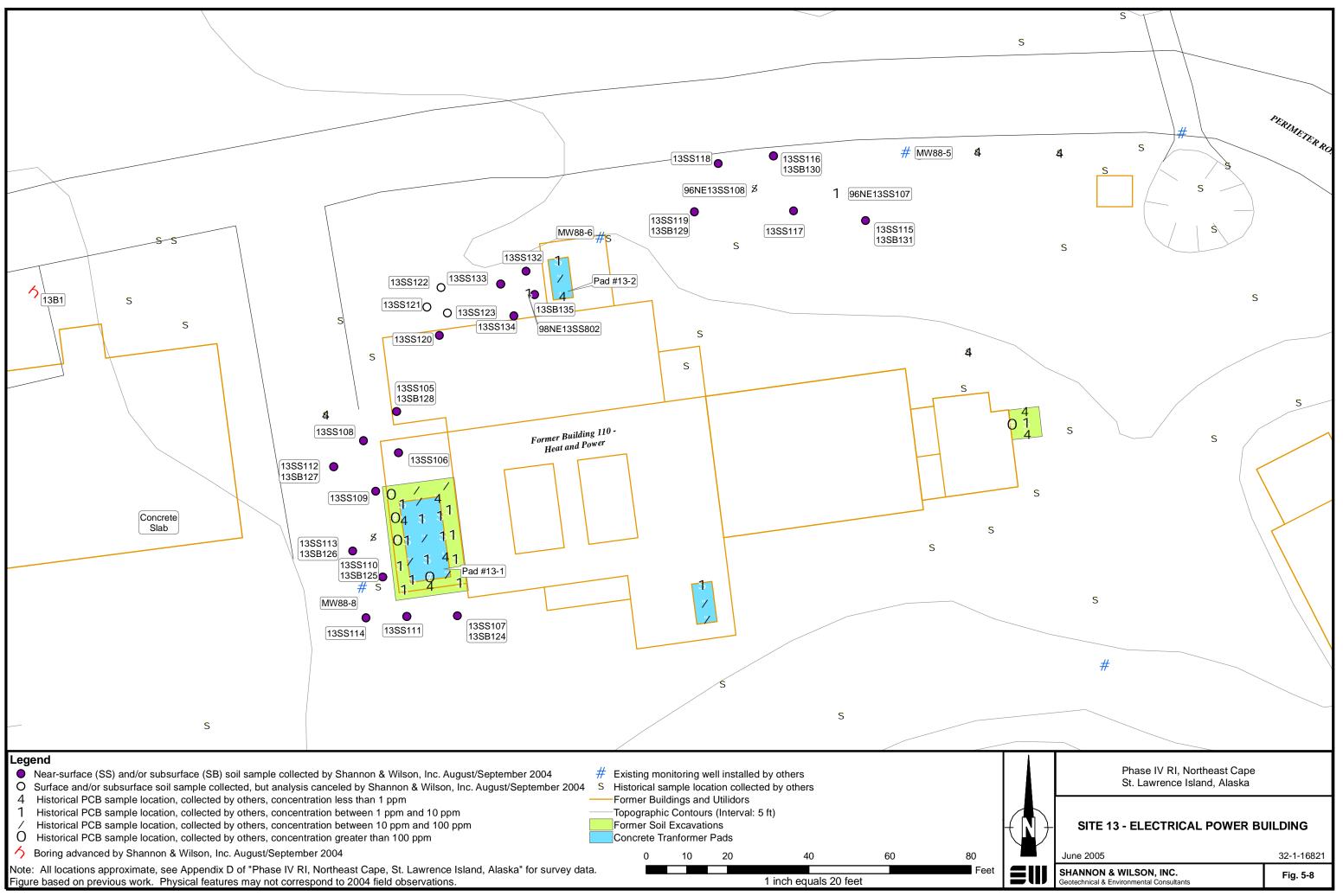

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

TABLE 5-8b - SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 13: ELECTRICAL POWER BUILDING

			Sample Type:				NORTHE	RN AREA			
		l al ! ar	Location ID:	13SS115-1	13SS115-3	13SS116-1	13SS116-3	13SS117-1	13SS118-1	13SS119-1	13SS119-4
Site 13 - Electrica	al Power Bui	laing	Sample ID:	04NE13SS115	04NE13SB131	04NE13SS116	04NE13SB130	04NE13SS117	04NE13SS118	04NE13SS119	04NE13SB129
Sail	Matrix	_	Depth (ft):	0.65	3.0-3.2	0.95	3.3-3.5	1.15	1.0	1.1	3.4-3.6
3011	VIALITIX		Sample Date:	8/27/2004	9/1/2004	8/27/2004	9/1/2004	8/27/2004	8/27/2004	8/27/2004	9/1/2004
Parameter Tested	Test Method	Units	Cleanup Level								
Percent Moisture	A2540G / E160.3M	%	-	1.8	29.8	11.7	6.0	9.1	8.2	2.0	2.9
Polychlorinated Biphenyls (PCBs)			Sum of congeners:								1
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.0515]	[0.0701]	[0.0576]	[0.0533]	[0.0562]	[0.0538]	[0.0503]	[0.0506]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	0.363	0.102	0.0937	0.0213 J	15.7	0.156	[0.0503]	0.0738
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	"	-	-	-	-	-	-	-	- 1

KEY	DESCRIPTIONS
-	Measurement not recorded or not applicable
%	percent
mg/kg	milligrams per kilogram (ppm)
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18
	ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
inh	Cleanup level based on inhalation pathway
J	Estimated concentration; refer to Appendix C for data qualification information
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

SHANNON & WILSON, INC.

5.9 <u>Main Operations Complex</u>

Three new monitoring wells (17MW-1, 18MW-1 and 20MW-1) and two soil borings (13B1 and 19B1) were completed within the MOC. Twenty-seven subsurface soil samples from the boreholes were field screened and 16 sample locations were selected for laboratory analysis. Groundwater samples were collected from three new and eight existing monitoring wells at the MOC (see Figure 5-9 and Table 5-9a).

5.9.1 Site Description

The MOC was a compact area of barracks, troop services, maintenance shops, and power generating facilities in an area covering roughly 900 feet east to west and 700 feet north to south Separately identified sites, including Sites 13, 14, 15, 16, 17, 18, 19, and 20, are within the MOC boundaries. Sites 11, 22, and 27 are at the outside boundary of the MOC, and were integral to its operation. The general layout of the area is depicted on Figure 5-9. The MOC sits on a broad depositional feature that appears to be a moraine, and is north and west of the mouth of a steep glacial valley. When viewed as a whole, the MOC has retained the general topography and elevation that existed in 1950 before construction began. It has a general slope to the northwest, with small drainages along the southwestern and northeastern sides. At an individual site level (say 200 feet in extent) a complex history of shallow soil excavation, filling, and grading has occurred. Currently a number of concrete floor slabs, a perimeter road, and over a dozen groundwater monitoring wells remain at the site. Previous phases of the remedial investigation have focused on areas at the northern and eastern edges of the MOC.

5.9.2 Data Collection Objectives

Soil boring locations were specified to determine the maximum depth of fuel contamination above bedrock within, but near the perimeter of, previously identified petroleum impacts. Monitoring well locations were specified to help delineate contaminant extent beyond the locations of existing monitoring wells, outside of previously identified impacts. Groundwater samples were also collected from the existing monitoring wells installed in 2002 to document current conditions and facilitate assessment of changes. To characterize potential contaminants, soil and groundwater samples were selectively analyzed for GRO, DRO, RRO, BTEX, PAHs, TOC, and metals. Natural attenuation parameters were measured in soil and water at select locations to support the future feasibility study. Also in support of the feasibility study, soil samples were collected for grainsize analysis.

5.9.3 Work Plan Variances

The scope of work was to complete two soil borings to an average depth of 40 feet bgs. Eight samples were to be submitted for laboratory analysis. Boring 13B1 was completed to 41.5

feet bgs and did not encounter bedrock, but did extend beyond the apparent depth of fuel contamination. Boring 19B1 was advanced to 29.5 feet bgs, the presence of bedrock was unconfirmed, and no analytical samples were recovered beyond 19 feet to confirm the maximum extent of fuel contamination. Only three samples were recovered from Boring 19B1 for chemical laboratory analysis. Boring 19B1 is discussed further in Section 5.9.4.4. Four sieve samples (2 per boring) were to be collected from representative soil types underlying the Main Complex. Only one sieve sample was recovered from these borings due to the predominance of rock in the subsurface. To obtain more samples representative of the MOC subsurface, sieve samples were collected where recovery was adequate during the installation of monitoring wells 20MW1 and 22MW3 (Site 22).

One bulk soil sample was to be collected "from the overlying gravel fill comprising the Main Operations Complex pad" for grain size and moisture content analysis. A number of soil types were found near the surface of the site, and two bulk samples were collected to represent prominent material types.

The Work Plan called for sampling the ten monitoring wells installed in 2001. Two of the monitoring wells were not found, and one was damaged. No evidence of Monitoring Well MW 88-7 was found after hand digging to 1 foot bgs at several locations identified using various methods, including surveying. The crushed monument for MW 88-9 was found in the recently graded surface material, but the PVC well casing was not found. The monument for MW 88-10 was damaged, and the PVC casing open. MW 88-10 was repaired and sampled.

5.9.4 Field Investigation

Field activities commenced on August 24, 2004 with drilling for Monitoring Well 18MW1, and were completed on September 13, 2004 with the collection of bulk soil samples and measurement of site-wide groundwater elevations.

5.9.4.1 Soil Sampling

Soil samples were collected during the advancement of two borings and three monitoring wells at the MOC. Photograph 10 shows the general method for subsurface soil sampling at the site, and boring and monitoring well locations are shown in Figure 5-9. Boring depths ranged from 21.5 feet bgs for Monitoring Well 17MW1, to 41.5 feet bgs for Boring 13B1. Soil samplers were driven to recover field screening and potential laboratory samples at approximately 5-foot intervals. The rocky nature of the subsurface required adjusting sample intervals to maximize soil recovery. Three samples were selected for laboratory analysis from the boreholes for wells 17MW1, 18MW1, 20MW1, and Boring 19B1. Four analytical samples were selected from Boring 13B1. Sample 13SB101, collected at 5 feet bgs, and Sample 19SB103, collected approximately 18 feet bgs, were selected for the additional natural

attenuation parameter, BTEX, PAH and TOC analyses. These locations seemed to represent the upper and lower zones of petroleum impacts. Table 5-9a includes headspace screening results, sample descriptions, and collection depths. Boring Logs are included in Appendix B for each location (Figures B-12a through B 16a).

Bulk Soil Sample 88SS101 was collected from the bedding material placed beneath the Site 19 foundation. The sample was collected by shoveling material from under the concrete slab into two 5-gallon poly buckets. Bulk Soil Sample 88SS102 was collected from adjacent to a concrete slab between Site 18 and Site 19, and appeared to represent the natural soil existing before installation construction. Sample 88SS102 was loosened with a pick and shoveled into two plastic lined sand bags.

5.9.4.2 Groundwater Sampling

New Monitoring Wells 17MW1, 18MW1 and 20MW1 were constructed as shown in Figures B-13b, B-14b, and B-16b in Appendix B. The new wells were developed using a submersible purge pump and new polyethylene tubing. Monitoring Well MW 88-10 was redeveloped using a polyethylene bailer. Well development, purging, and sampling information is included in Table 5-9c, and Photograph 11 shows post-sampling decontamination at MW 88-8. Groundwater samples were collected from the three new wells and 2001 Monitoring Wells MW 88-1 through MW 88-6, MW 88-8, and MW 88-10. Development and purge water was transferred to open-top 55-gallon drums and treated at the MOC. Groundwater samples from wells MW 88-2, MW 88-5, MW 88-8 MW 88-10, 17MW1, and 20MW1 were tested for natural attenuation parameters. Samples from wells MW 88-2, MW 88-6, and MW 88-8 were analyzed for PAHs, in addition to GRO, DRO, RRO, BTEX, Cr, Pb, Hg, and Zn, based on spatial distribution and the presence of hydrocarbon odors. Depths to groundwater were measured in the sampled MOC wells and the wells at Sites 11, 16, 22, and 26 in a two-hour period, one day after the last sample was collected.

5.9.4.3 IDW

Investigation derived waste was handled as described in Section 3.7. Development and purge water was placed in drums staged at four locations across the site for later treatment at each staging location. Soil cuttings were used as backfill or spread at each boring location.

5.9.4.4 Field Observations

The re-grading of the site in 2003 damaged some existing monitoring wells, including those installed in 2002. The concrete around MW 88-8 had been cracked by heavy equipment, and the steel monument was partially lifted out of the concrete. The PVC casing and expansion plug were intact. The MW 88-8 monument was driven back down, nearly flush with the ground

surface. The PVC casing for MW 88-10 was found under a thin layer of soil with no cap. The expansion cap and crushed steel monument were found a few feet from the casing. MW 88-10 was cleaned out and redeveloped using a bailer, and the turbidity decreased with nominal purging. The outside of the bailer was wiped off between immersions to help remove soil from the sidewalls of the casing, and 4.5 gallons of water with a diesel odor were purged. A new steel monument was set in concrete over the casing using a leftover bag of concrete mix.

The soil types and stratigraphy suggested in the scope of work were often misleading. The near-surface soil is indeed a complex mix due to the development and demolition of the site. However, at greater depths (generally over 5 feet bgs) the material was fairly consistent. The material appears to have been glacially deposited, and contains a large percentage of angular boulders and cobbles (rocks). The majority of the soil encountered was thought to be from moraines and melt-out rubble due to the low percentages of silt commonly associated with basal till. The finer gravels and sands encountered between the rocks were typically loose to medium dense if no cobbles were being pushed and broken by the split-spoon, suggesting that aggregate interlock between the rocks restrict consolidation of the finer soil. Soil particles larger than roughly 2-inches will not fit in a split-spoon sampler, so soil descriptions are typically biased to the finer material. Poorly graded sand (SP) and silty sand (SM) are some of the soil types encountered in the spaces between the rocks. Gravel content could be misleading because it was difficult to differentiate between freshly fractured pieces of rock and angular gravel. Poor soil recovery, and fractured cobbles in the split spoon, were the norm.

Frozen ground was likely at greater depths (in the 20 feet bgs range) in the borings, and made sampling and stratigraphic characterization more difficult. The Boring 19B1 location seemed to be particularly rocky. No soil was recovered below 19 feet bgs. Drilling was stopped at 29.5 feet due to the lack of sample recovery and to avoid carrying the obvious petroleum impacts observed at 12 to 19 feet further downward. Bedrock was suspected, but after more experience drilling in the area, the material was likely frozen rocks and sand beyond 21 feet bgs. Boring 13B1 is located at a lower elevation than 19B1. Drill action in 13B1 suggested frozen ground around 23 feet, where contaminant levels reduced significantly (based on field screening). Boring 13B1 was extended to 41.5 feet bgs, and basal till (gray/green silt with gravel and cobbles) was suspected at 38 feet (no recovery) and observed at 40 feet bgs. The drillers expressed concern about carrying the obvious impacts encountered above 20 feet bgs downward. Bentonite chips were used in the backfill to help seal this section of the boring.

The statement of work noted that the subsurface geology and hydrology do not appear to mimic the ground surface. A groundwater contour map was made, with krieging for interpolation, using the September 13th data from all the wells in the area. The phreatic surface of the aquifer above the basal till corresponded well to the general northwestern slope of the land surface and the sampler's general perception of regional flow.

5.9.5 Analytical Results

Soil sample chemical laboratory results are summarized in Table 5-9b, and groundwater results are summarized in Table 5-9d. Field groundwater quality parameters are included on Table 5-9c. Grainsize classification curve B-22 in Appendix B includes samples from Boring 13B1 and Monitoring Wells 20MW1 and 22MW1. The grainsize classifications for MOC bulk samples are presented graphically on Figure B-23.

5.9.5.1 Soil

The subsurface soil samples from 5 to 6.5, 15 to 18, and 18 to 19.5 feet bgs in Boring 13B1 contained DRO concentrations that exceed the 250 mg/kg Method Two cleanup criterion by over an order of magnitude. The highest DRO concentration is 11,700 mg/kg, measured in Sample 13SB101 collected at 5 to 6 feet bgs. The Boring 13B1 samples from 5 and 15 feet bgs also contained estimated GRO concentrations that exceed the ADEC cleanup criterion. The GRO, DRO, and RRO results from Sample 13SB104 (40 to 41.5 feet bgs) were at least an order of magnitude less than the cleanup criteria. Boring 19B1 samples collected from 12 to 13.5 and 17.5 to 19 feet bgs contained estimated DRO concentrations of 3,590 mg/kg and 3,080 mg/kg, respectively. BTEX was not detected, and metals results were all less than cleanup criterion in the MOC borings and wells.

5.9.5.2 Groundwater

The concentrations of DRO measured in groundwater from Monitoring Wells MW 88-4, MW 88-5, MW 88-6, MW 88-8, and MW 88-10 are greater than the ADEC groundwater cleanup criterion. Samples from Monitoring Wells MW 88-4 and MW 88-5 also contain RRO and benzene concentrations that exceed cleanup criteria. The GRO concentration measured in MW 88-5 is an estimated value that exceeds the cleanup criterion. The petroleum-impacted wells are grouped along the northern and eastern portions of the site. Lead concentrations in excess of the 15 μ g/L groundwater cleanup criterion were measured in samples from Monitoring Wells MW 88-2, MW 88-10, and 20MW1. The elevated lead concentrations ranged from 37.6 μ g/L to 54.6 μ g/L and are significantly higher than the concentrations measured across the rest of the site.

TABLE 5-9a SAMPLE LOCATIONS AND DESCRIPTIONS - MAIN OPERATIONS COMPLEX

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-9 for borehole and well location	-	(ppm) ^	Sample Classification ⁺
Soil Sample						· · ·
<u>Son Sumpre</u>						
* 13SB101	13B1-5	8/26/04	Boring 13B1	5-6.5	110	Brown, slightly silty sandy GRAVEL and cobbles; moist - strong weathered diesel odor
B13S1	13B1-10	8/26/04	Boring 13B1	10-11.5	50	Dark brown, sl. silty sandy GRAVEL and cobbles; moist - diesel
* 13SB102	13B1-15	8/26/04	Boring 13B1. Two split spoons combined	15-18	180	Dark gray, sandy, gravelly SILT and cobbles; moist to wet - diesel
* 13SB202	13B1-15	8/26/04	QC replicate of Sample 13SB102	15-18	180	Dark gray, sandy, gravelly SILT and cobbles; moist to wet - diesel
* 13SB302	13B1-15	8/26/04	QA replicate of Sample 13SB102	15-18	180	Dark gray, sandy, gravelly SILT and cobbles; moist to wet - diesel
* 13SB103	13B1-18	8/26/04	Boring 13B1. Grain size sample	18-19.5	55	Gray, silty, sandy GRAVEL and cobbles; wet - strong diesel odor
B13S5	13B1-25	8/26/04	Boring 13B1	25-26.5	6.0	Brown, gravelly SAND and cobbles; wet - very little odor
B13S6	13B1-32	8/26/04	Boring 13B1	32-33.5	0.2	Olive brown, clean medium SAND and cobbles; wet
* 13SB104	13B1-40	8/26/04	Boring 13B1 - bottom of borehole	40-41.5	0.2	Olive gray/green gravelly, clayey SILT and cobbles; wet [Till]
* 17SB101	17MW1-6	8/29/04	Monitoring Well 17MW1	6-7.5	< 0.02	Redish brown, gravelly SAND; with cobbles; moist
* 17SB102	17MW1-	8/29/04	Monitoring Well 17MW1	10-11.5	0.2	Gray, silty, sandy GRAVEL; wet
B17S3	17MW1-	8/29/04	Monitoring Well 17MW1	16-17.5	0.3	Brown sandy GRAVEL; with cobbles; wet
* 17SB103	17MW1-	8/29/04	Monitoring Well 17MW1	20-21.5	0.5	Brown sandy GRAVEL; with cobbles; wet - possibly frozen
* 18SB101	18MW1-5	8/24/04	Monitoring Well 18MW1	5-6.5	< 0.02	Light brown, silty, gravelly SAND and cobbles; moist
B18S2	18MW1-	8/24/04	Monitoring Well 18MW1	10-11.5	1.2	1 inch light brown, silty, GRAVEL; moist, 3 inches crushed rock
* 18SB102	18MW1-	8/24/04	Monitoring Well 18MW1	15-16.5	0.3	Light brown, silty, gravelly SAND and cobbles; moist
B18S4	18MW1-	8/24/04	Monitoring Well 18MW1	20-21.5	0.6	Brown, silty GRAVEL and cobbles; wet
* 18SB103	18MW1-	8/24/04	Monitoring Well 18MW1	25-26.5	0.3	Brown, silty GRAVEL and cobbles; wet - potentially frozen
* 19SB101	19B1-5	8/25/04	Boring 19B1	5-6.5	0.2	Gray, slightly sandy, gravelly SILT; moist
* 19SB102	19B1-12	8/25/04	Boring 19B1	12-13.5	17	Brown, silty, gravelly SAND; moist - moderate weathered diesel odc
* 19SB103	19B1-18	8/25/04	Boring 19B1	17.5-19	24	Brown, silty, sandy GRAVEL; wet - strong weathered diesel odor
B19S4	19B1-21	8/25/04	Boring 19B1	21-21.5	13	Crushed rock
B19S6	19B1-28	8/26/04	Boring 19B1	28-29.5	21	Crushed rock - bedrock or frozen material
* 20SB101	20MW1-3	8/25/04	Monitoring Well 20MW1	3-4.5	< 0.02	Brown, slightly silty, sandy angular GRAVEL; with cobbles; moist
B20S2	20MW1-5	8/25/04	Monitoring Well 20MW1	5-6.5	< 0.02	Brown, slightly silty, sandy angular GRAVEL; with cobbles; moist
* 20SB102	20MW1-	8/25/04	Monitoring Well 20MW1	10-11.5	< 0.02	Brown / rusty, silty gravelly SAND; moist
B20S4	20MW1-	8/25/04	Monitoring Well 20MW1	15-16.5	< 0.02	Brown, gravelly, silty SAND; moist
* 20SB103	20MW1-		Monitoring Well 20MW1	20-21.5	< 0.02	Brown, silty, gravelly SAND and cobbles; moist
B20S6	20MW1-	8/25/04	Monitoring Well 20MW1	25-26.5	< 0.02	Gray, silty SAND and cobbles; wet - potentially frozen
	88SS101-1	9/13/04	Beneath Site 19 building concrete slab	0.6-1	-	Brown, gravelly SAND and angular cobbles; moist
88SS102	88SS102-1	9/13/04	Near center of MOC, adjacent to concrete slab	0.6-1.2	-	Redish brown, silty, gravelly SAND; moist

TABLE 5-9a SAMPLE LOCATIONS AND DESCRIPTIONS - MAIN OPERATIONS COMPLEX

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-9 for borehole and well location	(feet)	(ppm) ^	Sample Classification [†]
Groundwate	er Samples					
* 17GW104	17MW1	9/9/04	Monitoring Well 17MW1	WL 10	-	Groundwater - slight turbidity
* 18GW104	18MW1	9/10/04	Monitoring Well 18MW1		-	Groundwater - clear
* 20GW104	20MW1	9/11/04	e		-	Groundwater - slightly turbid clearing from rusty color
* 88GW101	MW 88-1	9/6/04	Monitoring Well MW88-1 (installed in 2001)		-	Groundwater - clear
* 88GW102	MW 88-2	9/7/04	Monitoring Well MW88-2 (installed in 2001)	WL 8	-	Groundwater - slight turbidity and hydrocarbon odor
* 88GW103	MW 88-3	9/7/04	Monitoring Well MW88-3 (installed in 2001)	WL 12	-	Groundwater - clear
* 88GW104	MW 88-4	9/8/04	Monitoring Well MW88-4 (installed in 2001)	WL 8	-	Groundwater - weathered diesel odor, yellowish tint
* 88GW204	MW 88-4	9/8/04	QC replicate of Sample 88GW104	WL 8	-	Groundwater - weathered diesel odor, yellowish tint
* 88GW304	MW 88-4	9/8/04	QA replicate of Sample 88GW104	WL 8	-	Groundwater - weathered diesel odor, yellowish tint
* 88GW105	MW 88-5	9/8/04	Monitoring Well MW88-5 (installed in 2001)	WL 7.5	-	Groundwater - slight sheen initially, weathered diesel odor, yellowisl
* 88GW106	MW 88-6	9/8/04	Monitoring Well MW88-6 (installed in 2001)	WL 8.5	-	Groundwater - slightly turbid (gray), weathered diesel odor
* 88GW107	MW 88-8	9/9/04	Monitoring Well MW88-8 (installed in 2001)	WL	-	Groundwater - clear, slight hydrocarbon odor
* 88GW108	MW 88-	9/11/04	Monitoring Well MW88-10 (installed in 2001)	WL 20	-	Groundwater - moderate weathered diesel odor, clear (from brown)

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-9b and 5-9d)
- ** The full sample number is preceded by "04NE", for example 13SB101 is sample 04NE13SB101
- ^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- ppm parts per million, calibrated to 100 ppm isobutylene
- WL Approximate water level in feet below ground surface at time of sampling
- LOCID Location Identification: "17MW1" signifies Monitoring Well 17MW1; "13B1-5" signifies Site 13, Boring 1 at 5-foot depth (depth is rounded

TABLE 5-9b - SUMMARY OF SOIL ANALYTICAL RESULTS - MAIN OPERATIONS COMPLEX

			Sample Type:			BOREHOLE 19B1						
Main Operation	c Comploy		Location ID:	13B1-5		13B1-15		13B1-18	13B1-40	19B1-5	19B1-12	19B1-18
	s complex		Sample ID:	04NE13SB101	04NE13SB102	04NE13SB202	04NE13SB302	04NE13SB103	04NE13SB104	04NE19SB101	04NE19SB102	04NE19SB103
Soil Mat	'ix		Depth (ft):	5-6.5	15-18	15-18	15-18	18-19.5	40-41.5	5-6.5	12-13.5	17.5-19
Parameter Tested	Test Method	Units	Sample Date: Cleanup Level	8/26/2004	8/26/2004 Primary	8/26/2004 Duplicate	8/26/2004 Triplicate	8/26/2004	8/26/2004	8/25/2004	8/25/2004	8/25/2004
			Cleanup Level	110	-			55	0.2	0.0	47	24
PID Headspace Reading	HNU HW101 PID	ppm	-	110	180	180	180			0.2	17	
Percent Moisture	A2540G / E160.3M	%	-	10.0	7.6	11.6	13.7	10.5	11.5	9.1	5.9	9.9
Gasoline Range Organics (GRO)	AK101	mg/kg	300	513 J	348 J	365 J	276 J	177 J	[2.17] B	[1.39] B	91.6 J	4.90 J
Diesel Range Organics (DRO)	AK102	mg/kg	250	11,700 J	5,290 J	7,500 J	6,780	1,130 J	15.8 J	4.68 J	3,590 J	3,080 J
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	328 J	320 J	305 J	255 J	181 J	67.8 J	23.8 J	489 J	109 J
Aromatic Organic Compounds (BTEX)												
Benzene	SW8260B	µg/kg	20	[12.2]	-	-	-	-	-	-	-	[7.97]
Ethylbenzene	SW8260B	µg/kg	5,500	[23.5]	-	-	-	-	-	-	-	[15.3]
Toluene	SW8260B	µg/kg	5,400	[47]	-	-	_	-	-	-	-	[30.7]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[47]			_		_		_	[30.7]
-	SW8260B		78,000 (total Xylenes) 78,000 (total Xylenes)		-	-		-	_	-	_	
m & p-Xylenes	SVV8260B	µg/kg	78,000 (total Xylenes)	[23.5]	-	-	-	-	-	-	-	[15.3]
Polynuclear Aromatic Hydrocarbons (PAH)												
Acenaphthene	PAH SIM	µg/kg	210,000	[5630]	-	-	-	-	-	-	-	[557]
Acenaphthylene	PAH SIM	µg/kg	-	[5630]	-	-	-	-	-	-	-	[557]
Anthracene	PAH SIM	µg/kg	4,300,000	[5.63]	-	_		_	-	_	_	[5.57]
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	[5.63]								[5.57]
	PAH SIM		,		-	-	-	-	-	-	-	
Benzo(a)pyrene		µg/kg	1,000 (ing)	[5.63]	-	-	-	-	-	-	-	[5.57]
Benzo(b)fluoranthene	PAH SIM	µg/kg	20,000	[5.63]	-	-	-	-	-	-	-	[5.57]
Benzo(g,h,i)perylene	PAH SIM	µg/kg	-	[5.63]	-	-	-	-	-	-	-	[5.57]
Benzo(k)fluoranthene	PAH SIM	µg/kg	-	[5.63]	-	-	-	-	-	-	-	[5.57]
Chrysene	PAH SIM	µg/kg	620,000	4.88 J	-	-	-	-	-	-	-	[5.57]
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	[5.63]	-	-	-	-	-	-	-	[5.57]
Fluoranthene	PAH SIM	µg/kg	2,100,000	[5.63]	-	-	-	-	-	-	-	[5.57]
Fluorene	PAH SIM	µg/kg	270,000	[5630]	-	-	-	-	-	-	-	[557]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	[5.63]	-	_		_	-	_	_	[5.57]
Naphthalene	PAH SIM	µg/kg	21,000	[5630]								[557]
			21,000		-	-	-	-	-	-	-	
Phenanthrene Pyrene	PAH SIM PAH SIM	µg/kg µg/kg	- 1,500,000	[5.63] 10.9	-	-	-	-	-	-	-	[5.57] [5.57]
Total Metals		P9/19	1,000,000	10.0								[0.07]
Chromium	SW6020	mg/kg	26 (total Cr)	12.3								4.14 J
	SW6020			16.6	-	-	-	-		=	-	38.9 J
Lead		mg/kg	400 (ing/inh)			-	-	-	-	-	-	
Mercury	SW7471A	mg/kg	1.4	0.0156 J	-	-	-	-	-	-	-	[0.0437]
Zinc	SW6020	mg/kg	9,100	41.8 J	-	-	-	-	-	-	-	64.5 J
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	29,400	-	-	-	-	-	-	-	2490
Natural Attenuation Parameters												
Nitrate	E300.0	mg/kg	-	[1.04]	-	-	-	-	-	-	-	[1.04]
Ammonia	SM4500	mg/kg	-	[54.7]	-	-	-	-	-	-	-	[8.84]
Total Kjeldal Nitrogen (TKN)	SM4500	mg/kg		665	-	-	-	-	-	-	-	62.3
Orthophosphate	ASA 24-5	mg/kg		28.2		_	l .	_	_		1 .	19.4
			-		-	-	-		-	-	1 -	
Potassium	SW6020	mg/kg	-	869	-	-	-	-	-	-	-	1,080
Heterotrophic Plate Count	SM9215B	MPN/g	-	880,000	-	-	-	-	-	-	-	6,000
Oil Degrading Bacteria	Sheen Screen	MPN/g	- 1	370	-	-	-	-	-	-	-	260
						1	1	1		1	1	

DESCRIPTION KEY

Analysis not requested or cleanup level not established -

ppm parts per million

% percent

. milligrams per kilogram

mg/kg µg/kg MPN/g micrograms per kilogram

Most probable number per gram

PID Photoionization detector

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18

ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway Cleanup level based on inhalation pathway ing

inh

Estimated concentration; refer to Appendix C for data qualification information J [0.0532] B Result qualified as not detected due to method, trip, or equipment blank detection

36 Concentration detected

2900

Reported concentration exceeds the regulatory cleanup level Analyte not detected above Practical Quantitation Limit (PQL) [0.0072]

TABLE 5-9b - SUMMARY OF SOIL ANALYTICAL RESULTS - MAIN OPERATIONS COMPLEX

			Sample Type:		BOREHOLE 17MW1			BOREHOLE 18MW1		BOREHOLE 20MW1			
Main Operations	Complay		Location ID:	17MW1-6	17MW1-10	17MW1-20	18MW1-5	18MW1-15	18MW1-25	20MW1-3	20MW1-10	20MW1-20	
Main Operations	Complex		Sample ID:	04NE17SB101	04NE17SB102	04NE17SB103	04NE18SB101	04NE18SB102	04NE18SB103	04NE20SB101	04NE20SB102 *	04NE20SB103	
Soil Matri	v		Depth (ft):	6-7.5	10-11.5	20-21.5	5-6.5	15-16.5	25-26.5	3-4.5	10-11.5	20-21.5	
		-	Sample Date:	8/29/2004	8/29/2004	8/29/2004	8/24/2004	8/24/2004	8/24/2004	8/25/2004	8/25/2004	8/25/2004	
Parameter Tested	Test Method	Units	Cleanup Level										
PID Headspace Reading	HNU HW101 PID	ppm	-	<0.2	0.2	0.5	<0.2	0.3	0.3	<0.2	<0.2	<0.2	
Percent Moisture	A2540G / E160.3M	%		9.5	19.8	19.9	3.7	3.8	8.1	6.4	10.6	7.5	
Gasoline Range Organics (GRO)	AK101	mg/kg	300	11.5	[1.69] B	[2.17] B	[1.76] B	[1.72] B	[2.94] B	[2.03] B	[1.76] B	[1.50] B	
Diesel Range Organics (DRO)	AK102	mg/kg	250	17.9 J	28.4 J	7.00 J	14.8 J	9.23 J	8.91 J	7.83 J	14.8 J	7.87 J	
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	142 J	185 J	20.1 J	59.7 J	34.3 J	30.3 J	30.0 J	29.9 J	20.9 J	
Aromatic Organic Compounds (BTEX)													
Benzene	SW8260B	µg/kg	20	[11.9]	[8.78]	[11.3]	[9.16]	[8.93]	[15.3]	[10.6]	[9.15]	[7.82]	
Ethylbenzene	SW8260B	µg/kg	5,500	[23]	[16.9]	[21.7]	[17.6]	[17.2]	[29.4]	[20.3]	[17.6]	[15]	
Toluene	SW8260B	µg/kg	5,400	[45.9]	[33.8]	[43.4]	[35.2]	[34.3]	[58.8]	[40.6]	[35.2]	[30.1]	
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[45.9]	[33.8]	[43.4]	[35.2]	[34.3]	[58.8]	[40.6]	[35.2]	[30.1]	
Xylene, Isomers m & p	SW8260B	µg/kg	78,000 (total Xylenes)	[23]	[16.9]	[21.7]	[17.6]	[17.2]	[29.4]	[20.3]	[17.6]	[15]	
Total Metals													
Chromium	SW6020	mg/kg	26 (total Cr)	7.67	12.4	2.11	7.37 J	5.58 J	7.9 J	10.6	8.82	6.66 J	
Lead	SW6020	mg/kg	400 (ing/inh)	20.9	20.6	7.21	12.1 J	11.8 J	31.9 J	17.6	19.2	14.6 J	
Mercury	SW7471A	mg/kg	1.4	[0.0441]	[0.0496]	[0.0498]	[0.0410]	[0.04110]	[0.0431]	[0.0423]	[0.0447]	[0.0430]	
Zinc	SW6020	mg/kg	9,100	37.2	50.4	22.4	28.2 J	30.9 J	93.6 J	37.0	42.9	34.4 J	
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	3,870	6,690	[618]	1,180	712	[543]	2,160	1,370	603	

KEY

Y DESCRIPTION

DESCRIPTION
Analysis not requested or cleanup level not established
parts per million
percent
milligrams per kilogram
micrograms per kilogram
Photoionization detector
Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18
ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
Cleanup level based on ingestion pathway
Cleanup level based on inhalation pathway
Estimated concentration; refer to Appendix C for data qualification information
Result qualified as not detected due to method, trip, or equipment blank detection
Concentration detected
Reported concentration exceeds the regulatory cleanup level
Analyte not detected above Practical Quantitation Limit (PQL)
Matrix Spike / Matrix Spike Duplicate (MS/MSD)

SHANNON & WILSON, INC.

TABLE 5-9cGROUNDWATER SAMPLING LOGMAIN OPERATIONS COMPLEX

MONITORING WELL INSTALLATION DATA

MONITORING WELL INSTALLATION DATA			1		1				1	1	
WELL ID	17MW1	18MW1	20MW1	MW 88-1	MW 88-2	MW 88-3	MW 88-4	MW 88-5	MW 88-6	MW 88-8	MW 88-10
DATE WELL INSTALLED	8/29/04	8/24/04	8/25/04	2001	2001	2001	2001	2001	2001	2001	2001
GROUND SURFACE ELEVATION (ft)	71.5	83.3	89.4	82.2 (est.)	70.4	77.8 (est.)	68.55 (est.)	68.2 (est.)	69.2 (est.)	73.6 (est.)	
WELL MP ELEVATION (ft)	71.20	83.09	89.06	81.91	70.88	77.32	68.24	67.83	68.83	73.39	86.53
TOP OF SCREENED SECTION, BELOW MP (ft)	7.3	16.00	19.2	-	-	-	-	-	-	-	-
TOTAL DEPTH OF WELL BELOW MP (ft)	17.1	25.80	28.98	24.16	19.45	19.6	16.1	14.9	15.18	18.61	25.55
DIAMETER OF WELL CASING (inches)	2	2	2	2	2	2	2	2	2	2	2
DEVELOPMENT DATA											
DATE OF DEVELOPMENT	9/7/04	9/9/04	9/10/04	-	-	-	-	-	-	-	9/10/2004
TIME DEVELOPMENT INITIATED	15:42	18:30	13:50	-	-	-	-	-	-	-	14:20
TIME DEVELOPMENT COMPLETED	15:55	19:30	14:35	-	-	-	-	-	-	-	15:30
DEPTH TO WATER BELOW MP (ft)	9.59	18.54	22.48	-	-	-	-	-	-	-	20.30
WATER COLUMN IN WELL (ft)	7.51	7.26	6.50	-	-	-	-	-	-	-	5.20
GALLONS PER FOOT	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
GALLONS IN WELL	1.20	1.16	1.04	-	-	-	-	-	-	-	0.83
DEVELOPMENT METHOD	GeoSquirt	GeoSquirt	GeoSquirt	-	-	-	-	-	-	-	Bailer
VOLUME WATER REMOVED (gallons)	18	30.0	48.0	-	-	-	-	-	-	-	4.0
PURGING & SAMPLING DATA											
LOCID	17MW1	18MW1	20MW1	MW 88-1	MW 88-2	MW 88-3	MW 88-4	MW 88-5	MW 88-6	MW 88-8	MW 88-10
SAMPLE ID	04NE17GW104	04NE18GW104	04NE20GW104	04NE88GW101	04NE88GW102	04NE88GW103	04NE88GW104	04NE88GW105	04NE88GW106	04NE88GW107	04NE88GW108
DATE	9/9/04	9/10/04	9/11/04	9/6/04	9/7/04	9/7/04	9/8/04	9/8/04	9/8/04	9/9/04	9/11/04
TIME PURGING INITIATED	16:20	18:15	10:42	17:15	11:59	13:43	11:01	12:44	17:38	13:16	12:20
TIME SAMPLE INITIATED	17:00	18:35	11:05	18:30	12:30	16:15	11:25	13:25	18:35	13:30	13:00
DEPTH TO WATER BELOW MP (ft)	9.63	19.68	22.58	15.87	7.61	11.46	7.62	7.28	8.05	12.01	20.36
WATER COLUMN IN WELL (ft)	7.47	6.12	6.40	8.29	11.84	8.14	8.48	7.62	7.13	6.60	5.19
GALLONS IN WELL	1.20	0.98	1.02	1.33	1.89	1.30	1.36	1.22	1.14	1.06	0.83
PURGING METHOD	Redi-Flo 2	Redi-Flo 2	Redi-Flo 2	Redi-Flo 2	Redi-Flo 2						
VOLUME WATER REMOVED (gallons)	4.0	4.0	5.0	5.5	5.5	1.5	5.0	4.0	6.0	3.0	3.0
WATER QUALITY DATA - YSI 556	4.0	4.0	5.0	0.0	0.0	1.5	5.0	4.0	0.0	0.0	5.0
DATE MEASURED	0/0/04	0/40/04	0/44/04	0/0/04	0/7/04	0/7/04	0/0/04	0/0/04	0/0/04	0/0/04	0/11/04
	9/9/04	9/10/04	9/11/04	9/6/04	9/7/04	9/7/04	9/8/04	9/8/04	9/8/04	9/9/04	9/11/04
TIME MEASURED	17:07	18:31	11:04	17:35	12:37	16:16	11:30	13:20	18:35	13:42	12:56
	5.1	5.3	5.3	5.4	5.0	7.2	5.5	5.0	5.8	7.4	5.9
SPECIFIC CONDUCTANCE (mS/cm)	0.08	0.09	0.19	0.15/0.07	0.16	0.16	0.37	0.39	0.46	0.32	0.11
DISSOLVED OXYGEN (mg/L)	10.7*	14.6*	12.9*	3.4	0.6	1.3	0.2	1.2	0.2	0.8	2.9
pH (Standard Units)	5.4	6.0	6.0	5.8	6.0	6.2	6.4	6.1	6.6	6.4	6.0
OXYGEN REDUCTION POTENTIAL (mV)	238	218	218	202	83	80	-60	-28	-50	-51	126
TURBIDITY (NTUs) - Oakton	43.5	24.6	84.8	5.3 - 4.9	93	13.2	13.2	289	105	24.3	69.8
ALKALINITY (mg/L) - Hach phenolpthalein titration	5	-	15	15	40	-	-	125	-	90	30
FERROUS IRON (mg/L) - Hach colorimeter	0.11	-	0.18	-	1.34	-	-	1.79	-	3.3	0.48
WATER LEVEL MEASUREMENT DATA											
DATE WATER LEVEL MEASURED	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04	9/13/04
TIME WATER LEVEL MEASURED	16:05	14:25	14:30	14:50	15:20	15:00	15:28	15:37	15:43	15:50	14:40
DEPTH TO WATER BELOW MP (ft)	9.81	19.85	22.76	16.28	7.81	11.82	7.71	7.49	8.25	12.21	20.55
WATER LEVEL ELEVATION (ft)	61.39	63.24	66.30	65.63	63.07	65.50	60.53	60.34	60.58	61.18	65.98
* unuqually high DO readings may be due to instrument											. <u></u>

* unusually high DO readings may be due to instrument malfunction

KEY DESCRIPTION

- Not developed or not measured
- °C Degrees Celsius
- ft Feet
- mg/L Milligrams per liter
- MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-9d SUMMARY OF WATER ANALYTICAL RESULTS - MAIN OPERATIONS COMPLEX

			Sample Type:						G	ROUNDWATER						
			Location ID:	17MW1	18MW1	20MW1	MW 88-1	MW 88-2	MW 88-3		MW 88-4		MW 88-5	MW 88-6	MW 88-8	MW 88-10
Main Operations	Complex		Sample ID:	04NE17GW104	04NE18GW104	04NE20GW104	04NE88GW101	04NE88GW102		04NE88GW104 *	04NE88GW204	04NE88GW304	04NE88GW105		04NE88GW107	04NE88GW108
	complex		Cooler Number:	27	25	26	24	24	24	25	25	29	25	32, 35	27	26
Water Matrix	x		Depth (ft):	10	19	23	16	8	12	8	8	8	7.5	8.5	12.3	20
		T	Sample Date:	9/9/2004	9/10/2004	9/11/2004	9/6/2004	9/7/2004	9/7/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/9/2004	9/11/2004
Parameter Tested	Test Method	Units	Cleanup Level							Primary	Duplicate	Triplicate				
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	[0.090]	0.0191 J	0.0194 J	0.0141 J	0.0492 J	0.104	0.917	1.09 J	1.25	1.5 J	1.02	0.415	0.0357 J
Diesel Range Organics (DRO)	AK102	mg/L	1.5	[0.337] B	[0.341] B	[0.333] B	[0.345] B	0.421 B	0.768 B	3.82 J	3.49	3.89	11.3	4.56 J	3.37	1.38
Residual Range Organics (RRO)	AK103	mg/L	1.1	[0.562] B	[0.568] B	[0.556] B	0.168 J	[0.543] B	[0.549] B	1.46 B	1.11 B	[0.750] B	2.28 B	0.651 B	0.816 B	[0.549] B
Aromatic Organic Compounds (BTEX)																
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	[0.4]	[0.4]	0.26 J	[0.4]	27.6	33.7	30.0	29.7	1.18	[0.4]	[0.4]
Ethylbenzene	SW8260B	µg/L	700	[1]	[1]	[1]	[1]	1.65	5.65	87.8	87.4	98.0	40.5	47	12.7	[1]
Toluene	SW8260B	µg/L	1000	[1]	[1]	[1]	[1]	[1]	[1]	5.78	9.41	10.5	82.2	[1]	[1]	[1]
o-Xylene	SW8260B	μg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]	[1]	[1]	25.4	45.8	49.9	111	1.03	0.45 J	[1]
m & p-Xylenes	SW8260B	μg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	[2]	0.69 J	4.83	72.8	94	98	142	35.2	11.6	[2]
Polynuclear Aromatic Hydrocarbons (PAH SIM)																
Acenaphthene	PAH SIM	µg/L	2,200	_	_	_	-	[0.0549]	_	-	_	_	-	0.948	1.65	_
Acenaphthylene	PAH SIM	µg/L	2,200	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Anthracene	PAH SIM	µg/L	11.000	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Benzo(a)anthracene	PAH SIM	µg/L	1	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Benzo(a)pyrene	PAH SIM	µg/L	0.2	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Benzo(b)fluoranthene	PAH SIM	µg/L	1	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Benzo(g,h,i)perylene	PAH SIM	µg/L	1.100	_	_	_	_	[0.0549]	_	_	_	_	-	[0.0526]	[0.0538]	_
Benzo(k)fluoranthene	PAH SIM	µg/L	10	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Chrysene	PAH SIM	μg/L	100	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Dibenzo(a,h)anthracene	PAH SIM	μg/L	0.1	_	_	_	_	[0.0549]	_	_	_	_	-	[0.0526]	[0.0538]	-
Fluoranthene	PAH SIM	µg/L	1,460	_	_	_	_	[0.11]	_	-	_	_	_	[0.105]	[0.108]	_
Fluorene	PAH SIM	µg/L	1,460	_	_	_	_	[0.0549]	_	_	_	_	_	1.62	3.01	_
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	_	_	_	_	[0.0549]	_	_	_	_	_	[0.0526]	[0.0538]	_
Naphthalene	PAH SIM	µg/L	700	_	_	_	_	[0.0549] B	_	-	_	_	_	112	137	_
Phenanthrene	PAH SIM	μg/L	11.000	_	_	_	_	[0.11]	_	_	_	_	_	0.27	0.484	_
Pyrene	PAH SIM	μg/L	1,100	-	_	-	_	[0.0549]	-	-	-	_	-	[0.0526]	[0.0538]	-
Total Metals																
Chromium	SW6020	µg/L	100 (Total)	1.49J	1.39J	39.7	[4]	62.4	[4]	3.97 J	2.28 J	4.4	4.58	10.7	[4]	25
Lead	SW6020	μg/L	15	7.08	1.21 B	51.7	[1.00] B	54.6	[1.00] B	5.02	4.09 B	4.23 B	12	8.87	4.07 B	37.6
Mercury	SW7470A	µg/L	2	[0.200]B	0.084 J	[0.200] B	[0.2]	[0.2]	[0.2]	[0.200] B	0.08 J	[0.2]	0.076 J	[0.200] B	[0.200] B	0.1 J
Zinc	SW6020	μg/L	11,000	35	[25]	109	[25]	128	[25]	47.4	22.8 J	36	9.64 J	24.3 J	[25]	94.5
Natural Attenuation Parameters																
Nitrate	E300.0	mg/L	_				_	[0.1]	_	_	_	_		_		
Nitrogen, Nitrate-Nitrite	E300.0	mg/L	_	0.272	_	0.855	_	[0]	_	_	_	_	[0.1]	_	[0.1]	[0.1]
Sulfate	E300.0	mg/L	_	14.1	_	14.3	_	8.12	_	_	_	_	2.82	_	0.323	9.74
Iron	SW6010B	mg/L	_	3.01	_	31.7	_	69.4	_	_	_	_	48	_	50.6	14.2
	0000100	iiig/ L		0.01		01.7		00.7					-0		00.0	17.2

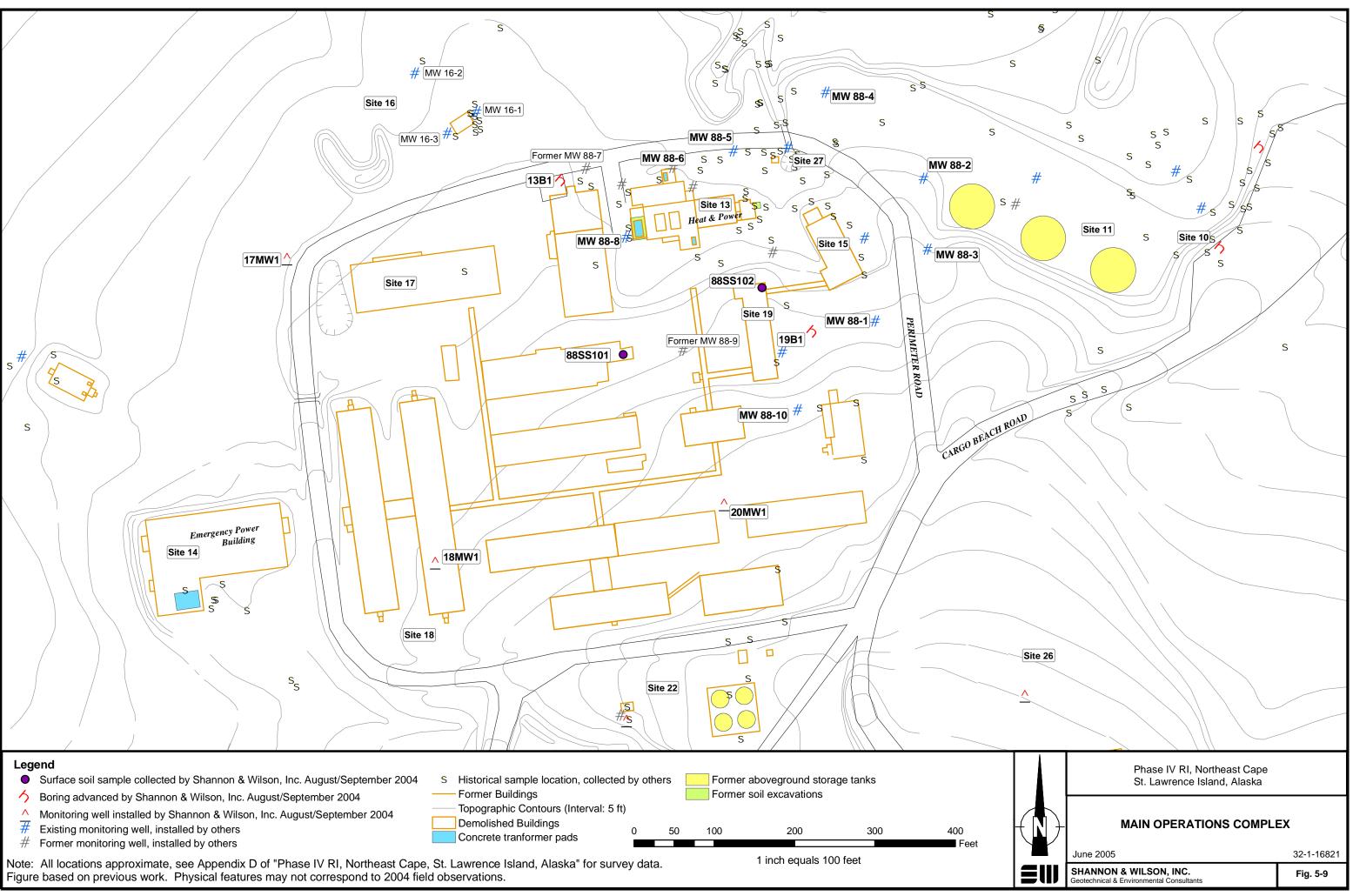
 KEY	DESCRIPTION
-	Measurement not recorded or not applicable
mg/L	milligrams per liter

µg/L micrograms per liter

Cleanup Levels Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C Stimated concentration; refer to Appendix C for data qualification information

[0.0532] B Result qualified as not detected due to method, trip, or equipment blank detection

1.11 B Analyte concentration biased due to detection in method, trip, or equipment blank


36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup level

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

* Matrix Spike / Matrix Spike Duplicate (MS/MSD)

WL Approximate depth to water below ground surface

5.10 Site 14: Emergency Power/Operations Building

Two surface soil (14SS101 and 14SS102) and two subsurface soil (14SB103 and 14SB104) samples were collected for PCB analysis adjacent to the former Building 98 (see Figure 5-10 and Table 5-10a).

5.10.1 Site Description

Site 14 is located on the western edge of the Main Operations Complex, and contained electronic communication equipment and an emergency power generating facility. A transformer bank was located in the southwest portion of the former Building 98. The layout of the site is shown on Figure 5-10. The concrete floor slab of the building remains on a bench that slopes away steeply to the north and west. The eastern approach to the building has been regraded recently.

5.10.2 Data Collection Objectives

Previous investigations detected PCBs adjacent to the building at concentrations up to 19 mg/kg. Additional samples were collected to help resolve whether or not the contamination extends to the south beyond the previous sampling effort.

5.10.3 Field Investigation

Two surface soil samples and two co-located subsurface soil samples were collected approximately 10 feet southeast and 10 feet southwest of previous sample location 01NE14SS102. The sample locations were along an embankment of recently placed rocky fill, visible in Photograph 12 of Appendix A. The shallow samples were collected in older fill beneath the recent fill. The deeper samples were collected just below the apparent contact between older fill and native soil. The sample depths were achieved using hand tools, and the samples were analyzed for PCBs. Sample descriptions are included in Table 5-10a and sample locations are shown on Figure 5-10.

5.10.4 Analytical Results

Table 5-10B summarizes the results of PCB analysis. The PCB Aroclor 1260 was the only congener detected, and none of the results exceed the 1 mg/kg surface soil criterion.

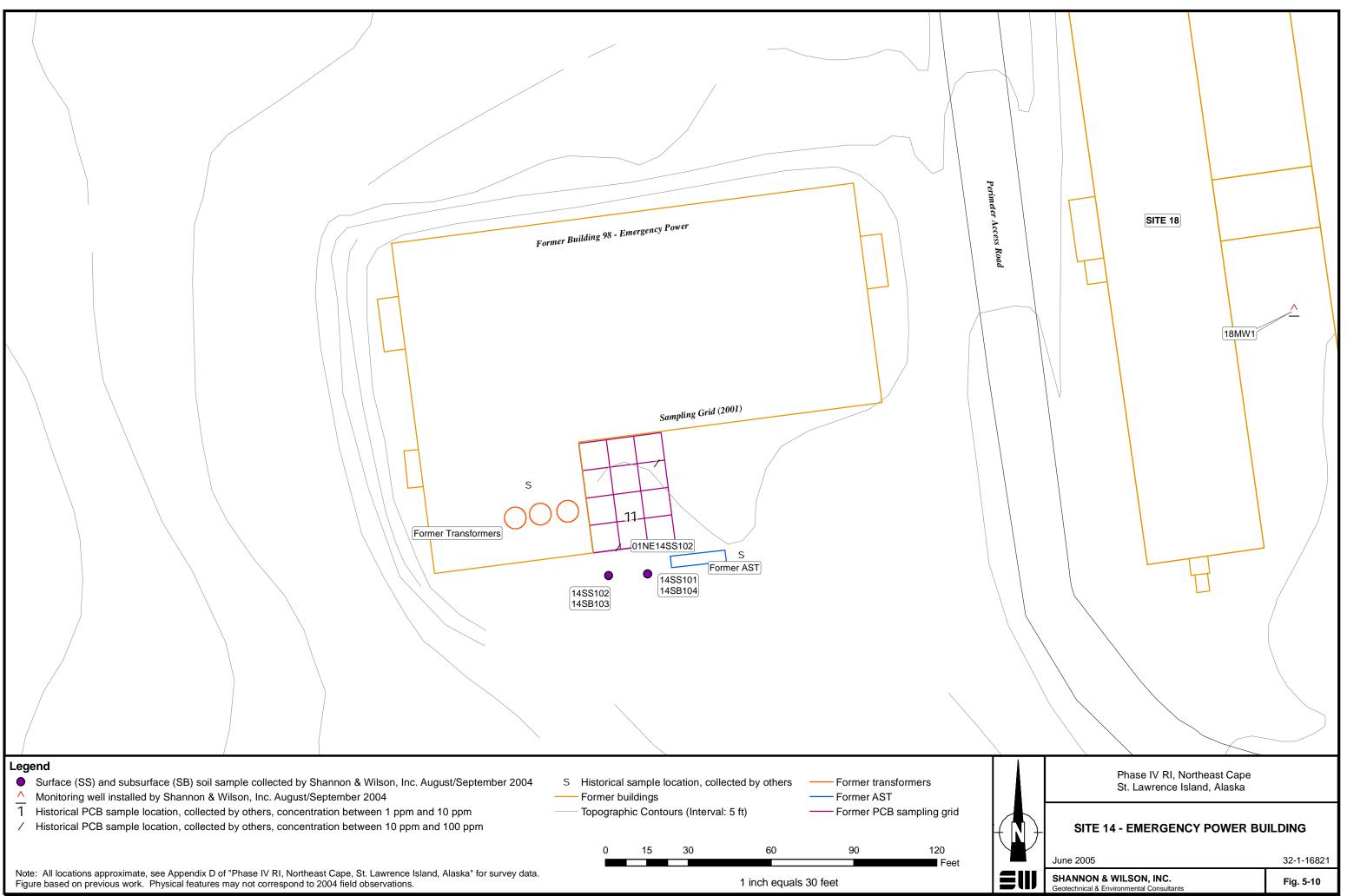
TABLE 5-10a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 14: EMERGENCY POWER/OPERATIONS BUILDING

Sample Number**	LOCID	Date	Sample Location (See Figure 5-10)	Depth (feet)	Sample Classification†
<u>Soil Sample</u>	<u>s</u>				
* 14SS101	14SS101-1	8/30/04	East sample South of 2001 sampling grid, Building 98	1.4-1.6	Dark brown, slightly silty, sandy GRAVEL and cobbles; moist; trace organics - under recent fill, just beneath old vegetation layer
* 14SS102	14SS102-1	8/30/04	West sample South of 2001 sampling grid, Building 98	1.6	Dark brown, slightly silty, sandy GRAVEL and cobbles; moist; trace organics - under recent fill, just beneath old vegetation layer
* 14SB103	14SS102-2	8/30/04	West sample South of 2001 sampling grid, Building	2-2.2	Dark brown, slightly silty, sandy GRAVEL; moist
* 14SB104	14SS101-2	8/30/04	East sample South of 2001 sampling grid, Building	2-2.2	Brownish gray, sandy SILT and cobbles; moist
* 14SB204	14SS101-2	8/30/04	QC replicate of Sample 14SS104	2-2.2	Brownish gray, sandy SILT and cobbles; moist
* 14SB304	14SS101-2	8/30/04	QA replicate of Sample 14SS104	2-2.2	Brownish gray, sandy SILT and cobbles; moist

KEY DESCRIPTION

* Sample analyzed by the project or QA laboratory (See Table 5-10b)

** The full sample number is preceded by "04NE", for example 14SS101 is sample 04NE14SS101


† Sample classification applies to the portion of the specified sample interval from which the sample was collected

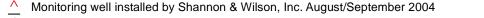

LOCID Location Identification: "14SS101-1" signifies Site 14, Surface Sample 101 at 1-foot depth (depth is rounded to the nearest foot)

TABLE 5-10b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 14: EMERGENCY POWER/OPERATIONS BUILDING

Site 14 - Ei	mergency		Sample Type:	e: SUBSURFACE SOIL SAMPLES									
	• •		Location ID:	14SS101-1		14SS101-2	14SS102-1	14SS102-2					
Power/Operat	ions Building)	Sample ID:	04NE14SS101	04NE14SB104	04NE14SB204	04NE14SB304	04NE14SS102	04NE14SB103				
Soil N	latriv		Depth (ft):	1.4-1.6	2.0-2.2	2.0-2.2	2.0-2.2	1.6	2.0-2.2				
3011	allix		Sample Date:	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004				
Parameter Tested	Test Method	Units	Cleanup Level		Primary	Duplicate	Triplicate						
Percent Moisture	A2540G / E160.3M	%	-	14.0	16.3	17.0	16.2	10.8	11.8				
Polychlorinated Biphenyls (PCBs)			Sum of congeners:										
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0571]	[0.0586]	[0.0608]	[0.025]	[0.0554]	[0.0562]				
PCB-1221 (Aroclor 1221)	SW8082	mg/kg		[0.0571]	[0.0586]	[0.0608]	[0.050]	[0.0554]	[0.0562]				
PCB-1232 (Aroclor 1232)	SW8082	mg/kg		[0.0571]	[0.0586]	[0.0608]	[0.025]	[0.0554]	[0.0562]				
PCB-1242 (Aroclor 1242)	SW8082	mg/kg		[0.0571]	[0.0586]	[0.0608]	[0.025]	[0.0554]	[0.0562]				
PCB-1248 (Aroclor 1248)	SW8082	mg/kg		[0.0571]	[0.0586]	[0.0608]	[0.025]	[0.0554]	[0.0562]				
PCB-1254 (Aroclor 1254)	SW8082	mg/kg		[0.0571]	[0.0586]	[0.0608]	[0.025]	[0.0554]	[0.0562]				
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	0.248	0.0537 J	[0.0608]	0.0114 J	0.244	0.129				

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
%	percent
mg/kg	milligrams per kilogram
Cleanup Level	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables
	B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
inh	Cleanup level based on inhalation pathway
J	Estimated concentration; refer to Appendix C for data qualification information
0.248	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)

5.11 Site 16: Paint and Dope Storage Building

Groundwater samples from three existing monitoring wells were to be collected and analyzed at Site 16. No samples were collected however, due to insufficient water in these wells.

5.11.1 Site Description

Site 16 is located along the north edge of the Main Operations Complex, as shown on Figure 5-9. A building, fuel storage tank, miscellaneous debris, and contaminated soil were removed from the site during prior interim removal actions. Three monitoring wells with above ground monuments were present in an area capped with mixed soil types and sparse vegetation in 2004.

5.11.2 Data Collection Objectives

The Site 16 monitoring wells (MW 16-1, MW 16-2, and MW 16-3) are located in a general down-gradient direction from former Monitoring Well MW 88-7, which showed elevated levels of diesel in 2002. To characterize groundwater conditions, the three existing Site 16 monitoring wells were to be sampled and analyzed for DRO, RRO, GRO, BTEX, chromium, lead, zinc, and mercury. An assessment of the biogenic influence on DRO and RRO results was to be performed, and one sample was to be analyzed for PAHs and natural attenuation indicators.

5.11.3 Work Plan Variances

The three existing monitoring wells at Site 16 were observed to contain between 0.8 and 1.1 feet of water on September 9, and slightly less on September 12, 2004. The volume of water in the wells was found to be approximately the same as the volume of the tubing available to pump the wells. Bailing resulted in little recovery and turbid water. The insufficient water column precluded collecting samples that would be representative of the groundwater formation. The USACE Project Manager was consulted and a decision was made to not sample the wells. Groundwater levels were observed to drop across NE Cape during our field effort.

5.11.4 Field Activities

No petroleum odors or sheens were noted in the minimal volume of water recovered from the Site 16 wells. Water levels were measured in the Site 16 monitoring wells on September 13, 2004, along with the other wells in the MOC area. Table 5.11a summarizes the groundwater elevation data.

TABLE 5-11aGROUNDWATER SAMPLING LOGSITE 16: PAINT AND DOPE STORAGE BUILDING

MONITORING WELL INSTALLATION DATA

WELL ID	MW 16-1	MW 16-2	MW 16-3
DATE WELL INSTALLED	unknown	unknown	unknown
GROUND SURFACE ELEVATION (ft)	-	-	-
WELL MP ELEVATION (ft)	75.11	74.87	75.28
TOP OF SCREENED SECTION, BELOW MP (ft)	-	-	-
TOTAL DEPTH OF WELL BELOW MP (ft)	16.7	16.65	16.61
DIAMETER OF WELL CASING (inches)	2	2	2
WATER LEVEL MEASUREMENT DATA			
DATE WATER LEVEL MEASURED	9/13/2004	9/13/2004	9/13/2004
TIME WATER LEVEL MEASURED	15:55	15:58	16:01
WATER LEVEL ELEVATION (ft)	59.23	59.24	59.31
DEPTH TO WATER BELOW MP (ft)	15.88	15.63	15.97
WATER COLUMN IN WELL (ft)	0.82	1.02	0.64
GALLONS PER FOOT	0.16	0.16	0.16
GALLONS IN WELL	0.13	0.16	0.10

KEY DESCRIPTION

- Not developed or not measured

ft Feet

MP Measuring Point is Top of Well Casing

5.12 Site 22: Water Storage Building

Three soil borings (22B1, 22MW2, and 22MW3) were advanced at Site 22 and groundwater monitoring wells were installed in two of the borings. Thirteen project soil samples were collected from the borings, and groundwater was sampled from each of the new wells.

5.12.1 Site Description

This site is located on the southeastern edge of the Main Operations Complex, and sits higher on the same broad depositional feature as the MOC. The pumphouse, potable water wells, storage building and tanks were removed under previous interim removal actions. The former locations of these features are depicted in Figure 5-12. The area has been re-graded in the same manner as the MOC, and Figure 5-13 shows the position of Site 22 relative to the MOC.

5.12.2 Data Collection Objectives

A groundwater sample collected before decommissioning Potable Well PW-2 at the pumphouse contained 2.8mg/L RRO. To assess possible petroleum impacts to the ground water in the vicinity of PW-2, installation and sampling of a groundwater monitoring well was specified. A second groundwater monitoring well was specified in the vicinity of former potable water well PW-1 to assess the water quality in the fractured bedrock aquifer. One soil boring was planned to verify the depth of contamination adjacent to the former UST next to the pumphouse.

Soil samples were collected from each of the three borings for field screening and potential laboratory analysis. Five soil samples were to be selected from each boring for DRO, RRO, and GRO analysis. One of the analytical samples from each monitoring well boring was to be selected for PAHs, BTEX, and TOC testing. The five samples from the former UST soil boring were to also be analyzed for BTEX, and two samples were to be selected for PAH and TOC analyses.

Groundwater samples from both of the monitoring wells were analyzed for DRO, RRO, GRO, and natural attenuation parameters. The groundwater DRO and RRO results were assessed for biogenic versus petroleum derived compounds.

5.12.3 Work Plan Variances

Conditions found in the field led to alterations in the planned sampling activities. Subsurface rocks impacted the sampling intervals for borings at Site 22. Soil sample intervals in each boring were selected based on drill action in order to get adequate sample recovery, and varied from the specified 5-foot interval.

Partially buried concrete and rebar was encountered at the proposed location for Well 22MW2, and the boring was moved a few feet eastward. This boring was then stopped at 26.5 feet bgs due to difficult subsurface conditions. No water entered the boring in the time required to drill the next boring, and the boring was backfilled. Only three of the five soil samples specified in the WP were collected due to poor recovery. This beation was renamed Boring 22B1, as shown on Figure 5-12.

Drilling moved to the original proposed location of Boring 22B1, roughly 25 feet away. After shifting the location a few feet due to concrete rubble, drilling and sample recovery was significantly better at this location. Water was encountered at 22 and 28 feet bgs, and the boring was extended to 38 feet bgs. A monitoring well was installed at this location and the location was named 22MW2 (see Figure 5-12).

The proposed location for Monitoring Well 22MW3, near PW-1 is now in the perimeter loop road, which was found to be relocated to loop around the south side of Site 22. Well 22MW3 was placed to the north-northeast of the proposed location, closer to PW-1. One soil sample was collected from 22MW3 for grainsize analysis to compensate for the deficit of grainsize samples from material representing the aquifer beneath the MOC. This grainsize sample is recorded on Table 5-9b (See Section 5.9.3).

5.12.4 Field Investigation

Field activities occurred at Site 22 between August 27 to September 11, 2004. A summary of samples collected, including sample locations and classifications, is presented in Table 5-12a. Boring and Monitoring Well Completion logs are provided in Appendix B.

5.12.4.1 Boring 22B1

Three samples were recovered from Boring 22B1. Samples 22SB106 and 22SB107 were collected from 6 and 13 feet bgs, respectively. The split spoon for Sample 22SB108 was driven from 17 to 18 feet where it met refusal, but an adequate amount of soil was recovered for an analytical sample. The drill cuttings appeared to consist of only freshly fractured rock chips from 18 to 25 feet bgs, and drill action suggested rock. A split spoon was driven at 25 feet to determine if the material was frozen soil. The split spoon did advance for the length of the spoon, suggesting frozen soil, but only 6 inches of damp rock chips were recovered. The boring was not advanced beyond 26.5 feet.

5.12.4.2 Monitoring Well 22MW2

Five analytical soil samples were recovered at the new location for well 22MW2. Sample 22SB109 was collected from petroleum-stained soil that was encountered at roughly 6 to 8 feet bgs. Samples 22SB110 and 22SB111 were collected in unsaturated media typical of the

MOC area. A low-yield water bearing zone was encountered at about 22 to 23 feet bgs, and split spoons were driven from 22 to 23.5 and 23.5 to 25 feet bgs. The two split spoons were combined to obtain sufficient soil volume for a QC/QA replicate set (Samples 22SB112, 22SB212, and 22SB312). A high-yield water bearing zone was encountered at about 28 feet bgs, and Sample 22SB113 was collected at 31 to 32.5 feet bgs. Frozen ground was suspected around 30 feet bgs and confirmed at 35 feet bgs.

5.12.4.3 Monitoring Well 22MW3

Samples were collected from five locations in the Monitoring Well 22MW3 boring. Samples 22SB101, 102, and 103 were collected in the unsaturated zone at depths around 6, 13, and 18 feet bgs, respectively. Frozen ground was suspected after driving the split spoon for Sample 22SB104 past 28 feet bgs. Two attempts were made to reduce the heat input from drilling and reduce the split spoon recovery time in order to obtain a sample of coarse granular material that remained frozen. The first attempt failed. After the drill passed a large rock, a split spoon driven from 38 to 39.5 feet recovered frozen, silty, sandy gravel, with parts of a fractured cobble (Sample 22SB105 22SB205, and 22SB305). The drill bit was advanced to 40.5 feet bgs to remove disturbance from the previous sample, and a split spoon was driven and recovered quickly to confirm frozen granular soil to 42 feet bgs.

5.12.4.4 IDW

IDW generated at Site 22, including headspace samples, soil cuttings, headspace bags, sampling gloves, groundwater sampling tubing, monitoring well purge water, and equipment decontamination water was handled as discussed in Section 3.5.

5.12.4.5 Field Observations

The SOW states that "Well #1 (PW-1) encountered overburden to a depth of 39 feet and bedrock granite or granodiorite below this depth." Rocky overburden was observed for the full 42 foot depth of the well 22MW3 borehole. The gray silt typical of basal till from a glacier was encountered at 40 feet bgs in Boring 13B1 (See Section 5.9 and Appendix B), which has a surface elevation about 25 feet lower than Monitoring Well 22MW3. Gray silt was not encountered at depth in well 22MW3, suggesting that the boring had not fully penetrated the moraine, and that bedrock is significantly deeper than 42 feet bgs. We suspect that frozen layers of rocky soil have been interpreted as bedrock in the past.

5.12.5 Analytical Results

Table 5-12b summarizes the Site 22 soil sample analytical results, Table 5-12c summarizes the monitoring well developing and sampling data, and Table 5-12d summarizes the Site 22 water sample analytical results. None of the thirteen soil samples or two groundwater

samples collected from Site 22 contained analyte concentrations that exceed cleanup levels. Although benzene was not detected, the PQL for benzene in QA replicate Sample 22SB312 was above the cleanup criterion. The PQLs for the associated project and QC samples are less than the cleanup criterion.

TABLE 5-12a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 22: WATER STORAGE BUILDING

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-12 for borehole and well location	-	(ppm) ^	Sample Classification [†]
Soil Sample	<u>s</u>					
* 22SB106	22B1-6	8/28/04	Boring 22B1	6-7.5	0.3	Light brown, gravelly SAND and cobbles; dry to moist
* 22SB107	22B1-13	8/28/04	Boring 22B1	12.3-14	0.3	Brown to gray, sandy GRAVEL; dry to moist
* 22SB108	22B1-17	8/28/04	Boring 22B1	17-18	0.5	Gray, sandy GRAVEL; dry - cuttings?
B1S4	22B1-25	8/28/04	Boring 22B1 - bottom of borehole	25-26.7	0.2	Granitic rock cuttings
* 22SB109	22MW2-6	8/28/04	Monitoring Well 22MW2	6-7.5	3.0	Brown to gray, gravelly SAND; moist; with cobbles, slight fuel odo
* 22SB110	22MW2-	8/28/04	Monitoring Well 22MW2	13-14.5	0.8	Brown to gray, silty, sandy GRAVEL and cobbles; moist
* 22SB111	22MW2-	8/28/04	Monitoring Well 22MW2	17-18.5	0.7	Brown, gravelly SAND; moist
* 22SB112	22MW2-	8/28/04	Monitoring Well 22MW2 - Two sample intervals	22-25	1.0	Brown, slightly silty, sandy GRAVEL and cobbles; moist
	22		combined			
* 22SB212	22MW2-	8/28/04	QC replicate of Sample 22SB112	22-25	1.0	Brown, slightly silty, sandy GRAVEL and cobbles; moist
* 22SB312	22MW2-	8/28/04	QA replicate of Sample 22SB112	22-25	1.0	Brown, slightly silty, sandy GRAVEL and cobbles; moist
* 22SB113	22MW2-	8/28/04	Monitoring Well 22MW2 - bottom of borehole	31-32.5	0.2	Brown, slightly silty, sandy GRAVEL and cobbles; wet
* 22SB101	22MW3-6	8/27/04	Monitoring Well 22MW3	5.5-7	0.5	Brown, silty, sandy GRAVEL and cobbles; moist - grainsize
* 22SB102	22MW3-	8/27/04	Monitoring Well 22MW3	12.5-14	< 0.2	Grayish brown, sandy, gravelly SILT and cobbles; moist
* 22SB103	22MW3-	8/27/04	Monitoring Well 22MW3	17-18.5	1.0	Redish brown sandy, silty GRAVEL and cobbles; moist
MW3S4	22MW3-	8/27/04	Monitoring Well 22MW3	22-23.5	0.2	Redish brown sandy, silty GRAVEL and cobbles; moist
* 22SB104	22MW3-	8/27/04	Monitoring Well 22MW3	27-28.5	< 0.2	Brown, silty, sandy GRAVEL and cobbles; moist
MW3S6	22MW3-	8/27/04	Monitoring Well 22MW3	33-34.5	0.4	Brown, silty, sandy GRAVEL and cobbles; moist - potentially froz
* 22SB105	22MW3-	8/27/04	Monitoring Well 22MW3	38-39.5	< 0.2	Brown, silty, sandy GRAVEL and cobbles; frozen
* 22SB205	22MW3-	8/27/04	QC replicate of Sample 22SB105	38-39.5	< 0.2	Brown, silty, sandy GRAVEL and cobbles; frozen
* 22SB305	22MW3-	8/27/04	QA replicate of Sample 22SB105	38-39.5	< 0.2	Brown, silty, sandy GRAVEL and cobbles; frozen
Groundwate	r Samples					
* 22GW115	22MW2	9/11/04	Monitoring Well 22MW2	WL	-	Groundwater - clear
* 22GW114	22MW3		Monitoring Well 22MW3	WL	-	Groundwater - slight turbidity
			DESCRIPTION	1	1	1

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-12b and 5-12d)
- ** The full sample number is preceded by "04NE", for example 22SB106 is sample 04NE22SB106
- ^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- ppm parts per million, calibrated to 100 ppm isobutylene
- WL Approximate static water level in feet below ground surface
- LOCID Location Identification: "22B1-6" signifies Site 22, Boring 1 at 6-foot depth (depth is rounded to the nearest foot)

TABLE 5-12b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 22: WATER STORAGE BUILDING

			Sample Type:				BOREHOLE 22MW					BOREHOLE 22MW3			
Site 22 - Water Sto	rago Ruildin	a .	Location ID:	22MW2-6	22MW2-13	22MW2-17		22MW2-22		22MW2-31	22MW3-6	22MW3-13	22MW3-17	22MW3-27	
Sile ZZ - Waler Slu	rage building	y	Sample ID:	04NE22SB109	04NE22SB110	04NE22SB111	04NE22SB112	04NE22SB212	04NE22SB312	04NE22SB113	04NE22SB101	04NE22SB102 *	04NE22SB103	04NE22SB10	
Soil Mat	riv		Depth (ft):	6-7.5	13-14.5	17-18.5	22-25	22-25	22-25	31-32.5	5.5-7	12.5-14	17-18.5	27-28.5	
			Sample Date:	8/28/2004	8/28/2004	8/28/2004	8/28/2004	8/28/2004	8/28/2004	8/28/2004	8/27/2004	8/27/2004	8/27/2004	8/27/2004	
Parameter Tested	Test Method	Units	Cleanup Level				Primary	Duplicate	Triplicate						
PID Headspace Reading	HNU HW101 PID	ppm	-	3.0	0.8	0.7	1.0	1.0	1.0	0.2	0.5	<0.2	1.0	<0.2	
Percent Moisture	A2540G / E160.3M	%	-	3.6	3.4	5.1	7.9	6.9	5.3	12.5	7.3	11.2	8.5	9.6	
Gasoline Range Organics (GRO)	AK101	mg/kg	300	2.7	0.957 J	0.651 J	0.841 J	0.727 J	0.517 J	0.685 J	[3.14] B	[2.84] B	[2.53] B	[2.45] B	
Diesel Range Organics (DRO)	AK102	mg/kg	250	68.1	20.2 J	11.8 J	19.7 J	17.4 J	7.32	30.0 J	6.20 J	5.43 J	8.02 J	19.8 J	
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	19.4 J	44.7	26.3	37.3	35.7	23.1	65.7	13.4 J	14.2 J	10.7 J	29.5	
Aromatic Organic Compounds (BTEX)															
Benzene	SW8260B	µg/kg	20	[13.1]	-	-	[12.1]	[11.1]	[100]	-	-	[14.8]	-	-	
Ethylbenzene	SW8260B	µg/kg	5,500	[25.2]	-	-	[23.2]	[21.3]	[100]	-	-	[28.4]	-	-	
Toluene	SW8260B	µg/kg	5,400	[50.5]	-	-	[46.5]	[42.5]	[100]	-	-	[56.8]	-	-	
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[25.2]	-	-	[23.2]	[21.3]	[100]	-	-	[28.4]	-	-	
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	[50.5]	-	-	[46.5]	[42.5]	[200]	-	-	[56.8]	-	-	
Polynuclear Aromatic Hydrocarbons (PAH)															
Acenaphthene	PAH SIM	µg/kg	210,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Acenaphthylene	PAH SIM	µg/kg	210,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Anthracene	PAH SIM	µg/kg	4,300,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	[5.3]	-	-	[5.44]	[5.44]	2.1 J	-	-	[5.76]	-	-	
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Chrysene	PAH SIM	µg/kg	620,000	3.83 J	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Fluoranthene	PAH SIM	µg/kg	2,100,000	4.21 J	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-		
Fluorene	PAH SIM	µg/kg	270,000	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	[5.3]	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Naphthalene	PAH SIM	µg/kg	21,000	5.45 J	-	-	24.5 J	[5.44]	[10]	-	-	10.7 J	-	-	
Phenanthrene	PAH SIM	µg/kg	4,300,000	7.93	-	-	[5.44]	[5.44]	[10]	-	-	[5.76]	-	-	
Pyrene	PAH SIM	µg/kg	1,500,000	7.77	-	-	1.71 J	2.08 J	[10]	-	-	[5.76]	-	-	
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	847	-	-	-	-	-	-	-	1,230	-	-	

KEY DESCRIPTION

Analysis not requested or cleanup level not established -

parts per percent

ppm

%

µg/kg

PID

ing J

mg/kg . milligrams per kilogram

micrograms per kilogram

Photoionization detector

Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Cleanup Levels Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway Estimated concentration; refer to Appendix C for data qualification information

[0.0532] B Result qualified as not detected due to method, trip, or equipment blank detection

Concentration detected

36 [0.0072] Analyte not detected above Practical Quantitation Limit (PQL) [0.037]

Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve Matrix Spike / Matrix Spike Duplicate (MS/MSD)

TABLE 5-12b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 22: WATER STORAGE BUILDING

			Sample Type:		BOREHOLE 22MW	13	BOREHOLE BORING 22B1			
Site 22 Water Ste	rogo Duildin	~	Location ID:		22MW3-38		22B1-6	22B1-13	22B1-17	
Site 22 - Water Sto	rage building	g	Sample ID:	04NE22SB105	04NE22SB205	04NE22SB305	04NE22SB106	04NE22SB107	04NE22SB108	
Soil Mat		-	Depth (ft):	38-39.5	38-39.5	38-39.5	6-7.5	12.5-14	17-18	
Soli wat	IX		Sample Date:	8/27/2004	8/27/2004	8/27/2004	8/28/2004	8/28/2004	8/28/2004	
Parameter Tested	Test Method	Units	Cleanup Level	Primary	Duplicate	Triplicate				
PID Headspace Reading	HNU HW101 PID	ppm		<0.2	<0.2	<0.2	0.3	0.3	0.5	
Percent Moisture	A2540G / E160.3M	%	-	14.3	13.0	12.7	3.1	3.5	3.9	
Gasoline Range Organics (GRO)	AK101	mg/kg	300	[2.30] B	[1.90]	0.365 J	1.33 J	1.56 J	1.27 J	
Diesel Range Organics (DRO)	AK102	mg/kg	250	27 J	47.1 J	7.29	35 J	11.4 J	22	
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	36.7 J	75.9	14.4 J	56.6 J	24.2	42.7	
Aromatic Organic Compounds (BTEX)										
Benzene	SW8260B	µg/kg	20	-	-	-	[10.1]	[14.7]	[10.6]	
Ethylbenzene	SW8260B	µg/kg	5.500	_	-	_	[19.5]	[28.3]	[20.3]	
Toluene	SW8260B	µg/kg	5,400	_	-	_	[38.9]	[56.6]	[40.7]	
o-Xylene	SW8260B	μg/kg	78,000 (total Xylenes)	-	_	_	[19.5]	[28.3]	[20.3]	
m & p-Xylenes	SW8260B	μg/kg	78,000 (total Xylenes)	-	-	-	[38.9]	[56.6]	[40.7]	
Polynuclear Aromatic Hydrocarbons (PAH)										
Acenaphthene	PAH SIM	µg/kg	210.000	-	-	-	-	[5.27]	-	
Acenaphthylene	PAH SIM	µg/kg	210,000	_	-	_	_	[5.27]	_	
Anthracene	PAH SIM	µg/kg	4,300,000	_	-	_	_	[5.27]	_	
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	_	-	_	_	[5.27]	_	
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	-	_	_	[5.27]	_	
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	_	_	_	_	[5.27]	_	
Benzo(g,h,i)perylene	PAH SIM	μg/kg μg/kg	1,500,00					[5.27]		
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	_	_	_	_	[5.27]	_	
Chrysene	PAH SIM	μg/kg μg/kg	620,000					[5.27]		
Dibenzo(a,h)anthracene	PAH SIM	μg/kg μg/kg	1,000 (ing)					[5.27]		
Fluoranthene	PAH SIM	μg/kg μg/kg	2,100,000				_	[5.27]		
Fluorene	PAH SIM		270,000	-	-	-	-	[5.27]	-	
Indeno(1,2,3-cd)pyrene	PAH SIM PAH SIM	µg/kg µg/kg	270,000 11,000 (ing)	-	-	-	-	[5.27]	-	
Naphthalene	PAH SIM		21,000	-	-	-	-	[5.27] 14.3 J	-	
Phenanthrene	PAH SIM PAH SIM	µg/kg		-	-	-	-		-	
Phenanthrene Pyrene	PAH SIM PAH SIM	µg/kg	4,300,000 1,500,000	-	-	-	-	[5.27] [5.27]	-	
гунне	PAN SIM	µg/kg	1,500,000	-	-	-	-	[0.27]	-	
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	-	-	-	-	[523]	-	

	KEY	DESCRIPTION
_	-	Analysis not requested or cleanup level not established
	ppm	parts per million
	%	percent
	mg/kg	milligrams per kilogram (ppm)
	µg/kg	micrograms per kilogram (ppb)
	PID	Photoionization detector
	Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
	ing	Cleanup level based on ingestion pathway
	J	Estimated concentration; refer to Appendix C for data qualification information
	[0.0532] B	Result qualified as not detected due to method, trip, or equipment blank detection
	36	Concentration detected
	[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
	[0.037] *	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve Matrix Spike / Matrix Spike Duplicate (MS/MSD)

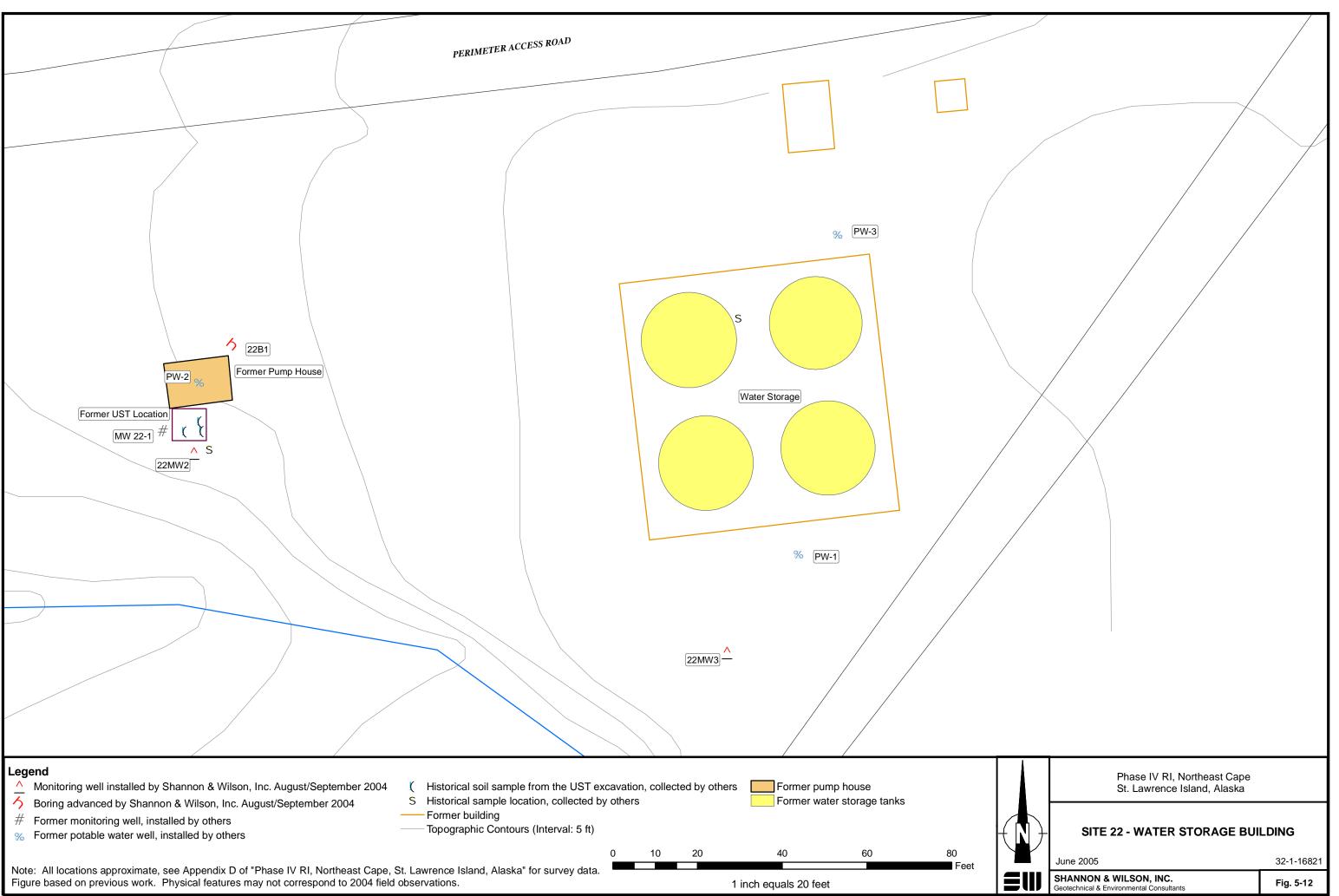
SHANNON & WILSON, INC.

p leve

TABLE 5-12c GROUNDWATER SAMPLING LOG SITE 22: WATER STORAGE BUILDING

MONITORING WELL INSTALLATION DATA

WELL ID	22MW2	22MW3	
DATE WELL INSTALLED	8/29/04	8/27/04	
GROUND SURFACE ELEVATION (ft)	94.03	99.55	
WELL MP ELEVATION (ft)	93.77	99.31	
TOP OF SCREENED SECTION, BELOW MP (ft)	24.77	28.30	
TOTAL DEPTH OF WELL BELOW MP (ft)	34.57	38.00	
DIAMETER OF WELL CASING (inches)	2	2	
DEVELOPMENT DATA			
DATE OF DEVELOPMENT	9/11/04	9/11/04	
TIME DEVELOPMENT INITIATED	17:45	13:40	
TIME DEVELOPMENT COMPLETED	18:25	16:30	
DEPTH TO WATER BELOW MP (ft)	27.87	32.40	
WATER COLUMN IN WELL (ft)	6.70	5.60	
GALLONS PER FOOT	0.16	0.16	
GALLONS IN WELL	1.07	0.90	
DEVELOPMENT METHOD	Purging Pump	Redi-Flo-2	
VOLUME WATER REMOVED (gallons)	25	80	
PURGING & SAMPLING DATA	-	-	
LOCID	22MW2	22MW3	
SAMPLE ID	04NE22GW115	04NE22GW114	
DATE	9/11/04	9/11/04	
TIME PURGING INITIATED	18:25	16:31	
TIME SAMPLING INITIATED	18:45	17:05	
DEPTH TO WATER BELOW MP (ft)	27.87	32.40	
WATER COLUMN IN WELL (ft)	6.70	5.60	
GALLONS IN WELL	1.07	0.90	
PURGING METHOD	Redi-Flo 2	Redi-Flo 2	
VOLUME WATER REMOVED (gallons)	3.0	4.50	
WATER QUALITY DATA - YSI 556	-	-	
DATE MEASURED	9/11/04	9/11/04	
TIME MEASURED	18:40	17:11	
TEMPERATURE (°C)	5.2	7.5	
SPECIFIC CONDUCTANCE (mS/cm)	0.08	0.09	
DISSOLVED OXYGEN (mg/L)	12.6*	10.8*	
pH (Standard Units)	5.8	5.5	
OXYGEN REDUCTION POTENTIAL (mV)	211	187	
TURBIDITY (NTUs) - Oakton	1.1	17.1	
ALKALINITY (mg/L) - Hach phenolpthalein titration	5	5 - 10	
FERROUS IRON (mg/L) - Hach colorimeter	0.03	0.00	
WATER LEVEL MEASUREMENT DATA		-	
DATE WATER LEVEL MEASURED	9/13/04	9/13/04	
TIME WATER LEVEL MEASURED	14:20	14:10	
DEPTH TO WATER BELOW MP (ft)	28.26	32.68	
WATER LEVEL ELEVATION (ft)	65.51	66.63	
unusually high DO readings may be due to instrument			


KEY DESCRIPTION

- Not developed or not measured
- °C Degrees Celsius
- ft Feet
- mg/L Milligrams per liter
- MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-12d SUMMARY OF WATER ANALYTICAL RESULTS - SITE 22: WATER STORAGE BUILDING

			Sample Type:	GROUN	DWATER
Cite 22 Meter Ster	ono Duildi		Location ID:	22MW2	22MW3
Site 22 - Water Stor	age Bullal	Sample ID:	04NE22GW115	04NE22GW114	
Water Mat	riv	Depth (ft):	28.5	32.5	
water wat		Sample Date:	9/11/2004	9/11/2004	
Parameter Tested	Test Method	Units	Cleanup Level		
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	[0.090]	0.0133 J
Diesel Range Organics (DRO)	AK102	mg/L	1.5	[0.333] B	[0.341] B
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	^
Residual Range Organics (RRO)	AK103	mg/L	1.1	[0.556] B	[0.568] B
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	^
Natural Attenuation Parameters					
Nitrogen, Nitrate-Nitrite	E300.0	mg/L	_	0.263	0.243
Sulfate	E300.0	mg/L	-	11.2	11.9
Iron	SW6010B	mg/L	-	[0.2]	4.69

KEY	DESCRIPTION
-	Measurement not recorded or not applicable
†	Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin
۸	Tentatively identified compounds not reviewed due to low concentration
mg/L	milligrams per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18
	ACC 75.345, Table C
J	Estimated concentration; refer to Appendix C for data qualification information
[0.0532] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
WL	Approximate depth to water below ground surface

5.13 Site 26: Former Construction Camp

Groundwater samples were collected from two new monitoring wells (26MW1 and 26MW3) installed at Site 26. A third monitoring well (26MW2) was partially drilled but could not be completed as planned (see Figure 5-13 and Table 5-13a). One soil sample for material testing was collected from 26MW2 at 20 feet bgs.

5.13.1 Site Description

Site 26 encompasses two geographically distinct areas: the original Morrison-Knudson construction camp, and a location along the road northeast of the Main Operations Complex, but south of the Suqitughneq River, as shown in Figure 5-13. The former construction camp location is uphill and southeast of the MOC on the same topographic feature. The area appears to have been used to store material from previous removal actions because there are supersacks with soil, an abandoned vehicle, large diesel-powered generators, and dismantled steel tank pieces in the area. The northern location along the road is a relatively dry rise west of the road to the main complex, and south of the Mid-Suqi. River bridge. The ground surface had evidence of frost segregation similar to the vicinity of Site 6.

5.13.2 Data Collection Objectives

The upper well (Monitoring Well 26MW1) was installed as a replacement for former potable water well PW-4 to allow for a monitoring well upgradient of the MOC. The northern wells near the Mid-Suqi. Bridge were to be installed to determine if shallow groundwater in the overburden has hydraulic connectivity to the fractured bedrock aquifer presumed to be present beneath the MOC.

5.13.3 Work Plan Variances

Conditions found in the field led to alterations in the planned sampling activities. Specifically, the location of Monitoring Well 26MW1 was adjusted due to surface obstructions, and the deeper well near the Mid-Suqi. River Bridge was not completed because the resources and technology were not available to seal a conductor casing to the heterogeneous frozen material encountered.

The proposed Monitoring Well 26MW1 location was on the side of an embankment, and the nearest flat location for the drill rig had three partially full supersacks on it. A location with adequate drill rig access was selected to the southwest, closer to former PW-4. Based on the difference in surface elevations between PW-4 and 26MW1, the depth of the new well was adjusted in an attempt to complete the well in the same water bearing zone as the former well.

The boring for the deep well near the Mid-Suqi Bridge (26MW2) was attempted, but drilling stopped when frozen silt was encountered at a depth of about 20 feet bgs. The boring was backfilled with cuttings. Though not in the work plan, a sample of the frozen silt from 20 feet bgs was collected and submitted for grainsize, moisture content, and liquid and plastic limits analysis. The results of these tests are presented in Appendix B and Table 5-13b.

5.13.4 Field Investigation

Field activities occurred at Site 26 between August 25 and September 12, 2004. A summary of samples collected, including a description of sample location and classification, is presented in Table 5-13a. Boring and Monitoring Well Completion logs are provided in Appendix B.

5.13.4.1 Monitoring Well 26MW1

Monitoring Well 26MW1 was installed to a depth of 42 feet bgs. It was developed as described in Section 3, and one water sample was collected for DRO, RRO, GRO, BTEX, PAHs, and natural attenuation parameter analysis. Soil samples were not collected during the installation of this monitoring well.

5.13.4.2 Monitoring Well 26MW3

Shallow groundwater monitoring well 26MW3 was drilled to explore the nature of the subsurface materials and potential confining layer(s) before the deep 26MW2 well was attempted. After development, one water sample was collected from the well and analyzed for DRO, RRO, GRO, BTEX and PAHs on a rush 3-day turnaround time basis. Natural attenuation parameters were analyzed on the normal laboratory schedule.

5.13.4.3 Monitoring Well 26MW2

The deep well location (26MW2) was selected 78 feet from the shallow well to avoid problems with compressed air short-circuiting to the shallow well. Drilling was stopped at 20 feet bgs, and a sample was collected from 20 to 21.5 feet. A well was not installed. The sample of the frozen silt from 20 feet bgs was collected for optional material testing of grainsize, moisture content, and liquid and plastic limits. The boring was backfilled with cuttings.

5.13.4.4 IDW

IDW generated at Site 26 was handled as discussed in Section 3.7.

5.13.4.5 Field Observations

During the boring for Monitoring Well 26MW1, drill action and cuttings suggested groundwater, sand, and then frozen ground at the 35 to 36 feet bgs intervals. From 37.5 to 42 feet, drill action suggested rock, but bedrock is not suspected because similar drill action and cuttings were encountered between 22 and 28 feet bgs.

The subsurface material at shallow well 26MW3 was sandy gravel in cobbles with an iron-brown color and very few fines. Gray silt, suggesting glacial till, was encountered at 22 feet bgs and the drill action suggested harder material. The air hammer would stop operation because the compressed air couldn't exhaust through the sticky silt. With a sufficient pause in drilling, the silt would become wet enough to be blown out of the hole. In retrospect, the unusual drill action occurred because the silt was frozen, and was thawing in the casing.

The soil had greater silt and gravel content and fewer cobbles at the deep well (26MW2) location, suggesting the up-welling portion of a frost pattern cell. At 10 feet bgs, the silt in the coarse soil became gray. Pieces of clear water ice were observed coming up the casing with the cuttings at 18 to 19 feet bgs, and a split spoon was driven to 21.5 feet. The split spoon contained solidly frozen, gray clayey silt with lenses of gravel/fractured rock. The silt began to flow from the split spoon as it thawed.

5.13.5 Analytical Results

Table 5-13c presents the Site 26 monitoring well development and sampling data, and Table 5-12d summarizes the water sample analytical results. GRO, DRO, and RRO were detected at estimated concentrations below the PQLs in the groundwater samples from the two Site 26 wells. All PQLs were less than the ADEC groundwater cleanup criteria, typically by more than an order of magnitude.

The grain size distribution, liquid limit (LL), plastic limit (PL), and moisture content for soil sample 26SB103 are presented in Appendix B Figure B-23. The liquid limit was 26%, while the analyzed moisture content was 24.5%. However, the moisture sample sat for over 1 month before analysis was approved. Since the sample likely lost moisture while awaiting analysis, these results suggest that in-situ material may deform or flow if thawed. The ratio of clay versus silt in sample 26SB103 did not provide insight into the deposition of the glacial till.

TABLE 5-13a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 26: FORMER CONSTRUCTION CAMP

Sample Number**	LOCID	Date	Sample Location (See Figure 5-13)	Depth (feet)	Sample Classification†
<u>Soil Sample</u>	<u>s</u>				
26SB103	26MW2-20	9/2/04	Proposed deep Well, SW of Mid-Suqi. Bridge	19-20.5	Gray, clayey SILT; frozen - with fractured rock inclusions
Groundwater Samples					
* 26GW101	26MW3	8/25/04	"Shallow" well 26MW3, SW of Mid-Suqi. Bridge	WL 5.5	Groundwater - clear
* 26GW102	26MW1	9/12/04	Well 26MW1, near former PW04	WL 37	Groundwater - clear
* 26GW202	26MW1	9/12/04	QC replicate of Sample 26GW102	WL 37	Groundwater - clear
* 26GW302	26MW1	9/12/04	QA replicate of Sample 26GW102	WL 37	Groundwater - clear

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Table 5-13b)
- ** The full sample number is preceded by "04NE", for example 26SB103 is sample 04NE26SB103
- **†** Sample classification applies to the portion of the specified sample interval from which the sample was collected
- WL Approximate static water level in feet below ground surface after installation
- LOCID Location Identification: "26MW2-20" signifies Site 26, Monitoring Well 2 at 20-foot depth (depth is rounded to the nearest foot)

TABLE 5-13b SUMMARY OF SOIL TESTING RESULTS SITE 26: FORMER CONSTRUCTION CAMP

	•	Sample Type:	BOREHOLE	
Site 26 - Form	er Consi	Location ID:	26MW2-20	
C	- 122 12		Sample ID:	04NE26SB103
	amp		Depth (ft):	20
Soil Ma	erial Testing	Sample Date:	9/2/2004	
Parameter Tested		Test Method	Units	
Moisture Content		ASTM D2216	%	24.5
Sieve Analysis	Α	STM D422 or C136	**	See Figure B-23
Hydrometer Analysis		ASTM D422	**	See Figure B-23
Plastic Limit		ASTM D4318	% Moisture	26.0
Liquid Limit		ASTM D4318	% Moisture	20.0
Soil Classification		USCS		CL-ML

KEY	DESCRIPTION
%	percent dry weig

percent dry weight

Sieve and Hydrometer Analysis Reports are provided in Appendix B

** CL-ML

Low Plasticity Silty Clay

TABLE 5-13cGROUNDWATER SAMPLING LOGSITE 26: FORMER CONSTRUCTION CAMP

MONITORING WELL INSTALLATION DATA

MONTONING WEEL INSTALLATION DATA		
WELL ID	26MW1	26MW3
DATE WELL INSTALLED	8/30/04	8/22/04
GROUND SURFACE ELEVATION (ft)	107.62 (est.)	56.89
WELL MP ELEVATION (ft)	107.37	56.49
TOP OF SCREENED SECTION, BELOW MP (ft)	32.1	9.4
TOTAL DEPTH OF WELL BELOW MP (ft)	41.9	24.22
DIAMETER OF WELL CASING (inches)	2	2
DEVELOPMENT DATA		
DATE OF DEVELOPMENT	9/12/04	8/25/04
TIME DEVELOPMENT INITIATED	16:43	14:23
TIME DEVELOPMENT COMPLETED	17:25	15:00
DEPTH TO WATER BELOW MP (ft)	36.74	5.06
WATER COLUMN IN WELL (ft)	5.16	19.16
GALLONS PER FOOT	0.16	0.16
GALLONS IN WELL	0.83	3.07
DEVELOPMENT METHOD	Redi-Flo-2	Redi-Flo-2
VOLUME WATER REMOVED (gallons)	85	40
PURGING & SAMPLING DATA		
LOCID	26MW1	26MW3
SAMPLE ID	04NE26GW102	04NE26GW101
DATE	9/12/04	8/25/04
TIME PURGING INITIATED	17:53	15:00
TIME SAMPLING INITIATED	18:05	15:38
DEPTH TO WATER BELOW MP (ft)	36.74	5.07
WATER COLUMN IN WELL (ft)	5.16	19.15
GALLONS IN WELL	0.83	3.06
PURGING METHOD	Redi-Flo 2	Redi-Flo 2
VOLUME WATER REMOVED (gallons)	4.00	8.0
WATER QUALITY DATA - YSI 556		
DATE MEASURED	9/12/04	8/25/04
TIME MEASURED	18:30	16:14
TEMPERATURE (°C)	5.3	3.5
SPECIFIC CONDUCTANCE (mS/cm)	0.06	0.18
DISSOLVED OXYGEN (mg/L)	12.2*	1.7
pH (Standard Units)	5.4	6.6
OXYGEN REDUCTION POTENTIAL (mV)	276	77.8
TURBIDITY (NTUs) - Oakton	3.9	11.3
ALKALINITY (mg/L) - Hach phenolpthalein titration	5 - 10	55 (Methyl orange)
FERROUS IRON (mg/L) - Hach colorimeter	0.01	0.48
WATER LEVEL MEASUREMENT DATA		
DATE WATER LEVEL MEASURED	9/13/04	9/13/04
TIME WATER LEVEL MEASURED	14:05	12:45
DEPTH TO WATER BELOW MP (ft)	36.84	5.32
WATER LEVEL ELEVATION (ft)	70.53	51.17
* unusually high DO readings may be due to instrum	ant malfunatia	

^{*} unusually high DO readings may be due to instrument malfunctic

KEY DESCRIPTION

- Not developed or not measured
- °C Degrees Celsius
- ft Feet
- mg/L Milligrams per liter
- MP Measuring Point is Top of Well Casing
- mV Millivolts
- NTUs Nepholometric Turbidity Units
- mS/cm Millisiemens per centimeter

TABLE 5-13d SUMMARY OF WATER ANALYTICAL RESULTS - SITE 26: FORMER CONSTRUCTION CAMP

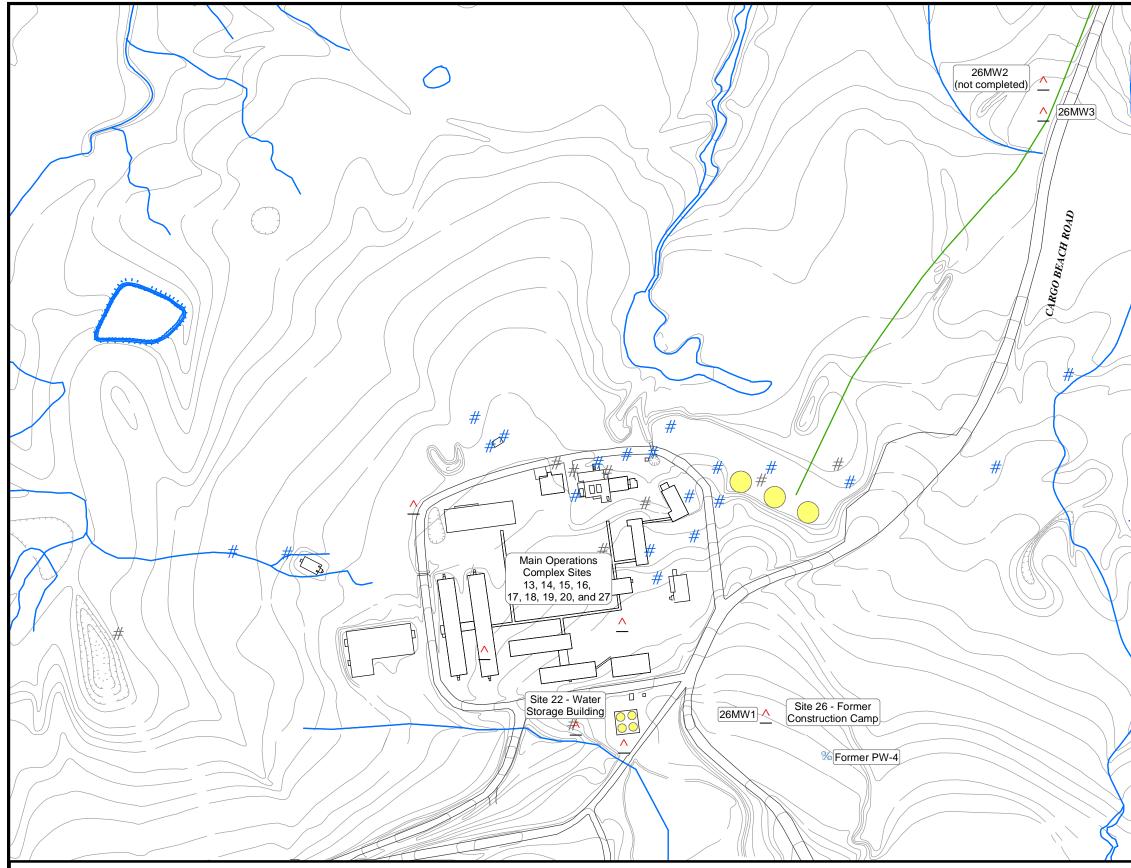
			Sample Type:	GROUNDWATER					
Site 26 Former Const	ruotion C	omn	Location ID:		26MW3				
Site 26 - Former Construction Camp			Sample ID:	04NE26GW102	04NE26GW202	04NE26GW302	04NE26GW101		
Water Matrix			Depth (ft):	37	37	37	5.5		
		1	Sample Date:	9/12/2004	9/12/2004	9/12/2004	8/25/2004		
Parameter Tested	Test Method	Units	Cleanup Level	Primary	Duplicate	Triplicate			
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0166 J	-	-	0.0135 J		
Diesel Range Organics (DRO)	AK102	mg/L	1.5	0.078 J	-	-	0.0812 J		
Residual Range Organics (RRO)	AK103	mg/L	1.1	0.249 J	-	-	0.0911 J		
Aromatic Organic Compounds (BTEX)									
Benzene	SW8260B	µg/L	5	[0.4]	-	-	[0.4]		
Ethylbenzene	SW8260B	µg/L	700	[1]	-	-	[1]		
Toluene	SW8260B	µg/L	1,000	[1]	-	-	[1]		
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	-	-	[1]		
m & p-Xylenes	SW8260B	µg/L	10,000 (Total Xylenes)	[2]	-	-	[2]		
Polynuclear Aromatic Hydrocarbons (PAH SIM)									
Acenaphthene	PAH SIM	µg/L	2,200	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Acenaphthylene	PAH SIM	µg/L	2,200	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Anthracene	PAH SIM	µg/L	11,000	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Benzo(a)anthracene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Benzo(a)pyrene	PAH SIM	µg/L	0.2	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Benzo(b)fluoranthene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Benzo(k)fluoranthene	PAH SIM	µg/L	10	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Chrysene	PAH SIM	µg/L	100	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Fluoranthene	PAH SIM	µg/L	1,460	[0.112]	[0.109]	[0.111]	[0.109]		
Fluorene	PAH SIM	µg/L	1,460	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.0111]	[0.0543]		
Naphthalene	PAH SIM	µg/L	700	[0.0562]	[0.0543]	[0.111]	0.153 B		
Phenanthrene	PAH SIM	µg/L	11,000	[0.112]	[0.109]	0.0263 J	[0.109]		
Pyrene	PAH SIM	µg/L	1,100	[0.0562]	[0.0543]	[0.111]	[0.0543]		
Natural Attenuation Parameters									
Nitrate	E300.0	mg/L	-	-	-	-	[0.1]		
Nitrogen, Nitrate-Nitrite	E300.0	mg/L	-	0.203	-	-			
Sulfate	E300.0	mg/L	-	7.64	-	-	9.58		
Iron	SW6010B	mg/L	-	[0.2]	-	-	1.63		
	KEY	DESCRIPT	TION						

_ Measurement not recorded or not applicable

mg/L milligrams per liter

µg/L micrograms per liter

Cleanup Levels Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C J


Estimated concentration; refer to Appendix C for data qualification information

0.153 B Analyte concentration biased due to detection in method, trip, or equipment blank

36 Concentration detected

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

WL Approximate depth to water below ground surface

Legend

- Monitoring well installed by Shannon & Wilson, Inc. August/September 2004 —
- $\overline{\#}$ Existing monitoring well, installed by others
- # Former monitoring well installed by others
- % Former potable water well, installed by others

- ----- Former fuel pipeline
- ----- Water feature
 - Topographic Contours (Interval: 5 ft)
 Former tank

0

Note: All locations approximate, see Appendix D of "Phase IV RI, Northeast Cape, St. Lawrence Island, Alaska" for survey data. Figure based on previous work. Physical features may not correspond to 2004 field observations.

125 250 500 750 1,000

Z		
\int		
#	5	
-		
	Phase IV RI, Northeast Cape St. Lawrence Island, Alaska	
	SITE 26 - FORMER CONSTRUCTIO	ON CAMP
	June 2005	32-1-16821
	SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	Fig. 5-13

5.14 Site 29: Suqitughneq River and Estuary

Surface water samples were collected from three locations (29SW101, 29SW102, and 29SW103) along the Suqi. River, and sediment samples were collected from six (29SD104 through 29SD109) locations in the Suqi. Estuary (see Figure 5-14).

5.14.1 Site Description

The Suqi. River flows from the Kinipaghulghat Mountains in an arc trending north through the tundra to a lagoon/estuary located east of the airstrip, where it drains into the Bering Sea, as shown in Figure 2-3. It receives flow from an East Tributary and a West Tributary. Both of these tributaries may receive flow from the NE Cape complex. The Drainage Basin (Site 28) flows into the East Tributary, and the southern branch of the East Tributary flows past the White Alice site (Site 31). The lagoon/estuary at mouth of the Suqi. River is separated from the Bering Sea by a sand berm that forms at the beach and occasionally breeches.

5.14.2 Data Collection Objectives

Surface water and sediment samples were collected to gather additional data regarding the possible migration of pesticides, fuels, and PCBs from the Northeast Cape Complex to the estuary.

5.14.3 Work Plan Variances

The SOW states "This estuary, however, is periodically blocked off from the Bering Sea due to a gravel berm that develops at the outlet. Collect 6 surface sediment samples from depositional areas within the Suqitughneq River estuary."

During Shannon & Wilson's field effort the estuary was observed to be a fresh water lake, and shoreline processes were maintaining a coarse sand berm, keeping the water elevation above high tide. Depositional areas of sediment were not observed near the surface of the water around the estuary. Sediment samples were collected through water depths greater than 3 feet by wearing chest waders and using a stick to probe for depositional areas (See Photograph 14 in Appendix A). An Eckman dredge was dropped on the upcurrent side of the sampler to bring sediment to the surface. The contents of the dredge were released into a new disposable aluminum pan for sampling.

5.14.4 Field Investigation

Field activities occurred at Site 29 on August 12-15 and September 3-4, 2004. A summary of samples collected, including a description of sample location and classification, is presented in Table 5-14a. Sample locations are depicted on Figure 5-14.

The surface water of the Suqi. River was sampled in locations which were upgradient, mid-gradient, and downgradient of the Main Operations Complex Drainage Basin (Site 28). The surface water sample from the upgradient portion of the river (29SW103) was collected approximately 0.4 mile east of the Mid-Suqi. Bridge. The sample from the mid-gradient portion of the river (29SW102) was collected approximately 200 feet downstream of the confluence of the Suqi. River and the drainage swale identified as Site 28-Drainage Basin (See Photograph 13). The surface water sample from the downgradient portion of the Suqi. River was collected approximately 25 feet downstream of the Lower-Suqi. Bridge, upstream of the estuary/lagoon. The samples were analyzed for DRO, RRO, GRO, PAH, PCBs and BTEX. TAqH and TAH were calculated from the PAH and BTEX results. An analysis of the DRO and RRO results was made to determine the presence of natural (biogenic) organics versus petroleum derived components.

Six sediment samples were collected from the Suqitughneq River estuary. Sediment samples were collected with an Eckman dredge from the base of the estuary, which was submerged by 3-4.5 feet of water. The samples were analyzed for pesticides, DRO, RRO, GRO, BTEX, PAHs, PCBs, mercury, and total organic carbon. An analysis for the presence of natural organics versus petroleum derived components was conducted for all of the DRO and RRO results.

5.14.4.1 IDW

Sampling gloves and aluminum pans used during sediment sampling of the estuary were placed in the project IDW bag. Water used for decontamination of hand tools was collected in 5 gallon buckets, then transported to 55-gallon drums at the camp, where it was filtered through GAC and discharged to the surface of the gravel pad.

5.14.4.2 Field Observations

No tidal influence was noted in the Suqi. Estuary. From our discussions with Eugene Toolie, the dam separating the water body from the Bering Sea fails every few years, typically in the fall. The vegetation and shape of the shoreline support that statement. Along much of the shoreline, the water level was at the level of the surrounding surface tundra, and a submerged vertical drop of two to three feet was present near the shore. Depositional sediment was found to be 3 feet or greater below the water surface. Aquatic vegetation was often present, and would foul the closure of the dredge. Where the water was not as deep, the lake bed consisted of boulders and coarse sand and gravel, likely due to ice scouring. Scouring would occur when the surface of the estuary is frozen and the water level fluctuates, causing the ice to crack and move. A subtle current toward the beach was noted in the area where the sediment samples were collected.

5.14.5 Analytical Results

Table 5-14b summarizes the Site 29 sediment sample analytical results, and Table 5-14c summarizes the Site 29 water sample analytical results.

Five of the six sediment sample locations contained DRO at concentrations greater than the soil cleanup criterion, and attributable to biogenic compounds (See Table D-1 in Appendix D). The estimated concentrations ranged from 302 mg/kg to 988 mg/kg. DRO was detected in Sample 29SD106 at an estimated concentration less than the cleanup level (173 mg/kg), and was identified by the laboratory as a weathered middle distillate fuel (diesel). BTEX was not detected in the sediment samples, however the benzene PQLs exceeded the cleanup criterion for several samples, likely due to the wet, organic nature of the sediment. Three PAH compounds were detected, but no PAH results or PQLs exceed the cleanup criteria. Sample 29SD105 contained 0.452 mg/kg of the PCB Aroclor 1260. No other sediment samples contained detectable concentrations of PCBs. Although not detected, the PQLs for the pesticides dieldrin and lindane exceeded the soil cleanup criteria in all of the project samples.

The hydrocarbon concentrations detected in the surface water collected from the Suqi. River were all less than the ADEC groundwater cleanup criteria and the surface water criteria for TAH and TAqH. No BTEX, or PCB compounds were measured within the laboratory PQLs. Sample 29SW101 and its QA replicate both contained detectable concentrations (less than cleanup criteria) of multiple PAH compounds. This may be due to the sampling location, approximately 25 feet downstream from the Lower-Suqi. Bridge. The bridge is constructed from creosote-treated wood similar to telephone poles.

TABLE 5-14a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 29: SUQITUGHNEQ RIVER AND ESTUARY

Sample Number**	LOCID	Date	Sample Location (See Figure 5-14)	Depth (feet)	Sample Classification ⁺
Sediment Samples		Dute	(occrigated it)	(1000)	
* 29SD104	29SD104	9/3/04	S w end of Suqf. Estuary, close to Lower Suqf.	3.2	Brown to black, organic SILT; trace sand, rusty algae
* 29SD105	29SD105	9/3/04	SW end of Suqi. Estuary, neck in channel	3.5-4	Black organic SILT, shiny flecks, fibrous decomposing vegetation
* 29SD106	29SD106	9/3/04	SW end of Suqi. Estuary, S side of wider channel	4	Black to dark brown, decomposing organics with silt; trace sand
* 29SD107	29SD107	9/4/04	SW end of Suqi. Estuary, N side of wider channel	4	Brown to black, slightly fine sandy SILT; 20% decomposing organic
* 29SD207	29SD107	9/4/04	QC replicate of Sample 29SD107		Brown to black, slightly fine sandy SILT; 20% decomposing organic
* 29SD307	29SD107	9/4/04	QA replicate of Sample 29SD107	4	Brown to black, slightly fine sandy SILT; 20% decomposing organic
* 29SD108	29SD108	9/4/04	Suqi. Estuary where river inlet widens to main pond	4.5	Brown to black, slightly fine sandy SILT; with decomposing organic
* 29SD109	29SD109	9/4/04	Suqi. Estuary where river inlet widens to main pond	4.2	Brown to black, fine sandy SILT; with decomposing organics
Surface Wat	ter Samples	<u>i</u>			
* 29SW101	29SW101	8/12/04	Lower reach of Suqi. River, just below lower bridge	-	Surface water - clear, flowing
* 29SW201	29SW101	8/12/04	QC replicate of Sample 29SW101	-	Surface water - clear, flowing
* 29SW301	29SW101	8/12/04	QA replicate of Sample 29SW101		Surface water - clear, flowing
* 29SW102	29SW102	8/14/04	Central Suqi. River, below drainage basin outfall		Surface water - clear, flowing
* 29SW103	29SW103	8/15/04	Upper Suqi. River, E fork, down from shallow lake	-	Surface water - clear, flowing

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-14b and 5-14c)
- ** The full sample number is preceded by "04NE", for example 29SD104 is sample 04NE29SD104
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- LOCID Location Identification: "29SD104" Site 29, Sediment Sample 104

TABLE 5-14b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 29: SUQITUGHNEQ RIVER AND ESTUARY

	Sample Type:	Sample Type: SEDIMENT SAMPLES									
Site 29 - Suqitughneq	Divor and Ea	stuary	Location ID:	29SD104	29SD105	29SD106		29SD107		29SD108	29SD109
Sile 29 - Suqiluginieq		stual y	Sample ID:	04NE29SD104	04NE29SD105	04NE29SD106 *	04NE29SD107	04NE29SD207	04NE29SD307	04NE29SD108	04NE29SD109
Soil Matrix		Depth (ft):	3.2	3.5-4	4	4	4	4	4.5	4.2	
			Sample Date:	9/3/2004	9/3/2004	9/3/2004	9/4/2004	9/4/2004	9/4/2004	9/4/2004	9/4/2004
Parameter Tested	Test Method	Units	Cleanup Level				Primary	Duplicate	Triplicate		
Percent Moisture	A2540G / E160.3M	%	-	74.6	86.1	41.9	60.7	63.4	56.5	56.2	57.5
Gasoline Range Organics (GRO) Diesel Range Organics (DRO)	AK101 AK102	mg/kg mg/kg	300 250	[9.73] 653 J	[17.0] 988 J	[5.61] 173 J	[6.19] 447 J	[4.58] 232 J	0.271 J 157	[3.16] 456 J	[2.85] 302 J
aboratory Assessment of Hydrocarbon Origint	_	-	_	biogenic	biogenic	diesel	biogenic	biogenic	-	biogenic	biogenic
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	1,370 J	4,060 J	393 J	1,870 J	913 J	710	1,600 J	1,170 J
aboratory Assessment of Hydrocarbon Origint	-	-	-	biogenic	biogenic	biogenic	biogenic	biogenic	-	biogenic	biogenic
Aromatic Organic Compounds (BTEX)											
Benzene	SW8260B	µg/kg	20	[50.6]	[88.4]	[29.1]	[32.2]	[23.8]	[61.1]	[16.4]	[14.8]
Ethylbenzene	SW8260B	µg/kg	5,500	[97.3]	[170]	[56.1]	[61.9]	[45.8]	[61.1]	[31.6]	[28.5]
Toluene	SW8260B	µg/kg	5,400	[195]	[340]	[112]	[124]	[91.7]	[61.1]	[63.2]	[57]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[97.3]	[170]	[56.1]	[61.9]	[45.8]	[61.1]	[31.6]	[28.5]
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	[195]	[340]	[112]	[124]	[91.7]	[122]	[63.2]	[57]
Polynuclear Aromatic Hydrocarbons (PAH)											
Acenaphthene	PAH SIM	µg/kg	210,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Acenaphthylene	PAH SIM	µg/kg	210,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Anthracene	PAH SIM	µg/kg	4,300,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	[386]	[695]	[16.4]	[258]	[263]	[46]	19.1 J	[229]
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Chrysene	PAH SIM	µg/kg	620,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Fluoranthene	PAH SIM	µg/kg	2,100,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
	PAH SIM PAH SIM	µg/kg	270,000	[386]	[695]	14.6 J	[258]	[263]	[46]	26.8 J	[229]
Indeno(1,2,3-cd)pyrene Naphthalene	PAH SIM PAH SIM	µg/kg	11,000 (ing) 21,000	[386] [386]	[695] [695]	[16.4] 16.3 J	[258] [258]	[263] [263]	[46]	[22.8] 23.2 J	[229] [229]
Phenanthrene	PAH SIM PAH SIM	µg/kg µg/kg	4,300,000	[386]	[695]	[16.3 J	[258]	[263]	[46] [46]	[22.8]	[229]
Pyrene	PAH SIM PAH SIM	µg/kg µg/kg	4,300,000	[386]	[695]	[16.4]	[258]	[263]	[46]	[22.8]	[229]
Polychlorinated Biphenyls (PCBs)		P-99	Sum of congeners:	[]	[]	[]	[]	[===]	[]	[]	[•]
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.115]	[0.215]	[0.239]
PCB-1232 (Aroclor 1221)	SW8082	mg/kg	"	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.186]	[0.366]	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	[0.186]	0.452	[0.0877]	[0.126]	[0.261]	[0.0575]	[0.215]	[0.239]

DESCRIPTION KEY

Analysis not requested or cleanup level not established _

Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin

percent

%

mg/kg milligrams per kilogram micrograms per kilogram

µg/kg

†

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing

inh Cleanup level based on inhalation pathway

J Estimated concentration; refer to Appendix C for data qualification information

36 Concentration detected

Reported concentration exceeds the regulatory cleanup leve 2900

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve [0.037]

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

SHANNON & WILSON, INC.

TABLE 5-14b SUMMARY OF SOIL ANALYTICAL RESULTS - SITE 29: SUQITUGHNEQ RIVER AND ESTUARY

			Sample Type:									
Sito 20 - Sugitughno	a Divor and Ea	stuary	Location ID:	29SD104	29SD105	29SD106		29SD107		29SD108	29SD109	
Sile 29 - Suqilugine	Site 29 - Suqitughneq River and Estuary				04NE29SD105	04NE29SD106 *	04NE29SD107	04NE29SD207	04NE29SD307	04NE29SD108	04NE29SD109	
Soil N	Depth (ft):	3.2	3.5-4	4	4	4	4	4.5	4.2			
3011 1			Sample Date:	9/3/2004	9/3/2004	9/3/2004	9/4/2004	9/4/2004	9/4/2004	9/4/2004	9/4/2004	
Parameter Tested	Test Method	Units	Cleanup Level				Primary	Duplicate	Triplicate			
Pesticides												
4,4'-DDD	SW8081A	mg/kg	35 (ing)	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	0.00057 J	[0.086]	[0.095]	
4,4'-DDE	SW8081A	mg/kg	24 (ing)	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
4,4'-DDT	SW8081A	mg/kg	24 (ing)	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Aldrin	SW8081A	mg/kg	0.5 (ing)	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
Dieldrin	SW8081A	mg/kg	0.015	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Endosulfan I	SW8081A	mg/kg	7	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
Endosulfan II	SW8081A	mg/kg	7	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Endosulfan sulfate	SW8081A	mg/kg	7	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	0.000455 J	[0.086]	[0.095]	
Endrin	SW8081A	mg/kg	0.3	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Endrin aldehyde	SW8081A	mg/kg	-	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Endrin ketone	SW8081A	mg/kg	-	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Heptachlor	SW8081A	mg/kg	0.8 (inh)	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0023]	[0.086]	[0.095]	
Heptachlor epoxide	SW8081A	mg/kg	0.2	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0023]	[0.086]	[0.095]	
Methoxychlor	SW8081A	mg/kg	52	[0.074]	[0.15]	[0.035]	[0.05]	[0.1]	[0.0046]	[0.086]	[0.095]	
Toxaphene	SW8081A	mg/kg	8 (ing)	[1.9]	[3.7]	[0.88]	[1.3]	[2.6]	[0.115]	[2.2]	[2.4]	
alpha-BHC	SW8081A	mg/kg	-	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
alpha-Chlordane	SW8081A	mg/kg	3	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
beta-BHC	SW8081A	mg/kg	-	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0046]	[0.065]	[0.072]	
delta-BHC	SW8081A	mg/kg	-	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
gamma-BHC (Lindane)	SW8081A	mg/kg	0.003	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
gamma-Chlordane	SW8081A	mg/kg	3	[0.056]	[0.11]	[0.026]	[0.038]	[0.078]	[0.0023]	[0.065]	[0.072]	
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	42,700	117,000	22,700	46,000	52,100	-	31,600	39,100	
Mercury	SW7471A	mg/kg	1.4	[0.156]	0.0911 J	0.0481 J	[0.102]	0.0398 J	[205]	0.0305 J	0.0323 J	

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
%	percent
mg/kg	milligrams per kilogram
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed i

Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone. Cleanup Levels

ing Cleanup level based on ingestion pathway

inĥ

Cleanup level based on inhalation pathway Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

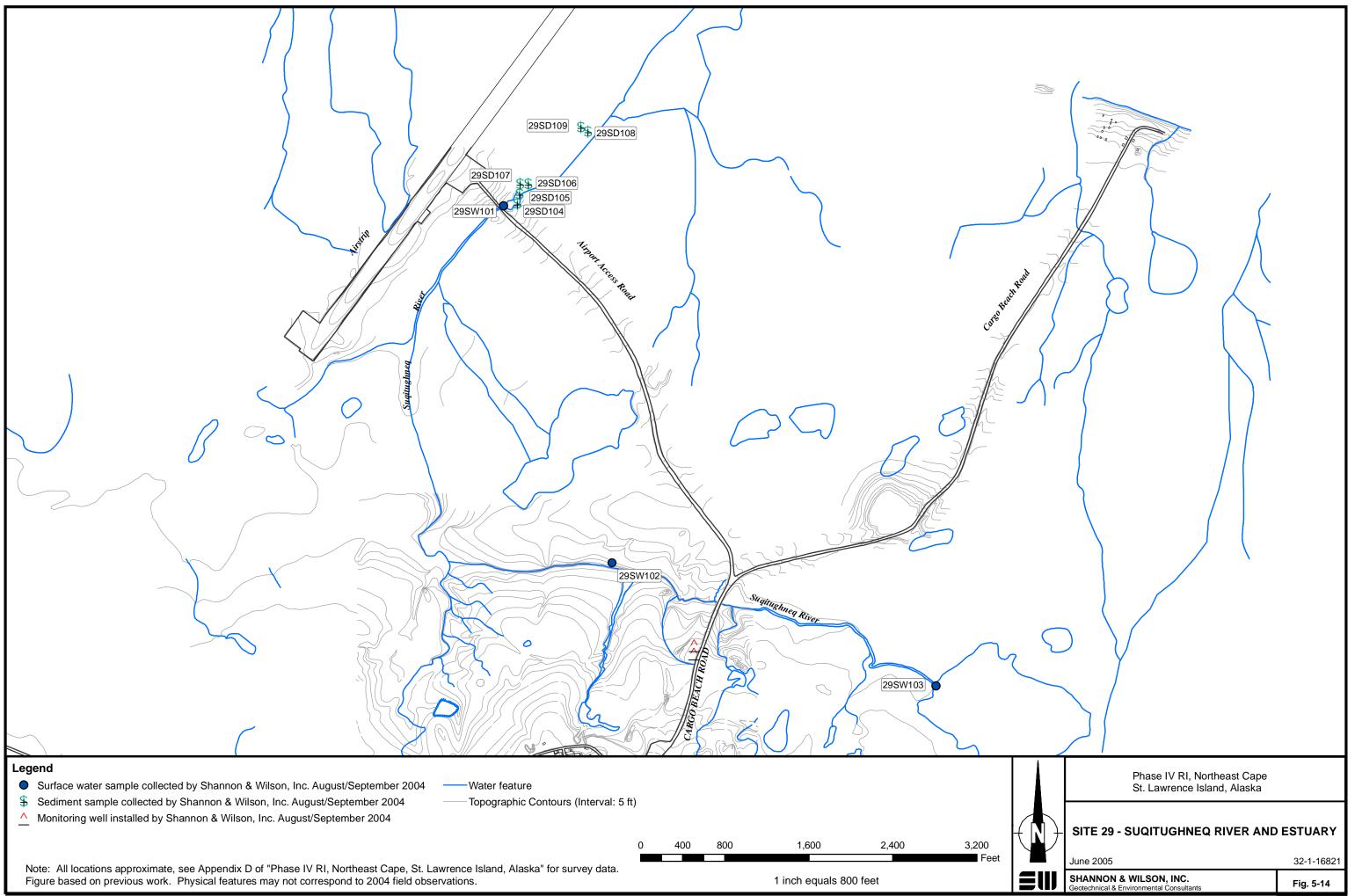
 2900
 Reported concentration exceeds the regulatory cleanup leve

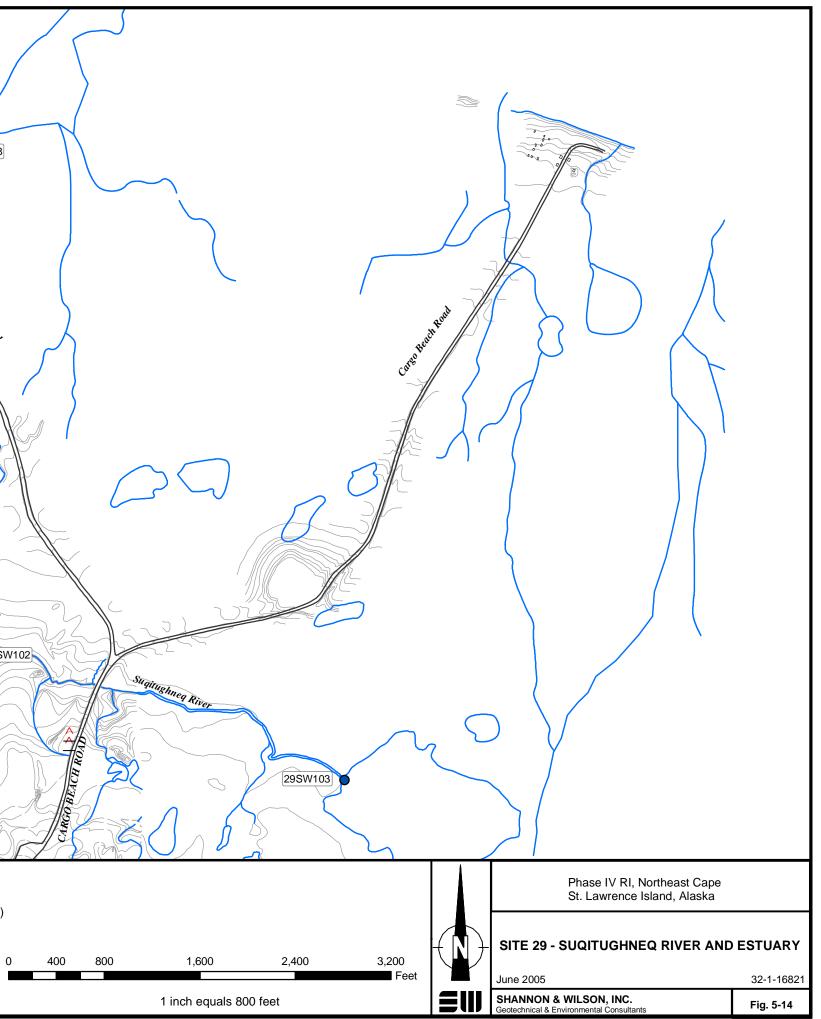
 [0.0072]
 Analyte not detected above Practical Quantitation Limit (PQL)

[0.037]

Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve

Matrix Spike / Matrix Spike Duplicate (MS/MSD)


SHANNON & WILSON, INC.


TABLE 5-14c SUMMARY OF WATER ANALYTICAL RESULTS - SITE 29: SUQITUGHNEQ RIVER AND ESTUARY

			··· · · · · · · · · · · · · · · · · ·	Sample Type: SURFACE WATER					
			Location ID:	29SW101			29SW102	29SW103	
Site 29 - Suqitughneq Rive	er and Est	uary	Sample ID:	04NE29SW101	04NE29SW201	04NE29SW301	04NE29SW102 *	04NE29SW103	
Motor Motrix			Depth (ft):	-	-	-	-	-	
Water Matrix		Sample Date:	8/12/2004	8/12/2004	8/12/2004	8/14/2004	8/15/2004		
Parameter Tested	Test Method	Units	Cleanup Level	Primary	Duplicate	Triplicate			
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0112 J	0.0117 J	[0.050]	0.0146 J	0.0101 J	
Diesel Range Organics (DRO)	AK102	mg/L	1.5	0.111 J	0.122 J	0.0879 J	0.0846 J	0.127 J	
Residual Range Organics (RRO)	AK103	mg/L	1.1	0.325 J	0.346 J	[0.5]	0.252 J	0.369 J	
Aromatic Organic Compounds (BTEX)									
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	[0.5]	[0.4]	[0.4]	
Ethylbenzene	SW8260B	µg/L	700	[1]	[0:1]	[0:0]	[0,1]	[1]	
Toluene	SW8260B	µg/L	1000	[1]	[1]	[1]	[1]	[1]	
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]	[1]	
m & p-Xylenes	SW8260B	µg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	[2]	[2]	
		1.3	-,,						
Polynuclear Aromatic Hydrocarbons (PAH SIM)	DALLONA		0.000	0.0040		0.0110	[0.05.40]	10 05 401	
Acenaphthene	PAH SIM	µg/L	2,200	0.0848	[0.0556]	0.0119 J	[0.0549]	[0.0549]	
Acenaphthylene	PAH SIM	µg/L	2,200	[0.0575]	[0.0556]	0.0118 J	[0.0549]	[0.0549]	
Anthracene	PAH SIM	µg/L	11,000	[0.0575]	[0.0556]	[0.1]	[0.0549]	[0.0549]	
Benzo(a)anthracene	PAH SIM	µg/L	1	[0.0575]	[0.0556]	0.0433	[0.0549]	[0.0549]	
Benzo(a)pyrene	PAH SIM	µg/L	0.2	[0.0575]	[0.0556]	0.0383 J	[0.0549]	[0.0549]	
Benzo(b)fluoranthene	PAH SIM	µg/L	1	[0.0575]	[0.0556]	0.036	[0.0549]	[0.0549]	
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	[0.0575]	[0.0556]	[0.1]	[0.0549]	[0.0549]	
Benzo(k)fluoranthene	PAH SIM	µg/L	10	[0.0575]	[0.0556]	0.0672	[0.0549]	[0.0549]	
Chrysene	PAH SIM	µg/L	100	[0.0575]	[0.0556]	0.0552	[0.0549]	[0.0549]	
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	[0.0575]	[0.0556]	0.0324	[0.0549]	[0.0549]	
Fluoranthene	PAH SIM	µg/L	1,460	[0.115]	[0.111]	0.0227 J	[0.11]	[0.11]	
Fluorene	PAH SIM	µg/L	1,460	0.0656	[0.0556]	0.0114J	[0.0549]	[0.0549]	
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	[0.0575]	[0.0556]	0.0396	[0.0549]	[0.0549]	
Naphthalene	PAH SIM	µg/L	700	0.261	[0.0556] B	0.0118 J	[0.0549] B	[0.0549] B	
Phenanthrene	PAH SIM	µg/L	11,000	0.0614 J	[0.111]	0.0132 J	[0.11]	[0.11]	
Pyrene	PAH SIM	µg/L	1,100	[0.0575]	[0.0556]	0.0223 J	[0.0549]	[0.0549]	
Polychlorinated Biphenyls (PCBs)									
PCB-1016 (Aroclor 1016)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1221 (Aroclor 1221)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1232 (Aroclor 1232)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1242 (Aroclor 1242)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1248 (Aroclor 1248)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1254 (Aroclor 1254)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1260 (Aroclor 1260)	SW8082	µg/L	0.5	[0.109]	[0.111]	[0.5]	[0.115]	[0.105]	
PCB-1262 (Aroclor 1262)	SW8082	µg/L	0.5	-	-	[0.5]	-	-	
PCB-1268 (Aroclor 1268)	SW8082	µg/L	0.5	-	-	[0.5]	-	-	
Calculated Total aromatic hydrocarbons (TAH) †	(see text)	µg/L	10	2.7	2.7	2.8	2.7	2.7	
Calculated Total aqueous hydrocarbons (TAqH) ‡	(see text)	µg/L	15	3.5	3.2	3.0	3.2	3.2	

KEY	DESCRIPTION					
_	Measurement not recorded or not applicable					
mg/L	milligrams per liter					
µg/L	micrograms per liter					
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C and, for TAH/TAqH, surface water levels in 18 AAC 70.					
J	Estimated concentration; refer to Appendix C for data qualification information					
[0.0532] B	Result qualified as not detected due to method, trip, or equipment blank detection					
36	Concentration detected					
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)					
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)					
t	TAH equals the sum of BTEX analyte concentrations estimated below the PQL or detected above the PQL, plus 1/2 the PQL of analytes not reported above the Method Detection Limit (MDL).					
‡	TAqH equals the sum of BTEX and PAH analyte concentrations estimated below the PQL or detected above the PQL, plus 1/2 the PQL of analytes not reported above the Method Detection Limit (MDL).					

SHANNON & WILSON, INC.

5.15 Site 31: White Alice Site

Soil samples were collected from 39 locations at the former White Alice Communications site. Fifteen of these samples were analyzed to assess potential fuel impacts, and 24 were analyzed for PCBs.

5.15.1 Site Description

The White Alice site is located southeast and above the MOC in a glacial valley at the base of Mt. Kangukhsam. The site was the location of four large antennas, a central main electronics building, and other supporting structures. It appears to be located on a rise of unconsolidated surficial material deposited by a glacier, and is bounded on the west by the incised south branch of the Suqi. River, and the east-north east by a shallow drainage basin. Figure 5-15 shows the general layout of Site 31 with sampling locations. Concrete foundations of the Main Electronics Center and the four former antennas remain on the site.

5.15.2 Data Collection Objectives

Surface and subsurface soil samples were collected to address uncertainties regarding the extent of potential fuel and/or PCB contamination identified during the previous remedial investigations and removal actions.

5.15.3 Work Plan Variances

Sampled locations varied from the proposed sample locations due to inconsistencies between the site figure and observed surface features.

The WP called for six surface soil samples and two co-located subsurface soil samples from an area downgradient of a former septic tank outfall and previous sample location 01NE31SS123. An extra co-located subsurface soil sample was collected beneath the shallow sample 31SS131. The soil surface in this area appeared to be recently regraded. An organic soil horizon was encountered while collecting Sample 31SS131. The organic layer might represent the surface of the site before the recent grading., therefore Sample 31SB134 was collected from soil below this layer.

5.15.4 Field Investigation

Field activities occurred at Site 31 on August 31, 2004. A summary of samples collected, including a description of sample location and classification, is presented in Table 5-15a, and Figure 5-15 depicts the sample locations. Photograph 15 in Appendix A shows soil sampling activities on the western portion of the site, with the northeastern portion of the site visible in the background.

5.15.4.1 Soil Sampling

In the vicinity of the former fuel tank impoundment at the western edge of the site, two shallow soil borings were advanced to 5.5 feet bgs. Two subsurface soil samples were collected from each boring and analyzed for DRO and RRO. One of the samples was also analyzed for TOC. Samples 31SB101 and 31SB102 were collected from Boring 31B1, and Samples 31SB103 and 31SB104 were collected from Boring 31B2. The boring locations are shown on Figure 5-15. Surface soil Sample 31SS110 was collected near Boring 31B1, approximately 20 feet downgradient of previous sample location 01NE31SS119/120. This sample was collected where water was suspected to drain from the former AST impoundment, and was analyzed for DRO, RRO, and total organic carbon.

Five subsurface soil samples (approximately 2 to 4 feet bgs) were collected from locations along the former buried fuel pipelines at Site 31. Three soil samples (Samples 31SB105 through 31SB107) were collected from locations along the west side of the main electronics center. Sample 31SB108 was collected from the west side of WAC Antenna 3 and Sample 31SB109 was collected from the west side of WAC Antenna 4. The sample depths were accessed with a drill rig and the samples were collected from drill auger flights. Samples 31SB105 through 31SB109 were analyzed for DRO, RRO, GRO, BTEX, PAHs, and total organic carbon.

Soil samples were collected in the vicinity of the former AST at Antenna 1 in the southern portion of the White Alice site. Three surface soil samples and two co-located subsurface samples were collected in a radius approximately 10 to 15 feet from previous sample location 01NE31SS105/106. The co-located samples (with numbers from 126 to 129) were collected from drill auger flights, and Sample 31SS130 was accessed with a shovel. The five samples were analyzed for DRO and RRO, and three of the samples were also analyzed for TOC.

Near surface and co-located subsurface samples were collected for PCB analysis in three distinct areas. The co-located samples were collected from drill auger flights, and the single surface samples were accessed with a shovel.

On the south side of the former Main Electronics Center, Building 1001, soil samples were collected from six locations surrounding the eastern portion of the former PCB sampling grid. At three of the sample locations, a co-located subsurface soil sample was collected along with a surface soil sample. These samples were numbered (31SS or 31SB) sequentially from 117 through 125.

Four surface soil samples and two co-located subsurface soil samples were collected along the western portion of the site, downgradient of previous sample location 01NE31SS124

and west of the road. These samples, with numbers from 31SS or 31SB 111 to 116, were analyzed for PCBs.

Six surface soil samples and three co-located subsurface soil samples were collected from locations downgradient of the former septic tank outfall in the northern portion of the site. These samples, with numbers from 31SS or 31SB 131 to 139 were analyzed for PCBs.

5.15.4.2 IDW

Headspace samples were returned to the soil surface at the corresponding soil sampling location. Soil cuttings were used to backfill the boring of origin. Headspace bags, sampling gloves, and disposable rubber overboots were placed in the project IDW bag. Water used for decontamination of hand took, auger and rod, and boots was transferred to a 55 gallon drum at the MOC, then filtered through GAC and discharged to the surface.

5.15.4.3 Field Observations

The surface of the While Alice site appears to have been recently re-graded, removing the markings of previous sampling locations. The scales and orientations of the various features on the site figure were inconsistent with features in the field, particularly the location of the former septic tank outfall line. Witching rods were used to estimate the boundaries of former excavations and piping, and spray paint marks remaining on the main building slab were used to estimate the boundaries of the PCB sampling grid.

5.15.5 Analytical Results

Table 5-15b summarizes the Site 31 analytical results for soil samples. One location for the fuel system-related samples contained hydrocarbon concentrations in excess of the ADEC cleanup criteria. Sample 31SB106 was collected along the former pipeline corridor from east of the road and west of Building 1001, and contained 1,280 mg/kg DRO. The associated QC and QA samples also contained over 1,000 mg/kg DRO. While benzene was not detected, QA replicate Sample 31SB306 has a benzene PQL in excess of the cleanup criterion. PAHs were detected at several locations in concentrations two orders of magnitude below cleanup criteria.

The samples from the six locations surrounding the eastern portion of the PCB sampling grid at former Building 1001, plus a quality control duplicate and replicate set, contained detectable levels of the PCB congener Aroclor 1260. Samples 31SS119, 31SB121, 31SS122, 31SS123, and 31SS125 contained concentrations of Aroclor 1260 from 2.08 to 14.8 mg/kg, exceeding the 1 mg/kg cleanup criterion. Aroclor 1260 was detected in some of the samples from the Septic outfall and western sampling areas, but at levels less than the cleanup criterion.

TABLE 5-15a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 31: WHITE ALICE SITE

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-15 for borehole and well location	-	(ppm) ^	Sample Classification ⁺
Soil Sample						· ·
* 31SB101	31B1-2	8/31/04	Boring 31B1	2-3.5	0.7	Medium dense, brown, slightly gravelly SAND; moist
* 31SB102	31B1-4		Boring 31B1	4-5.5	0.6	Medium dense, brown, slightly gravelly SAND; moist
* 31SB103	31B2-2	8/31/04	Boring 31B2	2-3.5	0.4	Medium dense, brown, coarse gravelly, sandy SILT; moist
* 31SB104	31B2-4		Boring 31B2	4-5.5	0.7	Dense, brown, gravelly, silty SAND; moist - rock at bottom
* 31SB105	31SB105-	8/31/04	Fuel pipeline corridor, SW side of road	2.7-3.1	0.5	Dark brown, silty, gravelly SAND; moist
* 31SB106	31SB106-	8/31/04	Fuel pipeline corridor, NE side of road	2.5-2.8	43	Dark brown, silty, gravelly SAND; moist
* 31SB206	31SB106-	8/31/04	QC replicate of Sample 31SB106	2.5-2.8	43	Dark brown, silty, gravelly SAND; moist
* 31SB306	31SB106-	8/31/04	QA replicate of Sample 31SB106	2.5-2.8	43	Dark brown, silty, gravelly SAND; moist
* 31SB107	31SB107-		Fuel pipeline corridor, PCB grid area	3-3.5	0.4	Brown, slightly silty, sandy GRAVEL; moist
* 31SB108	31SB108-	8/31/04	Fuel pipeline corridor, Antenna 3 AST	3.5-4	0.3	Brown, gravelly medium SAND; moist
* 31SB109	31SB109-		Fuel pipeline corridor, Antenna 4 AST	3.5-4	0.8	Dense, brown, silty, sandy GRAVEL; moist
* 31SS110	31SS110-1	8/31/04	Probable water drainage from ASTs,	1.65	0.7	Brown, silty, sandy GRAVEL; moist
* 31SS111	31SS111-1	8/31/04	N of ASTs, W of road, NE sample	1.2	-	Brown, silty, sandy GRAVEL; moist
* 31SS112	31SS112-2	8/31/04	N of ASTs, W of road, SE sample	1.8-2.0	-	Dark brown, silty, sandy GRAVEL; trace organics; moist
* 31SB113	31SS112-4	8/31/04	Beneath Sample 31SS112	3.7-4	-	Light brown, slightly sandy, silty, GRAVEL; moist
* 31SS114	31SS114-1	8/31/04	N of ASTs, W of road, SW sample	0.9	-	Brown, silty, sandy GRAVEL; moist
* 31SS115	31SS115-2	8/31/04	N of ASTs, W of road, NW sample	1.9-2.1	-	Brown, silty, sandy GRAVEL and cobbles; moist
* 31SB116	31SS115-4	8/31/04	Beneath Sample 31SS115	3.8-4.1	-	Brown, sandy, gravelly SILT; moist
* 31SS117	31SS117-2	8/31/04	SW sample, Main Center, former PCB grid	1.9	-	Dark brown, sandy, gravelly SILT; moist
* 31SB118	31SS117-4	8/31/04	Beneath Sample 31SS117	4	-	Brown, sandy, gravelly SILT; moist
* 31SB218	31SS117-4	8/31/04	QC replicate of Sample 31SB118	4	-	Brown, sandy, gravelly SILT; moist
* 31SB318	31SS117-4	8/31/04	QA replicate of Sample 31SB118	4	-	Brown, sandy, gravelly SILT; moist
* 31SS119	31SS119-1	8/31/04	Main Center, in SE corner of former PCB grid	0.8-1.2	-	Dense, brown, silty, sandy GRAVEL; moist
* 31SS120	31SS120-2	8/31/04	N sample, Main Center, former PCB grid	1.9-2.1	-	Light brown, slightly silty, sandy GRAVEL; moist
* 31SB121	31SS120-4	8/31/04	Beneath Sample 31SS120	4-4.2	-	Brown, gravelly, silty SAND; moist
* 31SS122	31SS122-1	8/31/04	S sample, Main Center, former PCB grid	1.2	-	Stiff, dark brown, SILT; moist
* 31SS123	31SS123-2	8/31/04	E sample, Main Center, former PCB grid	2	-	Brown, silty, gravelly SAND; moist - pipe next to hole
* 31SB124	31SS123-4	8/31/04	Beneath Sample 31SS123	3.8-4.1	-	Brown to dark brown, silty gravelly SAND; moist
* 31SS125	31SS125-1	8/31/04	NE sample, Main Center, former PCB grid	1.2	-	Brown, silty, gravelly SAND; moist
	31 SS 126-2		Antenna 1 AST (01NE31SS105) area, W sample	1.5-2	< 0.2	Brown, poorly graded, silty SAND; moist
	31SS126-4		Beneath Sample 31SS126	3.5-3.8	0.4	Brown SILT; trace gravel; moist
	31SS128-2		Antenna 1 AST area, N sample	1.8-2	< 0.2	Brown, sandy SILT; moist
* 31SB129	31SS128-4	8/31/04	Beneath Sample 31SS128	3.7-3.8	0.2	Brown, gravelly SILT; moist

TABLE 5-15a SAMPLE LOCATIONS AND DESCRIPTIONS - SITE 31: WHITE ALICE SITE

					Screeni	
Sample			Sample Location	Depth	ng	
Number**	LOCID	Date	(See Figure 5-15 for borehole and well location	(feet)	(ppm) ^	Sample Classification [†]
Soil Sample	<u>s</u>					
* 31SS130	31SS130-1	8/31/04	Antenna 1 AST area, SE sample	1.3	<0.2	Brown, poorly graded SAND and stiff SILT; layered; moist
* 31SS131	31SS131-2	8/31/04	SE sample, septic tank outfall area	2.1	-	Brown, sandy, silty GRAVEL; moist
* 31SS132	31SS132-2	8/31/04	SW sample, septic tank outfall area	1.4-1.6	-	Brown, silty, sandy GRAVEL; moist
* 31SB133	31SS132-4	8/31/04	Beneath Sample 31SS132	3.5-4	-	Brown, sandy, silty GRAVEL; moist
* 31SB134	31SS131-3	8/31/04	Beneath Sample 31SS131	2.9	-	Brown, silty, sandy GRAVEL; moist
* 31SS135	31SS135-1	8/31/04	S-central sample, septic tank outfall area	1.1-1.2	-	Brown, silty, sandy GRAVEL; moist
* 31SS136	31SS136-1	8/31/04	NE sample, septic tank outfall area	1.3-1.5	-	Dark brown, slightly silty, sandy GRAVEL; trace organics; moist
* 31SB137	31SS136-4	8/31/04	Beneath Sample 31SS136	4.2-4.5	-	Brown, slightly silty, sandy GRAVEL; moist
* 31SS138	31SS138-1	8/31/04	Central sample, septic tank outfall area	1-1.5	-	Brown, silty, sandy GRAVEL; moist
* 31SS139	31SS139-2	8/31/04	NW sample, septic tank outfall area	1.4-1.6	-	Brown, silty, sandy GRAVEL; moist

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Table 5-15b)
- ** The full sample number is preceded by "04NE", for example 31SB101 is sample 04NE31SB101
- ^ Field screening instrument was an HnU HW101 photoionization detector (PID) with 11.7 eV lamp
- * Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable
- ppm parts per million, calibrated to 100 ppm isobutylene
- LOCID Location Identification: "31SS130-1" signifies Site 31, Surface Sample 130 at 1-foot depth (depth is rounded to the nearest foot)

			Sample Type:	BOREH	IOLE 31B1	BOREHO	DLE 31B2	SURFACE			FUEL I	PIPELINE AND A	STS		
			Location ID:	31B1-2	31B1-4	31B2-2	31B2-4	31SS110-1	31SB105-3		31SB106-3		31SB107-3	31SB108-4	31SB109-4
Site 31 - White Al	ice Site		Sample ID:	04NE31SB101	04NE31SB102	04NE31SB103	04NE31SB104	04NE31SS110	04NE31SB105	04NE31SB106	04NE31SB206	04NE31SB306	04NE31SB107	04NE31SB108	04NE31SB109
Soil Matrix			Depth (ft):	2-3.5	4-5.5	2-3.5	4-5.5	1.65	2.7-3.1	2.5-2.8	2.5-2.8	2.5-2.8	3-3.5	3.5-4	3.5-4
		Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	
Parameter Tested	Test Method	Units	Cleanup Level							Primary	Duplicate	Triplicate			
PID Headspace Reading	HNU HW101 PID	ppm	-	0.7	0.6	0.4	0.7	0.7	0.5	43	43	43	0.4	0.3	0.8
Percent Moisture	A2540G / E160.3M	%	-	3.0	3.2	7.9	7.8	8.9	10.3	8.8	10	6.6	7.2	3.4	91.1
Gasoline Range Organics (GRO)	AK101	mg/kg	300	-	-	-	-	-	[3.78] B	110 J	119 J	76.7 J	[3.40] B	[2.62] B	[3.17] B
Diesel Range Organics (DRO)	AK102	mg/kg	250	85.3	3.91 J	19 J	24.8	14.7 J	30	1,280	1,080	1,240	8.3 J	50.6 J	7.97J
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	32 J	14.1 J	86.5	106	229	421 J	474 J	350 J	204	84.0	27.7 J	74.5
Aromatic Organic Compounds (BTEX)															
Benzene	SW8260B	µg/kg	20	-	-	-	-	-	[19.6]	[16.9]	[17.1]	[70.5]	[17.7]	[13.6]	[16.5]
Ethylbenzene	SW8260B	µg/kg	5,500	-	-	-	-	-	[37.8]	[32.4]	[33]	[70.5]	[34.0]	[26.2]	[31.7]
Toluene	SW8260B	µg/kg	5,400	-	-	_	-	-	[75.6]	[64.8]	[66]	[70.5]	[68.1]	[52.4]	[63.3]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	_	-	-	[37.8]	[32.4]	[33]	[70.5]	[34.0]	[26.2]	[31.7]
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	[75.6]	[64.8]	[66]	[141]	[68.1]	[52.4]	[63.3]
Polynuclear Aromatic Hydrocarbons (PAH)															
Acenaphthene	PAH SIM	µg/kg	210,000	-	-	-	-	-	[5.63]	[54.9]	[56.6]	[50]	[5.48]	[5.11]	[5.66]
Acenaphthylene	PAH SIM	µg/kg	210,000	-	-	-	-	-	[5.63]	[54.9]	[56.6]	[50]	[5.48]	[5.11]	[5.66]
Anthracene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	[5.63]	[5.49]	[56.6]	[50]	[5.48]	[5.11]	[5.66]
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	-	-	-	-	-	2.53 J	73.5	70.9	67.8	[5.48]	3.11 J	[5.66]
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	2.662 J	23.0	56 J	28.6 J	2.55 J	[5.11]	[5.66]
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	-	-	-	-	2.3 J	74.1	98.8	78.5	2.9 J	[5.11]	[5.66]
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	1.73 J	32.8	31.4	28.6 J	2.07 J	[5.11]	[5.66]
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	2.56 J	92.9	[56.6]	78.5	2.48 J	[5.11]	[5.66]
Chrysene	PAH SIM	µg/kg	620,000	-	-	-	-	-	3.13 J	86.4	89.6	107	3.81 J	[5.11]	[5.66]
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	[5.63]	18.5	16.7	14.3 J	[5.48]	[5.11]	[5.66]
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	-	_	-	-	5.62 J	167	156	164	6.68	[5.11]	[5.66]
Fluorene	PAH SIM	µg/kg	270,000	-	-	_	-	-	1.88 J	[54.9]	[56.6]	[50]	[5.48]	[5.11]	[5.66]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	-	-	_	-	-	[5.63]	40.0	38.6	28.6 J	[5.48]	[5.11]	[5.66]
Naphthalene	PAH SIM	µg/kg	21,000	-	-	_	-	-	[5.63]	[54.9]	[56.6]	[50]	[5.48]	[5.11]	[5.66]
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	-	_	-	-	4.66 J	6.73	[56.6]	21.4 J	4.62 J	[5.11]	[5.66]
Pyrene	PAH SIM	µg/kg	1,500,000	-	-	-	-	-	4.3 J	214	227	253	5.71	[5.11]	[5.66]
Polychlorinated Biphenyls (PCBs)			Sum of congeners:												
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	"	-	-	-	-	_	-	-	-	-	-	-	-
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	-	-	_	-	-	-	-	-	-	-	-	-
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	-	-	_	-	-	-	-	-	-	-	-	-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-	-	-	-
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	-	-	-	5,640	11,900	12,800	8,310	8,890	-	2,490	1,790	4,240

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and
	B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
inh	Cleanup level based on inhalation pathway
J	Estimated concentration; refer to Appendix C for data qualification information
[3.400] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

			Sample Type:		AN	ITENNA 1 AST AI	REA				WESTEI	RN AREA		
			Location ID:	31SS126-2	31SS126-4	31SS128-2	31SS128-4	31SS130-1	31SS111-1	31SS112-2	31SS112-4	31SS114-1	31SS115-2	31SS115-4
Site 31 - White A	lice Site		Sample ID:	04NE31SS126	04NE31SB127	04NE31SS128	04NE31SB129	04NE31SS130	04NE31SS111	04NE31SS112	04NE31SB113	04NE31SS114	04NE31SS115	04NE31SB116
Sail Matrix			Depth (ft):		3.5-3.8	1.8-2	3.7-3.8	1.3	1.2	1.8-2	3.7-4	0.9	1.9-2.1	3.8-4.1
Soil Matrix			Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004
Parameter Tested	Test Method	Units	Cleanup Level											
PID Headspace Reading	HNU HW101 PID	ppm	-	<0.2	0.4	<0.2	0.2	<0.2	-	-	-	-	-	-
Percent Moisture	A2540G / E160.3M	%	-	2.6	11.9	13.5	13.7	3.7	15.6	11	3.6	2.6	21.2	24.5
Gasoline Range Organics (GRO)	AK101	mg/kg	300	_	_	-	-	_	_	-	-	-	-	-
Diesel Range Organics (DRO)	AK102	mg/kg	250	5.24 J	9.06 J	6.35 J	5.52 J	6.83 J	-	-	-	-	-	-
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	26.8 J	122	75.7	56.4 J	88.4	-	-	-	-	-	-
Aromatic Organic Compounds (BTEX)														
Benzene	SW8260B	µg/kg	20	-	-	-	-	-	_	-	-	-	-	-
Ethylbenzene	SW8260B	µg/kg	5,500	-	-	-	-	-	-	-	-	-	-	-
Toluene	SW8260B	µg/kg	5,400	-	-	-	-	_	_	-	-	-	-	-
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-
Polynuclear Aromatic Hydrocarbons (PAH)									_	_	-	_	_	_
Acenaphthene	PAH SIM	µg/kg	210,000	_	_	_	_	_	_	-	-	-	_	_
Acenaphthylene	PAH SIM	µg/kg	210,000	-	_	_	_	_	_	-	-	-	_	_
Anthracene	PAH SIM	µg/kg	4,300,000	_	_	_	_	_	_	_	-	-	-	_
Benzo(a)anthracene	PAH SIM	µg/kg	6.000	-	_	_	_	_	_	-	-	-	_	_
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	_	_	_	_	_	-	-	-	_	_
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	_	_	_	_	_	-	-	-	_	_
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	-	_	_	_	_	_	-	-	-	-	-
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	_	_	_	_	_	-	-	-	-	-
Chrysene	PAH SIM	µg/kg	620,000	-	_	_	_	_	_	-	-	-	-	-
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	_	_	-	-	_	-	-
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	_	-	_	_	_	-	-	-	-	-
Fluorene	PAH SIM	µg/kg	270,000	-	_	-	_	_	_	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	_	_	_	_	_	_	-	-	-	_	_
Naphthalene	PAH SIM	µg/kg	21,000	-	_	_	_	_	_	-	-	-	-	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	-	-	-	_	_	-	-	_	-	-
Pyrene	PAH SIM	µg/kg	1,500,000	_	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls (PCBs)			Sum of congeners:											
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	-	_	-	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	. (-	_	-	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg		-	_	-	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg		-	_	-	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	-	_	-	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	_	_	_	_	_	[0.0593]	[0.0585]	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	-	_	_	_	_	0.0606	0.0307 J	[0.0498]	[0.0503]	[0.0639]	[0.0667]
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	_	_	_	_	_	_	_	-	-	[0.0000]	-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	"	_	-	-	-	-	_	-	-	-	-	-
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	1,460	-	6,980	6,050	-	-	-	-	_	-	-

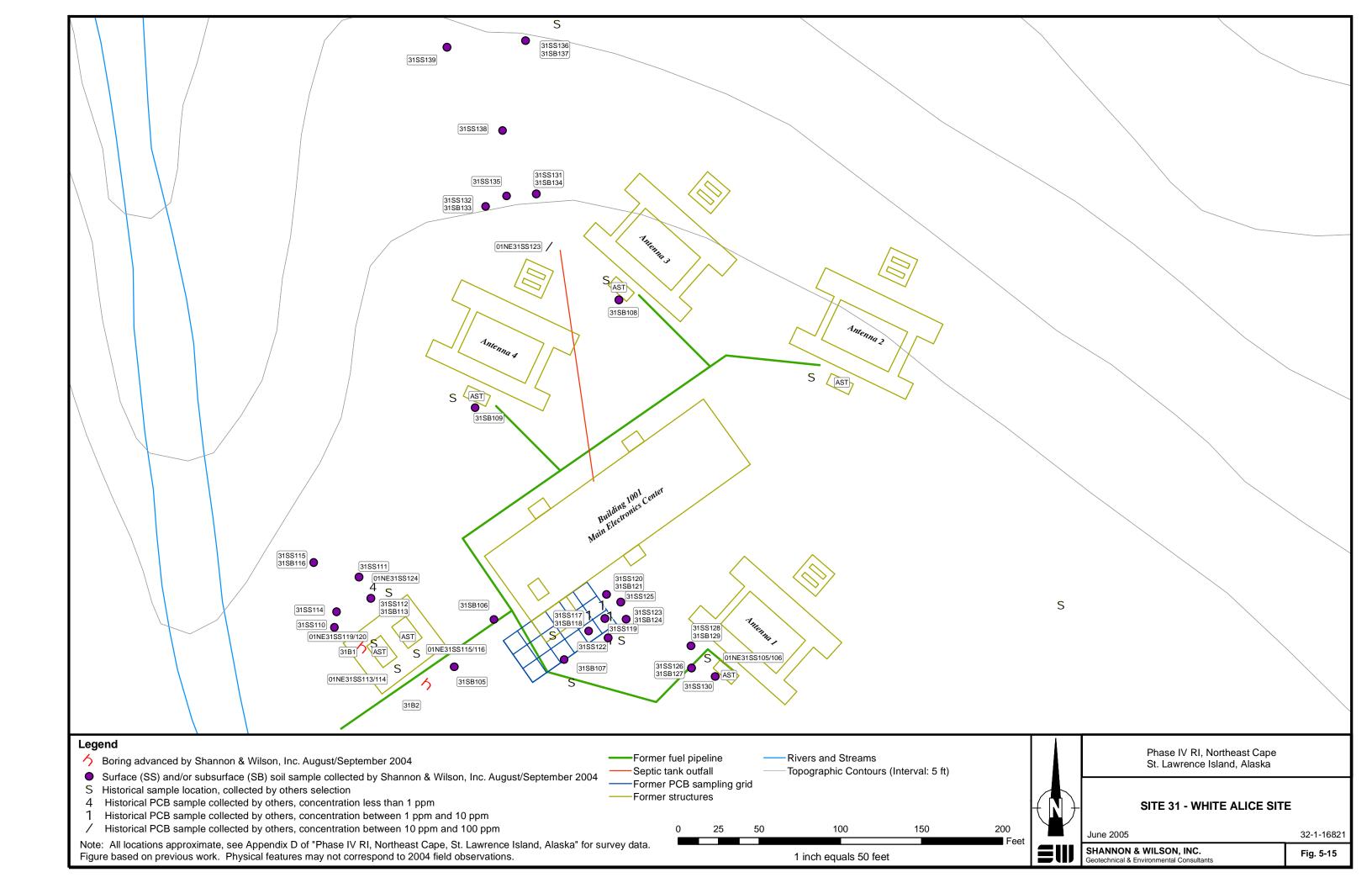
KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18
	ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
ing	Cleanup level based on ingestion pathway
inh	Cleanup level based on inhalation pathway
J	Estimated concentration; refer to Appendix C for data qualification information
[3.400] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

			Sample Type:					FORME	R BUILDING 100	1 GRID				
			Location ID:	31SS117-2		31SS117-4		31SS119-1	31SS120-2	31SS120-4	31SS122-1	31SS123-2	31SS123-4	31SS125-1
Site 31 - White Al	Site 31 - White Alice Site			04NE31SS117	04NE31SB118	04NE31SB218	04NE31SB318	04NE31SS119	04NE31SS120	04NE31SB121	04NE31SS122	04NE31SS123	04NE31SB124	04NE31SS125
			Sample ID: Depth (ft):	1.9	4	4	4	0.8-2	1.9-2.1	4-4.2	1.2	2	3.8-4.1	1.2
Soil Matrix			Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004
Parameter Tested	Test Method	Units	Cleanup Level		Primary	Duplicate	Triplicate							
PID Headspace Reading	HNU HW101 PID	ppm	-	-	-	-	-	-	-	-	-	-	-	-
Percent Moisture	A2540G / E160.3M	%	-	7.4	7.2	7.3	7.0	4.5	9.7	8.3	12.4	9.3	9.4	12.3
Gasoline Range Organics (GRO) Diesel Range Organics (DRO)	AK101 AK102	mg/kg mg/kg	300 250	-	-	-	-	-	-	-		-	-	-
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	-	-	-	-	-	-	-	-	-	-	-
Aromatic Organic Compounds (BTEX)														
Benzene	SW8260B	µg/kg	20	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	SW8260B	µg/kg	5,500	-	-	-	-	-	-	-	-	-	-	-
Toluene	SW8260B	µg/kg	5,400	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-
Polynuclear Aromatic Hydrocarbons (PAH)				-	_	_	_	-	_	_	_	_	_	-
Acenaphthene	PAH SIM	µg/kg	210,000	_	_	_	_	-	_	_	_	-	-	-
Acenaphthylene	PAH SIM	µg/kg	210,000	_	_	_	_	_	_	_	_	-	_	_
Anthracene	PAH SIM	µg/kg	4,300,000	_	_	_	_	_	_	_	_	_	_	_
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	_	_	_	_	_	_	_	_	_	_	_
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	_	_	_	_	_	_	_	_	_	_	_
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	_	_	_	_	_	_	_	_	_	_	_
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	_	_	_	_	_	_	_	_		_	
Benzo(k)fluoranthene	PAH SIM	μg/kg	1,500,00	_	_		_	_		_	_	_	_	
Chrysene	PAH SIM		620,000	_	-	_	_	_	_	_	_	-	_	_
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	,	_	_		-	-	_	_	-	-	_	-
Fluoranthene	-	µg/kg	1,000 (ing)		_	-	-	-	_	_	-	-		-
	PAH SIM	µg/kg	2,100,000	-	-	-	-	-	_	_	-	-	-	-
Fluorene	PAH SIM	µg/kg	270,000	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-	-	-
Pyrene	PAH SIM	µg/kg	1,500,000	-	-	-	-	-	-	_	-	-	-	-
Polychlorinated Biphenyls (PCBs)			Sum of congeners:											
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0521]	[0.0537]	[0.0545]	[0.025]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg		[0.0521]	[0.0537]	[0.0545]	[0.050]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg		[0.0521]	[0.0537]	[0.0545]	[0.025]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg		[0.0521]	[0.0537]	[0.0545]	[0.025]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.0521]	[0.0537]	[0.0545]	[0.025]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.0521]	[0.0537]	[0.0545]	[0.025]	[0.0521]	[0.0565]	[0.0534]	[0.0568]	[0.0557]	[0.0563]	[0.0565]
PCB-1254 (Alociol 1254) PCB-1260 (Aroclor 1260)	SW8082 SW8082	mg/kg	"	0.213	0.487	0.634	0.666	14.6	0.387	2.77	[0.0508] 7.66	14.8	0.455	2.08
,		00						14.0		2.11	7.00	14.0	0.455	2.08
PCB-1262 (Aroclor 1262) PCB-1268 (Aroclor 1268)	SW8082 SW8082	mg/kg mg/kg	"	_	_	_	[0.025] [0.025]	_	_	_	_	_	_	_
100-1200 (A10000 1200)	300002	шу/ку		-	_	_	[0.025]	_	_	_	_	_	_	
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-

	KEY	DESCRIPTION
_	-	Analysis not requested or cleanup level not established
	ppm	parts per million
	%	percent
	mg/kg	milligrams per kilogram
	µg/kg	micrograms per kilogram
	PID	Photoionization detector
	Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables E
		for the "Under 40 inches" precipitation zone, migration to groundwater exposure route.
	ing	Cleanup level based on ingestion pathway
	inh	Cleanup level based on inhalation pathway
	J	Estimated concentration; refer to Appendix C for data qualification information
	[3.400] B	Result qualified as not detected due to method, trip, or equipment blank detection
	36	Concentration detected
	2900	Reported concentration exceeds the regulatory cleanup leve
	[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
	[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve
	*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

SHANNON & WILSON, INC.


s B1 and B2

			Sample Type:				SEP	TIC OUTFALL A	REA			
			Location ID:	31SS131-2	31SS131-3	31SS132-2	31SS132-4	31SS135-1	31SS136-1	31SS136-4	31SS138-1	31SS139-2
Site 31 - White A	lice Site		Sample ID:	04NE31SS131	04NE31SB134	04NE31SS132	04NE31SB133	04NE31SS135	04NE31SS136 *	04NE31SB137	04NE31SS138	04NE31SS139
			Depth (ft):	2.1	2.9	1.4-1.6	3.5-4	1.1-1.2	1.3-1.5	4.2-4.5	1-1.5	1.4-1.6
Soil Matrix			Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004
Parameter Tested	Test Method	Units	Cleanup Level									
PID Headspace Reading	HNU HW101 PID	ppm	-	-	-	-	-	-	-	-	-	-
Percent Moisture	A2540G / E160.3M	%	-	16.1	14.8	6.8	6.5	8.1	10.3	9.7	16.3	13.8
Gasoline Range Organics (GRO)	AK101	mg/kg	300	-	-	-	_	-	_	_	-	_
Diesel Range Organics (DRO)	AK102	mg/kg	250	-	-	-	_	-	_	-	-	-
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	-	-	-	-	-	-	-	-	-
Aromatic Organic Compounds (BTEX)												
Benzene	SW8260B	µg/kg	20	-	_	-	_	-	_	_	-	_
Ethylbenzene	SW8260B	µg/kg	5,500	_	_	_	_	_	_	_	_	_
Toluene	SW8260B	µg/kg	5.400	_	_	_	_	_	_	_	_	_
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	_	_	_	_	_	_	_	_	_
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	_	-	_	-	_	-	-	_
	01102002	P9/19	10,000 (lotal Xylohoo)									
Polynuclear Aromatic Hydrocarbons (PAH)				-	-	-	-	-	-	-	-	-
Acenaphthene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-
Acenaphthylene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-
Anthracene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-
Chrysene	PAH SIM	µg/kg	620,000	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	-	-	-	-	-	-	-	-
Fluorene	PAH SIM	µg/kg	270,000	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	-	-	-	-	-	-	-	-	-
Naphthalene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-
Pyrene	PAH SIM	µg/kg	1,500,000	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls (PCBs)			Sum of congeners:									
PCB-1016 (Aroclor 1016)	SW8082	mg/kg	1 (ing/inh)	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1221 (Aroclor 1221)	SW8082	mg/kg	,	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1232 (Aroclor 1232)	SW8082	mg/kg	"	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1242 (Aroclor 1242)	SW8082	mg/kg	"	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1248 (Aroclor 1248)	SW8082	mg/kg	"	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1254 (Aroclor 1254)	SW8082	mg/kg	"	[0.0599]	[0.0597]	[0.0565]	[0.052]	[0.0545]	[0.0587]	[0.0579]	[0.0585]	[0.0596]
PCB-1260 (Aroclor 1260)	SW8082	mg/kg	"	0.0591 J	0.0977	0.278	0.0314 J	0.34	0.0448 J	[0.0579]	[0.0585]	[0.0596]
PCB-1262 (Aroclor 1262)	SW8082	mg/kg	"	-	-	-	-	-	-			-
PCB-1268 (Aroclor 1268)	SW8082	mg/kg	"	-	-	-	-	-	-	-	-	-
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	-	-	-	-	-	-	-	-	-

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established
ppm	parts per million
%	percent
mg/kg	milligrams per kilogram (ppm)
µg/kg	micrograms per kilogram (ppb)
PID	Photoionization detector
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC
	for the "Under 40 inches" precipitation zone, migration to groundwater exposure route.
ing	Cleanup level based on ingestion pathway
inh	Cleanup level based on inhalation pathway
J	Estimated concentration; refer to Appendix C for data qualification information
[3.400] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
2900	Reported concentration exceeds the regulatory cleanup leve
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
[0.037]	Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

SHANNON & WILSON, INC.

CC 75.341, Tables B1 and B2

5.16 <u>Background Sample Collection</u>

Soil samples were collected from 18 background locations. Surface water and sediment samples were collected from 10 locations.

5.16.1 Site Description

Background samples from the tundra surface soil, gravel surface soil, sediment, and surface water were intended to be collected from areas that exhibited similar physical characteristics (aspect, elevation, drainage basin, vegetation and topography) to the potentially impacted areas at Northeast Cape. The background sample locations were therefore selected from areas outside the property boundary, as shown on Figure 5-16b, but within a 4-mile radius from the MOC. Accordingly, samples were collected from a wide variety of different locations in an area of approximately 14.5 square miles around the northeast Cape Complex (See Table 5-16a).

5.16.2 Data Collection Objectives

The objective of the background samples was to compile a statistically valid representation of naturally-occurring organic compounds in the project vicinity. These data may be useful in evaluating whether observed on-site conditions are attributable to anthropogenic and/or biogenic sources.

5.16.3 Work Plan Variances

The objective of collecting background samples with "similar characteristics to siteimpacted areas at Northeast Cape, but ... located within a reasonable distance from the site" was difficult to achieve. As evident on Figure 2-2, there is no other area of massive deposition from a steep valley glacier within a reasonable distance of the site. Gravelly surface soil similar to the site was particularly difficult to find, and three "background" samples were collected from the gravel quarries used as borrow sources during site development. These quarries are within the boundary indicated on Figure 5-16, but are on a slope above the site, so were considered to be less impacted by site activities than down-gradient locations.

5.16.3.1 Background Soil Samples

Although 20 background soil samples were scoped, only eighteen samples were collected. Of the 18 samples, 9 could be considered "gravelly" and 4 were primarily organic peat. Bulk density tests were difficult to complete because many of the gravel areas contained fractured cobbles that would puncture the balloon of a volumeter or preclude driving a cylinder. Other soil sample locations would fill with water. Seven successful bulk density measurements were completed.

Because measuring the grainsize of material that is primarily peat has no recognized method or application for our objectives, five peaty samples were submitted for analysis of organic content by ignition furnace. The three peaty samples with less than 40 percent organics were also run for grainsize analysis with hydrometer testing, although this can bias the results high at the fine end of the grainsize distibution. Three background soil samples appeared to contain mineral soil with over 10% fines, and were submitted for grainsize analysis with hydrometer testing of the fines. Thirteen background soil samples were submitted for sieve analysis. A grainsize portion was not collected from one background soil sample location because there was not enough soil left between the rocks after collecting the analytical sample to be representative of the analytical sample.

5.16.3.2 Background Sediment Samples

Granular sediments and sediments that were exposed due to low water levels were also difficult to find. A majority of sediment samples were highly organic, and were collected through a water column. The soft organic sediments were similar to those found in the Suqitughneq River and Estuary. No bulk density tests of sediment were successfully completed. Due to a misunderstanding after discussing how a meaningful bulk density sample could be achieved, only two grainsize samples were collected from background sediment locations. One of these samples was primarily peat and a grainsize analysis was not performed. The other sample was submitted for full grainsize analysis.

5.16.4 Field Investigation

Background sampling field activities occurred between September 7 and September 13, 2004. A summary of samples collected, including a description of sample location and classification, is presented in Table 5-16a and sample locations are depicted on Figure 5-17.

Nine surface soil samples (BGSS101, BGSS102, BGSS103, BGSS104, BGSS105, BGSS107, BGSS110, BGSS113, and BGSS115) were collected from areas with tundra vegetation beyond the installation boundary. The samples were analyzed for DRO, RRO, GRO, total organic carbon, and, when practicable, physical soil properties (grain size distribution, moisture content, and soil bulk density). In addition, a comparison of natural organics and petroleum derived components was conducted for the DRO and RRO results.

Nine gravel surface soil samples were collected, three of which (Samples BGSS111, BGSS112, and BGSS114) were collected from the quarry areas to southwest and southeast of Site 31. The background gravel samples were intended to be similar to the granular soils which comprise the gravel pads and roads of the former installation. Photograph 16 in Appendix A shows a sample being collected from a gravel area. The samples were analyzed for DRO, RRO, GRO, total organic carbon, and, when practicable, physical soil properties (grain size

distribution, moisture content, and soil bulk density). These samples also underwent a comparison of natural organics and petroleum derived components for the DRO and RRO results.

Ten sediment samples were collected from areas beyond the installation boundary. The samples were analyzed for DRO, RRO, GRO, PAHs, BTEX, total organic carbon, and, when practicable, physical soil properties (grain size distribution, moisture content, and soil bulk density). These samples also underwent a comparison of natural organics and petroleum derived components for the DRO and RRO results.

Ten surface water samples were collected from rivers, streams, creeks, lakes, and ponds beyond the installation boundary. The surface water sample locations generally coincided with the sediment sample locations. The water samples were analyzed for DRO, RRO, GRO, PAH, and BTEX. The PAH and BTEX results were used to calculate TaqH and TAH.

5.16.4.1 IDW

Sampling gloves were placed in the project IDW bag. Water used for decontamination of hand tools was collected in a 55 gallon drum at camp, then filtered through GAC and discharged to the surface of the gravel pad.

5.16.4.2 Field Observations

The site-impacted areas at Northeast Cape, particularly in the Main Operations Complex, are an amalgam of building debris, native tundra, beach sand and gravel, quarried rock, and other environments. The site is at the base of the only North-facing depositional area of a steep valley glacier on the northeast cape of St. Lawrence Island. Surface runoff pathways from site-impacted areas are often difficult to determine, particularly the drainage pathways to the north and west of the Upper Camp on the mountain crest.

5.16.5 Analytical Results

Table 5-16b summarizes the analytical results for background soil and sediment samples, and Table 5-16c summarizes the analytical results for water background samples. Table 5-16d and Appendix B contains the results of the soil material testing (i.e., grainsize classification graphs).

Of the nine surface soil samples collected from tundra areas, five (Samples BGSS102, BGSS103, 105, 113, and 115) were primarily organic peat, containing over 29 percent organics by dry mass as measured by combustion at 450°C. DRO concentrations in these samples ranged from 205 to an estimated 404 mg/kg, with three of them exceeding the 250mg/kg ADEC cleanup criterion. RRO concentrations ranged from an estimated 1,260 to an estimated 2,080 mg/kg.

Higher mineral content soils were found beneath the vegetation for Samples BGSS101, BGSS104, BGSS107, and BGSS110. Concentrations of DRO and RRO varied from below the PQLs to an estimated 198 mg/kg DRO and an estimated 1,240 mg/kg RRO. All of the detected DRO and RRO in background samples exhibited characteristics of biogenic hydrocarbons (See Table D-1 in Appendix D).

Samples BGSS106, BGSS108, BGSS109, BGSS111, BGSS112, BGSS114, BGSS116, BGSS117, and BGSS118 were collected from exposed coarse granular soils. The highest DRO and RRO concentrations of all the background samples were measured in Sample BGSS118, with values of 825 mg/kg DRO, and 5,080 mg/kg RRO. Sample BGSS118 was collected from an area of beach sand and gravel, however the granular soil was found to overlay peat when an attempt was made to measure bulk density. DRO concentrations were estimated values at concentrations less than the PQL for the remaining gravel-area samples. RRO concentrations ranged from an estimated 18 mg/kg to an estimated 357 mg/kg. The DRO and/or RRO concentrations, when adequate, were attributed to bio genic hydrocarbons.

Of the ten sediment samples collected from areas beyond the installation boundary, Samples BGSD101 (and QA replicate BGSD301), BGSD103, and BGSD108 contained concentrations of DRO in excess of the ADEC soil cleanup criterion. RRO concentrations ranged from an estimated 524 mg/kg to 4,260 mg/kg for these samples. These hydrocarbons were assessed to be biogenic in origin. BTEX constituents were not detected above the laboratory PQLs, however the benzene PQLs at seven locations exceeded the soil cleanup criterion. The PQLs are likely elevated due to high moisture contents and organic materials.

Ten surface water samples were collected from streams, creeks, or ponds beyond the installation boundary. None of the results exceed the applied cleanup criteria. The majority of the GRO, DRO, and RRO results were estimated values below the PQL or not detected above the PQL. RRO was measured in Samples BGSW103 and BGSW105 at concentrations above the PQL. RRO was detected at a similar concentration in the associated method blank for sample BGSW103, however. Two samples (BGSW101 and BGSW104), which were collected from an area to the West of the Complex, along with an associated QC duplicate (BGSW201) contained levels of Naphthalene slightly greater than the PQL. Naphthalene was also detected in Sample BGSW102 at a concentration less than the PQL.

TABLE 5-16a - SAMPLE LOCATIONS AND DESCRIPTIONS - BACKGROUND

Sample			Sample Location	Depth	
Number**	LOCID	Date	(See Figure 5-16)	(feet)	Sample Classification ⁺
Soil Samples			(*** - Barr *)	()	
	DOGGIOI	0.10.10.4			
* BGSS101	BGSS101	9/8/04	Drainage on toe of mountain, WSW of MOC		Brown, slightly gravelly, silty SAND and organics, moist
* BGSS202	BGSS101	9/8/04	QC replicate of Sample BGSS101		Brown, slightly gravelly, silty SAND and organics, moist
* BGSS301	BGSS101	9/8/04	QA replicate of Sample BGSS101	0.5-0.7	Brown, slightly gravelly, silty SAND and organics, moist
* BGSS102	BGSS102	9/8/04	Flat tundra and lake area to W of western antennas		Dark brown, silty PEAT;
* BGSS103	BGSS103	9/8/04	Flat tundra and lake area to W of western antennas	0.5-0.7	Dark brown, silty PEAT;
* BGSS104	BGSS104	9/8/04	Flat tundra and lake area to W of western antennas	0.4-0.8	Gray SILT; wet
* BGSS105	BGSS105	9/9/04	Tundra above beach, NW of site	0.4-0.5	Brown PEAT; wet
* BGSS106	BGSS106	9/9/04	Mid-reach, Tapisaghek River Valley, E of MOC	0.4-0.6	Brown, gravelly SAND to sandy GRAVEL; moist, scattered organics
* BGSS107	BGSS107	9/10/04	Upper Tapisaghek Valley, adjacent to dry creek bed	0-0.2	Brown, silty SAND; moist, with organics [Loam]
* BGSS108	BGSS108	9/10/04	Upper Tapisaghek Valley, in dry creek bed	0-0.2	Brown, sandy GRAVEL; moist
* BGSS109	BGSS109	9/10/04	Upper Tapisaghek Valley, similar to Site 6	0.2-0.4	Brown, slightly silty, sandy GRAVEL; moist, with organics
* BGSS110	BGSS110	9/10/04	Gravelly tundra above Tapisaghek River Delta	0.1-0.3	Brown, slightly silty, gravelly SAND; moist
* BGSS111	BGSS111	9/11/04	Western gravel quarry, south of MOC	0.1-0.3	Brown, sandy GRAVEL and cobbles; moist, trace silt and organics
* BGSS112	BGSS112	9/11/04	Eastern gravel quarry, across from base of tram	0-0.2	Brown, sandy GRAVEL; moist
* BGSS113	BGSS113	9/12/04	E of MOC above Upper Suqi. Lake - tundra w/ berries	0.3-0.5	Dark brown sandy SILT with PEAT; moist
* BGSS114	BGSS114	9/13/04	Eastern gravel quarry S of White Alice, N of BGSS112	0.1-0.3	Brown, silty, sandy GRAVEL; moist
* BGSS214	BGSS114	9/13/04	QC replicate of Sample BGSS114	0.1-0.3	Brown, silty, sandy GRAVEL; moist
* BGSS314	BGSS114	9/13/04	QA replicate of Sample BGSS114	0.1-0.3	Brown, silty, sandy GRAVEL; moist
* BGSS115	BGSS115	9/13/04	E of MOC above Upper Suqi. Lake, soil over talus	0.5-0.7	Dark brown, PEAT; moist
* BGSS116	BGSS116		E of MOC above Upper Suqi. Lake, gravel in talus	0-0.3	Brown, sandy GRAVEL; moist
* BGSS117	BGSS117	9/13/04	E of MOC above Upper Suqi. Lake - gravel track	0.1-0.3	Brown, sandy GRAVEL, trace silt; moist
* BGSS118	BGSS118	9/13/04	Above beach between Cargo Beach and Tapisaghek	0.3-0.5	Brown, rounded gravelly SAND; moist
Sediment Sam	ples				
* BGSD101	BGW101	9/8/04	Drainage on toe of mountain, WSW of MOC	0.3-0.5	Dark brown, slightly silty, gravelly SAND; wet
* BGSD201	BGW101	9/8/04	QC replicate of Sample BGSD101		Dark brown, slightly silty, gravelly SAND; wet
* BGSD301	BGW101	9/8/04	QA replicate of Sample BGSD101		Dark brown, slightly silty, gravelly SAND; wet
* BGSD102	BGW101	9/8/04	Flat tundra and lake area to W of western antennas	0-0.2	Dark brown, silty SAND and organics; wet [Loamy]
* BGSD102	BGW102	9/8/04	Flat tundra and lake area to W of western antennas	0.1-0.3	Dark brown PEAT; wet, with roots
* BGSD103	BGW103 BGW104	9/8/04	Flat tundra and lake area to W of western antennas	0.2-0.5	Dark brown, silty PEAT; wet
* BGSD104	BGW104 BGW105	9/9/04 9/9/04	Tundra above beach, NW of site	0-0.2	Brown to gray SILT; wet, with organics
* BGSD105	BGW105 BGW106	9/9/04 9/9/04	Mid-reach, Tapisaghek River Valley, E of MOC	0-0.2	Brown, silty SAND; wet
* BGSD100	BGW100 BGW107	9/10/04	Lower-reach, Tapisaghek River Valley, E of MOC		Brown, slightly silty SAND; wet

TABLE 5-16a - SAMPLE LOCATIONS AND DESCRIPTIONS - BACKGROUND

Sample Number**	LOCID	Date	Sample Location (See Figure 5-16)	Depth (feet)	Sample Classification†
Sediment Sam	ples				
* BGSD108	BGW108	9/10/04	Outlet, smaller stream than Suqi, NW of Tapi. River	0-0.2	Brown to black, organic SILT; trace sand, rusty algae
* BGSD109	BGW109	9/10/04	Mid-reach, smaller stream, NW of Tapi. River	0-0.2	Dark brown, sandy SILT; wet, trace organics
* BGSD110	BGW110	9/12/04	E of MOC above Upper Suqi. Lake, small pond	0.1-0.3	Bark brown PEAT; wet, with roots
* BGSD210	BGW110	9/12/04	QC replicate of Sample BGSD110	0.1-0.3	Bark brown PEAT; wet, with roots
* BGSD310	BGW110	9/12/04	QA replicate of Sample BGSD110	0.1-0.3	Bark brown PEAT; wet, with roots
Surface Water	r Samples				(For size comparison, the Suqi. River was considered a large creek, and the Suqi. Estuary a large lake.)
* BGSW101	BGW101	9/8/04	Drainage on toe of mountain, WSW of MOC	-	Clear surface water from small creek
* BGSW201	BGW101	9/8/04	QC replicate of Sample BGSW101	-	Clear surface water from small creek
* BGSW301	BGW101	9/8/04	QA replicate of Sample BGSW101	-	Clear surface water from small creek
* BGSW102	BGW102	9/8/04	Flat tundra and lake area to W of western antennas	-	Clear surface water from medium-sized lake
* BGSW103	BGW103	9/8/04	Flat tundra and lake area to W of western antennas	-	Clear surface water from medium-sized lake
* BGSW104	BGW104	9/8/04	Flat tundra and lake area to W of western antennas	-	Clear surface water from medium-sized creek
* BGSW105	BGW105	9/9/04	Tundra above beach, NW of site	-	Clear surface water from small creek
* BGSW106	BGW106	9/9/04	Mid-reach, Tapisaghek River Valley, E of MOC	-	Clear surface water from small river
* BGSW107	BGW107	9/10/04	Lower-reach, Tapisaghek River Valley, E of MOC	-	Clear surface water from small river
* BGSW108	BGW108	9/10/04	Outlet, smaller stream than Suqi, NW of Tapi. River	-	Clear surface water from medium-sized creek
* BGSW109	BGW109	9/10/04	Mid-reach, smaller stream, NW of Tapi. River	-	Clear surface water from medium-sized creek
* BGSW110	BGW110	9/12/04	E of MOC above Upper Suqi. Lake, small pond	-	Clear surface water from small pond

note: Sediment and Surface Water samples were approximately co-located, and were thus given common LOCIDs from BGW101-BGW110

KEY DESCRIPTION

- * Sample analyzed by the project or QA laboratory (See Tables 5-16b and 5-16c)
- ** The full sample number is preceded by "04NE", for example BGSS101 is sample 04NEBGSS101
- † Sample classification applies to the portion of the specified sample interval from which the sample was collected
- Measurement not recorded or not applicable

LOCID Location Identification: "BGSS101" signifies Background Surface Soil Sample 101

TABLE 5-16b SUMMARY OF SOIL ANALYTICAL RESULTS - BACKGROUND

			Sample Type:							SURFACE SOIL						
Background	Samplas		Location ID:		BGSS101		BGSS102	BGSS103	BGSS104	BGSS105	BGSS106	BGSS107	BGSS108	BGSS109	BGSS110	BGSS111
Backyrounu	Samples		Sample ID:	04NEBGSS101	04NEBGSS201	04NEBGSS301	04NEBGSS102	04NEBGSS103	04NEBGSS104	04NEBGSS105	04NEBGSS106	04NEBGSS107	04NEBGSS108	04NEBGSS109	04NEBGSS110	04NEBGSS111
Soil Mat	rix		Depth (ft):	0.5-0.7	0.5-0.7	0.5-0.7	0.7-0.9	0.5-0.7	0.4-0.8	0.4-0.5	0.4-0.6	0-0.2	0-0.2	0.2-0.4	0.1-0.3	0.1-0.3
			Sample Date:	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/9/2004	9/9/2004	9/10/2004	9/10/2004	9/10/2004	9/10/2004	9/11/2004
Parameter Tested	Test Method	Units	Cleanup Level	Primary	Duplicate	Triplicate										
Percent Moisture	A2540G / E160.3M	%	-	15.5	15.0	13.9	55.5	57.2	49.3	79.9	28.9	23.6	3.9	21.1	12.4	8.4
Gasoline Range Organics (GRO)	AK101	mg/kg	300	2.21 J	2.01 J	5.44	1.60 J	2.80 J	1.54 J	3.91 J	1.56 J	1.46 J	1.23 J	1.31 J	0.773 J	0.899 J
Diesel Range Organics (DRO)	AK102	mg/kg	250	20.5 J	18.9 J	6.29	219 J	404 J	198 J	269 J	22.3 J	40.5 J	4.01 J	50.8 J	12 J	6.25 J
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	-	-	biogenic	biogenic	biogenic	biogenic	^	۸	^	biogenic	^	^
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	175 J	163 J	65.3	1,260 J	2,050 J	1,240 J	2,080 J	139 J	255	18 J	357 J	76.3	40.4
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	-	-	biogenic	biogenic	biogenic	biogenic	^	^	^	biogenic	^	^
Aromatic Organic Compounds (BTEX)																
Benzene	SW8260B	µg/kg	20	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	SW8260B	µg/kg	5,500	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	SW8260B	µg/kg	5,400	-	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-	-	-
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	-	-	-	-
Polynuclear Aromatic Hydrocarbons (PAH)																
Acenaphthene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	PAH SIM	µg/kg	620,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	PAH SIM	µg/kg	270,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	PAH SIM	µg/kg	1,500,000	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	15,200	13,700	-	88,100	164,000	67,800	434,000	7,450	11,800	1,320	46,100	7,660	4,510
Total Metals																
Chromium	SW6020	mg/kg	26 (total Cr)	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	SW6020	mg/kg	400 (ing/inh)	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	SW7471A	mg/kg	1.4	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	SW6020	mg/kg	9,100	-	-	-	-	-	-	-	-	-	-	-	-	-

KEY	DESCRIPTION	

Analysis not requested or cleanup level not established

Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin †

^ Tentatively identified compounds not reviewed due to low concentration

% percent

mg/kg milligrams per kilogram μg/kg micrograms per kilogram

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing

inh Cleanup level based on inhalation pathway

Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

2900 Reported concentration exceeds the regulatory cleanup leve

[0.0072] Analyte not detected above Practical Quantitation Limit (PQL)

TABLE 5-16b SUMMARY OF SOIL ANALYTICAL RESULTS - BACKGROUND

			Sample Type:				;	SURFACE SOIL						SEDI	IMENT	
Background	Samplas		Location ID:	BGSS112	BGSS113		BGSS114		BGSS115	BGSS116	BGSS117	BGSS118		BGW101		BGW102
Backyrounu	Samples		Sample ID:	04NEBGSS112	04NEBGSS113	04NEBGSS114 *	04NEBGSS214	04NEBGSS314	04NEBGSS115	04NEBGSS116	04NEBGSS117	04NEBGSS118	04NEBGSD101	04NEBGSD201	04NEBGSD301	04NEBGSD102
Soil Mat	riv		Depth (ft):	0-0.2	0.3-0.5	0.1-0.3	0.1-0.3	0.1-0.3	0.5-0.7	0-0.3	0.1-0.3	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0-0.2
			Sample Date:	9/11/2004	9/12/2004	9/13/2004	9/12/2004	9/12/2004	9/13/2004	9/13/2004	9/13/2004	9/13/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004
Parameter Tested	Test Method	Units	Cleanup Level			Primary	Duplicate	Triplicate					Primary	Duplicate	Triplicate	
Percent Moisture	A2540G / E160.3M	%	-	7.7	53.9	7.8	8.0	4.5	64.1	9.2	9.8	79.6	89.4	83.6	90.02	86.5
Gasoline Range Organics (GRO)	AK101	mg/kg	300	0.756 J	4.87 J	1.25 J	-	-	9.29 J	1.04 J	0.881 J	44.0 J	4.04 J	[13.2]	3.68 J	6.49 J
Diesel Range Organics (DRO)	AK102	mg/kg	250	6.29 J	379	5.95 J	6.60 J	2.99 J	205	15.9 J	8.09 J	825 J	661 J	119 J	314	135 J
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	biogenic	^	^	-	biogenic	^	^	biogenic	biogenic	biogenic	-	biogenic
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	42.8	1,910	28.6	44.8	18.4 J	1,440 J	79.7	62.2	5,080 J	2,050	524	928	613
Lab Assessment of Hydrocarbon Origin†	-	-	-	^	biogenic	^	^	-	biogenic	^	^	biogenic	biogenic	biogenic	-	biogenic
Aromatic Organic Compounds (BTEX)																
Benzene	SW8260B	µg/kg	20	-	-	-	-	-	-	-	-	-	[164]	[68.6]	[1000]	[143]
Ethylbenzene	SW8260B	µg/kg	5,500	-	-	-	-	-	-	-	-	-	[315]	[132]	[1000]	[275]
Toluene	SW8260B	µg/kg	5,400	-	-	-	-	-	-	-	-	-	[630]	[264]	[1000]	[550]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	[315]	[132]	[3001]	[275]
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	-	-	-	-	-	-	-	-	-	[630]	[264]		[550]
Polynuclear Aromatic Hydrocarbons (PAH)																
Acenaphthene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	120 J	[717]
Acenaphthylene	PAH SIM	µg/kg	210,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Anthracene	PAH SIM	µg/kg	4,300,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Benzo(q,h,i)perylene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-	[1000]	[633]	40.1 J	[717]
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Chrysene	PAH SIM	µg/kg	620,000	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	-	-	-	-	-	-	-	-	-	[1000]	[633]	[200]	[717]
Fluoranthene	PAH SIM	µg/kg	2,100,000	-	-	_	_	-	-	_	-	-	[1000]	[633]	[200]	[717]
Fluorene	PAH SIM	µg/kg	270,000	-	-	_	_	-	-	_	-	-	[1000]	[633]	[200]	[717]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	-	_	_	_	_	-	_	-	-	[1000]	[633]	[200]	[717]
Naphthalene	PAH SIM	µg/kg	21.000	-	_	_	_	_	_	_	_	-	[1000]	[633]	[200] 147 J	[717]
Phenanthrene	PAH SIM	µg/kg	4,300,000									-	[1000]	[633]	[200]	[717]
Pyrene	PAH SIM	µg/kg µg/kg	1,500,000	-		_	-	-	-	_	_	-	[1000]	[633]	[200]	[717]
,	SGS SOP		1,500,000	- 4.780	93.600	3.740	-	-	-	- 11.700	- 6.070	319,000	193,000	220,000		255,000
Total Organic Carbon (TOC)	363 30P	mg/kg	-	4,780	93,000	3,740	-	-	269,000	11,700	6,070	319,000	193,000	220,000	-	200,000
Total Metals	SM(6020	~~~~// · ~	OC (total Cri)			0.11	11.0	7.86 J								
Chromium	SW6020	mg/kg	26 (total Cr)	-	-	9.11	11.9		-	-	-	-	-	-	-	-
Lead	SW6020	mg/kg	400 (ing/inh)	-	-	15.4 J	15.1 J	16.5 J	-	-	-	-	-	-	-	-
Mercury	SW7471A	mg/kg	1.4	-	-	0.0151 J	[0.0433]	0.0104 J	-	-	-	-	-	-	-	-
Zinc	SW6020	mg/kg	9,100	-	-	28.0	33.4	28.1 J	-	-	-	-		-	-	-

note: Sediment and Surface Water samples were co-located, and were thus given common LOCIDs from BGW101-BGW110

KEY	DESCRIPTION
-	Analysis not requested or cleanup level not established

Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin † ^

Tentatively identified compounds not reviewed due to low concentration

% percent

mg/kg

milligrams per kilogram micrograms per kilogram µg/kg

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341,

Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing

inh Cleanup level based on inhalation pathway

Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

2900

Reported concentration exceeds the regulatory cleanup leve Analyte not detected above Practical Quantitation Limit (PQL) [0.0072]

Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve [0.037]

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

TABLE 5-16b SUMMARY OF SOIL ANALYTICAL RESULTS - BACKGROUND

			Sample Type:					SE	DIMENT SAMPLE	S			
Background	Samplas		Location ID:	BGW103	BGW104	BGW105	BGW106	BGW107	BGW108	BGW109		BGW110	
Background S	Samples		Sample ID:	04NEBGSD103	04NEBGSD104	04NEBGSD105	04NEBGSD106	04NEBGSD107	04NEBGSD108	04NEBGSD109	04NEBGSD110	04NEBGSD210	04NEBGSD310
Soil Mat	riv.		Depth (ft):	0.1-0.3	0.2-0.5	0-0.2	0-0.2	0.2-0.4	0-0.2	0-0.2	0.1-0.3	0.1-0.3	0.1-0.3
Son Mati			Sample Date:	9/8/2004	9/8/2004	9/9/2004	9/9/2004	9/10/2004	9/10/2004	9/10/2004	9/12/2004	9/12/2004	9/12/2004
Parameter Tested	Test Method	Units	Cleanup Level								Primary	Duplicate	Triplicate
Percent Moisture	A2540G / E160.3M	%	-	85	31.8	84.7	4.6	23.9	67.8	37.3	87.1	-	-
Gasoline Range Organics (GRO)	AK101	mg/kg	300	12.3 J	0.897 J	4.56 J	1.37 J	0.677 J	2.00 J	2.11 J	4.25 J	-	-
Diesel Range Organics (DRO)	AK102	mg/kg	250	798 J	98.7	178	3.84 J	24.3 J	399 J	160	104 J	-	-
Lab Assessment of Hydrocarbon Origin†	-	-	-	biogenic	biogenic	biogenic	^	^	biogenic	biogenic	biogenic	-	-
Residual Range Organics (RRO)	AK103	mg/kg	10,000 (ing)	4,260 J	494	1,220	17.2 J	59.2	1,650 J	1,270 J	784	-	-
Lab Assessment of Hydrocarbon Origin†	-	-	-	biogenic	biogenic	biogenic	^	^	biogenic	biogenic	biogenic	-	-
Aromatic Organic Compounds (BTEX)													
Benzene	SW8260B	µg/kg	20	[198]	[19.6]	[107]	[15.1]	[8.78]	[43.1]	[23.2]	[102]	[12.7] (wet)	[100] (wet)
Ethylbenzene	SW8260B	µg/kg	5,500	[380]	[37.7]	[206]	[28.9]	[16.9]	[82.8]	[44.5]	[196]	[24.4] (wet)	[100] (wet)
Toluene	SW8260B	µg/kg	5,400	[761]	[75.4]	[412]	[57.9]	[33.8]	[166]	[89.1]	[392]	16.6 J (wet)	[100] (wet)
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[380]	[37.7]	[206]	[28.9]	[16.9]	[82.8]	[44.5]	[196]	[24.4] (wet)	[100] (wet)
m & p-Xylenes	SW8260B	µg/kg	78,000 (total Xylenes)	[761]	[75.4]	[412]	[57.9]	[33.8]	[166]	[89.1]	[392]	[48.9] (wet)	[200] (wet)
Polynuclear Aromatic Hydrocarbons (PAH)													
Acenaphthene	PAH SIM	µg/kg	210,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Acenaphthylene	PAH SIM	µg/kg	210,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Anthracene	PAH SIM	µg/kg	4,300,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Benzo(a)anthracene	PAH SIM	µg/kg	6,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Benzo(a)pyrene	PAH SIM	µg/kg	1,000 (ing)	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Benzo(b)fluoranthene	PAH SIM	µg/kg	21,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Benzo(g,h,i)perylene	PAH SIM	µg/kg	1,500,00	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	47.1 J	-	-
Benzo(k)fluoranthene	PAH SIM	µg/kg	1,500,00	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Chrysene	PAH SIM	µg/kg	620,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Dibenzo(a,h)anthracene	PAH SIM	µg/kg	1,000 (ing)	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Fluoranthene	PAH SIM	µg/kg	2,100,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Fluorene	PAH SIM	µg/kg	270,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/kg	11,000 (ing)	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Naphthalene	PAH SIM	µg/kg	21,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Phenanthrene	PAH SIM	µg/kg	4,300,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Pyrene	PAH SIM	µg/kg	1,500,000	[660]	[74.4]	[328]	[5.22]	[6.55]	[306]	[79.3]	[47.8]	-	-
Total Organic Carbon (TOC)	SGS SOP	mg/kg	-	384,000	31,800	373,000	658	3,060	171,000	57,300	311,000	-	-
Total Metals													
Chromium	SW6020	mg/kg	26 (total Cr)	-	-	-	-	-	-	-	-	-	-
Lead	SW6020	mg/kg	400 (ing/inh)	-	-	-	-	-	-	-	-	-	-
Mercury	SW7471A	mg/kg	1.4	-	-	-	-	-	-	-	-	-	-
Zinc	SW6020	mg/kg	9,100	-	-	-	-	-	-	-	-	-	-

note: Sediment and Surface Water samples were co-located, and were thus given common LOCIDs from BGW101-BGW110

KEY	DESCRIPTION
KET .	DESCRIPTION

Analysis not requested or cleanup level not established

Refer to Table D-1 in Appendix D for assessment of hydrocarbon origin † ^

Tentatively identified compounds not reviewed due to low concentration

% percent

mg/kg

milligrams per kilogram micrograms per kilogram µg/kg

Cleanup Levels Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC 75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.

Cleanup level based on ingestion pathway ing

inh Cleanup level based on inhalation pathway

Estimated concentration; refer to Appendix C for data qualification information J

36 Concentration detected

2900

Reported concentration exceeds the regulatory cleanup leve Analyte not detected above Practical Quantitation Limit (PQL) [0.0072]

Analyte not detected above Practical Quantitation Limit (PQL); PQL exceeds the regulatory cleanup leve [0.037]

(wet) Result reported on a wet weight basis

TABLE 5-16c SUMMARY OF WATER ANALYTICAL RESULTS - BACKGROUND

1			Sample Type:						SURFAC	E WATER					
Background Sam	nlac		Location ID:		BGW101		BGW102	BGW103	BGW104	BGW105	BGW106	BGW107	BGW108	BGW109	BGW110
Background Sam	ihiea		Sample ID:	04NEBGSW101	04NEBGSW201	04NEBGSW301	04NEBGSW102	04NEBGSW103	04NEBGSW104	04NEBGSW105	04NEBGSW106	04NEBGSW107	04NEBGSW108	04NEBGSW109	04NEBGSW110
Water Matrix			Depth (ft):	-	-	-	-	-	-	-	-	-	-	-	-
			Sample Date:	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/9/2004	9/9/2004	9/10/2004	9/10/2004	9/10/2004	9/12/2004
Parameter Tested	Test Method	Units	Cleanup Level	Primary	Duplicate	Triplicate									
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0105 J	[0.090]	0.0145 J	0.0196 J	0.0165 J	0.0342 J	0.0106 J	[0.090]	0.0334 J	0.0204 J	0.0178 J	0.0230 J
Diesel Range Organics (DRO)	AK102	mg/L	1.5	[0.337] B	[0.330] B	0.0289 J	[0.303] B	[0.326] B	[0.330] B	0.175 J	0.0813 J	0.0714 J	0.136 J	0.144 J	0.165 J
Residual Range Organics (RRO)	AK103	mg/L	1.1	[0.562] B	[0.549] B	[0.75]	[0.505] B	0.658 B	[0.549] B	0.58	0.354 J	0.21 J	0.311 J	0.335 J	0.451 J
Aromatic Organic Compounds (BTEX)															
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	[0.5]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]
Ethylbenzene	SW8260B	µg/L	700	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
Toluene	SW8260B	µg/L	1,000	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
m & p-Xylenes	SW8260B	μg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
Polynuclear Aromatic Hydrocarbons (PAH SIM)															
Acenaphthene	PAH SIM	µg/L	2,200	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Acenaphthylene	PAH SIM	μg/L	2,200	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Anthracene	PAH SIM	µg/L	11,000	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Benzo(a)anthracene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Benzo(a)pyrene	PAH SIM	µg/L	0.2	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Benzo(b)fluoranthene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Benzo(g,h,i)perylene	PAH SIM	µg/L	1,100	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Benzo(k)fluoranthene	PAH SIM	µg/L	10	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Chrysene	PAH SIM	µg/L	100	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Dibenzo(a,h)anthracene	PAH SIM	µg/L	0.1	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Fluoranthene	PAH SIM	µg/L	1,460	[0.112]	[0.109]	[0.1]	[0.11]	[0.108]	[0.108]	[0.115]	[0.108]	[0.11]	[0.115]	[0.11]	[0.108]
Fluorene	PAH SIM	µg/L	1,460	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Indeno(1,2,3-cd)pyrene	PAH SIM	µg/L	1	[0.0562]	[0.0543]	[0.01]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Naphthalene	PAH SIM	µg/L	700	0.104	0.0586	[0.1]	0.0455 J	[0.0538]	0.142	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Phenanthrene	PAH SIM	µg/L	11,000	[0.0562]	[0.109]	[0.1]	[0.11]	[0.108]	[0.108]	[0.115]	[0.108]	[0.11]	[0.115]	[0.11]	[0.108]
Pyrene	PAH SIM	µg/L	1,100	[0.0562]	[0.0543]	[0.1]	[0.0549]	[0.0538]	[0.0538]	[0.0575]	[0.0538]	[0.0549]	[0.0575]	[0.0549]	[0.0538]
Calculated Total aromatic hydrocarbons (TAH) †	(see text)	µg/L	10	2.7	2.7	2.8	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Calculated Total aqueous hydrocarbons (TAqH) ‡	(see text)	µg/L	15	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2

note: Sediment and Surface Water samples were co-located, and were thus given common LOCIDs from BGW101-BGW110

KEY	DESCRIPTION
-	Measurement not recorded or not applicable
mg/L	milligrams per liter
µg/L	micrograms per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C and, for
	TAH/TAqH, surface water levels in 18 AAC 70.
J	Estimated concentration; refer to Appendix C for data qualification information
0.658 B	Analyte concentration biased due to detection in method, trip, or equipment blank
[0.0549] B	Result qualified as not detected due to method, trip, or equipment blank detection
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
*	Matrix Spike / Matrix Spike Duplicate (MS/MSD)

TAH equals the sum of BTEX analyte concentrations estimated below the PQL or detected above the PQL, plus 1/2 the PQL of analytes not reported above the Method Detection Limit (MDL). †

TAqH equals the sum of BTEX and PAH analyte concentrations estimated below the PQL or detected above the PQL, plus 1/2 the PQL of analytes not reported above the Method Detection Limit (MDL). ‡

TABLE 5-16d SUMMARY OF SOIL TESTING RESULTS - BACKGROUND

Backgro	hund	Sample Type:					SURFACE SOIL				
-		Location ID:	BGSS101	BGSS102	BGSS103	BGSS104	BGSS105	BGSS106	BGSS107	BGSS108	BGSS109
Samp	es	Sample ID:	04NEBGSS101	04NEBGSS102	04NEBGSS103	04NEBGSS104	04NEBGSS105	04NEBGSS106	04NEBGSS107	04NEBGSS108	04NEBGSS109
Soil Ma	triv	Depth (ft):	0.5-0.7	0.7-0.9	0.5-0.7	0.4-0.8	0.4-0.5	0.4-0.6	0-0.2	0-0.2	0.2-0.4
		Sample Date:	9/8/2004	9/8/2004	9/8/2004	9/8/2004	9/9/2004	9/9/2004	9/10/2004	9/10/2004	9/10/2004
Parameter Tested	Test Method	Units									
Soil Material Testing											
Moisture Content	ASTM D2216	%	16.3	135.6	-	40.9	337.7	9.9	26	2.0	7
Organics (450 C)	ASTM D2974 ASTM D422 or	%	-	29	57	-	66	-	-	-	-
Sieve Analysis	C136	**	See Fig. B-25	See Fig. B-25	-	See Fig. B-26	-	See Fig. B-26	See Fig. B-26	See Fig. B-27	See Fig. B-27
Hydrometer Analysis	ASTM D422	**	See Fig. B-25	See Fig. B-25	-	See Fig. B-26	-	-	See Fig. B-26	-	-
Bulk Density	ASTM D2167M	Kg/m3	1,402	-	-	-	282.0	1,490	-	-	-
Bulk Density	ASTM D2167M	lbs/ft3	87.5	-	-	-	17.6	93.0	-	-	-
Soil Classification	USCS		SM	PT or ML	PT	ML	PT	GP	SM	GW	GP

KEY DESCRIPTION

- Analysis not requested

% percent dry weight

GP Poorly-Graded Gravels, Gravel-Sand Mixtures

GP-GM Poorly-Graded Gravel with Silt

GM Silty Gravels, Gravel-Sand-Clay Mixtures

GW Well-Graded Gravels, Gravel-Sand Mixtures, Little or No Fines

ML Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity

PT Peat, Humus, Swamp Soils with High Organic Content

SM Silty Sands, Sand-Silt Mixture

SP Poorly-Graded Sand, Gravelly Sands, Little or No Fines

TABLE 5-16d SUMMARY OF SOIL TESTING RESULTS - BACKGROUND

Backgr	ound	Sample Type:				SURFA	CE SOIL				SEDIMENT
•		Location ID:	BGSS110	BGSS111	BGSS112	BGSS113	BGSS114	BGSS115	BGSS116	BGSS117	BGW102
Samp	les	Sample ID:	04NEBGSS110	04NEBGSS111	04NEBGSS112	04NEBGSS113	04NEBGSS114 *	04NEBGSS115	04NEBGSS116	04NEBGSS117	04NEBGSD102
Soil Ma	atriv	Depth (ft):	0.1-0.3	0.1-0.3	0-0.2	0.3-0.5	0.1-0.3	0.5-0.7	0-0.3	0.1-0.3	0-0.2
		Sample Date:	9/10/2004	9/11/2004	9/11/2004	9/12/2004	9/13/2004	9/13/2004	9/13/2004	9/13/2004	9/8/2004
Parameter Tested	Test Method	Units					Primary				
Soil Material Testing											
Moisture Content	ASTM D2216	%	4.8	4.9	2.3	173.2	5.4	214.0	5.4	6.3	42.2
Organics (450 C)	ASTM D2974 ASTM D422 or	%	-	-	-	36	-	38	-	-	-
Sieve Analysis	C136	**	See Fig. B-27	See Fig. B-28	See Fig. B-28	See Fig. B-28	See Fig. B-29	See Fig. B-29	See Fig. B-29	See Fig. B-29	See Fig. B-25
Hydrometer Analysis	ASTM D422	**	-	-	-	See Fig. B-28	-	See Fig. B-29	-	-	See Fig. B-25
Bulk Density	ASTM D2167M	Kg/m3	1,737	-	-	379.1	1,851	362.1	-	-	-
Bulk Density	ASTM D2167M	lbs/ft3	108.4	-	-	23.7	115.5	22.6	-	-	-
Soil Classification	USCS		SP	GP-GM	GP	PT or ML	GM	PT or ML	GP-GM	GP-GM	SM

KEY DESCRIPTION

Analysis not requested

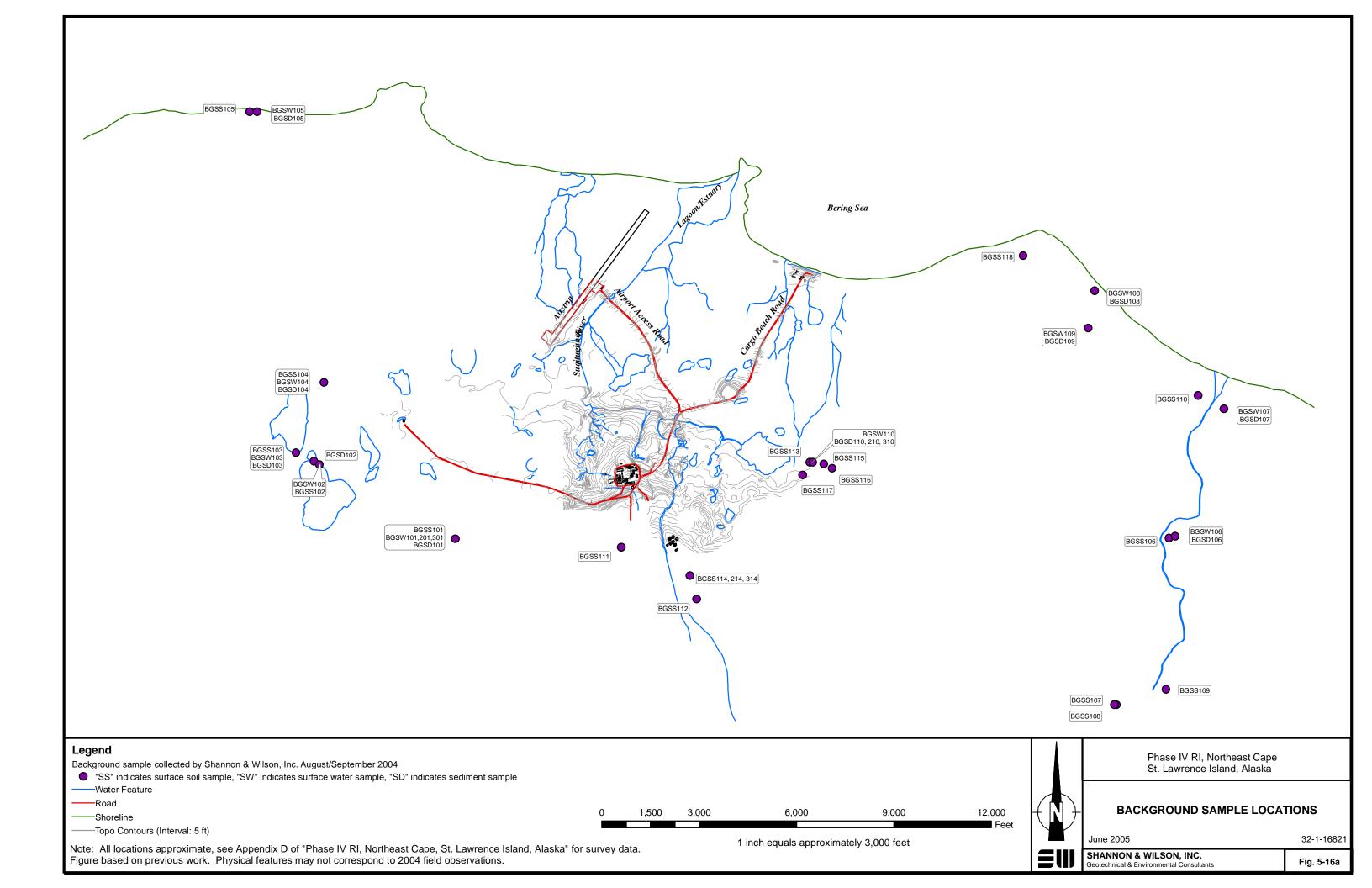
% percent

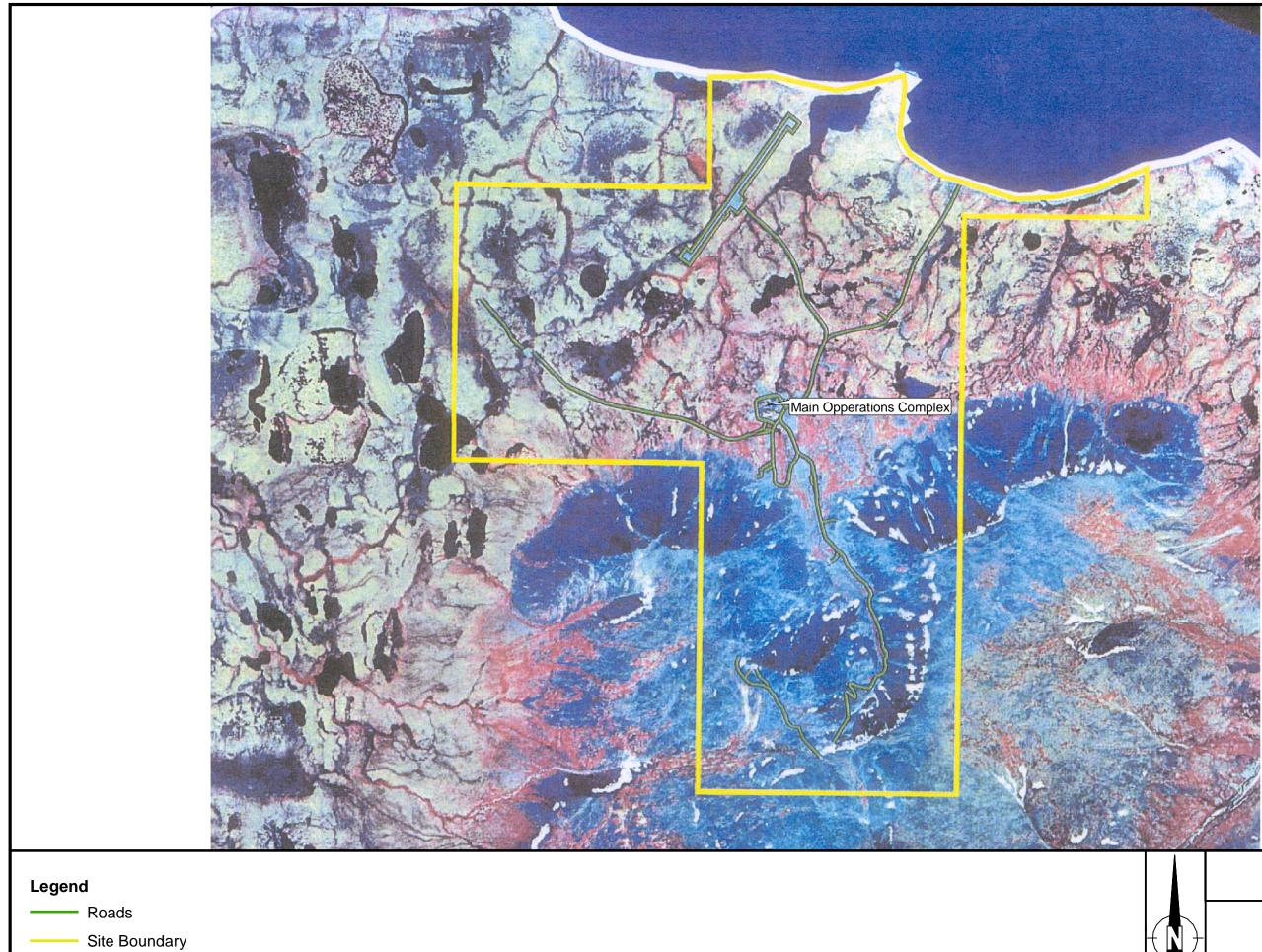
-

GP Poorly-Graded Gravels, Gravel-Sand Mixtures

GP-GM Poorly-Graded Gravel with Silt

GM Silty Gravels, Gravel-Sand-Clay Mixtures


GW Well-Graded Gravels, Gravel-Sand Mixtures, Little or No Fines


ML Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity

PT Peat, Humus, Swamp Soils with High Organic Content

SM Silty Sands, Sand-Silt Mixture

SP Poorly-Graded Sand, Gravelly Sands, Little or No Fines

Phase IV RI, Northeast Cape St. Lawrence Island, Alaska

SITE BOUNDARY

June 2005

SHANNON & WILSON, INC. Geotechnical & Environmental Consultants

32-1-16821

Fig. 5-16b

6.0 <u>CLOSURE/LIMITATIONS</u>

This report was prepared for the exclusive use of our client and their representatives in the study of this site. The findings we have presented within this report are based on the limited research, sampling, and analyses that we conducted. They should not be construed as definite conclusions regarding the area's soil, sediment, surface water, or groundwater. It is possible that our RI activities did not identify the highest concentrations of target COPCs, although our intention was to sample areas likely to be impacted. As a result, the analyses and sampling performed can only provide you with our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the attachments in Appendix H, "Important Information About Your Geotechnical/Environmental Report," to assist you and others in understanding the use and limitations of our report.

You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study unless authorized by you or required by law.

We appreciate this opportunity to be of service. Please contact the undersigned with questions or comments concerning the contents of this report.

Sincerely,

SHANNON & WILSON, INC.

Written By:

Hesson

Randy Hessong Engineer/Field Team Leader

Approved By:

tather S/L

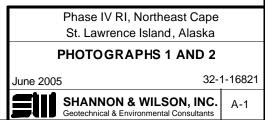
Matthew S. Hemry, P.E. Senior Associate/Project Engineer

PHASE IV REMEDIAL INVESTIGATION Northeast Cape, St. Lawrence Island, Alaska U.S. Army Corps of Engineers - Alaska District June 2005 Page 72 32-1-16821

7.0 <u>REFERENCES</u>

- Alaska Department of Environmental Conservation (ADEC), 2003a. Water Quality Standards, 18 AAC 70, June 26, 2003.
- Alaska Department of Environmental Conservation (ADEC), 2003b. Technical Memorandum 01-007, "Additional Cleanup Values," November 24, 2003.
- Alaska Department of Environmental Conservation (ADEC), 2004. Oil and Other Hazardous Substances Pollution Control, 18 AAC 75, May 2004.
- MWH, 2003. Summary Report Phase III Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska, March 2003.
- MWH, 2004. Human Health and Ecological risk Assessment Northeast Cape Installation, St. Lawrence Island, Alaska Final, March 2004.
- Shannon & Wilson, Inc. Work Plan Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska, August 2004.

APPENDIX A


Select Site Photographs

Photograph 1: A Hercules C-130 Transport operated by Lynden Air Cargo was used to transport equipment and supplies to the site.

Photograph 2: A temporary camp was constructed on the gravel pad near the airstrip.

Photograph 3: Typical vegetation in the Site 1 "Burn Site," study area, looking north-northeast past field screening location FS1-8 to field camp. No apparent burn area was encountered, so field screening and surface sampling were performed over a large area in the vicinity of the gravel pad.

Photograph 4: Excavated soil at the former pumphouse of Site 3. Some adjustments to boring locations were necessary. Wellpoint 03WP103 and Kitnagak Bay are visible in the background.

Phase IV RI, Northeast Cape	
St. Lawrence Island, Alaska	
PHOTOGRAPHS 3 AND 4	
June 2005 32-	1-16821
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	A-2

Photograph 5: Ice recovered in split-spoon sampler from 5 feet bgs in Site 3 boring 03B3.

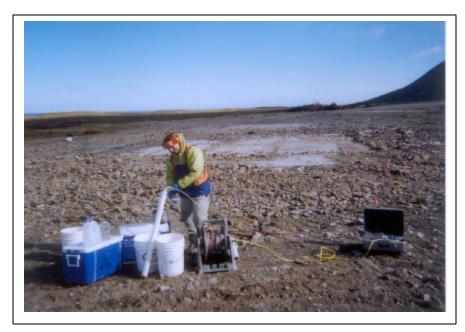
Photograph 6: Site 6 Boring 06B2 completed, decontaminating drill auger and rod in alconox solution and rinse water drums on the drill rig, looking southeast.

Phase IV RI, Northeast Cape	Phase IV RI, Northeast Cape								
St. Lawrence Island, Alaska									
PHOTOGRAPHS 5 AND 6									
June 2005 32-	1-16821								
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	A-3								

Photograph 7: Sampling wellpoint 06WP5 with a peristaltic pump. The boulder field is west of the site, and is one sign of frost-influenced surface topography.

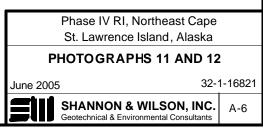
Photograph 8: Exposed debris at the base of the Site 7 landfill's southeast side. Soil samples were collected on the bench behind the pictured person, and to the left of the photo.

Phase IV RI, Northeast Cape				
St. Lawrence Island, Alaska				
PHOTOGRAPHS 7 AND 8				
June 2005 32-1-				
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	A-4			



Photograph 9: Looking north-northeast across Site 8 from the bank of the Suqitughneq River to the Cargo Beach Road/Airport Access Road intersection. The spring in the foreground and two locations in the wetland were sampled.

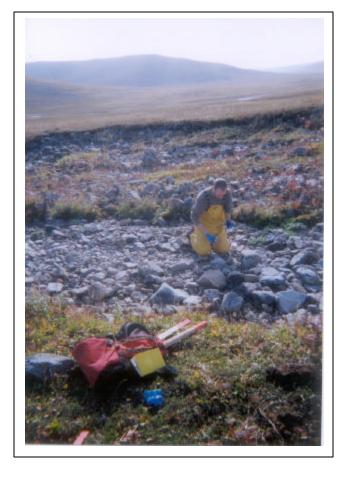
Photograph 10: Conducting the boring for installation of Monitoring Well 18MW1 using Tubex type air-rotary drilling on the regraded surface of the MOC. A cleaned split spoon sampler is in the foreground, looking southwest.


Phase IV RI, Northeast Cape				
St. Lawrence Island, Alaska				
PHOTOGRAPHS 9 AND 10				
June 2005 32-1-168				
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	A-5			

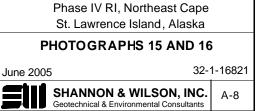
Photograph 11: Decontaminating a pump after sampling Monitoring Well MW 88-8 in the Main Operations Complex. Site 13 surface sample locations are marked with pin flags, looking east.

Photograph 12: Preparing to collect near-surface soil samples for PCB analysis at Site 14, looking south-southeast.

Photograph 13: Sampling the middle reach of the Suqitughneq River, just downstream of the MOC drainage basin, looking east.



Photograph 14: Sediment samples were collected from depositional areas of the Suqitughneq River Estuary with an Eckman Dredge, looking west-northwest. Tidal influence was not observed in the estuary, which was essentially a fresh water impoundment for the duration of the field activities.


Phase IV RI, Northeast Cape				
St. Lawrence Island, Alaska				
PHOTOGRAPHS 13 AND 14				
June 2005 32-7	1-16821			
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	A-7			

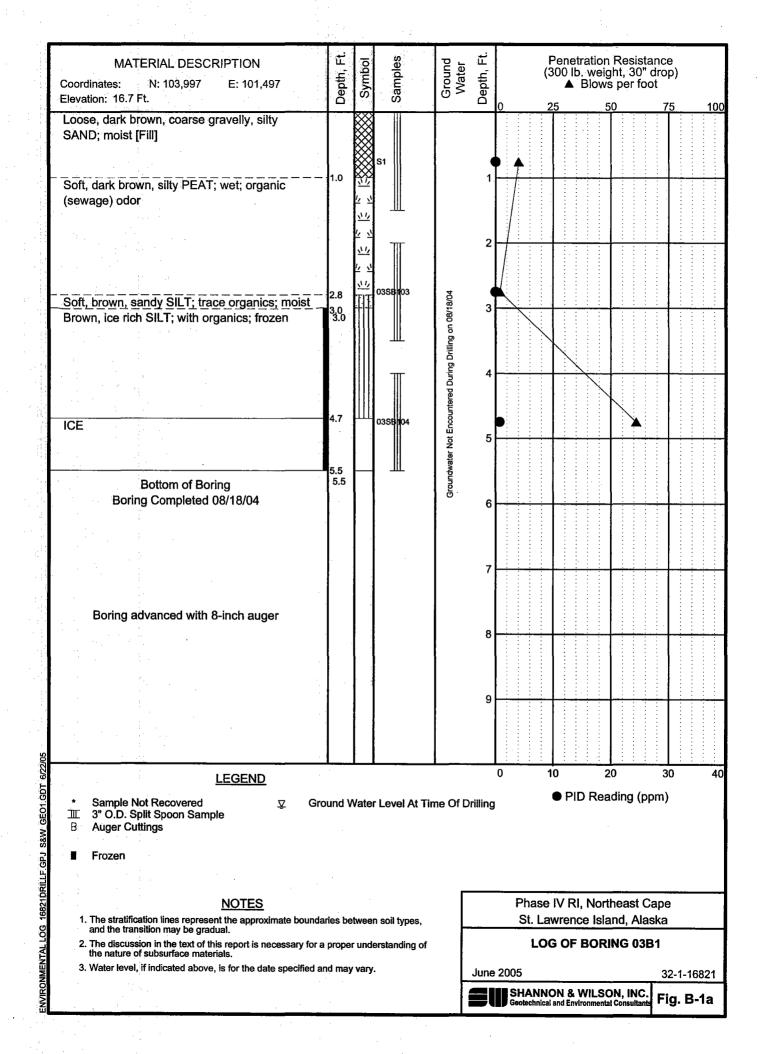
Photograph 15: Sampling being performed at the White Alice Site by hand (left) and drill rig (right). Pipe stand is at the former tank impoundment, looking north.

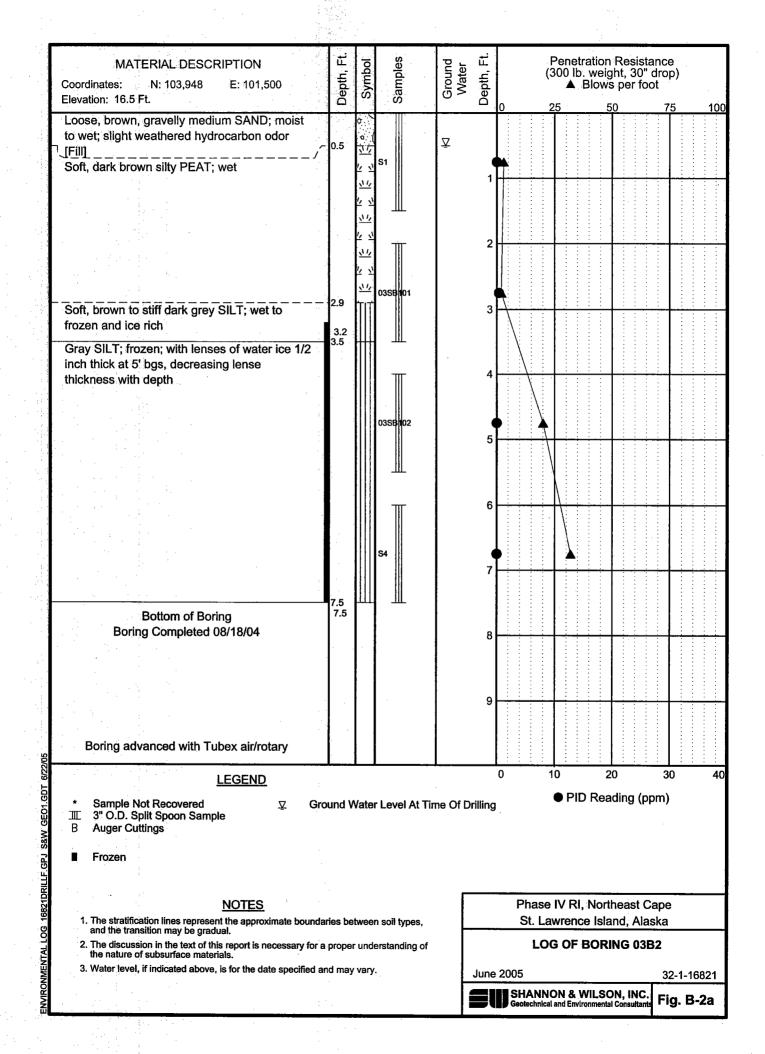
Photograph 16: Background soil sampling in upper Tapisaghak Valley. Course material similar to that at the MOC was difficult to find.

APPENDIX B

Boring Logs, Monitoring Well Construction Details, and Grain Size Classification plots

APPENDIX B TABLE OF CONTENTS


Borings and Monitoring Wells


Figure	Permanent Designation	Description
B-1a	03B1	Log of Boring 03B1
B-2a	03B2	Log of Boring 03B2
B-3a	03B3	Log of Boring 03B3
B-4a	06B1	Log of Boring 06B1
B-5a	06B2	Log of Boring 06B2
В-ба	06B3	Log of Boring 06B3
B-7a	06B4	Log of Boring 06B4
B-8a	06B5	Log of Boring 06B5
B-9a	06B6	Log of Boring 06B6
B-10a	10B1	Log of Boring 10B1
B-11a	10B2	Log of Boring 10B2
B-12a	13B1	Log of Boring 13B1
B-13a	17MW1	Log of Boring 17MW1
B-13b	17MW1	Monitoring Well 17MW1 Construction Detail
B-14a	18MW1	Log of Boring 18MW1
B-14b	18MW1	Monitoring Well 18MW1 Construction Detail
B-15a	19 B 1	Log of Boring 19B1
B-16a	20MW1	Log of Boring 20MW1
B-16b	20MW1	Monitoring Well 20MW1 Construction Detail
B-17a	22B1	Log of Boring 22B1
B-18a	22MW2	Log of Boring 22MW2
B-18b	22MW2	Monitoring Well 22MW2 Construction Detail
B-19a	22MW3	Log of Boring 22MW3
B-19b	22MW3	Monitoring Well 22MW3 Construction Detail
B-20a	26MW1	Log of Boring 26MW1
B-20b	26MW1	Monitoring Well 26MW1 Construction Detail
B-21a	26MW3	Log of Boring 26MW3
B-21b	26MW3	Monitoring Well 26MW3 Construction Detail

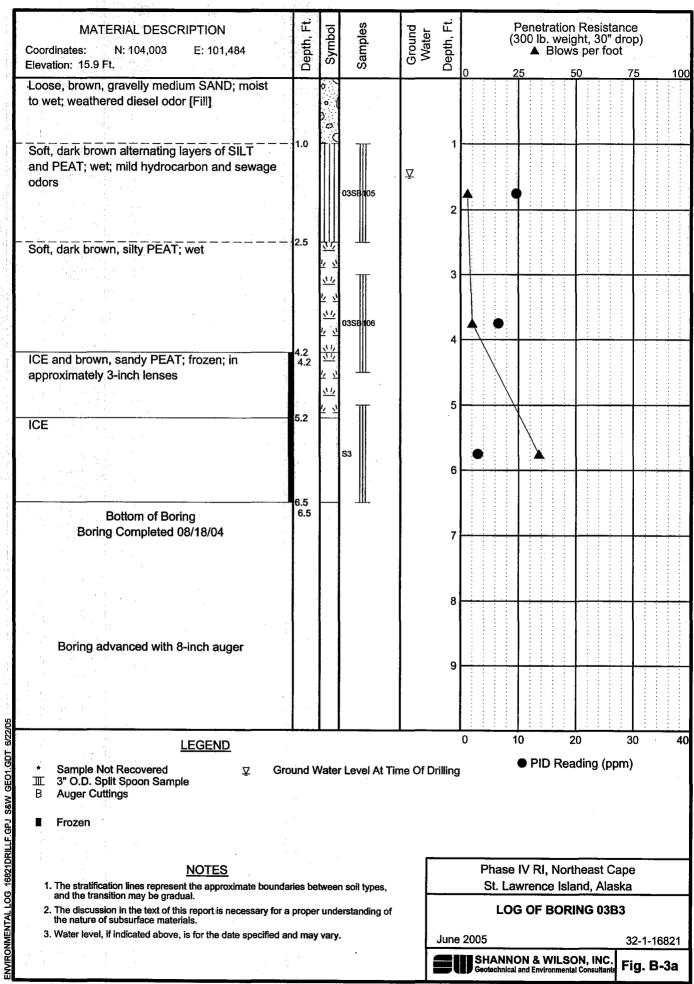
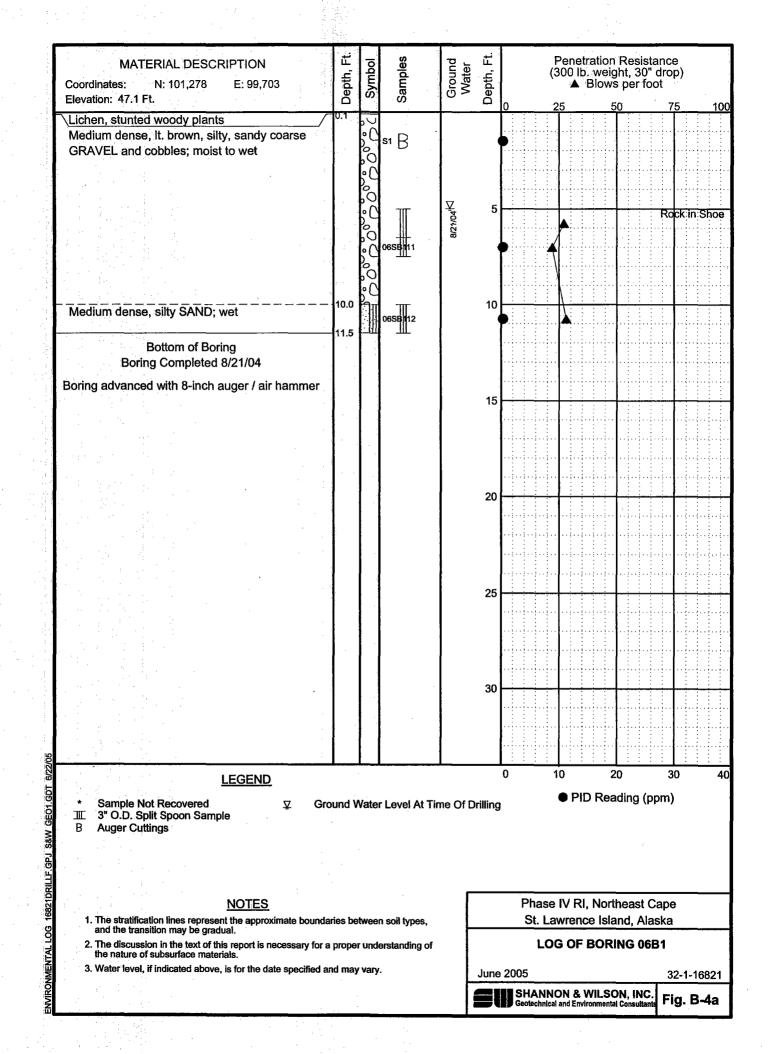
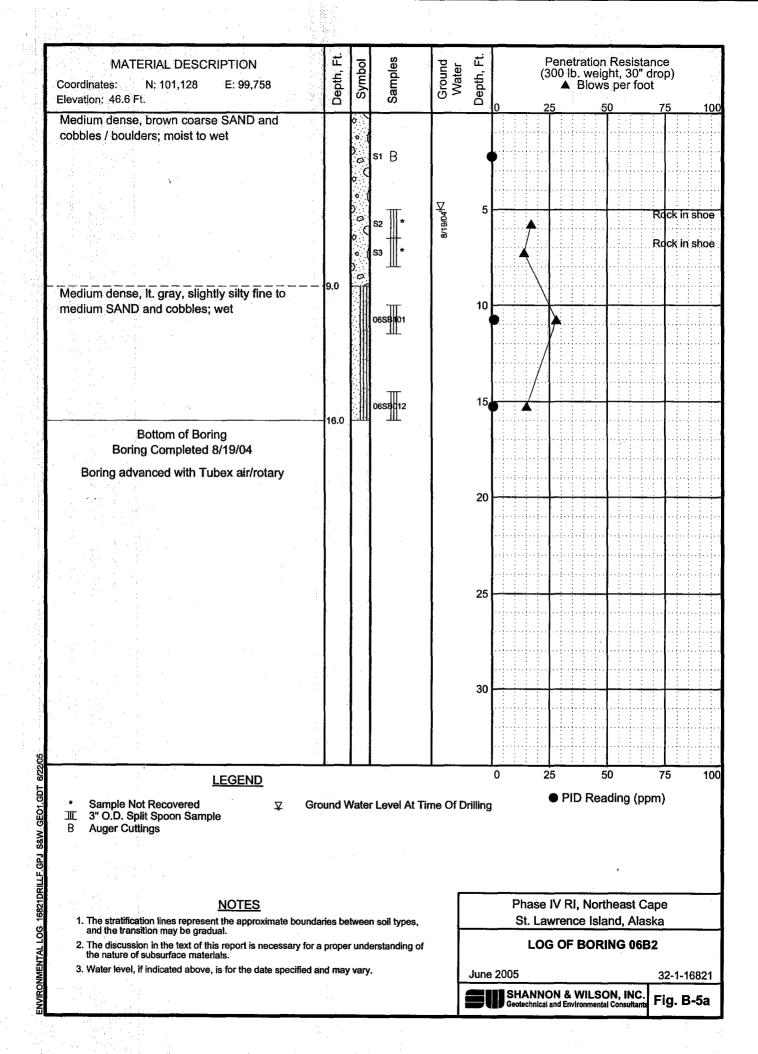
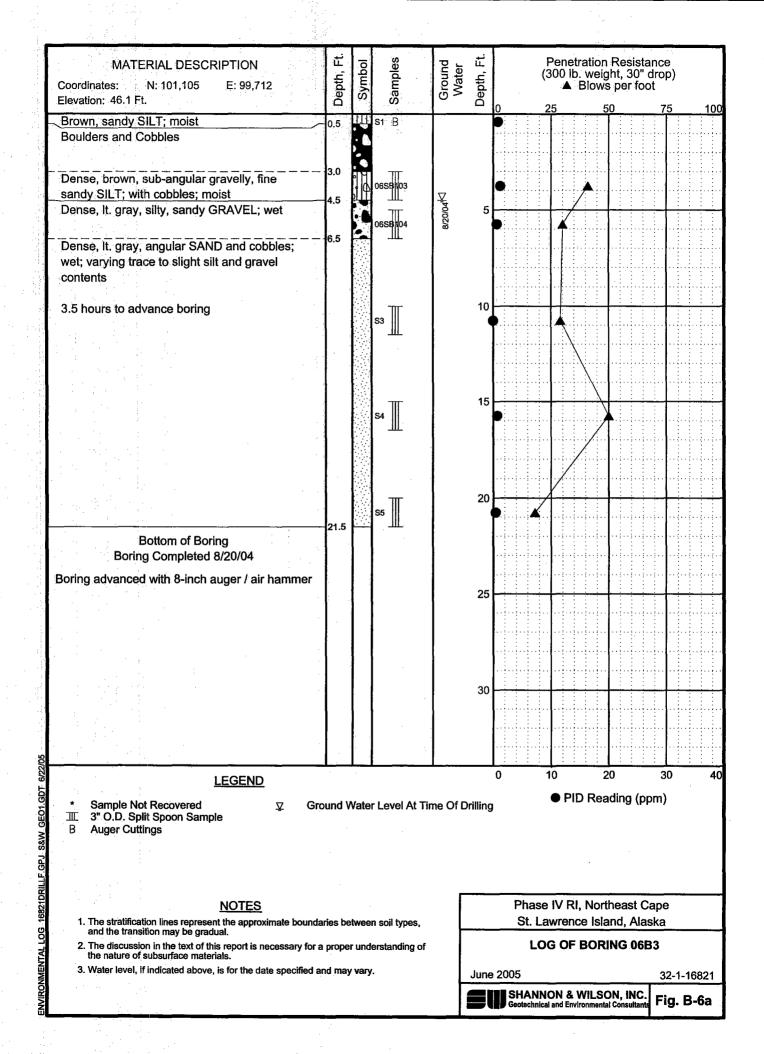
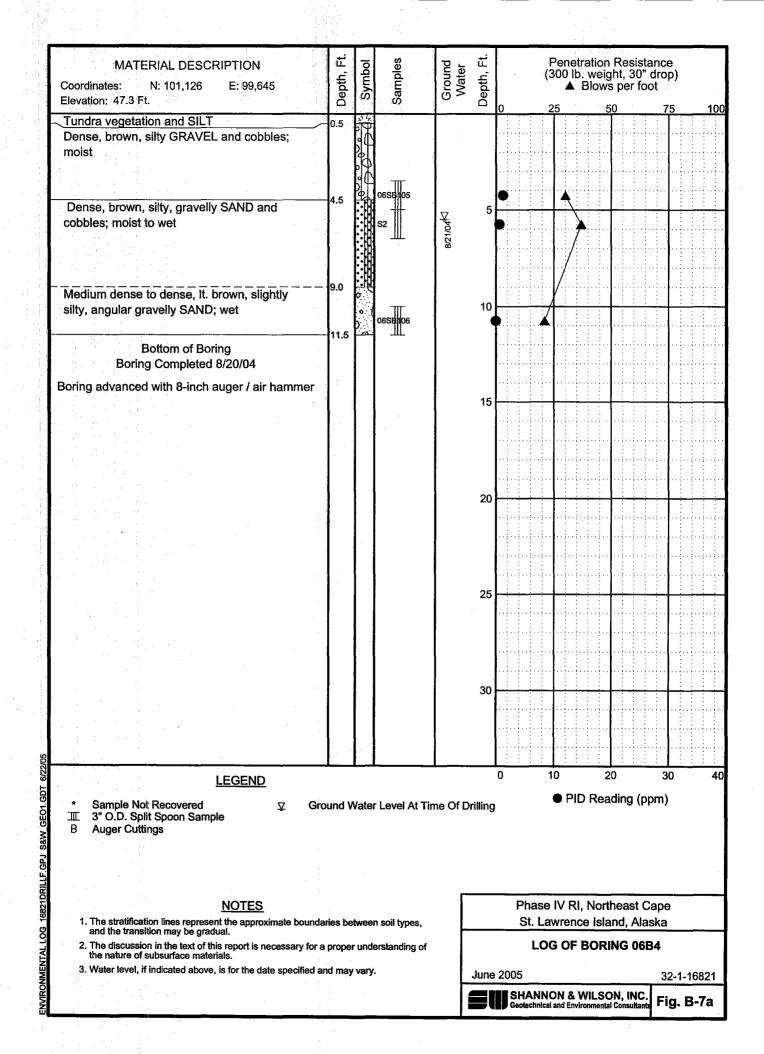

APPENDIX B TABLE OF CONTENTS (continued)

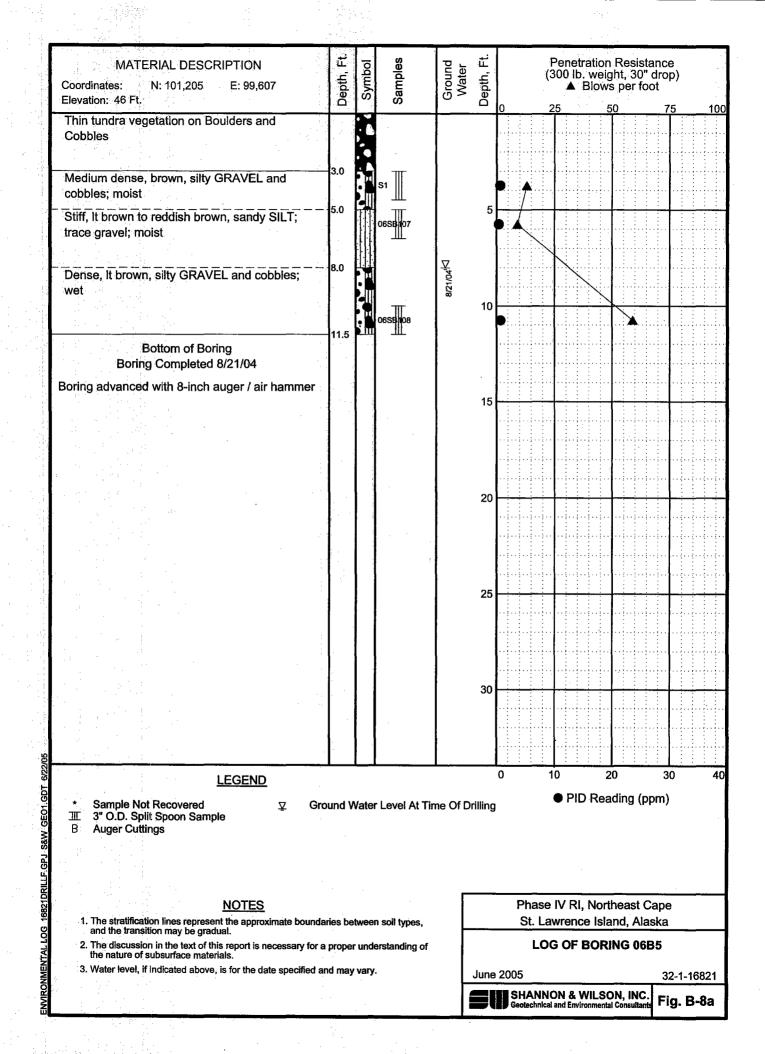
Figure	Sample Designation (04NE)	Depth (Feet)
B-22	13SB103	18.0
	20MW1	15.0
	22MW3	5.5
B-23	26MW2	20
	88SS101	
	88SS102	
B-24	BGSD102	
	BGSS101	
	BGSS102	
B-25	BGSS104	
	BGSS106	
	BGSS107	
B-26	BGSS108	
	BGSS109	
	BGSS110	
B-27	BGSS111	
	BGSS112	
	BGSS113	
B-28	BGSS114	
	BGSS115	
	BGSS116	
B-29	BGSS117	

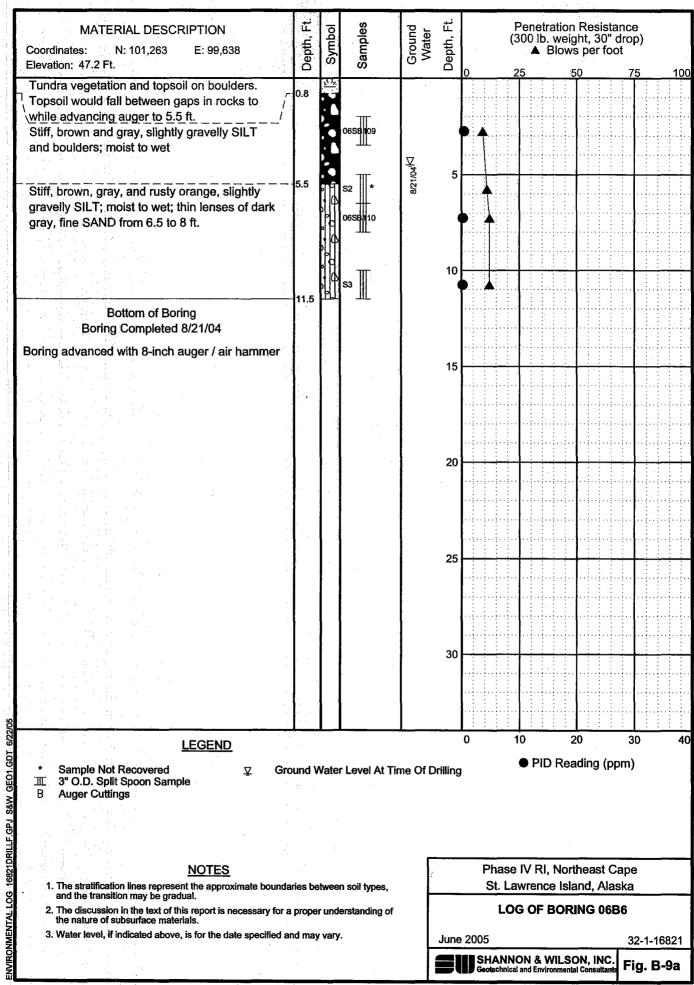

Grain Size Classification

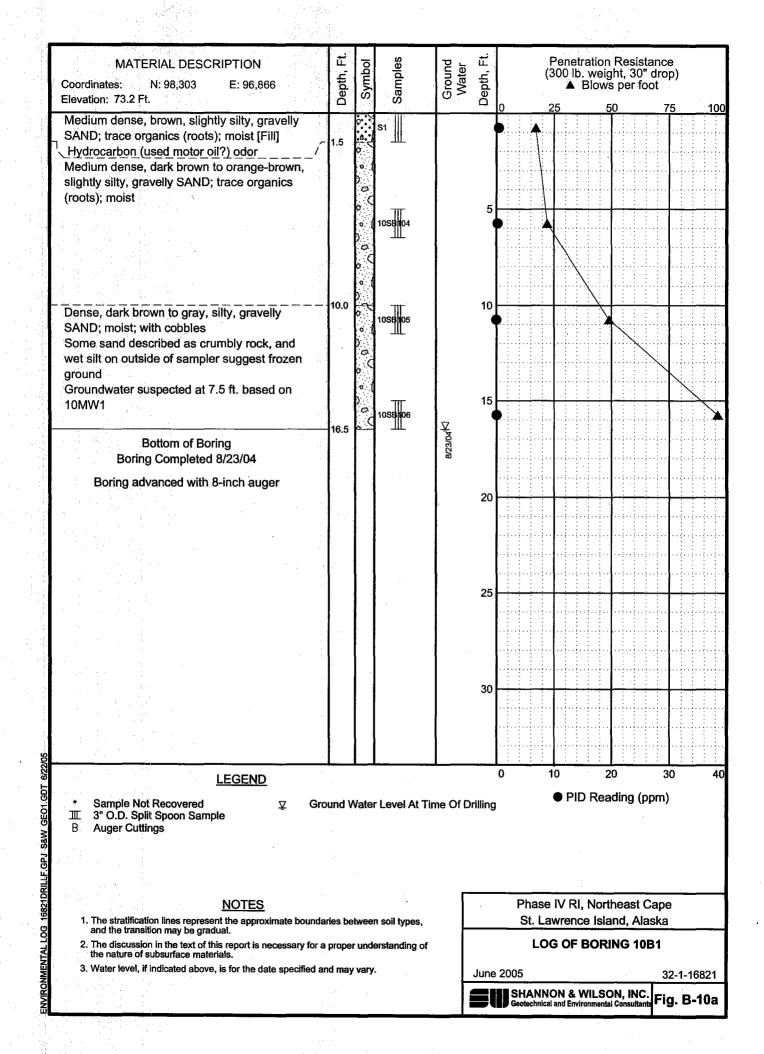


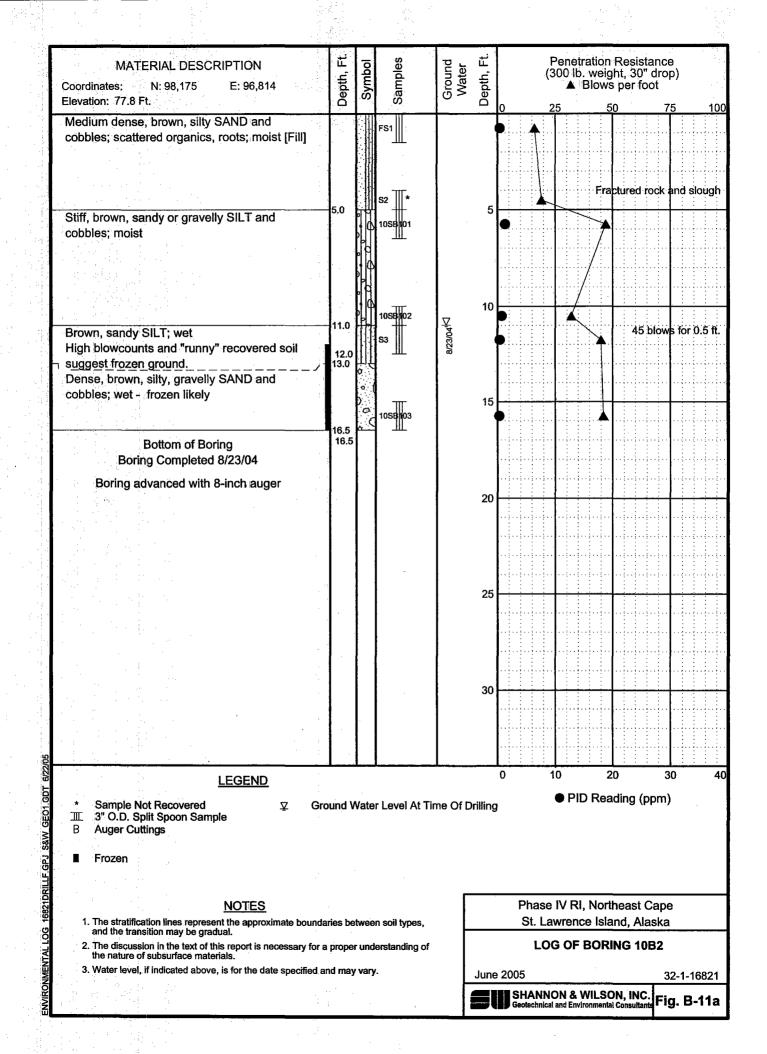


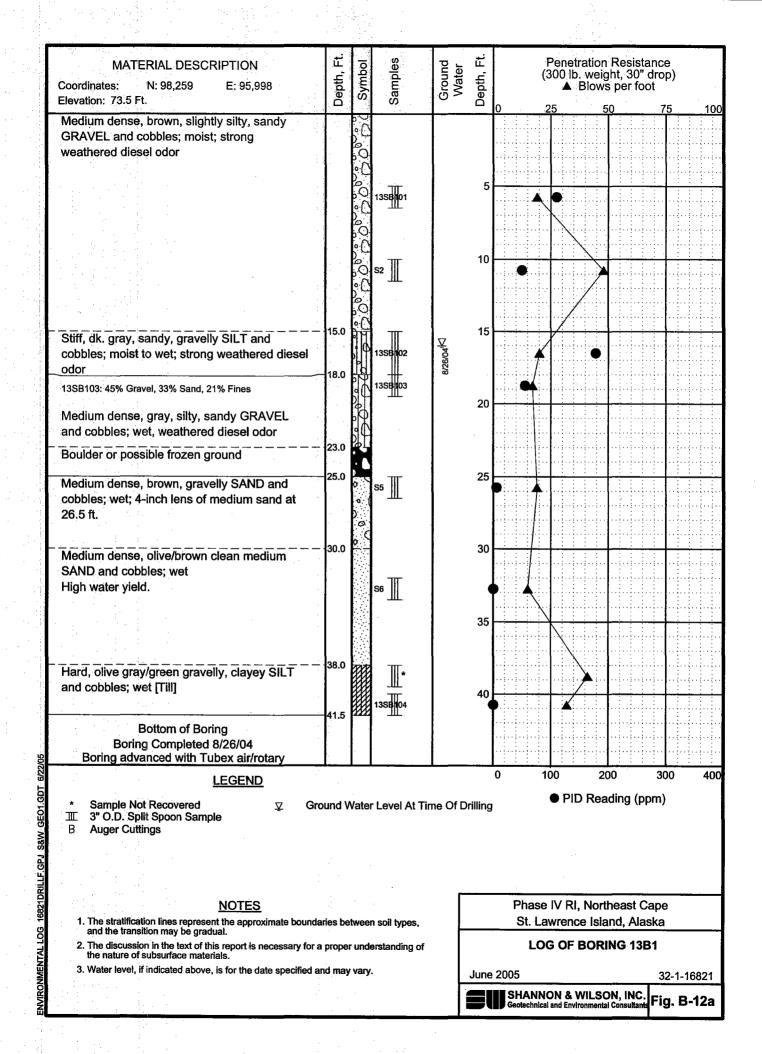


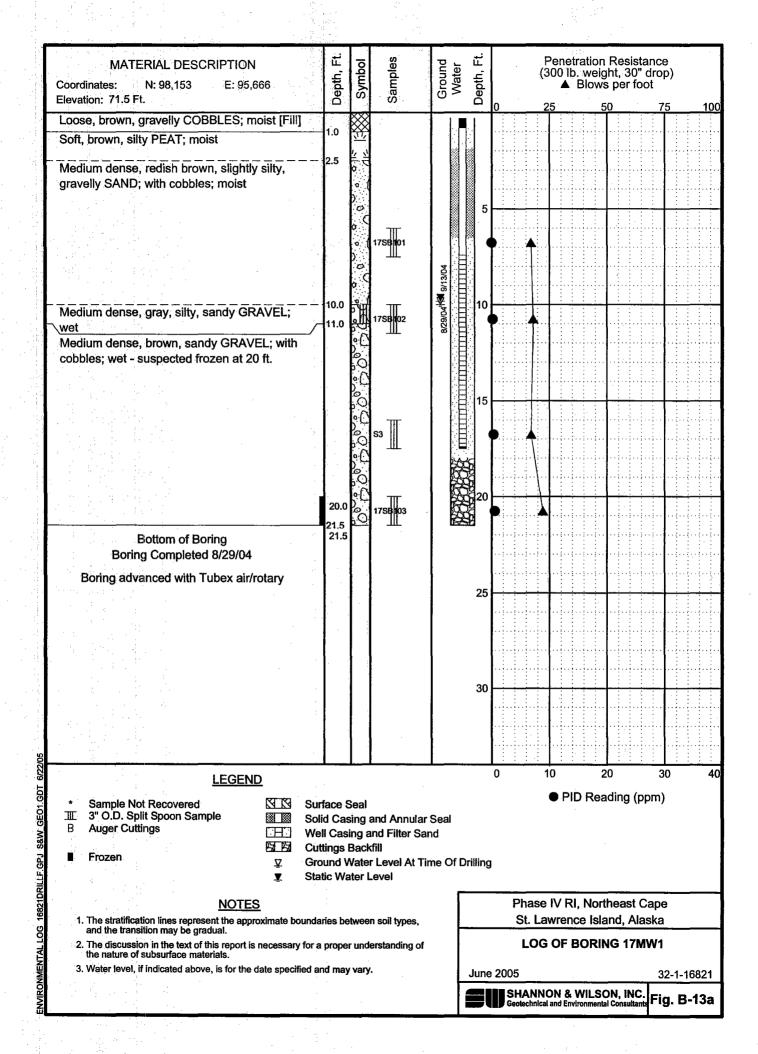

· · ·

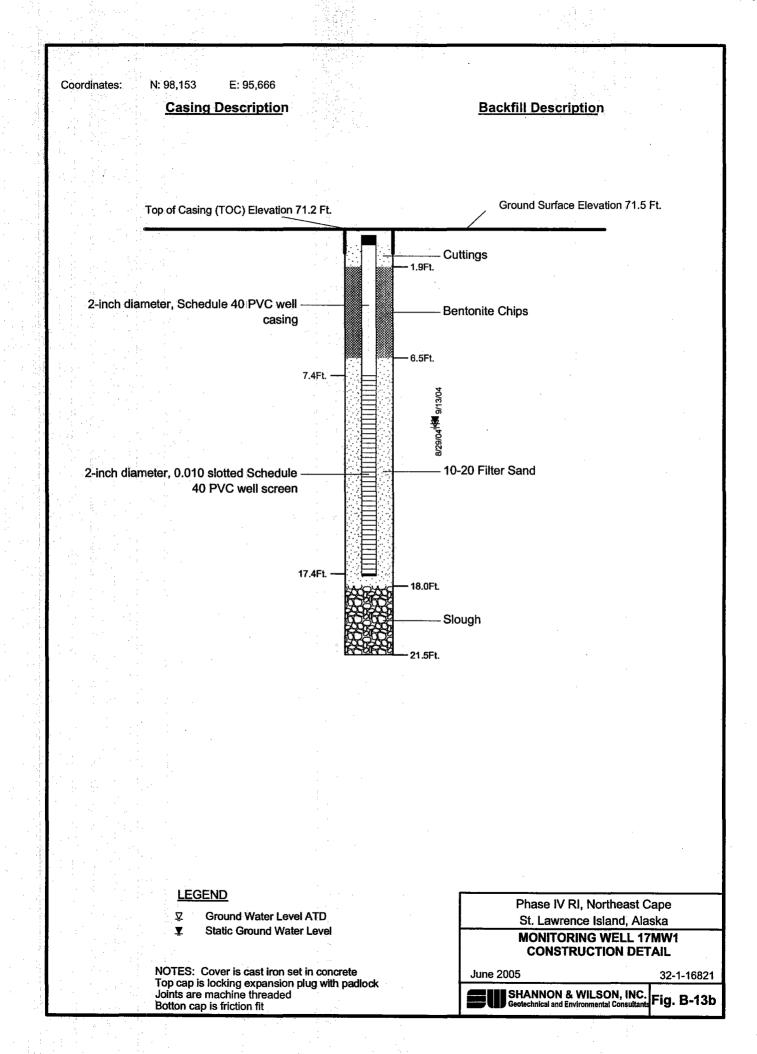


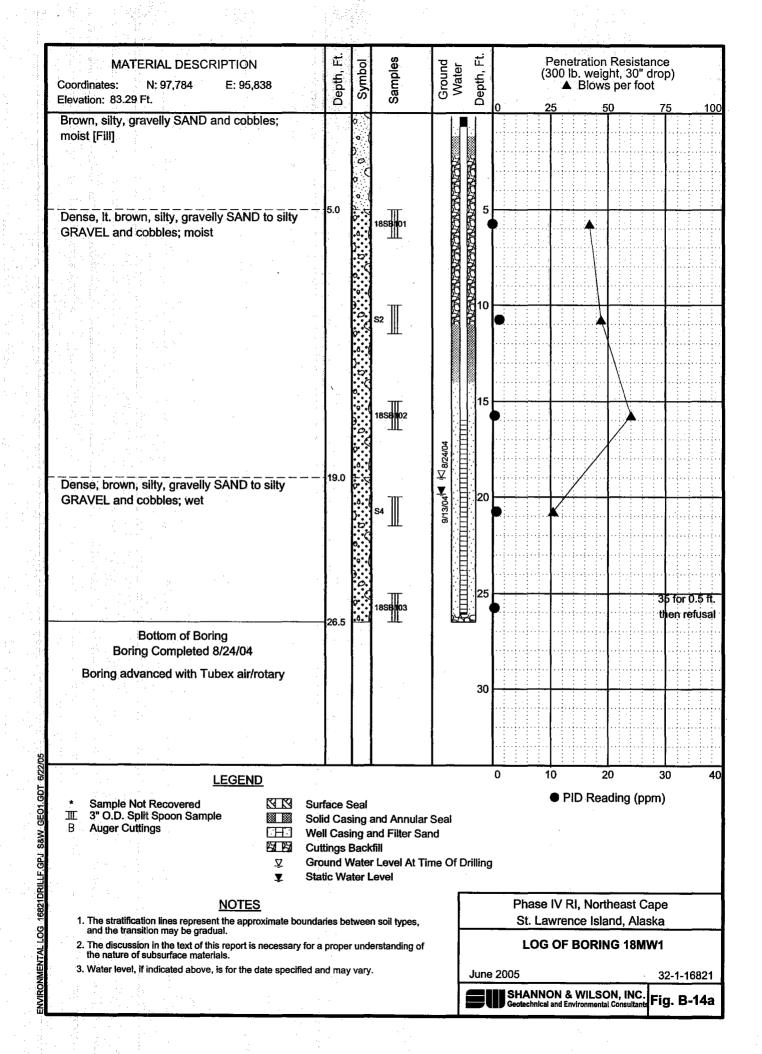


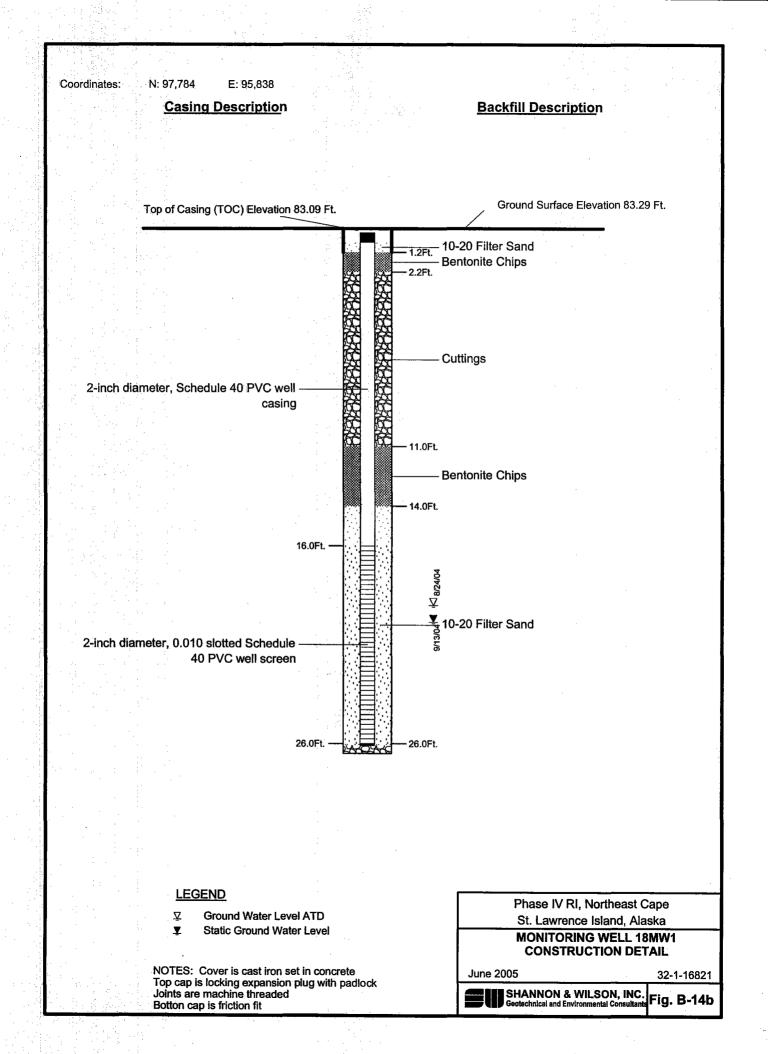


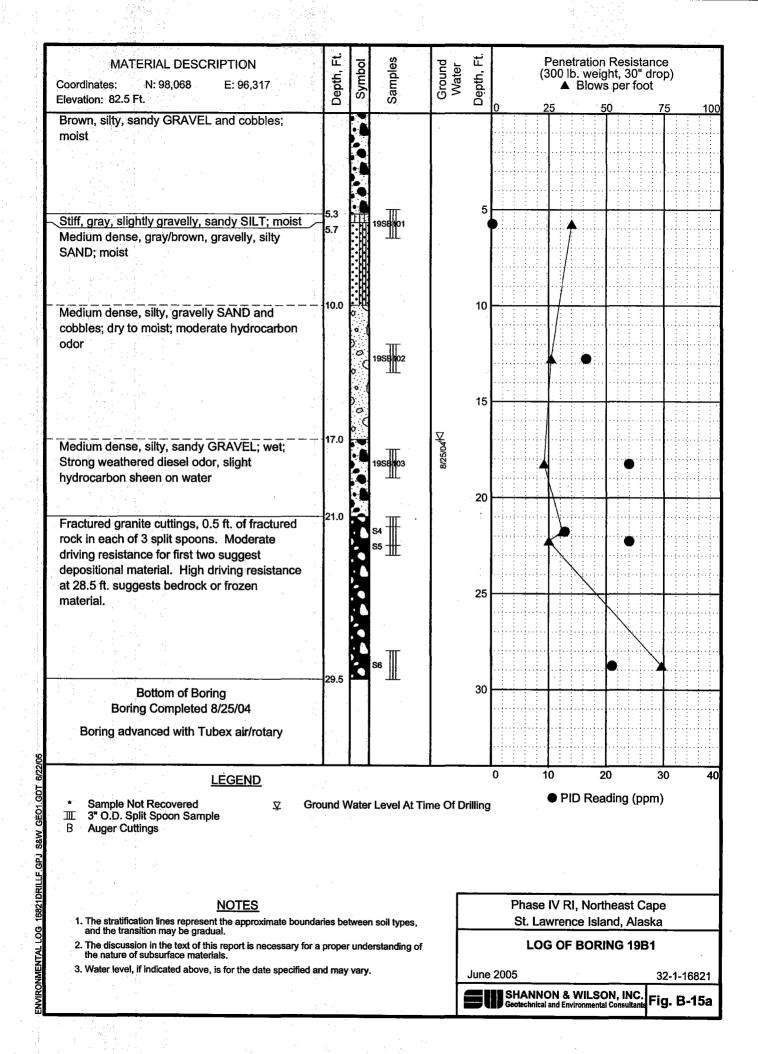


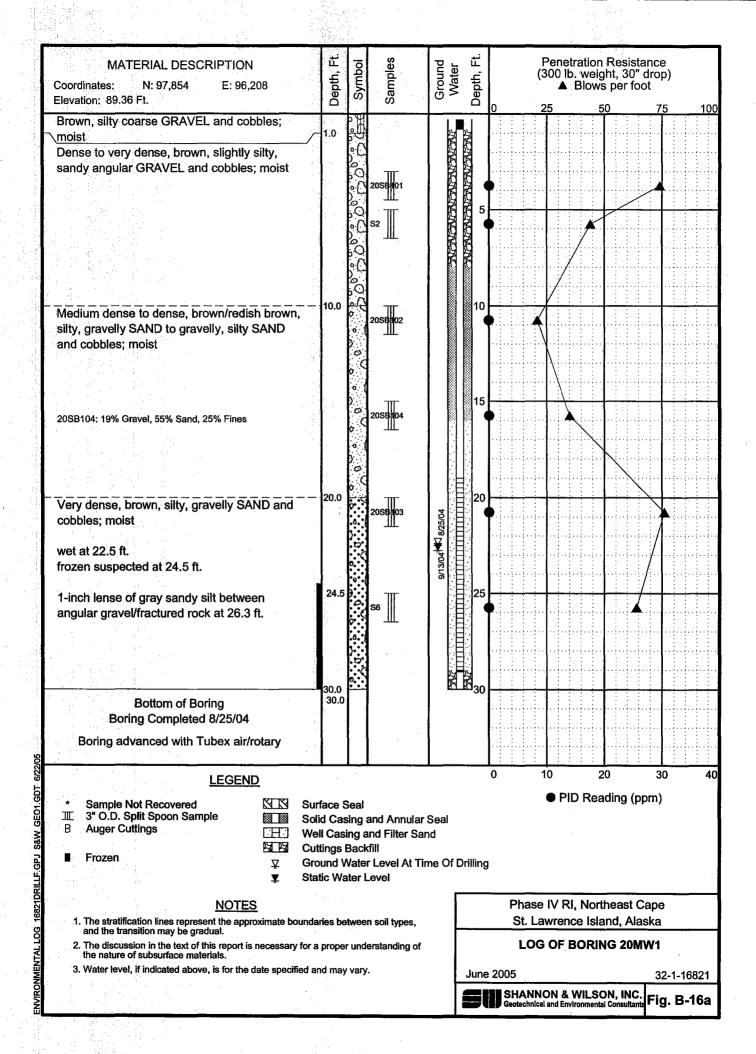


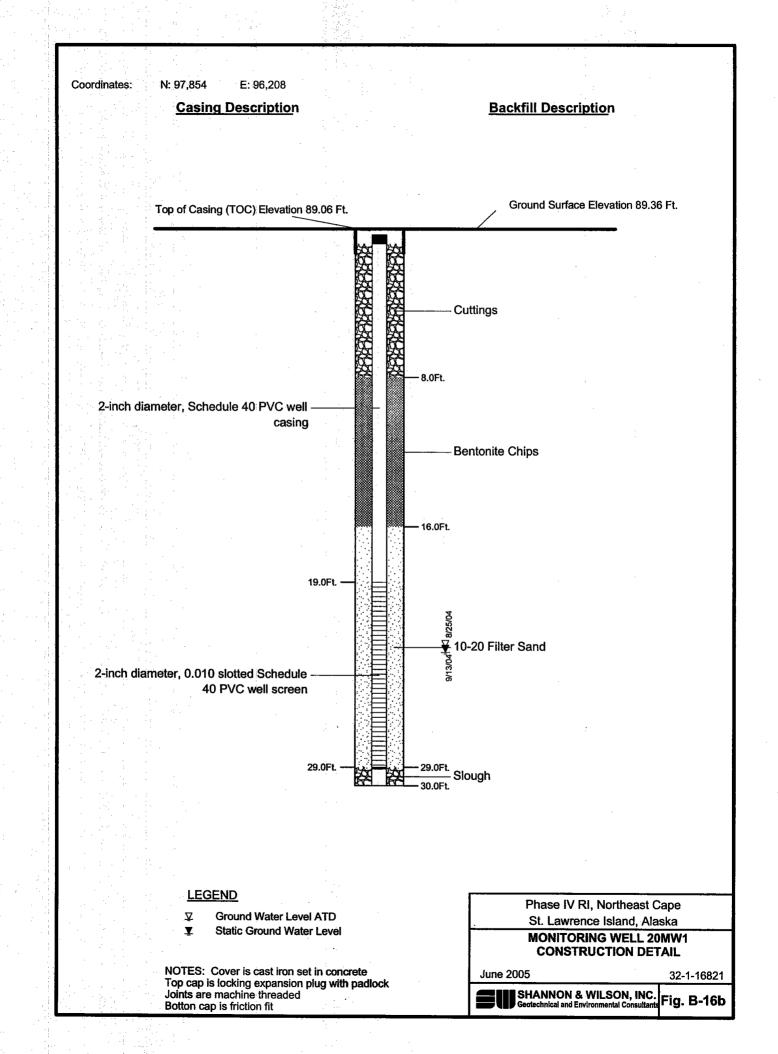

.

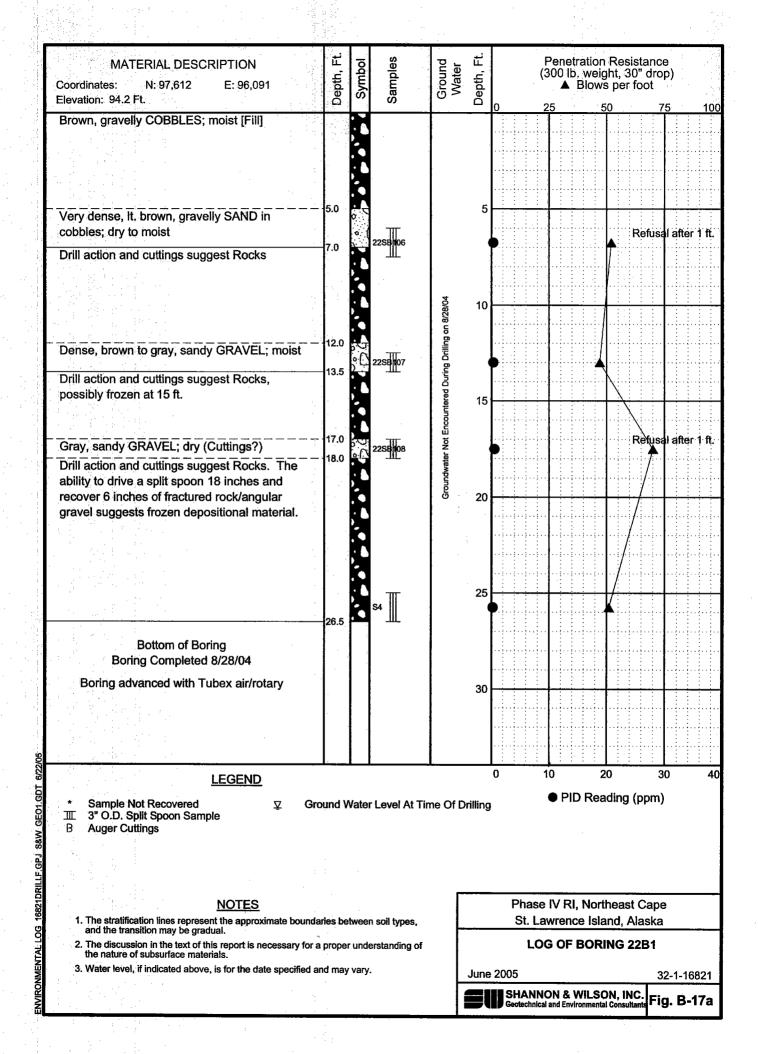


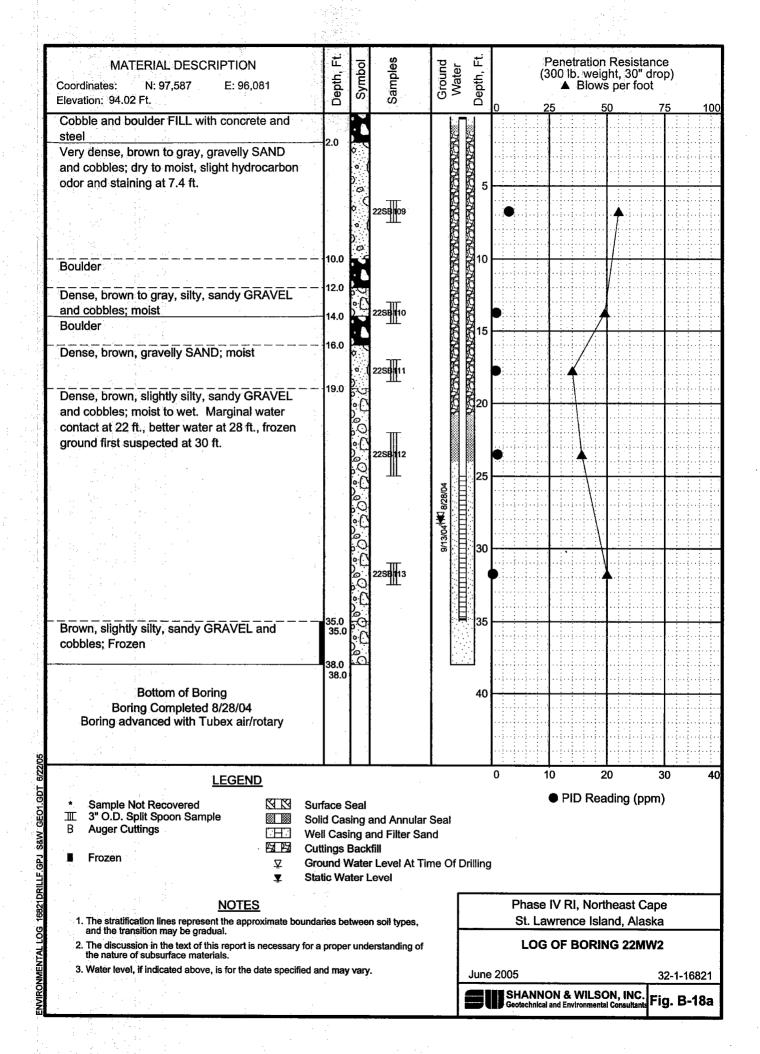


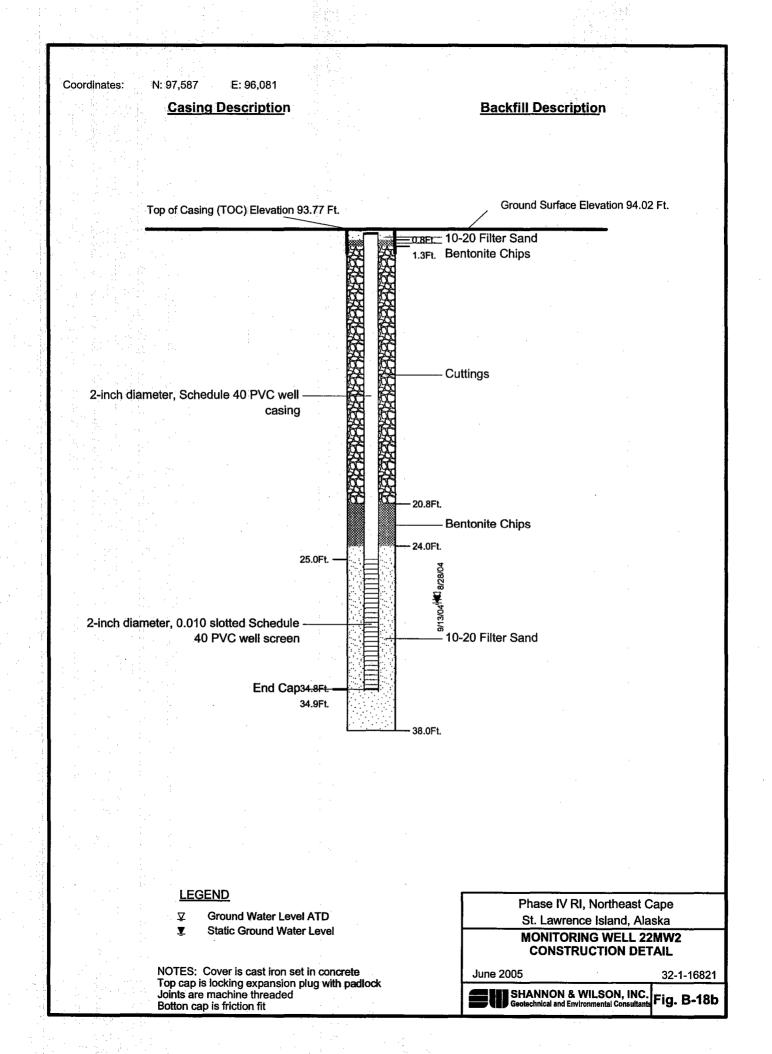


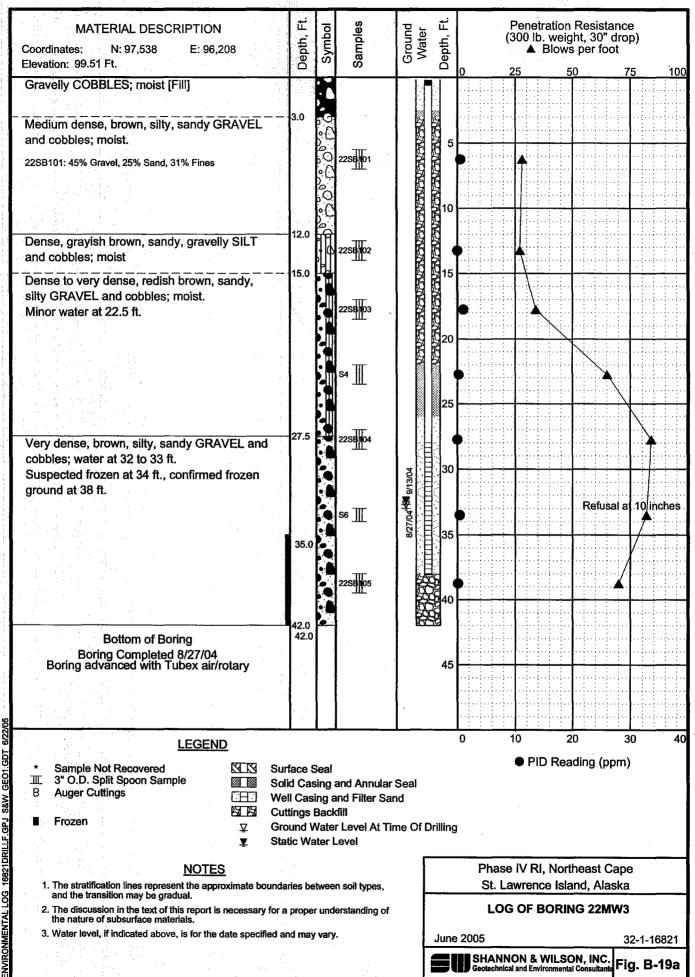


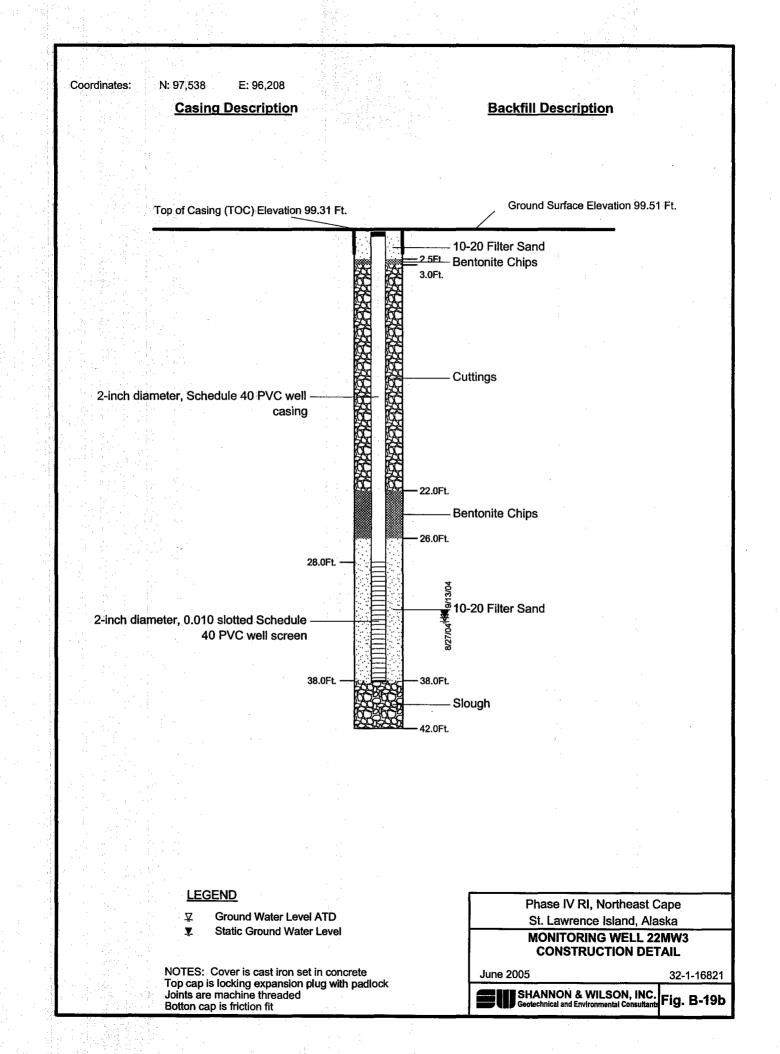


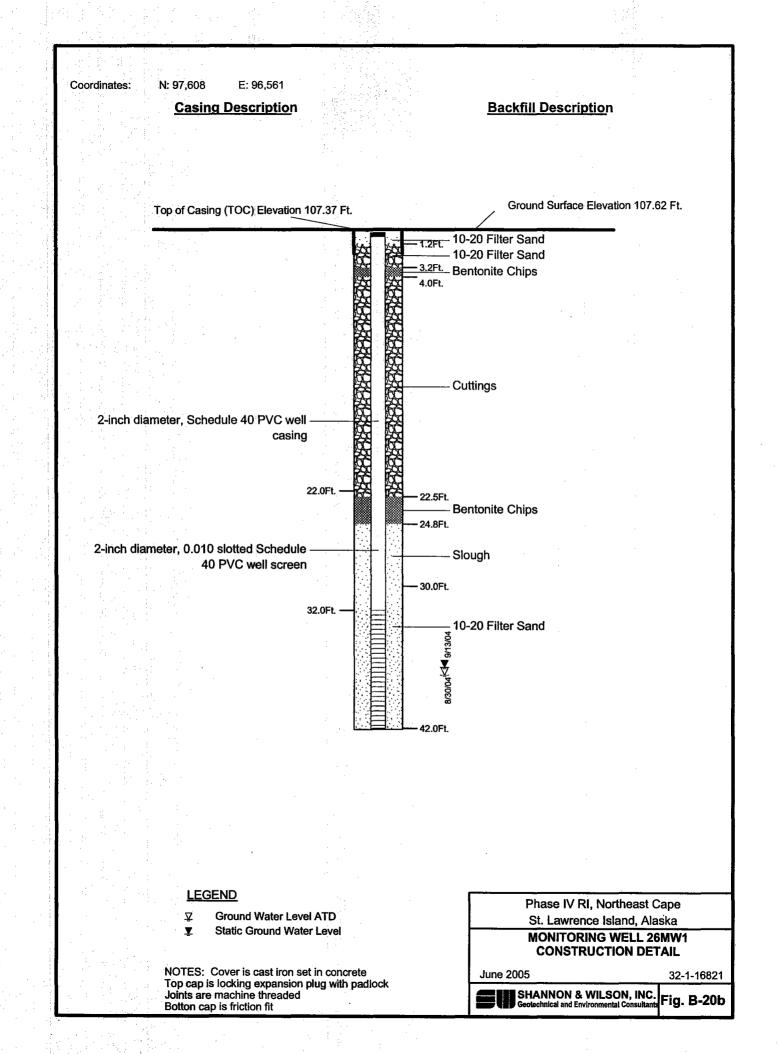


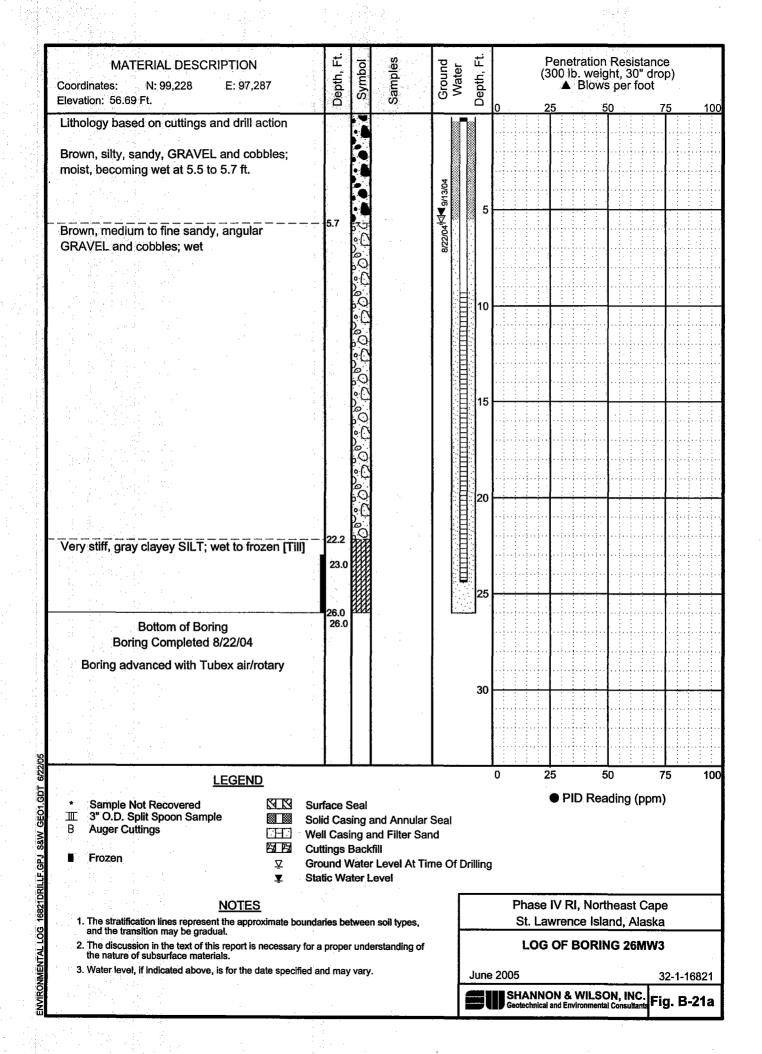


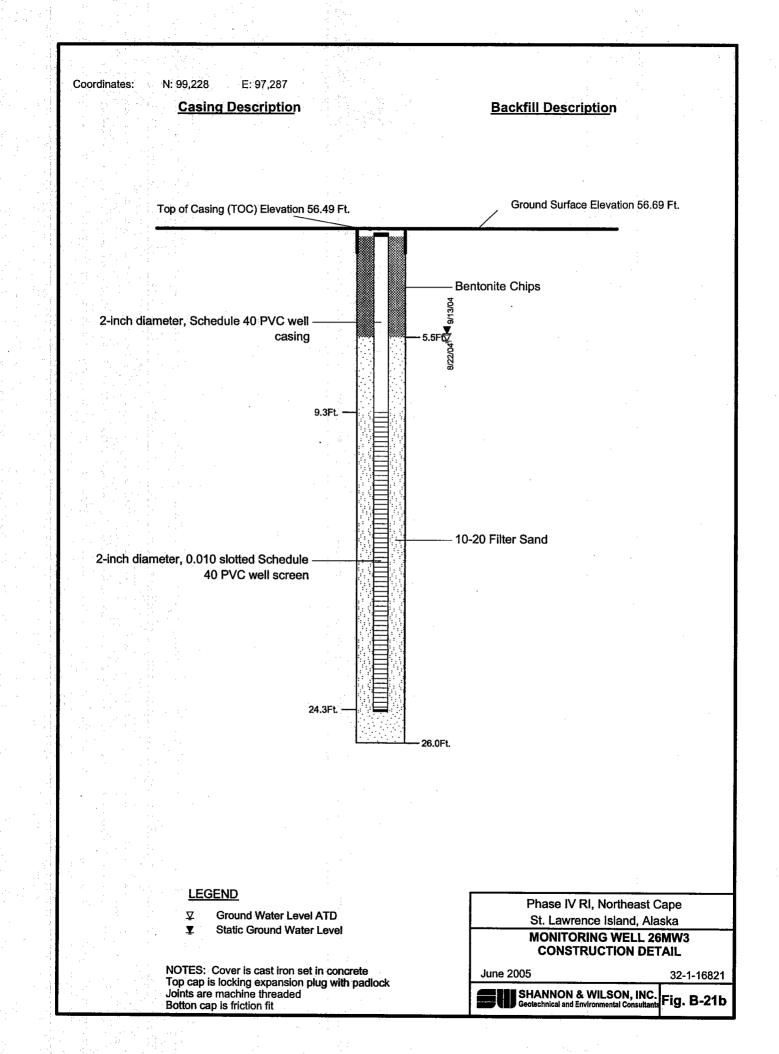


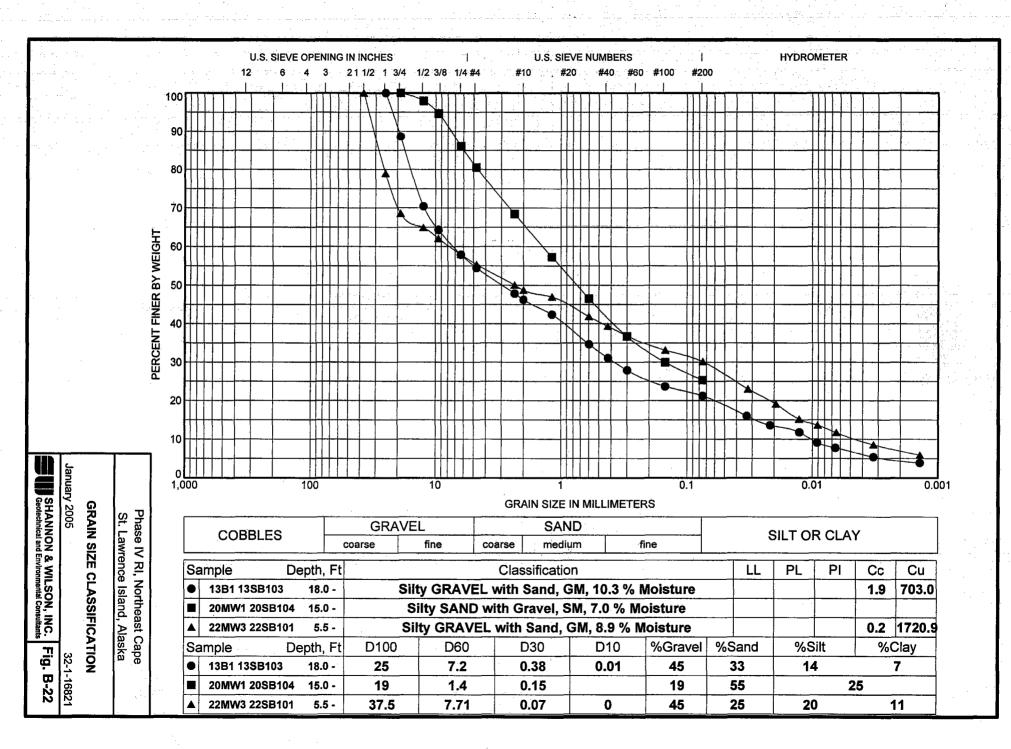


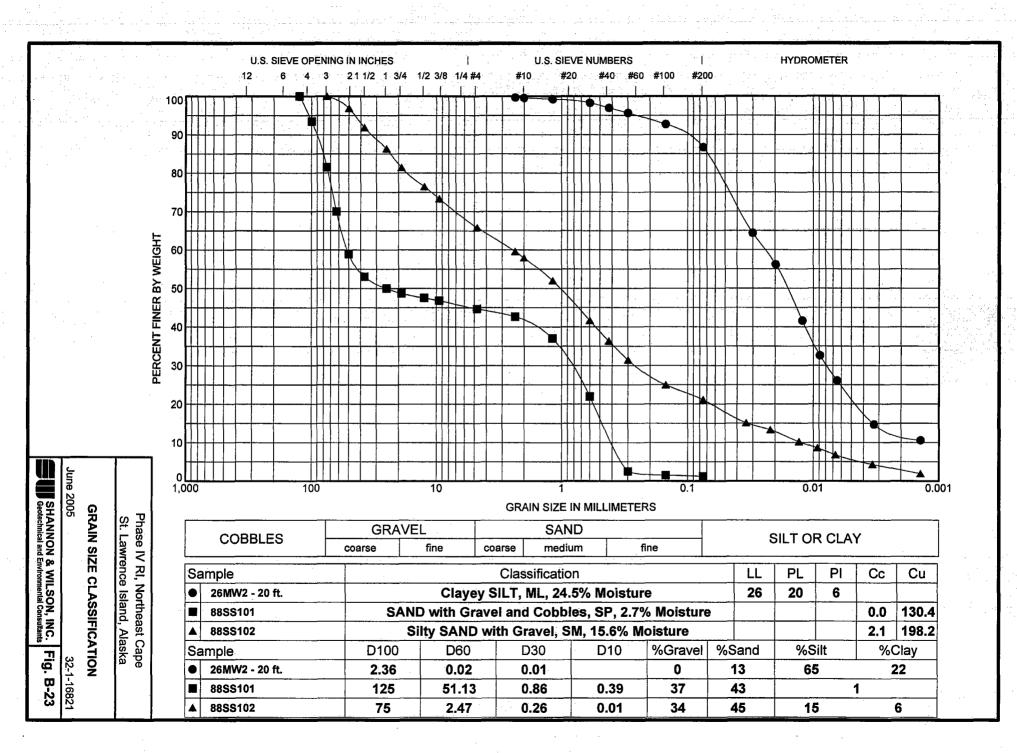


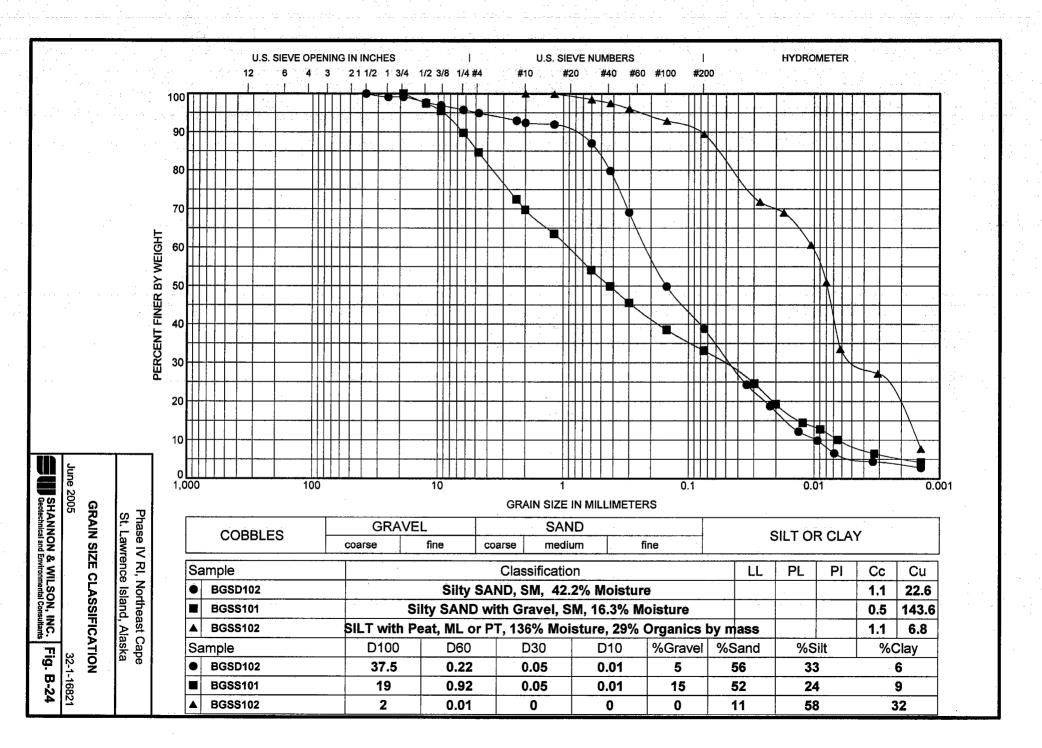


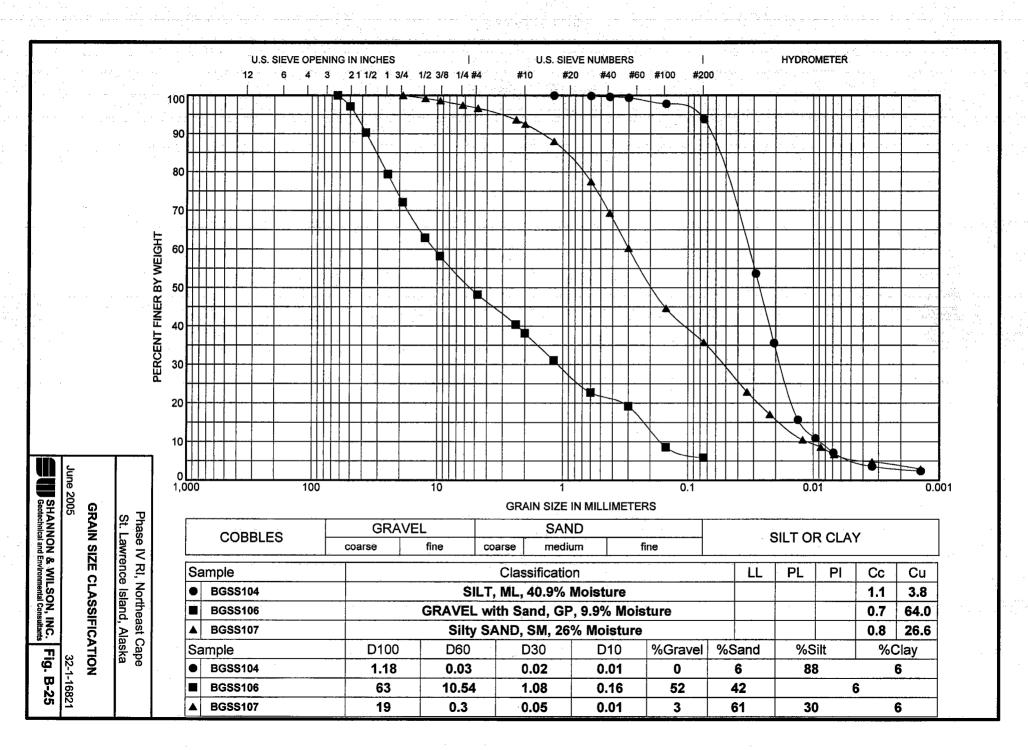


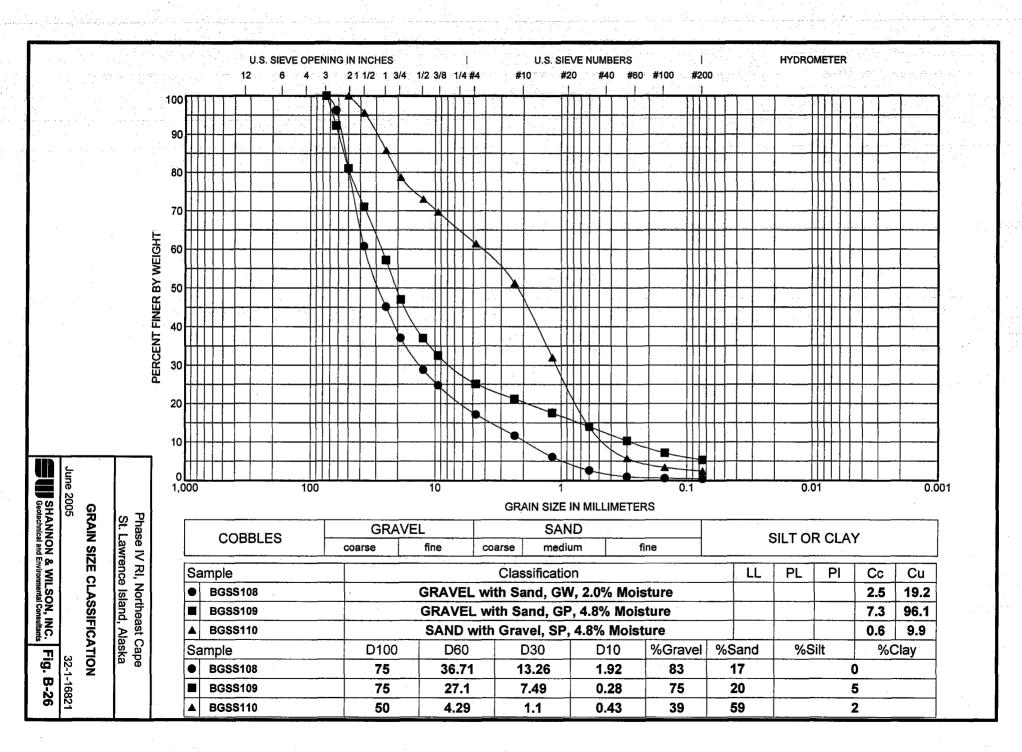

. . . .

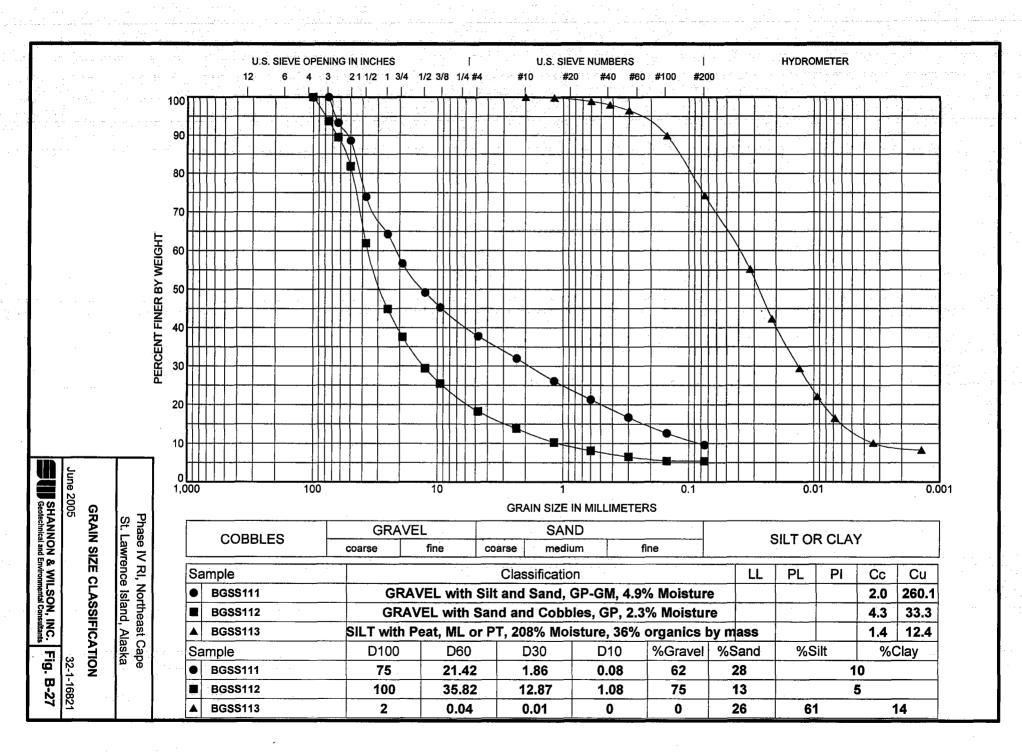


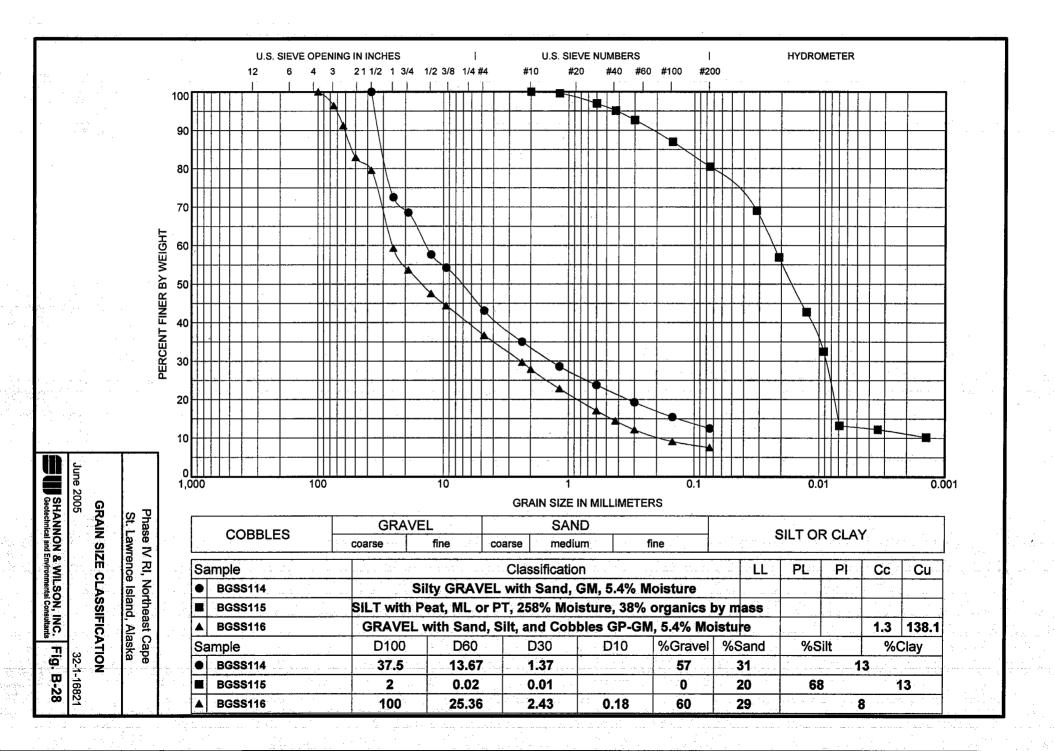

rganics (orginal top soil) t. reddish brown, slightly silty, sandy BRAVEL and cobbles; moist ncreased silt content	11.0			0 10			presidentes de la companya de		
SRAVEL and cobbles; moist	11.0			g''			<u>1 · · · ·</u>	\mathbf{L} : : : :	
ncreased silt content				CANCEN		· · · · · · · · · · · · · · · · · · ·			
ncreased silt content	16.0			215					
Brown, slightly silty, sandy GRAVEL and	18.0		NOWON	5 5 10 10 10 10 10 10 10 10 10 10 10 10 10					
obbles; moist	22.0		DWDW	C720					
Rocks	22.0		C						
				25		•••••••••••••••••••••••••••••••••••••••			
	28.0			30					
	35.0		1 11111111111111111111111111111111111	35					
			3/30/04 ¹ K						
				40					
Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary	42.0			45					
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
					0 2	5 5	i0 7	75 1	
* Sample Not Recovered	Surface Se	eal ·				PID Rea	ding (ppm))	
B Auger Cuttings	Well Casin	g and Filter Sa							
I Frozen ♀ ♀ ¥	Ground W	ater Level At T	ime Of D	rilling		-			
<u>NOTES</u>		а 1. т.	Г				•		
LEGEND * Sample Not Recovered Surface Seal II 3" O.D. Split Spoon Sample Solid Casing and Annular Seal B Auger Cuttings Sufface Seal II Frozen Well Casing and Filter Sand II Frozen Ground Water Level At Time Of II Static Water Level NOTES 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified and may vary.					Phase IV RI, Northeast Cape St. Lawrence Island, Alaska				
	Brown, slightly silty, sandy GRAVEL to gravelly SAND and cobbles; moist Brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Mostly rock chips; wet Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary LEGEND * Sample Not Recovered B Auger Cuttings Image: Sample Not Recovered B Auger Cuttings # Frozen Image: Sample Not Recovered B Auger Cuttings # Frozen Image: Sample Not Recovered B Auger Cuttings # NOTES 1. The stratification lines represent the approximate bo	Brown, slightly silty, sandy GRAVEL to pravelly SAND and cobbles; moist 28.0 Brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Aostly rock chips; wet 35.0 Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary 37.5 LEGEND 40.0 Sample Not Recovered B Auger Cuttings Surface Se Solid Casis H Auger Cuttings Frozen Ground W Ground W Static Wate NOTES 1. The stratification lines represent the approximate boundaries betward the transition may be gradual.	Brown, slightly silty, sandy GRAVEL to pravelly SAND and cobbles; moist 28.0 Brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Mostly rock chips; wet 35.0 Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary 37.5 * Sample Not Recovered II 3" O.D. Split Spoon Sample B Auger Cuttings Surface Seal Solid Casing and Annula Well Casing and Filter St Static Water Level At T Static Water Level * Frozen Y Ground Water Level At T Static Water Level	Srown, slightly silty, sandy GRAVEL to pravelly SAND and cobbles; moist Brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Aostly rock chips; wet Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary LEGEND * Sample Not Recovered 3'' O.D. Split Spoon Sample B Auger Cuttings Frozen Frozen NOTES • The stratification lines represent the approximate boundaries between soil types.	Brown, slightly slity, sandy GRAVEL to pravelly SAND and cobbles; moist Brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Aostly rock chips; wet Bottom of Boring Boring Completed 8/30/04 Boring advanced with Tubex air/rotary LEGEND Sample Not Recovered B Auger Cuttings LEGEND Solid Casing and Annular Seal Well Casing and Filter Sand Frozen Frozen NOTES 1. The stratification lines represent the approximate boundaries between soil types.	Brown, slightly silty, sandy GRAVEL to pravely SAND and cobbles; moist to pravely SAND and cobbles; moist to wet. Drill action similar to frozen ground Mostly rock chips; wet Bortom of Boring Bortom of Boring Boring advanced with Tubex air/rotary LEGEND Cutings Backfill Frozen Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Frozen Cutings Backfill Phase Static Water Level NOTES Cutings Phase Static Water Level Phase Static Water Level	Strown, slightly slity, sandy GRAVEL to pravelly SAND and cobbles; moist Strown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Additional actional actionactional actional actional actionactional actional actional a	Arown, slightly slity, sandy GRAVEL to pravelly SAND and cobbles; moist brown, gravelly SAND and cobbles; moist to vet. Drill action similar to frozen ground Aostly rock chips; wet Boring Completed 8/30/04 Boring advanced with Tubex air/rotary LEGEND Cutings Backfill Frozen Frozen 1. The stratification lines represent the approximate boundaries between soil types. 1. The stratification lines represent the approximate boundaries between soil types. 1. The stratification lines represent the approximate boundaries between soil types.	

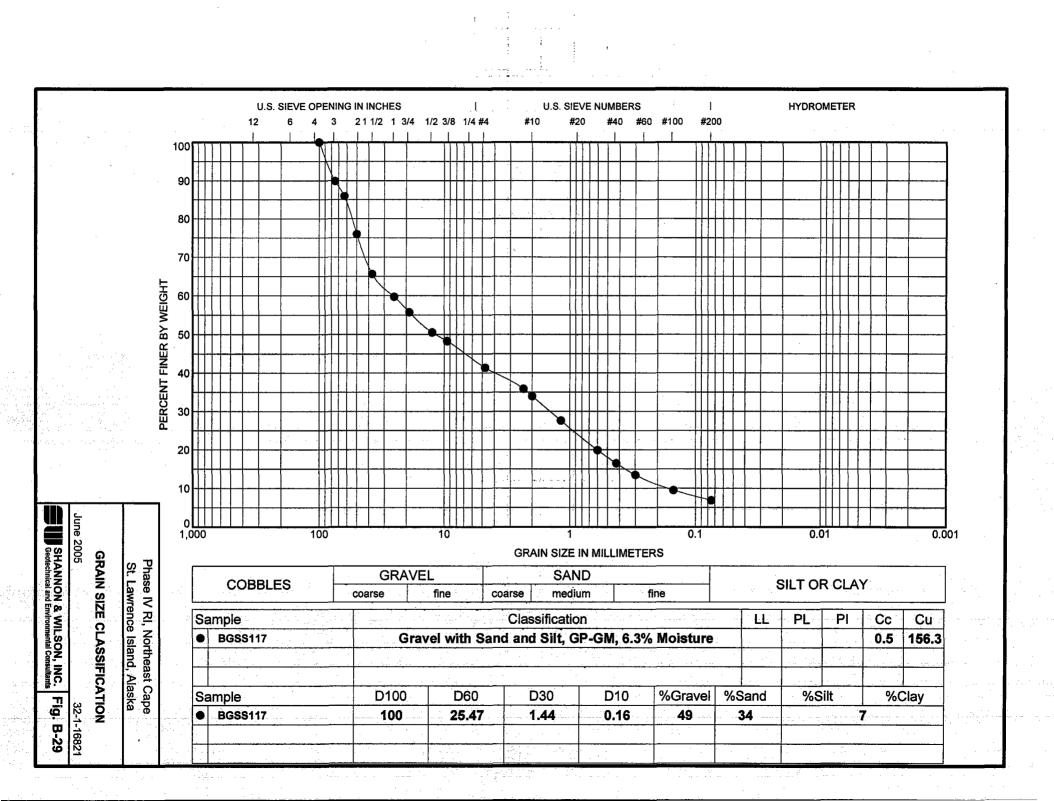












APPENDIX C

Chemical Data Quality Assessment Report and Chemical Quality Assurance Report

16 June 2005

MEMORANDUM THRU

CEPOA-EN-ES CEPOA-EN-ES-M

FOR CEPOA-PM-C (Cossaboom)

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

1. References:

a. Shannon & Wilson, Inc. report dated June 2005, <u>Appendix C- Chemical Data Quality</u> <u>Assurance Report, Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska</u>.

b. SGS Environmental Laboratories, Inc., Anchorage Alaska, Laboratory Work Orders: 1045211, 1045444, 1045459, 1045460, 1045498, 1045529, 1045600, 1045606, 1045607, 1045711, 1045712, 1045750, 1045767, 1045812, 1046036, 1046037, 1046054, and 1046067.

c. North Creek Analytical, Inc., Bothell Washington, Laboratory Work Orders: d. B4H0458, B4I0001, B4I0142, B4I0413, and B4I0427.

d. USACE, EM 200-1-6, <u>Chemical Quality Assurance for Hazardous</u>, <u>Toxic</u>, <u>and Radioactive</u> <u>Waste (HTRW)</u> Projects, 10 October 1997.

e. ADEC, <u>UST Procedures Manual</u>, 7 November 2002.

f. USACE, EM 200-1-3, <u>Requirements for the Preparation of Sampling and Analysis Plans</u>, App. I "Shell for Analytical Chemistry Requirements", February 2001.

g. DoD Environmental Data Quality Workshop, <u>Department of Defense Quality Systems</u> <u>Manual for Environmental Laboratories</u>, Final Version 2, June 2002.

2. Summary: This report is a revision of the Chemical Data Quality Assessment Report submitted as a Memorandum through CEPOA-EN-ES and CEPOA-EN-ES-M for CEPOA-PM-C, and dated 18 May 2005. This revised report incorporates analytical sensitivity information for the SVOC data, information that was inadvertently not included in the draft Chemical Data Quality Assurance Report submitted by Shannon & Wilson. Shannon & Wilson discovered this error while applying the qualification flags to the tabulated data in the final version of the <u>Phase IV Remedial Investigation</u> Northeast Cape, St. Lawrence Island, Alaska report.

This revised report should be used in conjunction with Shannon and Wilson's final Chemical Data Quality Assurance Report (enclosed). The referenced report summarizes the technical review of analytical results generated in support of the soil, sediment, and surface water sampling performed as part of the Phase IV Remedial Investigation (RI) at the former military installation Northeast Cape,

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

A AND MIDDLE STATES COMPLEXED FOR

St. Lawrence Island, Alaska. The criteria applied for this review are consistent with the project specific data quality objectives (DQOs); in cases where specific guidance was not available from this source, the data have been evaluated using the DoD QSM criteria, and/or EM 200-1-3 Appendix I. The review included evaluation of sample handling, sample preparation and holding time, analytical sensitivity, method blanks, matrix spike (MS) and MS duplicate recoveries, laboratory control sample (LCS) and LCS duplicate recoveries, surrogate recoveries, and field quality control (QC/QA duplicates, trip blanks and equipment blanks). Instrument calibration review and raw data verification were not performed.

3. Background: Soil, sediment and surface water samples were collected from Northeast Cape during August and September 2004, from fifteen discrete sites within the Northeast Cape installation, and from background locations outside of the installation boundary. Shannon and Wilson Inc. collected the samples from areas prescribed by USACE in order to address data gaps identified in previous investigations. Samples were collected for analysis using the Test Methods for Evaluating Solid Wastes (SW846) or Alaska Series Laboratory Methods, for field screening, for geotechnical characterization of soils, and for natural attenuation parameters. Only the data generated using the SW846 and Alaska methods were reviewed by Shannon & Wilson; the USACE Project Chemist examined the results for total organic carbon (TOC). Biogenic assessment for select soil samples was performed by SGS chemists; the assessment was not reviewed by either Shannon & Wilson, or by the USACE Chemist.

Samples collected for analysis using the SW846 methods or the Alaska methods were duplicated (QC/QA) at a rate of 10% (per method/matrix) to assess inter- and intra-laboratory precision, and both equipment and trip blanks were submitted to assess contamination introduced during sampling, shipment and/or handling. Project samples were specified as MS/MSD at a rate of 5%, and were used to assess matrix effects.

The primary and QC samples were submitted to SGS Environmental Services, Inc. of Anchorage, Alaska, and the QA samples were submitted to North Creek Analytical, Inc. (NCA) of Bothell, Washington. Analyses included GRO, DRO and RRO by Alaska Methods AK101, AK102 and AK 103; BTEX by SW8260B, SVOCS by SW8270C, PAH by SW8270C (SIM), PCBs by SW8082, pesticides by SW8081A, and metals (8 RCRA, or a chromium, lead, zinc, mercury combination) by SW6020 and SW7470A/7471A. Soil samples for GRO and/or BTEX analyses were methanol-preserved. Each cooler shipment containing samples for GRO and/or BTEX analyses contained matrix-specific trip blanks.

Composite rinsate samples, generated by rinsing the "cleaned" field equipment (the Grundfos pump, and split spoons) with deionized water were submitted for a variety of analyses; the split spoon rinsates were collected to assess potential impact on soil sample results, especially for fuels (GRO, DRO, RRO) and TOC, since corn oil was used as a lubricant for the air-rotary drill.

4. Data Quality Objectives: Analytical results will be compared to State of Alaska, Department of Environmental Conservation, 18AAC75 Oil and Other Hazardous Substances Pollution Control, and 18AAC70 Water Quality Standards (for TAH and TAqH). Data quality needs to be sufficient to compare to regulatory levels, and in some cases, for potentially assessing risk.

2

versionsmees diam

CEPOA-EN-ES-M (1110-1-8100f)

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

5. Chemical Data Quality Assessment: The majority of data are of adequate quality for project purposes. Approximately 30% of the data required qualification due to low-level contamination detected in blanks, low surrogate recovery, LCS/D or MS/D recoveries and/or precision out-side of project-established criteria, or estimated results between the method detection limit (MDL) and the sample's reporting limit (RL) [the RL, as used in the referenced review, is equivalent to the practical quantitation limit]. Only the method, equipment, or trip blanks with detections greater than $\frac{1}{2}$ the RL were considered "blank contaminated." Approximately 31% of the data had a RL above the project reporting limit goal (RLG); most of these data were for soil or sediment samples with high organic matter content and/or high moisture content. In some cases the RL was greater than the relevant cleanup level; in most of these, the result was non-detect and the MDL was below the relevant cleanup level. In nine of a total of 4,673 analytical results, a result was reported that was between the MDL and the RL when the RL was above the relevant cleanup level. Several pesticides (α -, β -, δ -, and γ -BHC; dieldrin, endrin, endrin aldehyde, and endrin ketone) in the sediment samples had MDLs above the relevant cleanup levels.

Different extraction methods were utilized by the primary and QA laboratories for a variety of tests. Water samples for DRO, RRO, PAH, and PCB analysis were prepared by SGS using SW3510C (separatory funnel liquid-liquid extraction), while NCA used SW3520C (continuous liquid-liquid extraction); slight differences between the results were noted, especially at low-level concentrations, with the SW3520C method resulting in slightly higher concentrations of target analytes due to better extraction efficiency of the method. Soil and sediment samples for PAH or SVOC analysis were prepared by SGS using SW3550B (ultrasonic extraction), while NCA used both SW3550B and SW3545 (pressurized fluid extraction); no apparent differences between the results were noted. Water samples for metals analysis (all except mercury) were prepared by SGS using SW3015 (microwave assisted acid digestion) while NCA used SW3020A (acid digestion); no apparent differences were noted.

Contrary to the Shannon and Wilson report, the methods used to extract, introduce, and analyze the sample for GRO (and BTEX by 8260) were identical, as confirmed by the USACE Project Chemist via phone discussions with both labs: an aliquot of soil or sediment (target weight \sim 50g dry) were placed in the VOA jars and covered with methanol in the field (as described in both the AK101 and SW846 5035 methods); at each lab an aliquot of the methanol extract was taken and injected into water for purge-and trap analysis. The labs simply reported the "extraction" methods differently.

Water samples associated with equipment blank results greater than ½ RL have been B flagged as blank contaminated. Three of the split spoon rinsate samples contained GRO, DRO and RRO at (liquid) concentrations exceeding ½ the aqueous RL. The potential impact of the corn oil residue to the sample results is not quantifiable, and after discussions among the USACE Project Delivery Team members, is considered negligible. The analytical results for soil samples associated with split spoon rinsate samples have not been qualified.

Some of the qualified data may be used demonstrate that these samples were not grossly contaminated, but may be considered rejected for use in risk-assessment calculations.

3

Lawy and the

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

a. GRO by AK101/BTEX by 8260B

(1) Water Samples:

A few of the GRO results for water samples were "J" flagged as estimated due to surrogate or MS/MSD recoveries outside of project-established limits.

All GRO results for water samples are usable as qualified.

(2) Soil and Sediment Samples:

Many of the soil and sediment samples were qualified as estimated due to low recovery of the field surrogate 4-BFB (SGS) or α,α,α -trifluorotoluene (NCA). For the majority of the soil GRO samples with failing field surrogate recoveries, SGS recalculated the surrogate results using the equation presented in section 10.6.5 of the AK101 Method in the UST Procedures Manual to confirm a matrix effect. The recalculated surrogate recovery was within the method specified criteria of 50-150% for the majority of these samples (the few exceptions were sediment samples); the prevalence of acceptable adjusted field surrogate recoveries for the GRO analysis confirm a matrix effect. This effect also impacts the BTEX data.

Approximately 26% of the soil or sediment samples analyzed for benzene by 8260B had RLs above the ADEC cleanup level of 0.020 mg/kg due to matrix effects; approximately one-half of these samples also had MDLs above the cleanup level. These results are typical for the method when field samples with high organic content and/or elevated moisture content are field preserved with methanol. These benzene results, in conjunction with the GRO data, may be used to delineate areas as "not grossly contaminated" but are rejected for use in risk-assessment calculations.

All other GRO/BTEX data are usable as qualified.

b. DRO/RRO by AK102/103

(1) Water Samples:

The majority of the DRO and RRO RLs did not meet the RLGs when the sample result was less than the RL. RLs for all of the RRO samples were slightly above but RLs for all DRO analyses were below the PQLs specified in the UST Procedures Manual. Some of the results were "J" flagged as estimated due to laboratory QC falling outside of project-established limits (surrogate or MS/MSD recoveries, or LCS/D precision not met). Some DRO and RRO results for water samples were "B" flagged as blank contaminated; impacted sample results between the MDL and the RL were reported as non-detect at the RL ("ND [RL]").

and the politicity of the second second second second

E SCHONDING DE L

4

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

The DRO and RRO data for water samples are usable as qualified.

(2) Soil and Sediment Samples:

The three split spoon rinsate (composite) samples submitted for fuels analysis were reported to contain DRO and RRO at concentrations greater than ½ the RL for water samples. No data were flagged due to this low-level, unquantifiable contamination, since the impact of the corn oil on the usability of the soil sample data is thought to be negligible. DRO results, field notes, and select chromatograms (for the soil samples associated with the highest split spoon rinsate sample results, 04NE22SQ201) were carefully examined to determine if soil with DRO results near the cleanup level had been impacted; only two samples, 04NE10SB104 & -106, were close to the cleanup level. These samples were not noted by field samplers to have a fuel odor. The laboratory chemists have identified these two DRO results (619 mg/kg for 04NE10SB104 and 275 mg/kg for 04NE10SB106) as "resembling a weathered middle distillate" and the chromatograms for these two samples did not show any evidence of corn oil.

Approximately 14% of the surrogate recoveries for DRO, and \sim 26% of the surrogate recoveries for RRO were above the control limits. The elevated surrogate recoveries were attributed to high DRO concentrations in the samples or biogenic interferences, and thus do not impact data usability.

The DRO and RRO data for soil and sediment samples are usable as qualified.

c. <u>SVOCs by 8270C</u>

(1) Water Samples: Water samples were not submitted for SVOC analysis.

(2) Soil Samples:

The three surrogates for the acid fraction of the SVOCs were below the project specific control limits for three of the four primary samples submitted for this analysis (04NE01SS01, -102, and -103); the surrogates for the base/neutral fraction were within control limits. The analytical results for the following analytes should be considered estimated data, biased low: 4-chloro-3- methylphenol, 2-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4-dimethylphenol, 4,6- dintro-2-methylphenol, 2,4-dinitrophenol 2-methylphenol, 3- & 4-methylphenol (coelution), 2- nitrophenol, 4-nitrophenol, pentachlorophenol, phenol, 2,4,5-trichlorophenol, and 2,4,6- trichlorophenol. Contrary to the Shannon & Wilson report, the results for the base/neutral fraction are not considered impacted, since these surrogates met recovery criteria.

Both the primary and the referee laboratories had difficulty meeting the RLs, and some cases the MDLs for a variety of the SVOCs, due to a combination of high moisture and organic matter content of the samples, as well as sample dilution at the lab(s). Table 6 of the <u>Chemical Data</u> <u>Quality Assurance Report</u> identify the analytes that have MDLs greater than the cleanup levels, and were reported as non-detects; these samples were all collected from Site 01.

5

and the second second

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

The qualified results for the acid fraction, and the results for the SVOCs from Site 01 that could not be detected at the cleanup level may be used to delineate areas as "not grossly contaminated", but are rejected for use in risk-assessment calculations. All other results are usable as qualified.

d. PAHs by 8270C (SIM)

(1) Water Samples:

Laboratory QC criteria were met for PAH analysis by both analytical laboratories. The QA lab extracted two of the three water samples submitted for analysis 1 day past technical hold time; these results were not qualified as estimated due to passing QC and comparability to the primary data. Some of the naphthalene results were "B" flagged as blank contaminated. All of the benzo(a)pyrene and dibenzo(a,h)anthracene results failed to meet the project RLGs, however in no case was the RL higher than the ADEC cleanup level.

The PAH data for water samples are usable as qualified.

(2) Soil and Sediment Samples:

Matrix spike/spike duplicate recoveries were highly variable for a number of the samples submitted for PAH analysis; all other laboratory QA/QC criteria were generally met. Samples from Site 08 had low or no MS/MSD recovery, and no or low-level results; the high organic matter content in samples collected from this site may have interfered with the reliability of the analytical results; therefore, all PAH results for sediment samples from Site 08 should also be used with caution.

The PAH results from sediments collected from Site 08 are rejected for use in riskassessment calculations, but may be used to delineate areas as "not grossly contaminated". All other PAH data for soil and sediment samples are usable as qualified.

- e. <u>PCBs by 8082</u>
 - (1) Water Samples:

None of the PCB water RLs met the project RLG of 0.05 μ g/L, but all were at or below the cleanup level of 0.5 μ g/L. SGS was able to report to ~0.1 μ g/L with a MDL less than the project specified RLG of 0.05 μ g/L, whereas NCAs MDL was generally less than 5 times less than the cleanup level; these reporting limits are typical for the method.

Laboratory QC criteria were met for PCB analysis by the primary laboratory. One of the two QA samples submitted to NCA required re-extraction past the hold time due to LCS/D failure; these results have not been qualified due to the stability of PCBs, and the comparability among the primary, QC and QA triplicate results.

and constant as

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

The PCB data for water samples are usable as qualified, but the NCA results are rejected for use in risk-assessment calculations due to elevated RL/MDL.

(2) Soil and Sediment Samples:

Laboratory QC criteria were generally met by both analytical laboratories. MS/MSD recoveries were low for a few samples, and surrogate recoveries were below the control limit for four of the sediment samples (04NE29SD207, -108, -109, and -307); since samples -207 and -307 are QC/QA duplicates, the preferred result is for the primary sample -107.

The PCB data for samples are usable as qualified, but results for sediment samples 04NE29SD108 and -109 are rejected for use in risk-assessment calculations.

f. Pesticides by 8081A

(1)Water Samples:

The only aqueous sample analyzed for pesticides during this investigation was a rinsate sample collected from the dredge used to collect the sediment samples. Laboratory QC criteria were met, and although the QAPP specified RLs were not met for a number of the pesticides, none of these pesticides were detected above the MDL.

The pesticide data for water samples is usable as qualified.

(2) Sediment Samples:

Neither of the analytical laboratories could achieve the RLG for the sediment samples, and for some analytes the MDL was above the appropriate cleanup level (see Section 5.0). All of the sediment samples submitted for this analysis were collected from Site 29, which had high levels of naturally occurring organic matter, and high moisture content. Three of the sample had low surrogate recoveries below control limits (04NE29SD108, -109, and -207).

The pesticide results for sediments may be used, as qualified, to delineate areas as "not grossly contaminated", but are rejected for use in risk-assessment calculations.

g. Metals by 6020 and 7471A or 7470A

(1) Water Samples:

Laboratory QC criteria were met for metals analysis by both analytical laboratories. The RLG was not always achieved for some of the metals, however, the resultant RLs were all below cleanup levels. Lead and mercury were detected in the Grundfos pump rinsate sample at concentrations greater than ½ the QAPP specified RL, and the impacted analytical results were "B" flagged as blank contaminated; all B flagged results were below the cleanup level.

and the second second

The metals data for water samples is usable as qualified.

1

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

(2) Soil and Sediment Samples:

Laboratory QC criteria were met for metals analysis by both analytical laboratories. MS/MSD recoveries for a variety of metals were either above or below control limits, or had high RPDs; analytical results for these samples are considered estimated results.

The metals data for soil samples is usable as qualified.

6. Total Organic Carbon (TOC): Total Organic Carbon was determined by SGS using a projectapproved in-house SOP. The SGS analysis is performed by high temperature catalytic combustion using a non-dispersive infrared carbon dioxide detector; it is reported as Method E415.1. Cursory examination of associated laboratory QC show the analyses met the laboratory established limits; the relative percent difference (RPD) between the four QC duplicate samples were 12.4% (04NE29SD107 & -207), 6.74% (04NE31SB106 & -206), 13.1% (04NEBGSD101 & -201), and 10.3% (04NEBGSS101 & -201). None of the data were qualified.

The TOC data for soil samples must be used with caution. Some of the soil/sediment collected for this analysis contained DRO and RRO; if these data are to be used in Method Three calculations, the DRO and RRO results, in conjunction with the field screening notes (fuel odor?) and the biogenic assessment, must be examined to determine if the TOC results are usability in this calculation.

7. QC/QA Triplicates: The majority of the triplicate results were very comparable. When the results were not in agreement the Shannon and Wilson project chemist, through review of each laboratory's associated batch QC/QA information, chose which result was the preferred result for triplicate set.

a. Comparison of Water Triplicates:

(1) Four sets of QC/QA triplicates were collected and analyzed for GRO, DRO, and RRO. One set was in disagreement for DRO, another was in disagreement for RRO; the GRO results were all in agreement.

(2) Four sets of QC/QA triplicates were collected and analyzed for BTEX. All results were in agreement.

(3) QC/QA samples were not collected or analyzed for SVOCs but three sets of QC/QA triplicates were collected and analyzed for PAH. Two sets were in disagreement for naphthalene; one set was in major disagreement for acenaphthene, fluorene, and phenanthrene, with the primary sample showing low-level detects, but no detects in the QC or QA duplicates. Since the analytical results for the major fuel classes, GRO, DRO, and RRO are all estimated results, and since the presence of acenaphthene indicates a fresher fuel, it is likely the primary result is in error.

(4) Two sets of QC/QA triplicates were collected and analyzed for PCBs. All results were in agreement (non-detects).

(5) Water samples were not collected for pesticide analysis.

8

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

and the state of the states

(6) Two sets of QC/QA triplicates were collected and analyzed for metals. A majority of the results were in agreement; disagreement was generally among low-level detect/non-detect results where higher variability is to be expected.

b. Comparison of Soil/Sediment Triplicates

(1) Eleven sets of QC/QA triplicates were collected and analyzed for GRO, DRO, and RRO. Five sets were in agreement. The majority of the differences was between the primary and the QA laboratory (in five of the six cases where the data disagreed, the primary results were comparable), and was due to disagreements among low-level results. The USACE Project Chemists concurs with Shannon & Wilson's selection of the preferred results (Section 6.0 of the CDQR).

(2) Seven sets of QC/QA triplicates were collected and analyzed for BTEX. Six of the sets were in agreement. The seventh set is not in agreement due to a suspicious toluene result for the QA sample; the QA result for this set is not the preferred result.

(3) Six sets of QC/QA triplicates were collected and analyzed for PAH. Three sets were in disagreement. The USACE Project Chemists concurs with Shannon & Wilson's selection of the preferred results.

(4) One set of QC/QA triplicates were collected and analyzed for SVOCs. Differences in reporting limits between the labs resulted in a major disagreement for pentachlorophenol (only).

(5) Nine sets of QC/QA triplicates were collected and analyzed for PCBs. Seven were in agreement, one was in slight disagreement (due to low-level detects and differences between the primary and QA lab detection limits) and one set was in major disagreement. Although the QC and QA duplicate results were comparable, the highest result is above the ADEC cleanup level of 1 mg/kg. Contrary to the Shannon and Wilson report, the preferred result for the set in disagreement is the primary sample (04NE13SB124) result of 5.34 mg/kg, which is more than 10 times higher than the QC and QA results (5.34 compared to 0.41 and 0.33 ppm); the USACE chemist, with permission granted by Shannon & Wilson's Project Chemist, contacted the laboratory and confirmed the original (non-diluted) and final sample result.

(6) Two sets of QC/QA triplicates were collected and analyzed for pesticides. One set had major disagreement between the primary and QA laboratory for a few analytes; these differences were a result of low-level detects at the QA laboratory, due to lower detection and reporting limits.

(7) Four sets of QC/QA triplicates were collected and analyzed for metals. Two sets were in agreement. The USACE Project Chemists concurs with Shannon & Wilson's selection of the preferred results.

8. Statement of Contract Compliance: A complete data package was not received from NCA (QA lab) until more than 2 months after the data was due to USACE. The contract was set up so that the analytical results from the QA lab should have been received by early October; the Contracting Officer was involved, and the data was finally received late, but complete, by early December.

9

A CARLES A

SUBJECT: Revised Chemical Data Quality Assessment Report for ERP030 Northeast Cape Phase IV (04-042)

SGS failed to "J" flag estimated results between the MDL and RL. This oversight was caught at the data review stage, causing all EDDs to be resubmitted with results between the MDL and RL J-flagged, as per USACE requirements. The USACE Project Chemist did not require a revised set of hardcopy data, but instead accepted a memo that indicates which samples have been J-flagged, to be included with the hardcopy data.

Shannon & Wilson's Project Chemist, Jon Lindstrom, did an exceptional job ensuring that the data review firm had correct(ed) electronic data files (EDFs) available for review. This task was not trival; due to the multitude of errors found in the EDFs, and the time required to obtain corrected EDFs, the completion date for the project was extended to accommodate the intensive data review effort. The referenced report includes a variety of "lessons learned" (Section 8.0 *Project-Specific Concerns*) that if properly addressed in future work, could decrease the time required to perform auto-validation.

Themist

so as tetra not regime so evolutions.

concerning the second second second

يعار بجدر يحار وبال

Encl

APPENDIX D

Table D-1 Assessment of Biogenic Influence on DRO/RRO, andTable D-2 Summary of Analytical Results - Trip and Equipment Blanks

		SGS Work			AK102 DRO	AK103 RRO	тос	ć	H or BTEX letections	Field Observations /	SGS Environmental Services, Inc.	of Hydr Ori	ssification rocarbon igin*
LOCID	Sample ID	Order	ID	ppm	Analyst Note	ppm Analyst Note	ppm	ppb	Compound	Comments	BIOGENIC ASSESSMENT	DRO	RRO
SITE 3 - FU	JEL LINE CORRI	DOR AND PU	MPHO	USE					1				
03B2-2	04NE03SB101	1045459	005	168	Unknown HC	1,160	-	-			GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03B2-6	04NE03SB102	1045459	006	126	Unknown HC	1,150 J HC interference	-	-		In permafrost - Biogenic	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03B1-2	04NE03SB103	1045459	007	373 J	Unknown HC	2,790 J HC interference	-			Just up from known impact, but adjacent to peat	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown , peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03B1-6	04NE03SB104	1045459	008	971 J	Unknown HC	6,120 J HC interference	-	-		In permafrost - Biogenic	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03B3-1	04NE03SB105	1045459	009	20,500 J	Weathered middle distillate	4,000 J Unknown HC	-	-			GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
03B3-3	04NE03SB106	1045459	010	15,900 J	Weathered middle distillate	3,020 J Unknown HC	-	-			GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO s library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
03SD107	04NE03SD107	1045460	003	2,610 J	Unknown HC	17,300 J HC interference	-	-			GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03SD108	04NE03SD108	1045460	004	3,720 J	Unknown HC	28,500 J HC interference	-	-		Up-gradient of site but near pipeline Up gradient of site, in	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
03WP5	04NE03GW101	1045529	019	1.7	Unknown HC	2.6 Unknown HC	-		Toluene	Pipeline corridor Down from known, but in	Library search was not requested. Chromatographic pattern typical of biogenic type compounds		
03WP103	04NE03GW102	1045529	020	0.433	Unknown HC	0.641 Unknown HC	-		Toluene	peat - Mix	Library search was not requested. Chromatographic pattern typical of biogenic type compounds		
03WP6	04NE03GW103	1045498	001	0.826	Unknown HC	1.38 Unknown HC	-	ND		Odor in well, stain nearby, tidal - diesel	Library search was not requested. Chromatographic pattern typical of biogenic type compounds		
	04NE03GW104		007	3.4	Weathered middle distillate	3.4 Unknown HC	-	ND		Down from known, but in peat - Mix	GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
SITE 6 - CA	ARGO BEACH RC	AD DRUM F	IELD										
06WP7	04NE06GW101 & 201	1045750	001 002	0.189 F 0.213 F	-	0.204 F 0.185 F _	-	_		Concentration too low to assess			
06WP6	04NE06GW102	1045750	003	0.213 F	-	0.268 F -	-	-		Too low to assess			
06WP5 06WP103	04NE06GW103 04NE06GW104	1045750 1045750	004	0.385 0.164 F	Unknown HC	0.728 Unknown HC 0.217 F -		-			GC/MS library search did not have sufficient response. Sample extract did not contain a significant amount of hydrocarbons.		

					AK102 DRO	AK103 RRO	тос		H or BTEX etections		SGS Environmental Services, Inc.	of Hydı	ssification rocarbon igin*
LOCID		SGS Work	Lab	ppm	Analyst Note				Compound	Field Observations /	BIOGENIC ASSESSMENT	DRO	
LOCID	Sample ID DL SPILL SITE	Order	ID	ррш	Analyst Note	ppm Analyst Note	ppm	рро	Compound	Comments	DIOGENIC ASSESSMENT	DKO	KKU
511E 8 - PO	JL SPILL SITE												
08SD102	04NE08SD102	1045459	001	19,500	Weathered middle distillate	3,880	-	1240	Naphthalene	High level of fuel overrides bio	GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
08SD103	04NE08SD103	1045459	002	6,760	Weathered middle distillate	4,360 HC interference	_			Diesel and biogenic mix	GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
	04NE08SD203	1045459	003	6,700	Weathered middle distillate	3,430	-			QC duplicate	GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
SITE 22 - V	VATER STORAG	E BUILDING											
222 611/2	04NE22CEV111	1046027	014			ND				Concentration too low to			
22MW3	04NE22GW114 04NE22GW115	1046037 1046037	014 015	ND ND	-	ND - ND -	-	-		assess Too low to assess			<u> </u>
	UQITUGHNEQ R			ND		ND -	-	-		100 10 10 10 10 10 10 10 10			
SITE 29 - S	UQITUGHNEQ K	IVER & EST	JAKY										
29SD104	04NE29SD104	1045767	008	653 J	Unknown HC	1,370 J	42,700	ND			GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
29SD105	04NE29SD105	1045767	009	988 J	Unknown HC	4,060 J	117,000	ND		Sediment has high organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
29SD106	04NE29SD106	1045767	010	173 J	weathered middle distillat	393 J Unknown HC	22,700	ND		"	GC/MS TIC - DRO range library search spectra have good quality match with sample spectra of unknown peak responses. Spectra were consistent with even and odd number alkanes and branched alkanes. RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database.	Diesel	Biogenic
29SD107	04NE29SD107	1045767	013	447 J	Unknown HC	1,870 J	46,000	ND		'n	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
29SD107	04NE29SD207	1045767	014	232 J	Unknown HC	917 J	52,100	ND		QC duplicate	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
29SD108	04NE29SD108	1045767	015	456 J	Unknown HC	1,600 J	31,600	Fluorene	, Naphthalene	"	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
29SD109	04NE29SD109	1045767	016	302 J	Unknown HC	1,170 J HC interference	39,100	ND		T	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	
	04NE29SW101	1045211		0.111 F	-	0.325 F	-	low	Naphthalene 2 others	Creosote in bridge upstream. DRO/RRO too low to assess?		-	
29SW101	04NE29SW201	1045211		0.122 F	-	0.346 F	-	ND		Too low to assess		ļ	
29SW102	04NE29SW102 04NE29SW103	1045211	007	0.0846 F		0.252 F	-	ND		Too low to assess Too low to assess			───
29SW103	04INE295W103	1045211	001	0.127 F	-	0.369 F	-	ND		100107 10 455655			<u> </u>

		SGS Work	Lab		AK102 DRO Analyst Note	AK103 RRO	тос	d	H or BTEX etections Compound	Field Observations /	SGS Environmental Services, Inc. BIOGENIC ASSESSMENT	of Hydr	ssification rocarbon igin* RRO
LOCID	Sample ID OUND SEDIMENT	Order	ID	ppm	Analyst Note	ppm Analyst Note	ppm	рро	Compound	Comments	BIOGENIC ASSESSMENT	DRO	KKU
	04NEBGSD101	1046067	020	661 F	-	2,050 Unknown HC	193,000	ND		Sediment has high organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW101	04NEBGSD201	1046067	025	119 F	-	524 Unknown HC	220,000	ND		QC duplicate	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW102	04NEBGSD102	1046067	021	135 F	-	613 Unknown HC	255,000	ND		Sediment has high organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW103	04NEBGSD103	1046067	022	798 F	-	4,260 J Unknown HC	384,000	ND		'n	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW104	04NEBGSD104	1046067	023	98.7	-	494 Unknown HC	31,800	ND		'n	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW105	04NEBGSD105	1046067	001	178	Unknown HC	1,220	373,000	ND		"	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW106	04NEBGSD106	1046067	008	3.84 F	-	17.2 F -	658	ND		Low conc review of TICs not requested			
BGW107	04NEBGSD107	1046067	009	24.3 F	-	59.2 -	3,060	ND		Low conc review of TICs not requested			
BGW108	04NEBGSD108	1046067	024	399 F	-	1,650 J Unknown HC	171,000	ND		Sediment has high organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGW109	04NEBGSD109	1046067	002	160	Unknown HC	1,270 J HC interference	57,300	ND		Sediment has moderate organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
	04NEBGSD110	1046067	027	104 F	-	784 Unknown HC	311,000	ND		Sediment has high organic content	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BACKGRO	OUND SOIL								1				└─── ┤
BGSS101	04NEBGSS101	1046067	034	20.5 F	-	175 J Unknown HC	15,200	-		Low concentration - review of TICs not requested			
BGSS102	04NEBGSS102	1046067	036	219 J	Unknown HC	1,260 J HC interference		_		Peat - biogenic	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGSS103	04NEBGSS103	1046067	037	404 J	Unknown HC	2,050 J HC interference	164,000	_		Peat - biogenic	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic

LOCID	Sample ID	SGS Work Order	Lab ID	ppm	AK102 DRO Analyst Note	ppm	AK103 RRO Analyst Note	TOC ppm	P ppb	PAH or BTEX detections Compound	Field Observations / Comments	SGS Environmental Services, Inc. BIOGENIC ASSESSMENT	of Hydı	ssification rocarbon igin* RRO
BGSS104	04NEBGSS104	1046067	038	198 J	Unknown HC	1,240 J	HC interference	67,800	-			GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGSS105		1046067	003	269 F	-		Unknown HC	434,000	-		Peat - biogenic	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGSS106	04NEBGSS106	1046067	010	22.3 F	-		Unknown HC	7,450	-		Review not requested			
BGSS107	04NEBGSS107	1046067	011	40.5 J	-		Unknown HC	11,800	-		Topsoil - biogenic			
BGSS108 BGSS109	04NEBGSS108 04NEBGSS109	1046067 1046067	039	4.01 F 50.8 J	-		- Unknown HC	1,320	-		Gravelly with some organics	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGSS110 BGSS111	04NEBGSS110 04NEBGSS111	1046067 1046067	005 006	12 J 6.25 J	-		Unknown HC Unknown HC	7,660	-		Review not requested Review not requested			
BGSS111 BGSS112	04NEBGSS112	1046067	008	6.25 J 6.29 F	-		Unknown HC	4,510 4,780	-		Review not requested			
BGSS113 BGSS114	04NEBGSS113 04NEBGSS114	1046067 1046067	041 030	379 5.95 F	Unknown HC	1,910 28.6	HC interference Unknown HC	93,600 3,740	-		Some peat - biogenic Review not requested	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
BGSS114	04NEBGSS214	1046067	033	6.60 F	-	44.8	Unknown HC	-	-		QC duplicate			
BGSS115 BGSS116 BGSS117	04NEBGSS115 04NEBGSS116 04NEBGSS117	1046067 1046067 1046067	042 043 044	205 15.9 J 8.09 F		79.7	Unknown HC Unknown HC Unknown HC	269,000 11,700 6,070	-		Peat - biogenic Review not requested Review not requested	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
	04NEBGSS118	1046067	029	825 F	-		Unknown HC	319,000	_		Beach gravel and sand on	GC/MS TIC - DRO/RRO library search spectra have poor quality match with sample spectra of unknown peak responses. This is typical of biogenic type compounds as these are not common in the library database. AK102/103 chromatographs for DRO/RRO are consistent with typical biogenic patterns.	Biogenic	Biogenic
		GC/I	DRO RRO TOC PAH BTEX ppm ppb * HC MS TIC	Residual Total orga Polynucle Benzene, Parts per Parts per Shannon Hydrocar Gas chron	nge organics range organics anic carbon by SGS SOP r ear aromatic hydrocarbons toluene, ethylbenzene, and million - used in place of r billion - used in place of µ & Wilson summary of SG	l xylenes mg/kg of π g/kg or μg S assessme scopy tenta	/L nt tively identified comp	ounds						

- F Estimated value less than the practical quantitation limit (PQL)

TABLE D-2a SUMMARY OF EQUIPMENT BLANK ANALYTICAL RESULTS

			Location ID:	S.Spoon	S.Spoon	Dredge	S.Spoon	Grundfos
	- Diamira		Sample ID:	04NE06WQ202	04NE22SQ201	04NE29SQ201	04NE31SQ202	04NE88WQ202
Equipment Rinsat	e Blanks		Cooler Number:	8	13	20	20	27
			Sample Date:	8/21/2004	8/27/2004	9/4/2004	9/2/2004	9/9/2004
Parameter Tested	Test Method	Units	Cleanup Level					
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0208 J	0.102	0.0163 J	0.0408 J	0.0232 J
Diesel Range Organics (DRO)	AK102	mg/L	1.5	0.12 J	0.515	0.165 J	0.239 J	0.176 J
Residual Range Organics (RRO)	AK103	mg/L	1.1	0.311 J	1.7	0.149 J	0.362 J	0.385 J
Aromatic Organic Compounds (BTEX)								
Benzene	SW8260B	µg/L	5	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]
Ethylbenzene	SW8260B	μg/L	700	[1]	[1]	[1]	[1]	[1]
Toluene	SW8260B	μg/L	1000	[1]	[1]	[1]	[1]	[1]
o-Xylene	SW8260B	μg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]	[1]
Xylene, Isomers m & p	SW8260B	μg/L	10,000 (Total Xylenes)	[2]	[2]	[2]	[2]	[2]
Polynuclear Aromatic Hydrocarbons (PAH SIM)								
Acenaphthene	PAHSIM	µg/L	2,200	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Acenaphthylene	PAHSIM	μg/L μg/L	2,200	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Anthracene	PAHSIM	μg/L	11,000	[0.0581]	[0.0575]	[0.0549]	-	[0.0526]
Benzo(a)anthracene	PAHSIM	μg/L	1	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Benzo(a)pyrene	PAHSIM	μg/L μg/L	0.2	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Benzo(b)fluoranthene	PAHSIM	μg/L	1	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Benzo(g,h,i)perylene	PAHSIM	µg/L	1,100	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Benzo(k)fluoranthene	PAHSIM	μg/L	10	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Chrvsene	PAHSIM	μg/L	100	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Dibenzo(a,h)anthracene	PAHSIM	μg/L	0.1	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Fluoranthene	PAHSIM	μg/L	1.460	[0.116]	[0.115]	[0.0343]	_	[0.105]
Fluorene	PAHSIM	μg/L	1,460	[0.0581]	0.029 J	[0.0549]	_	0.0192 J
Indeno(1,2,3-cd)pyrene	PAHSIM	μg/L	1,400	[0.0581]	[0.0575]	[0.0549]	_	[0.0526]
Naphthalene	PAHSIM	µg/L	700	0.0377 J	0.0455 J	0.0291 J	_	0.296
Phenanthrene	PAHSIM	μg/L	11.000	[0.116]	[0.115]	[0.11]	_	[0.105]
Pyrene	PAHSIM	μg/L	1,100	[0.0581]	0.0603	[0.0549]	_	[0.0526]
Total Metals								
Arsenic	SW6020	µg/L	50	[10]	_	_	_	
Barium	SW6020 SW6020	μg/L μg/L	2000	[10] 69.6	_	_	_	
Cadmium	SW6020 SW6020	μg/L μg/L	2000	[2]	_	_	_	_
Chromium	SW6020 SW6020	μg/L μg/L	100 (Total)	[4]	_ 2.42 J	_	_	_ [4]
Lead	SW6020 SW6020	μg/L μg/L	100 (Total) 15	[4]	3.33	_	_	[4] 0.91 J
Mercury	SW6020 SW7470A	μg/L μg/L	2	[0.2]	[0.2]	 0.108 J	_	0.91 J 0.116 J
Selenium	SW6020	μg/L μg/L	2 50	[0.2]	[0.2]	0.100 J	_	0.110 J
Silver	SW6020 SW6020	μg/L μg/L	180	[10]	_	_	_	_
Zinc	SW6020 SW6020	μg/L μg/L	11,000	[2]	 18.3 J	_	_	[25]
	300020	µy/∟	11,000	-	10.5 5	_	_	[23]

Analytes continued on next page

Key on next page

TABLE D-2a SUMMARY OF EQUIPMENT BLANK ANALYTICAL RESULTS

			Location ID:	S.Spoon	S.Spoon	Dredge	S.Spoon	Grundfos
Equipmont Din	eato Blanke		Sample ID:	04NE06WQ202	04NE22SQ201	04NE29SQ201	04NE31SQ202	04NE88WQ202
Equipment Rins	Sale Dialiks		Cooler Number:	8	13	20	20	27
			Sample Date:	8/21/2004	8/27/2004	9/4/2004	9/2/2004	9/9/2004
Parameter Tested	Test Method	Units	Cleanup Level					
Polychlorinated Biphenyls (PCBs)								
PCB-1016 (Aroclor 1016)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1221 (Aroclor 1221)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1232 (Aroclor 1232)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1242 (Aroclor 1242)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1248 (Aroclor 1248)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1254 (Aroclor 1254)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	_	-
PCB-1260 (Aroclor 1260)	SW8082	µg/L	0.5	[0.109]	-	[0.114]	-	-
PCB-1262 (Aroclor 1262)	SW8082	µg/L	0.5		-		_	-
PCB-1268 (Aroclor 1268)	SW8082	µg/L	0.5	-	-	-	-	-
Total Organic Carbon (TOC)	E415.1	mg/L		-	3.66	0.756	-	-
Pesticides								
4,4'-DDD	SW8081A	µg/L	3.6	-	_	[0.034]	_	-
4,4'-DDE	SW8081A	µg/L	2.5	_	_	[0.034]	_	_
4,4'-DDT	SW8081A	μg/L	2.5	_	_	[0.034]	_	_
Aldrin	SW8081A	µg/L	0.05	-	_	[0.057]	_	-
Dieldrin	SW8081A	µg/L	0.05	_	_	[0.034]	_	_
Endosulfan I	SW8081A	µg/L	200	_	_	[0.034]	_	_
Endosulfan II	SW8081A	μg/L		_	_	[0.034]	_	_
Endosulfan sulfate	SW8081A	µg/L	_	_	_	[0.034]	_	_
Endrin	SW8081A	μg/L	2	_	_	[0.034]	_	_
Endrin aldehyde	SW8081A	μg/L	_	_	_	[0.057]	_	_
Endrin ketone	SW8081A	μg/L	_	_	_	[0.034]	_	_
Heptachlor	SW8081A	μg/L	0.4	_	_	[0.11]	_	_
Heptachlor epoxide	SW8081A	μg/L	0.2	_	_	[0.034]	_	-
Methoxychlor	SW8081A	μg/L	40	_	_	[0.034]	_	_
Toxaphene	SW8081A	μg/L	3	_	_	[1.1]	_	_
alpha-BHC	SW8081A	μg/L	-	-	_	[0.034]	_	_
alpha-Chlordane	SW8081A	μg/L	_	_	_	[0.034]	_	_
beta-BHC	SW8081A	μg/L	-	-	_	[0.11]	_	_
delta-BHC	SW8081A	μg/L	_	-	_	[0.034]	_	_
gamma-BHC (Lindane)	SW8081A	μg/L	0.2	_	_	[0.034]	_	_
gamma-Chlordane	SW8081A	μg/L	-	_	_	[0.034]	_	_
gamma Onlordano	OWOODIA	P9/-				[0.004]		

KEY DESCRIPTION

KE I	DESCRIPTION
-	Measurement not recorded or not applicable
mg/L	milligrams per liter
µg/L	micrograms per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
J	Estimated concentration; refer to Appendix C for data qualifier information

TABLE D-2b SUMMARY OF WATER TRIP BLANK ANALYTICAL RESULTS

			Location ID:	C01WT	C02WT	C04WT	C05WT	C08WT	C10WT	C11WT	C13WT	C18WT	C19WT
Trip Planks (M	otor)		Sample ID:	04NE29WQ201	04NE29WQ301	04NE29WQ202	04NE29SW203	04NE06WQ203	04NE03WQ201	04NE26WQ201	04NE22WQ202	04NE06WQ302	04NE06WQ201
	Trip Blanks (Water)				2	4	5	8	10	11	13	18	19
			Sample Date:	8/12/2004	8/12/2004	8/14/2004	8/15/2004	8/21/2004	8/24/2004	8/25/2004	8/24/2004	9/5/2004	9/5/2004
Parameter Tested	Test Method	Units	Cleanup Level										
Gasoline Range Organics (GRO)	AK101	mg/L	1.3	0.0127 J	0.00972 B	0.0116 J	[0.090]	0.0207 J	0.016 J	0.0144 J	0.013 J	[0.050]	[0.090]
Aromatic Organic Compounds (BTEX)													
Benzene	SW8260B	µg/L	5	[0.4]	[0.5]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.5]	[0.4]
Ethylbenzene	SW8260B	µg/L	700	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
Toluene	SW8260B	µg/L	1000	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
o-Xylene	SW8260B	µg/L	10,000 (Total Xylenes)	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
Xylene, Isomers m & p	10				[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]

	Trip Dioples (Motor) Sample I						C27WT	C29WT	C30WT	C32WT	C38WT
Trip Blanks (Water)					04NE88WQ203	04NE20WQ201	04NE17WQ201	04NEBGWQ301	04NEBGWQ201	04NEBGWQ202	04NE06WQ303
					25	26	27	29	30	32	38
Units	Cleanup Level										
mg/L	1.3	[0.090]	[0.090]	0.0106 J	0.0173 J	0.0167 J	0.015 J	0.0142 J	[0.090]	[0.090]	[0.050]
µg/L	5	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.4]	[0.5]	[0.4]	[0.4]	[0.5]
µg/L	700	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
µg/L	1000	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
-Xylene SW8260B µg/L			[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
vlene, Isomers m & p SW8260B µg/L 10,000				[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
d	mg/L μg/L μg/L μg/L μg/L	d Units Cleanup Level mg/L 1.3 μg/L 5 μg/L 700 μg/L 1000 μg/L 10,000 (Total Xylenes)	mg/L 1.3 [0.090] μg/L 5 [0.4] μg/L 700 [1] μg/L 1000 [1] μg/L 10,000 (Total Xylenes) [1]	d Units Cleanup Level [0.090] [0.090] mg/L 1.3 [0.090] [0.090] µg/L 5 [0.4] [0.4] µg/L 700 [1] [1] µg/L 1000 [1] [1] µg/L 10,000 (Total Xylenes) [1] [1]	d Units Cleanup Level mg/L 1.3 [0.090] [0.090] 0.0106 J µg/L 5 [0.4] [0.4] [0.4] µg/L 700 [1] [1] [1] µg/L 1000 [1] [1] [1] µg/L 10,000 (Total Xylenes) [1] [1] [1]	d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J µg/L 5 [0.4]	d Units Cleanup Level mg/L 1.3 [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J µg/L 5 [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] µg/L 700 [1] [1] [1] [1] [1] [1] [1] µg/L 1000 [1] <th>d Units Cleanup Level mg/L 1.3 [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J µg/L 5 [0.4]</th> <th>d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J µg/L 5 [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.5] [0.5] µg/L 700 [1]</th> <th>d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J [0.090] µg/L 5 [0.4]<!--</th--><th>d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J [0.090] [0.090] [0.090] [0.090] [0.0167 J 0.0167 J 0.015 J 0.0142 J [0.090]</th></th>	d Units Cleanup Level mg/L 1.3 [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J µg/L 5 [0.4]	d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J µg/L 5 [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.4] [0.5] [0.5] µg/L 700 [1]	d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J [0.090] µg/L 5 [0.4] </th <th>d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J [0.090] [0.090] [0.090] [0.090] [0.0167 J 0.0167 J 0.015 J 0.0142 J [0.090]</th>	d Units Cleanup Level [0.090] [0.090] 0.0106 J 0.0173 J 0.0167 J 0.015 J 0.0142 J [0.090] [0.090] [0.090] [0.090] [0.0167 J 0.0167 J 0.015 J 0.0142 J [0.090]

KEY	DESCRIPTION
_	Measurement not recorded or not applicable
mg/L	milligrams per liter
µg/L	micrograms per liter
Cleanup Levels	Cleanup values are based on ADEC groundwater cleanup levels listed in 18 ACC 75.345, Table C
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
J	Estimated concentration; refer to Appendix C for data qualifier information.
0.00972 B	Analyte concentration biased due to detection in method blank.

SHANNON & WILSON, INC.

TABLE D-2c SUMMARY OF SOIL TRIP BLANK ANALYTICAL RESULTS

			Location ID:	C02ST	C06ST	C07ST	C09ST	C12ST	C14ST	C15ST
Trin Plank			Sample ID:	04NE08SQ303	04NE08SQ202	04NE06SQ201	04NE10SQ201	04NE06SQ301	04NE22SQ202	04NE13SQ201
Trip Blanks	5 (3011)		Sample Date:	8/15/2004	8/15/2004	8/19/2004	8/23/2004	8/21/2004	8/28/2004	8/26/2004
Parameter Tested	Units	Cleanup Level								
Gasoline Range Organics (GRO)	AK101	mg/kg	300	[2.5] B	0.907 J	1.06 J	1.51 J	0.848 J	0.903 J	1.51 J
Aromatic Organic Compounds (BTEX)										
Benzene	SW8260B	µg/kg	20	[100]	[13.3]	[13.2]	[13.3]	[100]	[13.3]	[13.2]
Ethylbenzene	SW8260B	µg/kg	5,500	[100]	[25.6]	[25.3]	[25.6]	[100]	[25.5]	[25.4]
Toluene	SW8260B	µg/kg	5,400	[100]	[51.2]	[50.7]	[51.1]	[100]	[51.1]	[50.8]
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[300] (total	[25.6]	[25.3]	[25.6]	[100]	[25.5]	[25.4]
Xylene, Isomers m & p	SW8260B	µg/kg	78,000 (total Xylenes)	Xylenes)	[51.2]	[50.7]	[51.1]	[200]	[51.1]	[50.8]

			Sample Type:							
			Location ID:	C17ST	C18ST	C22ST	C29ST	C35ST	C37ST	C38ST
Trin Blanks	Trip Blanks (Soil)				04NE31SQ301	04NE29SQ202	04NEBGSQ301	04NEBGSQ202	04NEBGSQ203	04NEBGSQ302
пр Банка					8/31/2004	9/3/2004	9/8/2004	9/8/2004	9/8/2004	9/12/2004
Parameter Tested										
Gasoline Range Organics (GRO)	AK101	mg/kg	300	1.42 J	0.461 J	0.573 J	0.658 J	1.04 J	1.17 J	-
Aromatic Organic Compounds (BTEX)										
Benzene	SW8260B	µg/kg	20	[13.5]	[100]	[13.6]	[100]	[13.4]	[13.2]	[126]
Ethylbenzene	SW8260B	µg/kg	5,500	[26]	[100]	[26.1]	[100]	[25.7]	[25.4]	[126]
Toluene	SW8260B	µg/kg	5,400	[52]	[100]	[52.1]	[100]	[51.4]	[50.9]	36.6 J
o-Xylene	SW8260B	µg/kg	78,000 (total Xylenes)	[26]	[100]	[26.1]	[300] (total	[25.7]	[25.4]	[126]
Xylene, Isomers m & p	SW8260B	µg/kg	78,000 (total Xylenes)	[52]	[200]	[51.2]	Xylenes)	[51.4]	[50.9]	[253]

KEY	DESCRIPTION
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
Cleanup Levels	Cleanup values are based on the most stringent ADEC Method 2 default soil cleanup levels listed in 18 ACC
	75.341, Tables B1 and B2 for the "Under 40 inches" precipitation zone.
36	Concentration detected
[0.0072]	Analyte not detected above Practical Quantitation Limit (PQL)
J	Estimated concentration; refer to Appendix C for data qualifier information
[2.5] B	Result qualified as not detected due to method blank detection.

APPENDIX E

Waste Disposal Documentation

TABLE E-1: WASTE TRACKING LOG

Waste Container Number	Waste Stream Type	Date	Point of Generation - Site and Location	Contaminants of Concern	Storage Location	Comments (label designations, condition, treatment date, treatment method, etc.)	Manifest Document Number
Site 3	Purge/Decon Water	8/22/2004	Site 3	Fuels	Site 3	Pumped through activated carbon on gravel pile from former pad.	2566A
Site 6	Purge/Decon Water	8/22/2004	Site 6	Fuels/Metals/PCBs	Site 6	Pumped through activated carbon onto "center" of site	2566A
Sites 3 and 6 trough	Auger/Decon Water	8/22/2004	Camp/Sites 3 & 6	Fuels/Metals/PCBs	Camp	Pumped through activated carbon onto gravel pad.	2566A
Drums Sites 3 and 6	Drill steel Decon/ Water	8/22/2004	Sites 3 &6	Fuels/Metals/PCBs	Drill rig	Pumped through activated carbon onto gravel pad.	2566A
26MW3 Purge H2O	Develop/Purge Water	8/25/2004	26MW3	low potential - Fuels/Metals/PCBs	26MW3	Pumped through activated carbon (GAC) onto site surface 8/26/04	
Air Cooler Cleaner	Solvent on beach leaking	9/2/2004	Unknown fishing boat?	Diesel, nonphenol ~ 3 gal.	Fuel containment cell in poly tote	CAS Nos.: Diesel Fuel = 06834305 "non regulated" on label; Nonphenol = 251545123	2566
"	"	9/23/2004		"	S&W Annex	Emerald Alaska, Keith, Samples + 1,000 ppm, halogen, salt?	2566
MOC Drill Decon	Decon water	9/2/2004	All MOC area drilling	Fuels/Metals/PCBs	Drill rig	Pumped/siphoned through activated carbon onto gravel pad	2566A
Camp Spill soil	Diesel impacted soil	8/14/2004	Camp	Diesel	Camp	Added settled solids from all decon/purge water and unused samples	2566A
"	"	9/13/2004	"	"	"	"	2566A
"	"	9/23/2004	"	"	S&W Annex	Collect and submit sample 04NEIDWSC1 for analysis of 8260, AK102/103, PCBs, RCRA metals	2566A
Site 11	Purge water	9/9/2004	10MW1, 11MW3, 88MW1, 88MW2	Fuels/PCBs	Treated on site	Treated at Site 11 w/GAC (9/8-shut down and modified system for better treatment)	2566A
Site 88	Purge water	9/9/2004	88MW4, MW5, MW6, MW8	Fuels/PCBs	Treated on site	Treated near 88MW6 w/GAC	2566A
Site 17	Purge water	9/10/2004	17MW1	Fuels/PCBs	Treated on site	Treated at Site 17 w/GAC, solids added to camp spill drum	2566A
Site 18	Purge water	9/10/2004	18MW1	Fuels/PCBs	Treated on site	Treated at Site 18 w/GAC, solids added to camp spill drum	2566A
Site 20/88	Purge water	9/11/2004	88MW10, 20MW1	Fuels/PCBs	Treated on site	Treat at Site 20 w/GAC; had to repair outlet screen on GAC	2566A
Site 22	Purge water	9/12/2004	22MW3, 22MW2	Fuels/PCBs	Treated on site	Treat at Site 22 w/GAC	2566A
26MW1	Purge water	9/12/2004	26MW1	Fuels/PCBs	Treated on site	Treat at Site 26 w/GAC	2566A

 $\mathsf{SEATTLE} \cdot \mathsf{Richland} \cdot \mathsf{Fairbanks} \cdot \mathsf{Anchorage} \cdot \mathsf{St.} \ \mathsf{Louis} \cdot \mathsf{Boston}$

FAX TRANSMISSION

	Attn	Roxan	100-		Fax	258-	3049	
Com	pany	Emeral	~		Phone			
Loc	ation		×		Date	11-3	-04	
]	From	1010	Spieln		Time			
Su	bject	Soil				· · · · ·		
		<u> </u>						
		TOTAL NUM	BER OF PA	GES (includin	g cover shee	:) <u>(</u>		
FSSAGE	Ð.	1. C. C. 1. C. C.	+)~~~	o toc	+ nor il	te lat		
LUUROL	×_ ດ ມ	<u>tun</u> of <u>tun</u> of	Anil		tra di	15 Oli	ah	
	$\sum c$	- <u> </u>	in ut	- Nort	heast	lane.	St. Law	We VI
	231	und.	Can	VOU DI	ease re	new	and a	ive
	125	<u>an</u>	estim	ate (or tr	eatrics	4/2/20	beal
								
		Thank	5					
		Y	ohn					
)					
				:				
					÷ .			
			.•					
	The	e original of thi	s fax	will		<i>vill not</i> be r	nailed.	
		e attached informat ansmitted. It may o						
info	rmation	by anyone other tha	in the intended r	ecipient is prohibi				
plea	ise notify	Shannon & Wilson	, Inc. immediate	ly.				

Laboratory Analysis Report

200 W. Potter Drive Anchorage, AK 99518-1605 Tel: (907) 562-2343 Fax: (907) 561-5301 Web: http://www.sgsenvironmental.com

John Spielman Shannon & Wilson Inc. 5430 Fairbanks Street Ste 3 Anchorage, AK 99518

1046302 32-1-16821-3 NE Cape
Shannon & Wilson Inc. October 18, 2004

Enclosed are the analytical results associated with the above workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Control Manual that outlines this program is available at your request. The laboratory ADEC certification numbers are AK08-03 (DW), UST-005 (CS) and AK00971 (Micro).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS Quality Assurance Program Plan and the National Environmental Laboratory Accreditation Conference.

If you have any questions regarding this report or if we can be of any other assistance, please call your SGS Project Manager a (907) 562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

- PQL Practical Quantitation Limit (reporting limit).
- U Indicates the analyte was analyzed for but not detected.
- F Indicates an estimated value that falls below PQL, but is greater than the MDL.
- J The quantitation is an estimation.
- B Indicates the analyte is found in a blank associated with the sample.
- * The analyte has exceeded allowable regulatory or control limits.
- GT Greater Than
- D The analyte concentration is the result of a dilution.
- LT Less Than
- ! Surrogate out of control limits.
- Q QC parameter out of acceptance range.
- M A matrix effect was present.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- E The analyte result is high outside of calibrated range.

Note: Soil samples are reported on a dry weight basis unless otherwise specified

SGS Environmental Services Inc. 200 W. Potter Dr, Anchorage AK. 99518-1605 t (907) 562-2343 f (907) 561-5301 www.us.sgs.com

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix 1046302001 Shannon & Wilson Inc. 32-1-16821-3 NE Cape 04NEIDWSL1 Soil/Solid

All Dates/Times are Alaska Standard Time					
Printed Date/Time	10/18/2004 11:13				
Collected Date/Time	09/23/2004 15:15				
Received Date/Time	09/24/2004 16:50				
Technical Director	Stephen C. Ede				
Released By	- Fatos				

Sample Remarks:

DRO - The pattern is consistent with a weathered middle distillate.

8260 - Surrogate recovery for BFB is biased high. Sample was in-house extracted and contained residual BFB surrogate.

Parameter	Results	PQL	Units	Method	Container ID	Allowable Limits	Prep Date	Analysis Date	<u>Init</u>
Metals Department									
Mercury by Cold Vapor	0.0446 U	0.0446	mg/Kg	SW7471A	В		09/29/04	09/29/04	ΤK
RCRA Metals	TCLP								
Arsenic	3.46	2.00	mg/K.g	SW6020	В		09/27/04	09/28/04	WAW
Barium	68.5 <	1.67	mg/Kg	SW6020	B			09/28/04	
Cadmium	0.466	0.222	mg/Kg	SW6020	ъ В			09/28/04	
Chromium	27.1/20 = 1.36	0.445	mg/Kg	SW6020	B			09/28/04	
Lead	32.1/20 = 1.61	1.11	mg/Kg	SW6020	В		09/27/04	09/28/04	WAW
Selenium	0.556 U	0.556	mg/Kg	SW6020	В			09/28/04	
Silver	0.203	0.111	mg/Kg	SW6020	В			09/28/04	
Semivolatile Organic E	Suels Department	<u>.</u>							
Diesel Range Organics	488	54.0	mg/Kg	AK102/103	В			10/11/04	
Diesel Range Organics Residual Range Organics	_		mg/Kg mg/Kg	AK102/103 AK102/103	B B			10/11/04 10/11/04	
Diesel Range Organics	488	54.0	0 0						
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr></surr>	488 203 97.2	54.0	mg/Kg %	AK102/103 AK102/103		50-150	09/28/04		МСМ
Diesel Range Organics Residual Range Organics Surrogates	488 203	54.0	mg/Kg	AK102/103	B	50-150 50-150	09/28/04 09/28/04	10/11/04	МСМ МСМ
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr></surr>	488 203 97.2 72.6	54.0	mg/Kg %	AK102/103 AK102/103	B		09/28/04 09/28/04	10/11/04 10/11/04	МСМ МСМ
Diesel Range Organics Residual Range Organics Surrogates Sa Androstane <surr> n-Triacontane-d62 <surr></surr></surr>	488 203 97.2 72.6	54.0 54.0	mg/Kg % %	AK102/103 AK102/103 AK102/103	B B B		09/28/04 09/28/04 09/28/04	10/11/04 10/11/04 10/11/04	MCM MCM MCM
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr> n-Triacontane-d62 <surr> Polychlorinated Bipher</surr></surr>	488 203 97.2 72.6	54.0 54.0 0.0559	mg/Kg % % mg/Kg	AK102/103 AK102/103 AK102/103 SW8082	B		09/28/04 09/28/04 09/28/04 09/27/04	10/11/04 10/11/04 10/11/04 09/27/04	MCM MCM WAA
Diesel Range Organics Residual Range Organics Surrogates Sa Androstane <surr> n-Triacontane-d62 <surr> Polychlorinated Bipher Aroclor-1016</surr></surr>	488 203 97.2 72.6 nyls 0.0559 U	54.0 54.0 0.0559 0.0559	mg/Kg % % mg/Kg mg/Kg	AK102/103 AK102/103 AK102/103	B B B		09/28/04 09/28/04 09/28/04 09/27/04 09/27/04	10/11/04 10/11/04 10/11/04	MCM MCM WAA WAA
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr> n-Triacontane-d62 <surr> Polychlorinated Bipher Aroclor-1016 Aroclor-1221</surr></surr>	488 203 97.2 72.6 nyls 0.0559 U 0.0559 U	54.0 54.0 0.0559	mg/Kg % % mg/Kg	AK102/103 AK102/103 AK102/103 SW8082 SW8082	B B B B		09/28/04 09/28/04 09/28/04 09/27/04 09/27/04	10/11/04 10/11/04 10/11/04 09/27/04 09/27/04	MCM MCM WAA WAA WAA
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr> n-Triacontane-d62 <surr> Polychlorinated Bipher Aroclor-1016 Aroclor-1221 Aroclor-1232</surr></surr>	488 203 97.2 72.6 nyls 0.0559 U 0.0559 U 0.0559 U	54.0 54.0 0.0559 0.0559 0.0559	mg/Kg % % mg/Kg mg/Kg mg/Kg	AK102/103 AK102/103 AK102/103 SW8082 SW8082 SW8082 SW8082	B B B B B		09/28/04 09/28/04 09/28/04 09/27/04 09/27/04 09/27/04	10/11/04 10/11/04 10/11/04 09/27/04 09/27/04	MCM MCM WAA WAA WAA WAA
Diesel Range Organics Residual Range Organics Surrogates 5a Androstane <surr> n-Triacontane-d62 <surr> Polychlorinated Bipher Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242</surr></surr>	488 203 97.2 72.6 nyls 0.0559 U 0.0559 U 0.0559 U 0.0559 U	54.0 54.0 0.0559 0.0559 0.0559 0.0559	mg/Kg % % mg/Kg mg/Kg	AK102/103 AK102/103 AK102/103 SW8082 SW8082 SW8082 SW8082 SW8082	B B B B B B B		09/28/04 09/28/04 09/28/04 09/27/04 09/27/04 09/27/04 09/27/04	10/11/04 10/11/04 10/11/04 09/27/04 09/27/04 09/27/04	MCM MCM WAA WAA WAA WAA

Parameter Results PQL Units Method Container ID Allowable Lamuts Prep Date Analysis Date Polychlorinated Biphonyls Burrogates B 60-125 09/27/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 09/23/04 00/06/04 09/23/04 00/06/04 09/23/04 00/06/04 09/23/04 00/06/04 09/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04 00/06/04 00/23/04	SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	Shannon & Wilson Inc.Project Name/#32-1-16821-3 NE CapeStample ID04NEIDWSL1				All Dates/Times are Alaska Standard TimePrinted Date/Time10/18/200411:13Collected Date/Time09/23/200415:15Received Date/Time09/24/200416:50Technical DirectorStephen C. Ede				11:13 15:15 16:50		
Surrogates Pecachlorobiphenyl ≤sur> 97.7 % SW8082 B 60-125 09/27/04 09/27/04 Volatile Gas Chromatography/Mass Spectroscopy Dichlorodifluoromethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/94 Chloromethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/94 Bromomethane 24.9 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Chloroethane 24.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Libioroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Libioroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 </th <th>Parameter</th> <th></th> <th>Results</th> <th>PQL</th> <th>Units</th> <th>Method</th> <th>Container ID</th> <th></th> <th>•</th> <th>-</th> <th>Init</th>	Parameter		Results	PQL	Units	Method	Container ID		•	-	Init	
Decachlorobiphenyl ≤sur> 97.7 % SW8082 B 60-125 09/27/04 09/27/04 Volatile Gas Chronatography/Mass Spectroscopy Dichlorodifluoromethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Vinyl chloride 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Winyl chloride 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Chloroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 <t< th=""><th>Polychlorina</th><th>ted Biphen</th><th>yls</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Polychlorina	ted Biphen	yls									
Volatile Gas Chronatography/Mass Spectroscopy Dichlorodifluoromethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Chloromethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Vinyl chloride 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Chloroethane 94.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Chloroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Loroethane 94.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Carbon disulfde 94.9 U 94.9 ug/kg SW8260B A 09/28/04 10/06/04 Larobiloroethane 23.7 U 23.7 ug/kg SW8260B A 09/28/04 10/06/04 Larbon disulfde 94.9 U 94.9 ug/kg SW8260B A <t< td=""><td>Surrogates</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Surrogates											
Dichlorodifluoromethane 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Vinyl chloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chlorotethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chlorotethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chlorotethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 <	Decachlorobipher	ıyl <surr></su	97.7		%	SW8082	В	60-125	09/27/04	09/27/04	WAA	
Chloromethane 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Vinyt chloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 237 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroethane 24.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 trans.1_2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 trans.1_2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloroethene 23.7 U 23.7 ug/Kg	Volatile Gas	Chromatog	raphy/Mass Sp	ectroscopy	Ţ							
Chloromethane 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Vinyl chloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 237 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Trichlorofluoromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Methylene chloride 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 trans.12-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 trans.12-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2.2-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A	Dichlorodifluoror	nethane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
Vinyt chloride 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromomethane 94.9 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Acetone 237 U 237 ug/Kg SW8260B A 09/28/04 10/06/04 Trichlorofluoromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Methylene chloride 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon disulfide 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 trans-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 cis-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanoe (MEK) 23.7 U 23.7 ug/Kg </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>SW8260B</td> <td>A</td> <td></td> <td></td> <td></td> <td></td>				-		SW8260B	A					
Bromomethane 94.9 U 94.9 ug/kg SW3260B A 09/28/04 10/06/04 Acetone 237 U 237 ug/kg SW3260B A 09/28/04 10/06/04 Trichlorofluoromethane 23.7 U 23.7 ug/kg SW3260B A 09/28/04 10/06/04 Chloroethane 94.9 U 94.9 ug/kg SW3260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/kg SW3260B A 09/28/04 10/06/04 Methylene chloride 94.9 U 94.9 ug/kg SW3260B A 09/28/04 10/06/04 Carbon disulfide 94.9 U 94.9 ug/kg SW3260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/kg SW3260B A 09/28/04 10/06/04 2Dichloroethane 23.7 U 23.7 ug/kg SW3260B A 09/28/04 10/06/04 2-Butanone (MEK) 237 U 23.7 ug/kg <td< td=""><td></td><td></td><td>23.7 U</td><td></td><td></td><td>SW8260B</td><td>А</td><td></td><td>09/28/04</td><td>10/06/04</td><td>R:MV</td></td<>			23.7 U			SW8260B	А		09/28/04	10/06/04	R:MV	
Acetone 237 U 237 ug/Kg SW8260B A 09/28/04 10/06/04 Trichlorofluoromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroethane 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Methylene chloride 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon disulfide 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 trans-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloropthane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanoe (MEK) 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04	-		94.9 U		- ÷	SW8260B	A		09/28/04	10/06/04	RMV	
Trichlorofluoromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/66/04 Chloroethane 94.9 U 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/66/04 1,1-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/66/04 Methylene chloride 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/66/04 Carbon disulfide 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/6/04 trans-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/6/04 1,1-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/6/04 2,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/6/04 2-Butanone (MEK) 237 U 23.7 ug/Kg SW8260B A 09/28/04 10/6/04 Chloroform 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/6/04	Acetone		237 U			SW8260B	А		09/28/04	10/06/04	RMV	
Chloroethane 94.9 U 9	Trichlorofluorom	ethane	23.7 U			\$W8260B	А		09/28/04	10/06/04	RMV	
1,1-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Methylene chloride 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon disulfide 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 trans-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanone (MEK) 237 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromochloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon tetrachloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04	Chloroethane		94.9 U			SW8260B	А		09/28/04	10/06/04	RMV	
Methylene chloride 94.9 U 9	1.1-Dichloroether	ne			_	SW8260B	А		09/28/04	10/06/04	RMV	
Carbon disulfide 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04 trans-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloropthane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloropthane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloropthane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanone (MEK) 237 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroform 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1,1-Trichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloropropene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04							А					
trans-1,2-Dichloroethene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042,2-Dichloroethene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Butanone (MEK)237 U23.7ug/KgSW8260BA09/28/04 10/06/042-Butanone (MEK)237 U23.7ug/KgSW8260BA09/28/04 10/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/2	•											
1,1-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 cis-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanone (MEK) 237 U 237 ug/Kg SW8260B A 09/28/04 10/06/04 Bromochloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroform 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroform 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon tetrachloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1,1-Trichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04		oethene					A					
2,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/0410/06/04cis-1,2-Dichloroethene23.7 U23.7ug/KgSW8260BA09/28/0410/06/042-Butanone (MEK)237 U23.7ug/KgSW8260BA09/28/0410/06/04Bromochloromethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/0410/06/04Carbon tetrachloride23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/0410/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/												
cis-1,2-Dichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Butanone (MEK) 237 U 237 ug/Kg SW8260B A 09/28/04 10/06/04 Bromochloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Chloroform 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Carbon tetrachloride 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1,1-Trichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloropropene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,1-Dichloropropene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloroethane 12.3 U 12.3 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04	2,2-Dichloroprop	ane	23.7 U				A					
Bromochloromethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Carbon tetrachloride23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Benzene12.3 U12.3ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromomethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Chloroethyl Vinyl Ether94.9 U94.9ug/KgSW8260BA09/28/04			23.7 U	23.7		SW8260B	А		09/28/04	10/06/04	RMV	
Bromochloromethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Chloroform23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Carbon tetrachloride23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Benzene12.3 U12.3ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromomethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Chloroethyl Vinyl Ether94.9 U94.9ug/KgSW8260BA09/28/04 10/06/04	2-Butanone (MEI	K)	237 U	237	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
Carbon tetrachloride23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Benzene12.3 U12.3ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromomethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Chloroethyl Vinyl Ether94.9 U94.9ug/KgSW8260BA09/28/04 10/06/04			23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
Carbon tetrachloride23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1,1-Trichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Benzene12.3 U12.3ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroptopane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromomethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromotethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Chloroethyl Vinyl Ether94.9 U94.9ug/KgSW8260BA09/28/04 10/06/04	Chloroform		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
1,1-Dichloropropene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Benzene12.3 U12.3ug/KgSW8260BA09/28/04 10/06/041,2-Dichloroethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/041,2-Dichloropropane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Trichloroethene23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Dibromomethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/04Bromodichloromethane23.7 U23.7ug/KgSW8260BA09/28/04 10/06/042-Chloroethyl Vinyl Ether94.9 U94.9ug/KgSW8260BA09/28/04 10/06/04	Carbon tetrachlor	ide	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
Benzene 12.3 U 12.3 U 12.3 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Trichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Dibromomethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04	1,1,1-Trichloroet	hane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
Benzene 12.3 U 12.3 U 12.3 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloroethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Trichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Dibromomethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04							А					
1,2-Dichloroethane 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 1,2-Dichloropropane 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Trichloroethene 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Dibromomethane 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04			12.3 U		_	SW8260B	А		09/28/04	10/06/04	RMV	
1.2-Dicbloropropane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Trichloroethene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Dibromomethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04	1,2-Dichloroetha	ne			-		А					
Trichloroethene 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Dibromomethane 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04							А					
Dibromomethane 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 Bromodichloromethane 23.7 U 23.7 U 23.7 U ug/Kg SW8260B A 09/28/04 10/06/04 2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04			23.7 U									
2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04	Dibromomethane		23.7 U			SW8260B	А					
2-Chloroethyl Vinyl Ether 94.9 U 94.9 ug/Kg SW8260B A 09/28/04 10/06/04	Bromodichlorom	ethane	23.7 U			SW8260B	А					
	2-Chloroethyl Vi	nyl Ether	94.9 U	94.9	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	
cis-1,3-Dichloropropene 23.7 U 23.7 ug/Kg SW8260B A 09/28/04 10/06/04	cis-1,3-Dichlorop	ropene	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV	

SGS Ref.# Client Name Project Name/#	1046302001 Shannon & V 32-1-16821-				Printe	tes/Times are A d Date/Time ted Date/Time	10/1	dard Time 8/2004 3/2004	1:13	
Client Sample ID	04NEIDWS				Receiv	ed Date/Time		4/2004 1		
Matrix	Soil/Solid				Techn	ical Director	Step	hen C. Ed	e	
Parameter		Results	PQL	Units	Method	Container ID	Allowable Limits	Prep Date	Analysis Date	Init
Volatile Gas	Chromatogr	aphy/Mass Sp	ectroscopy							
Toluene		47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,1,2-Trichloroeth	nane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Tetrachloroethene	;	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
trans-1,3-Dichloro	opropene	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,3-Dichloropropa	ane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Dibromochlorome	thane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,2-Dibromoethar	ne	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Chlorobenzene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,1,1,2-Tetrachlor	roethane	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Ethylbenzene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
P & M -Xylene		47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
o-Xylene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Styrene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Bromoform		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Isopropylbenzene	(Cumene)	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Bromobenzene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,1,2,2-Tetrachlor	roethane	47.4 U	47.4	ug/K.g	SW8260B	А		09/28/04	10/06/04	RMV
1,2,3-Trichloropro	opane	47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
n-Propylbenzene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
2-Chlorotoluene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
4-Chlorotoluene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,3,5-Trimethylbe	nzene	259	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
tert-Butylbenzene		23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,2,4-Trimethylbe	enzene	143	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
sec-Butylbenzene		30.4	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,3-Dichlorobenz	ene	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
4-Isopropyltoluen	e	104	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,4-Dichlorobenze	ene	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,2-Dichlorobenze	ene	23.7 U	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
n-Butylbenzene		49.3	23.7	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
1,2-Dibromo-3-ch		94.9 U	94.9	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
I,2,4-Trichlorobe		47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Hexachlorobutadi	ene	47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Naphthalene		47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV

SGS Ref.# Client Name Project Name/# Client Sample ID Matrix	1046302001 Shannon & V 32-1-16821-3 04NEIDWSL Soil/Solid	NE Cape			Printed Collecte Receive	es/Times are a Date/Time ed Date/Time d Date/Time eal Director	10/1 09/2 09/2	dard Time 18/2004 1 23/2004 1 24/2004 1 ohen C. Ed	11:13 5:15 .6:50	
Parameter		Results	PQL	Units	Method	Container ID	Allowable Limits	Prep Date	Analysis Date	Init
Volatile Gas	Chromatogra	aphy/Mass S	pectroscopy	7						
1,2,3-Trichloraber	nzene	47.4 U	47.4	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
4-Methyl-2-pentar	none (MIBK)	237 U	237	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
2-Hexanone		237 U	237	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Methyl-t-butyl eth	er	37.9 U	37.9	ug/Kg	SW8260B	А		09/28/04	10/06/04	RMV
Surrogates										
1,2-Dichloroethan	e-D4 <surr></surr>	107		%	SW8260B	А	83-122	09/28/04	10/06/04	RMV
Toluene-d8 <surr></surr>	>	102		%	SW8260B	А	87-115	09/28/04	10/06/04	RMV
4-Bromofluorober	nzene <surr></surr>	232	!	%	SW8260B	А	46-133	09/28/04	10/06/04	RMV
Dibromofluorome	thane <surr></surr>	106		%	SW8260B	А	83-119	09/28/04	10/06/04	RMV
Solids				·						
Total Solids		88.5		%	SM20 2540G	В			09/29/04	AHP

*** IN CASE OF EMERGENCY CALL 1-800-424-9300 *** NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS						
WASTE MANIFEST	1. Generator's US EPA ID C E S Q G			Manifest Document No.	2568A	2. Page 1
3. Generator's Name and Mailing Address	SHANNON AND					
	5430 FAIRBAN					
	ANCHORAGE, A	K 99518				
4. Generator's Phone ((907)) 561-2	120			·		
5. Transporter 1 Company Name	6.			A. State Transporte	er's ID	
EMERALD SERVICES, I	NC.	WAD058384	647	B. Transporter 1 Pr	ione (206) 832-30
7. Transporter 2 Company Name	8.	US EPA ID Number		C. State Transporte	er's ID	
				D. Transporter 2 Ph		
9. Designated Facility Name and Site Address	10	US EPA ID Number		E. State Facility's I	5	
EMERALD ALASKA, IN						
2020 VIKING DRIVE	- 1			F. Facility's Phone	(907)	258-1558
ANCHORAGE, AK 9950	<u> </u>	<u> </u>	_	L		
11. WASTE DESCRIPTION				ntainers	13. Total	14. Unit
		····	No.	Type	Quantity	Wt/Vol.
^{a.} MATERIAL NOT REGULATE	3 BY 9.0.T.				120	3
			-		120	<i>F</i>
		<u> </u>	4		200	-+
. MATERIAL NOT REGULATED	D 57 D.C.T,		1			
					500	1 ·
·				DM	300	
с.						
d			+			
u.						
G. Additional Descriptions for Materials Listed Ab			-		for Wastes Listed Above	
b) AK00504 NORTHEAST (CAPE, ST. LAWRE	NCE ISLAND IDW SOIL				
b) AKO0504 NORTHEAST (NCE ISLAND IDW SOIL	_			
5) AKO0504 NORTHEAST (15. Special Handling Instructions and Additional In		NCE ISLAND IDW SOIL				
	nformation	0	and are in a	all respects		Date
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name	nformation	o hipment are fully and accurately described not subject to federal hazardous waste re Signature		all respects	Month	Date Day Yes
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS on	nformation Pertify that the contents of this sh a described on this manifest are	o hipment are fully and accurately described not subject to federal hazardous waste re Signature	and are in a squiations.	all respects	Month	_
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS on 17. Transporter Acknowledgement of Receipt of	nformation Pertify that the contents of this sh a described on this manifest are	a hipment are fully and accurately described not subject to federal hazardous waste re Signature Madda accurately described subject to federal hazardous waste re		all respects	Month	_
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS on	nformation Pertify that the contents of this sh a described on this manifest are	o hipment are fully and accurately described not subject to federal hazardous waste re Signature		all respects	Month	Day Yea 1009 Date Day Yea
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS Ow 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keith Chadwe	nformation Pertify that the contents of this st is described on this manifest are Materials	a hipment are fully and accurately described not subject to federal hazardous waste re Signature Madda accurately described subject to federal hazardous waste re		all respects	1	Day Yea Date Day Yea
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Ray HCSS or 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keith Chadwe 18. Transporter 2 Acknowledgement of Receipt of 19. Transporter 2 Acknowledgement of Receipt of	nformation Pertify that the contents of this st is described on this manifest are Materials	a aipment are fully and accurately described not subject to federal hazardous waste re Signature Signature Signature		all respects	1	Day Yea 1009 Date Day Yea
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Raydy HCSS Ow 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keith Chadwe	nformation Pertify that the contents of this st is described on this manifest are Materials	a hipment are fully and accurately described not subject to federal hazardous waste re Signature Madda accurately described subject to federal hazardous waste re		all respects	1	Day Yea Date Day Yea Day Yea Date
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS or 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keith Chabuse 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	nformation Pertify that the contents of this st is described on this manifest are Materials	a aipment are fully and accurately described not subject to federal hazardous waste re Signature Signature Signature		all respects	ll Month II	Day Yes Date Day Yea Day Yea Date
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSSON 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keither Challer 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space	nformation sertify that the contents of this sh a described on this manifest are 2 2 Materials Materials	Signature Signature Signature Signature Signature Signature Signature		all respects	ll Month II	Day Yea Date Day Yea Day Yea Date
15. Special Handling Instructions and Additional In 16. GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials Printed/Typed Name Randy HCSS or 17. Transporter Acknowledgement of Receipt of Printed/Typed Name Keith Chabuse 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	nformation sertify that the contents of this si s described on this manifest are aterials Materials elipt of the waste materials cover	Signature Signature Signature Signature Signature Signature Signature		all respects	ll Month II	Day Yea Date Day Yea Day Yea Date

NON-HAZARDOUS WASTE

Emerald Alaska Inc 800 East Ship Creek Anchorage, AK 99501 www.emeraldnw.com (907) 258-1558 fax (907) 258-3049

Certificate of Disposal / Recycle

Generator: SHANNON & WILSON, INC. 5430 FAIRBANKS STREET ANCHORAGE, AK 99518-1263

Document: Manifest # 2566A

Date of Disposal / Recycle: NOVEMBER 23, 2004

Line I	tem Description	Profile Number	Quantity
1a	Material Not Regulated by D.O.T.	AK00504	1 DM
-	(Non-regulated Granular Activated C	arbon)	120 lb
1b	Material Not Regulated by D.O.T.	AK00504	1DM
	(Non-regulated IDW Soil from North	east Cape,	500 lb

LAINE Paqui Jun

Roxanne Pedersen, Facility Operator

St. Lawrence Island)

December 3, 2004

JOB WORK ORDER

800 E. Ship Creek Ave. Anchorage, AK 99501 907-258-1558 • FAX 907-258-3049

JOB NUMBER: 93-916-90130

JOB DATE: 9-23-04

PROJECT NAME/TANK NUMBER:	Shannon \$ Wilson
PROJECT ADDRESS:	5430 FAIRBANKS ST. SUITE#3
CUSTOMER BILLING NAME:	
CUSTOMER CONTACT:	RANdy HeFong PHONE NO 561-2120
BASE WORK	CHANGE ORDER WORK
SUMMARY OF WORK REQUIRED: Shannen & Wilson Pic	Chloiz-d-Tect 5 gAllon DRUM THAT Ked up on ST. LAWRENCE ISIAND EFT
PASSES BRING BACK. THERE FOR PICKUP AND	DISPOSAL WELT WEEK,
NOTE: DRUM FAIled Ch.	OR-d-Tect TEST 71000 PPM

PROJECT EQUIPMENT	EQUIP. #	HOURS	TANK CLEANING EQUIPMENT	EQUIP. #	HOURS
AIR MONITORING			VACUUM TRUCK		
BOX TRUCK			VACUUM TRAILER		
FORK LIFT			SKID MOUNT		
PICK UP	672		AIR MOVERS		
FLAT BED TRUCK			BREATHING AIR EQUIP		
DUMPTRUCK-SIDE DUMP			HOTSEY		
ROLL OFF TRUCK			GENERATOR		
SUPPORT TRUCK			AIR COMPRESSOR		

MATERIAL	QUAN.	UNIT	MATERIALS/SUBS/STOCK REQS	INVOICE #
CHLOR-D-TECT	7			
ABSORBANT MATERIAL				
DRUMS				
PPE				
£4				
· ····································			· [· · · · · · · · · · · · · · · · · ·	

EMPLOYEE NAME	EQUIP. NO.	START	STOP	ST HOURS	OT HOURS
Keith Chadwell		11:00	12:00	_/	
				· ·	
		 			
SUBTOTAL LABOR		<u> </u>			

% OF COMPLETION <u>LOO</u> % ____Date_9-23-04

EMERALD ALASKA SIGNATURE

Date_

	NON-HAZARDOUS	1. Generator's US EP			Manifest Document No		2. Page 1
	enerator's Name and Mailing Address				02566 of 1		
5.0	B Generator's Name and Mailing Address SHANNON AND WILSON 5430 FAIRBANKS			M	5(007		
		ANCHORAGE.					
	Generator's Phone ((907)) 561-2	2120					· ••••
5.1	5. Transporter 1 Company Name EMERAND SERVICES, INC.		6. US EPA ID Number		A. State Transporter's ID B. Transporter 1 Phone (907) 258–15		
7.1	ransporter 2 Company Name	· · · · · · · · · · · · · · · · · · ·	8. US EPA ID Number		C. State Trans		/ 238-13
	TRIAD TRANSPORT		OKD 9781588	793	D. Transporte	r 2 Phone (91)	8) 426-47
9. [Designated Facility Name and Site Address	THE	10. US EPA ID Number		E. State Facili	ity's ID	
	POLLUTION CONTROL 4343 KENNEDY AVE.	IND.	ś		E. Encilitr's Di		
	EAST CHICAGO, IN 4	163 12	I I N D O O O 6 4 6	943	F. Facility's Pl	(219)	397-3951
11.	WASTE DESCRIPTION			-	ntainers	13.	14.
HW				No.	Туре	Total Quantity	Unit Wt./Vol.
а.	RQ, TOXIC LIQUID, QRG	ANIC, N.O.S.	(XYLENOL,				
X	1,2-DICHLOROBENZÉNE, RQ=100, ERG#153	6.1, UN2810,	(XYLENOL, PG-III MARINE POLLUTAN	ν † , ₁		70	
	RQ = 100, ERG = 133	· · · · · · · · · · · · · · · · · · ·		- 	MG	10	
G b. E N							
E							
R C.		-					
A T							
이							_
R d. 1							
FI G .							
	additional Descriptions for Materials Listed Ab	Jove			H. Handling C	odes for Wastes Listed Abov	e
G					H. Handling C	odes for Wastes Listed Abov	e
G	Additional Descriptions for Materials Listed Ab a) PCI280077 CLEANING				H. Handling C	odes for Wastes Listed Abov	8
G					H. Handling C	odes for Wastes Listed Abov	6
G					H. Handling C	odes for Wastes Listed Abov	8
G./I	a) PCI280077 CLEANING	GAGENT			H. Handing C	odes for Wastes Listed Abov	9
G./I		GAGENT			H. Handiing C	odes for Wastes Listed Abov	g
G./I	a) PCI280077 CLEANING	GAGENT			H. Handing C	odes for Wastes Listed Abov	
G./I	a) PCI280077 CLEANING	GAGENT			H. Handing C		850
G./I	a) PCI280077 CLEANING	GAGENT			H. Handling C	odes for Waste's Listed Abov	<u> </u>
G/J	a) PCI280077 CLEANING Special Handling Instructions and Additional I	Information				odes for Wastes Listed Abov	85A
G/J 15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I	AGENT	is shipment are fully and accurately described	d and are in egulations.		odes for Wastes Listed Abov	85A
G/J 15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I	AGENT	is shipment are fully and accurately described are not subject to federal hazardous waste re	d and are in egulations.		odes for Wastes Listed Abov	85A
- G/J	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby on proper condition for transport. The material	AGENT	are not subject to federal hazardous waste re	d and are in egulations.		981 C#+_180	85A Date
- G/J	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby on proper condition for transport. The material	AGENT	is shipment are fully and accurately described are not subject to lederal hazardous waste re- Signature	d and are in egulations.		odes for Wastes Listed Abov	85A Date
15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby on proper condition for transport. The material	AGENT	are not subject to federal hazardous waste re	d and are in egulations.		981 C#+_180	85A Date
15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: 1 hereby of n proper condition for transport. The material ted/Typed Name Comparison of Proceeding Comparison of Proceeding Of Proceeding Comparison of Proceeding Of P	AGENT	are not subject to federal hazardous waste re	d and are in egulations.		981 C#+_180	Date th Day Year Date Date
15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby of n proper condition for transport. The material ted/Typed Name and HCSSong Transporter 1 Acknowledgement of Pieceipt of ted/Typed Name CLACL	AGENT	signature	d and are in egulations.		201 CH+ 180 Mont 11	Date Date Date Date Date
15.	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby on proper condition for transport. The material ted/Typed Name Charles Hessong Transporter 1 Acknowledgement of Pieceipt of ted/Typed Name Charles Charles Transporter 2 Acknowledgement of Receipt of Transporter 2 Acknowledgement of Receipt of	AGENT	Signature Signature Signature	d and are in egulations.		201 CH+ 180 Mont 11	Date th Day Year Date th Day Year
	a) PCI280077 CLEANING Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby of n proper condition for transport. The material ted/Typed Name and HCSSong Transporter 1 Acknowledgement of Pieceipt of ted/Typed Name CLACL	AGENT	signature	d and are in egulations.		201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year
	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: 1 hereby of n proper condition for transport. The material ted/Typed Name Combody Hessian Transporter 1 Acknowledgement of Receipt of ted/Typed Name Cittle Charles Charles Transporter 2 Acknowledgement of Receipt of ted/Typed Name Cittle Charles Charles Transporter 2 Acknowledgement of Receipt of Transporter 2 Acknowledgement of Theorem	AGENT	Signature Signature Signature	d and are in egulations.		201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year
15. 16. 17. 17. 18. 19. 19. 19. 19.	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby on proper condition for transport. The material ted/Typed Name Charles Hessong Transporter 1 Acknowledgement of Pieceipt of ted/Typed Name Charles Charles Transporter 2 Acknowledgement of Receipt of Transporter 2 Acknowledgement of Receipt of	AGENT	Signature Signature Signature	d and are in egulations.		201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year
	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: 1 hereby of n proper condition for transport. The material ted/Typed Name Combody Hessian Transporter 1 Acknowledgement of Receipt of ted/Typed Name Cittle Charles Charles Transporter 2 Acknowledgement of Receipt of ted/Typed Name Cittle Charles Charles Transporter 2 Acknowledgement of Receipt of Transporter 2 Acknowledgement of Theorem	AGENT	Signature Signature Signature	d and are in egulations.		201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year
	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby n proper condition for transport. The material ted/Typed Name Comby HCSSONG Transporter 1 Acknowledgement of Receipt of ted/Typed Name Cittal Charles Transporter 2 Acknowledgement of Receipt of ted/Typed Name	AGENT	Signature Signature Signature			201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year
	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby n proper condition for transport. The material ted/Typed Name Comby HCSSONG Transporter 1 Acknowledgement of Receipt of ted/Typed Name Cittal Charles Transporter 2 Acknowledgement of Receipt of ted/Typed Name	AGENT	Signature Signature Signature Signature Signature			201 CH+ 180 Mont 11	Date th Day Year Date th Day Year Date th Day Year 10004
	a) PCI280077 CLEANING Special Handling Instructions and Additional I Special Handling Instructions and Additional I GENERATOR'S CERTIFICATION: I hereby n proper condition for transport. The material ted/Typed Name Comby HCSSONG Transporter 1 Acknowledgement of Receipt of ted/Typed Name Cittal Charles Transporter 2 Acknowledgement of Receipt of ted/Typed Name	AGENT	Signature Signature Signature Signature Signature			201 CH+ 180 Mont 11	Date Date th Day Year 10004 Date th Day Year Date th Day Year Date

-

.

.

-

APPENDIX F

Important Information about Your Geotechnical/Environmental Report

Attachment to and part of Report 32-1-16821

Date:	June 2005
To:	U.S. Army Corps of Engineers – Alaska
	District
Re:	Phase IV Remedial Investigation, Northeast
	Cape, St. Lawrence Island, Alaska

Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors, which were considered in the development of the report, have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX G

Survey Report

Mammoth Consulting, L.L.C.

Land Research + Surveying + Mapping 11001 Ridgecrest Drive Anchorage, Alaska 99516 Tele. (907) 346-3767

October 11, 2004

Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage AK 99518-1263

Attn: John Spielman

Dear John:

Submitted herewith is the survey data for the Phase IV Remedial Investigation at Northeast Cape, St. Lawrence Island, Alaska. Enclosed are the following:

- Eleven (11) 8 1/2" x 11" drawings showing survey point locations
- > Spreadsheet print-out of all points from this survey, based on local grid
- Spreadsheet print-out of NAD83 geographic coordinates for background sample locations only
- Sketches, data collector raw data files, and misc. information organized by general location
- Copies of field notes
- > CD-ROM with
 - NEC_2004.txt (ASCII file of points this survey)
 - NEC_2004.xls (EXCEL spreadsheet of (a) all points from 2001-2004 and (b) points this survey)
 - Pdf's of the 11 survey point location drawings

Following is a brief survey report.

The field survey commenced September 3, 2004 and was substantially completed by Mammoth Consulting on September 8. Shannon and Wilson personnel collected GPS data (for background samples) between September 8 and September 13th and also obtained "swing ties" for eight locations sampled after September 8.

Survey control information provided to Mammoth Consulting at the onset of this project consisted of:

≻	nec-2001 field pts.txt	(Mullikin Surveys, 2001)
≻	2002.txt	(Mullikin Surveys, 2002)
≻	Terra Surveys Workbook.xls	(Terra Surveys, 2003)

The point data was merged, with some points re-numbered so that point numbering used this survey would not be in conflict. See NEC_2004.xls "2001-2004 all points" tab for

the complete listing, which includes the source of each data point (M01, M02 = Mullikin 2001, 2002; T03 = Terra 2003; 2004 = this survey).

Four existing control stations were used:

BM-B – This is the Basis of Coordinates for the local grid. Coordinate is 100000, 100000; elevation is 75.97 ft. The monument is a 3 5/8" brass cap, marked "B," on $1 \frac{1}{2}$ " iron pipe that extends 0.7' above the ground.

LOUNSBURY – This is a 2-inch aluminum cap monument on 5/8" rebar at Site 7. It is marked "LOUNSBURY LS-8535 1994." The monument was loose in its hole, but otherwise in good condition, with the cap 0.2' above the ground. The coordinate used this survey was from the Mullikin 2001 data set. The elevation was determined using the vertical difference measured this survey between BM-B and LOUNSBURY (-7.39 ft) and the elevation of BM-B (75.97 ft), or **68.58 ft**. This compares to 69.65 ft as reported by Mullikin 2001. This point was not part of either the Mullikin 2002 or the Terra 2003 data sets.

GPS 3201 – This is a 2-inch aluminum cap monument on 5/8" rebar at the Main Complex Area. It is marked "4469-S GPS 3201 2002." It was found in good condition 0.45 ft above the ground surface. The coordinate and elevation reported in the Mullikin 2002 data set were held. Terra's 2003 elevation (67.22 ft) closely matched this elevation (67.29 ft), and their coordinate was slightly to the south (Northings differed by 0.75'). The Mullikin 2002 coordinate was used because it is from the same data set as the monitoring wells that were re-measured this survey.

BM-H – This is a 1 $\frac{1}{2}$ " iron pipe with wood and a tack in the center. It was found projecting 0.8' above the ground. The coordinate reported in the Mullikin 2001 data set was held. As with GPS 3201, the Terra 2003 position was slightly to the south of this (Northings differed by 0.5'). The elevation used this survey was computed from the difference measured this survey between GPS3201 and BM-H (2.67 ft) and the Mullikin 2002 elevation for GPS 3201 (67.29 ft), for an elevation of **69.96 ft**. In comparison, the Mullikin 2001 elevation reported for this station is 71.23 ft, and the Terra 2003 elevation, 70.04 ft.

Auxillary control at some of the sites was required and was established using conventional surveying methods. Redundant measurements were made and mean values determined for coordinates and elevations. See control sketches for additional information. The auxillary control consisted of:

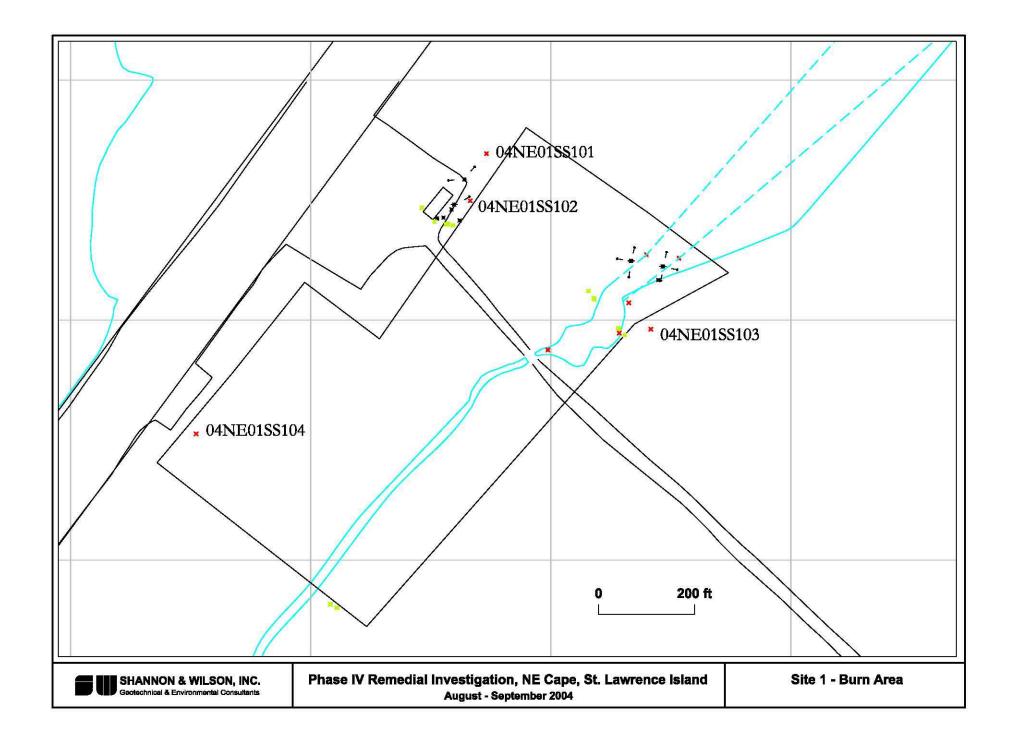
BEACH – a spike set in the top of the gravel pile at Site 3
DRUM – a spike set at Site 6
FILL – a spike set at Site 7
ALICE – a nail set at Site 31
ESTUARY – a spike set at Site 29
AIRSTRIP – a 2-inch alum. cap found at the airstrip marked "4469-S 98-2 GPS 1998"

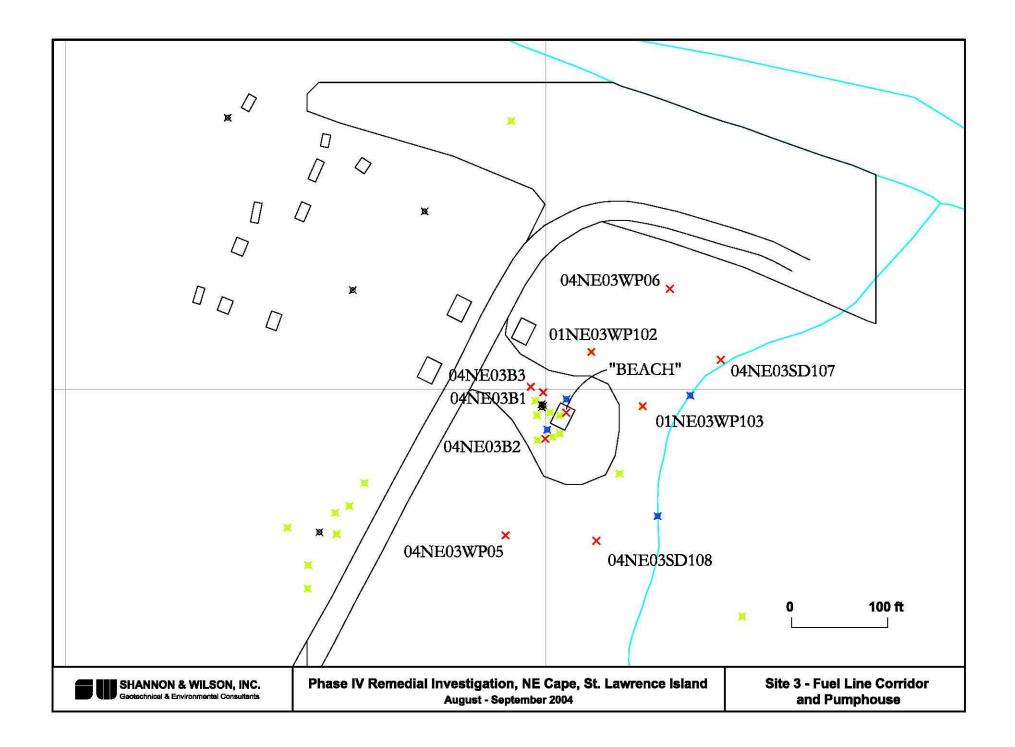
The majority of the sample locations determined this survey were by conventional survey techniques. Data was recorded both manually in the field book and automatically by the on-board data collection system. See field book copies and raw data print-outs for specific sideshot information.

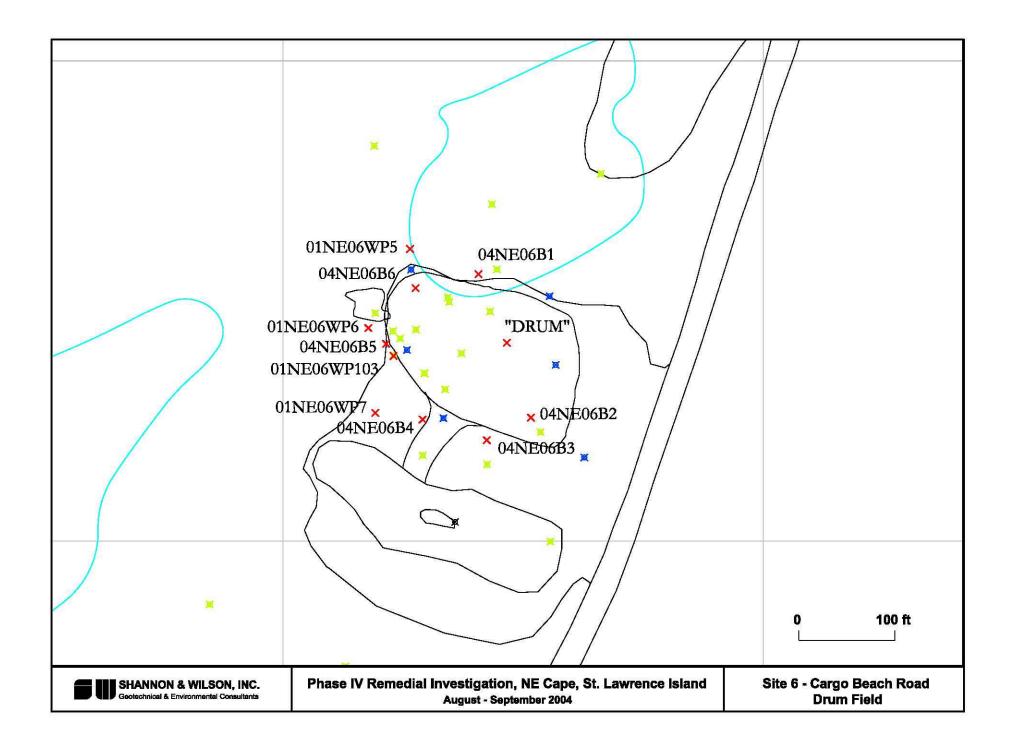
The locations and elevations of monitoring wells were determined at the sampling reference mark on the top of casing. For the well points at Sites 3 and 6, the positions were measured at the pipe center at ground surface, and the elevations, at the top of the threaded pipe. See field notes for observed heights above ground of well points

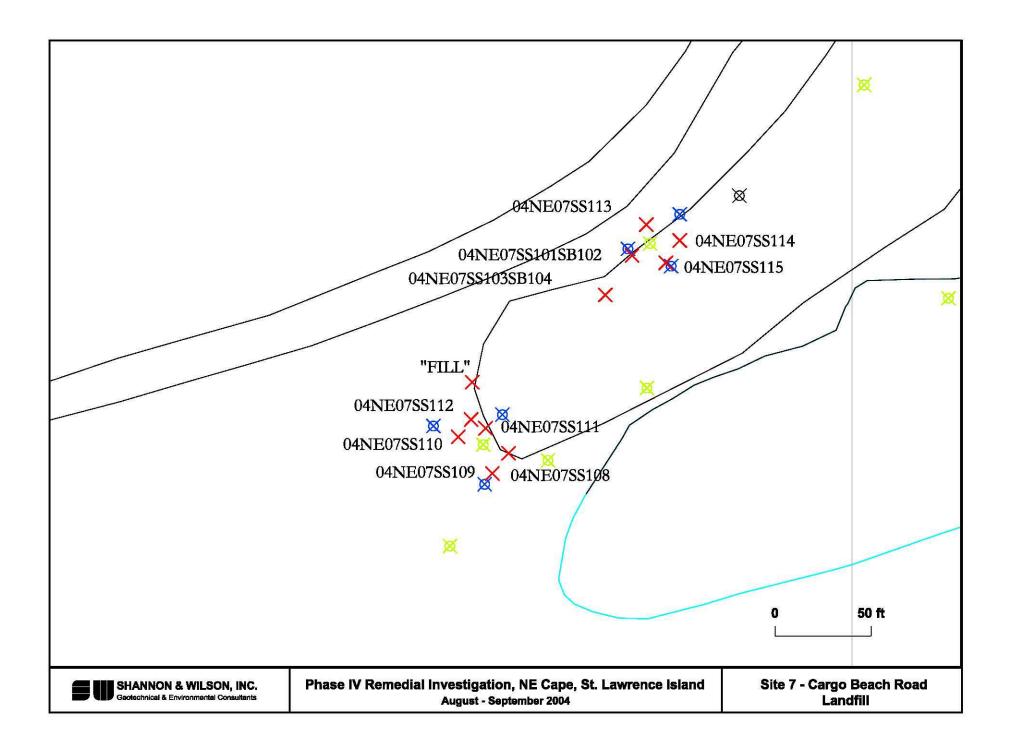
The locations of surface water samples were determined using the offset distances reported by the sampling crew and the reference lath locations as determined by the conventional survey.

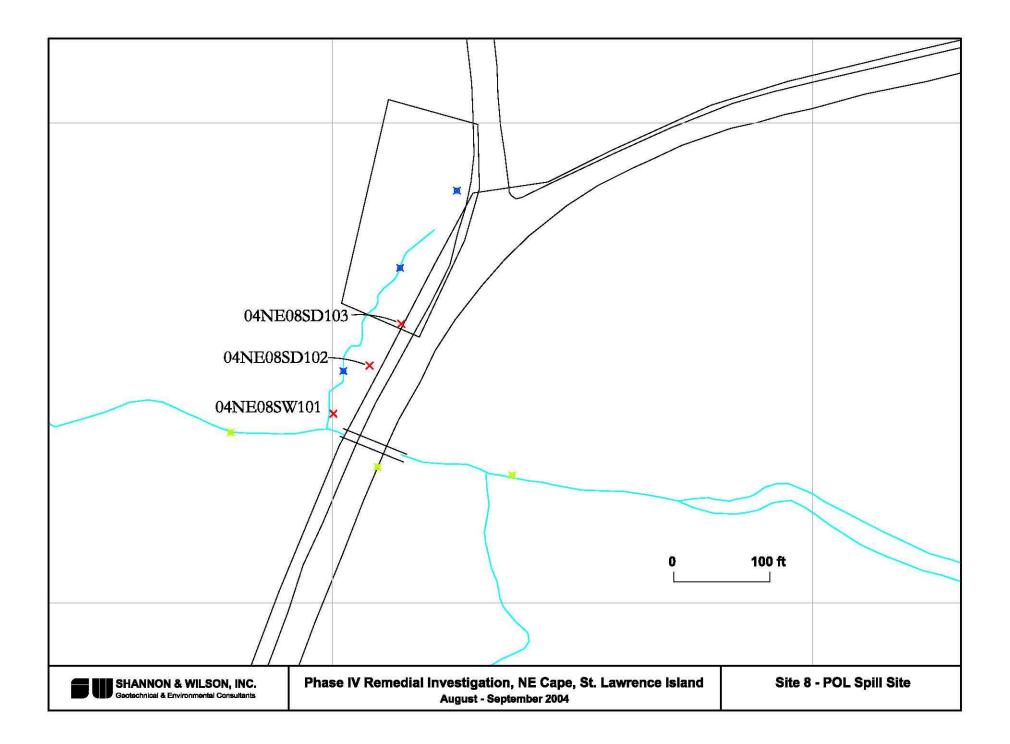
Swing tie data provided by the sampling crew was used to determine locations of three samples at Site 7, three samples at Site 13, and the two bulk samples at the Main Complex Area.

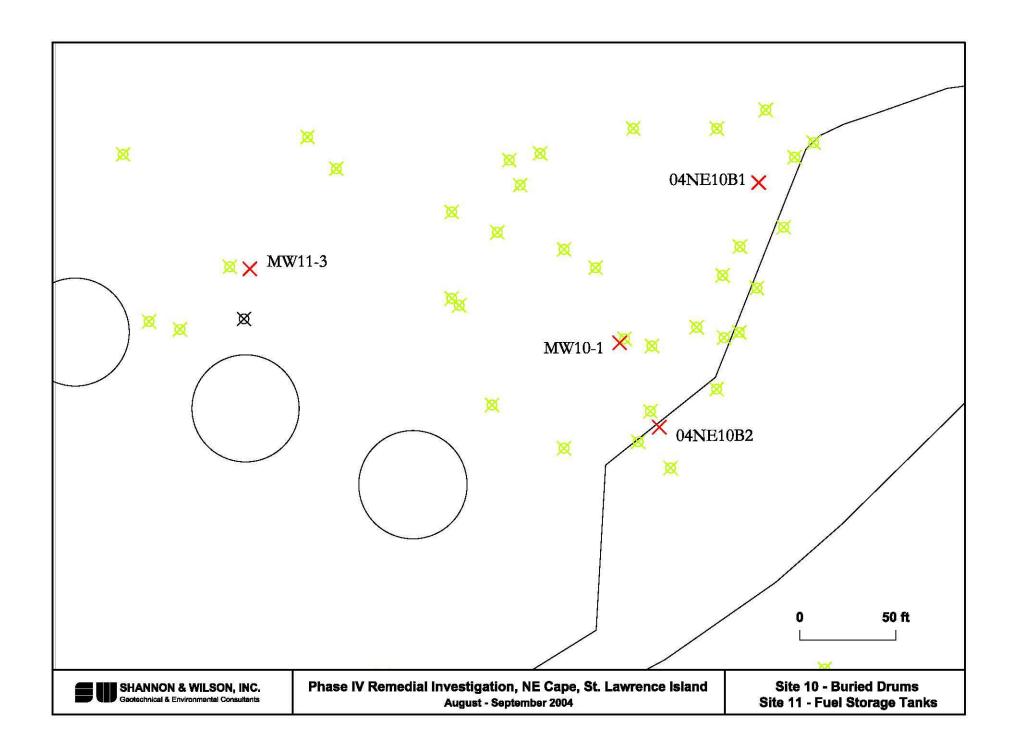

The locations of the Background Sample Sites were determined using differentiallycorrected GPS data. Positions were collected using a Trimble GeoXT receiver. Pathfinder Office software was used to correct the positions using data from a continuously operating reference station (CORS station). Horizontal precisions for the points collected were in the 6-meter range before processing and the 1-meter range afterwards.

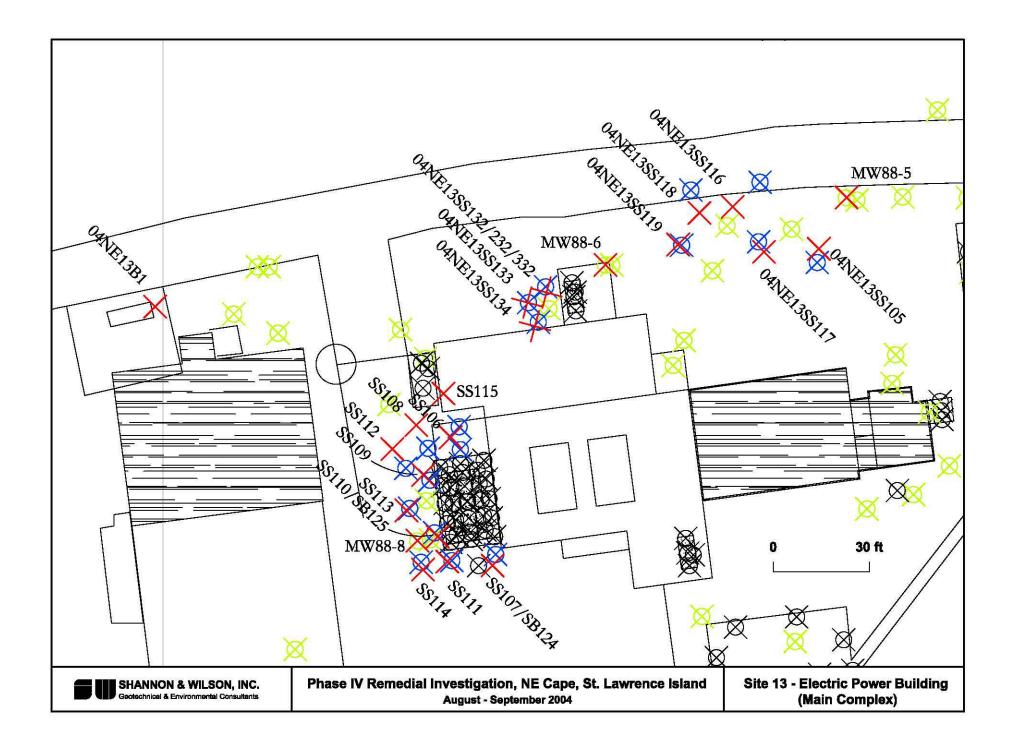

To transform the WGS84 GPS coordinates to the local plane grid, a "global coordinate system" was defined using Softdesk Land Development Desktop software. The coordinate system is a modified NAD83 Zone 9 (Transverse Mercator) projection with the origin at NGS Station BM-B and units in U.S. survey feet. The GPS data set included coordinates for Station AIRSTRIP and for the lath set near sample site 04NE29SW102. The local grid coordinates determined by the transformation of GPS data for these two points were compared with the local grid coordinates determined by conventional survey. Both GPS-derived positions were within a meter of their conventionally-determined counterpart.

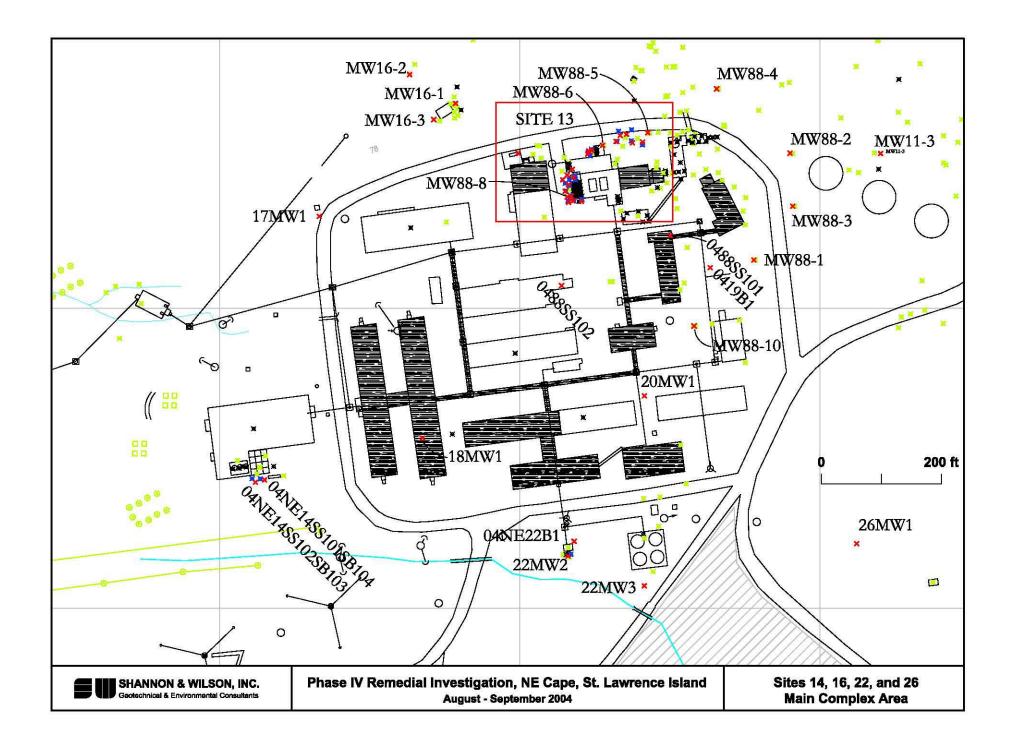

The means by which each location point was determined (conventional, swing tie or offset, GPS) is noted along the left side of the spreadsheet print-out being provided.

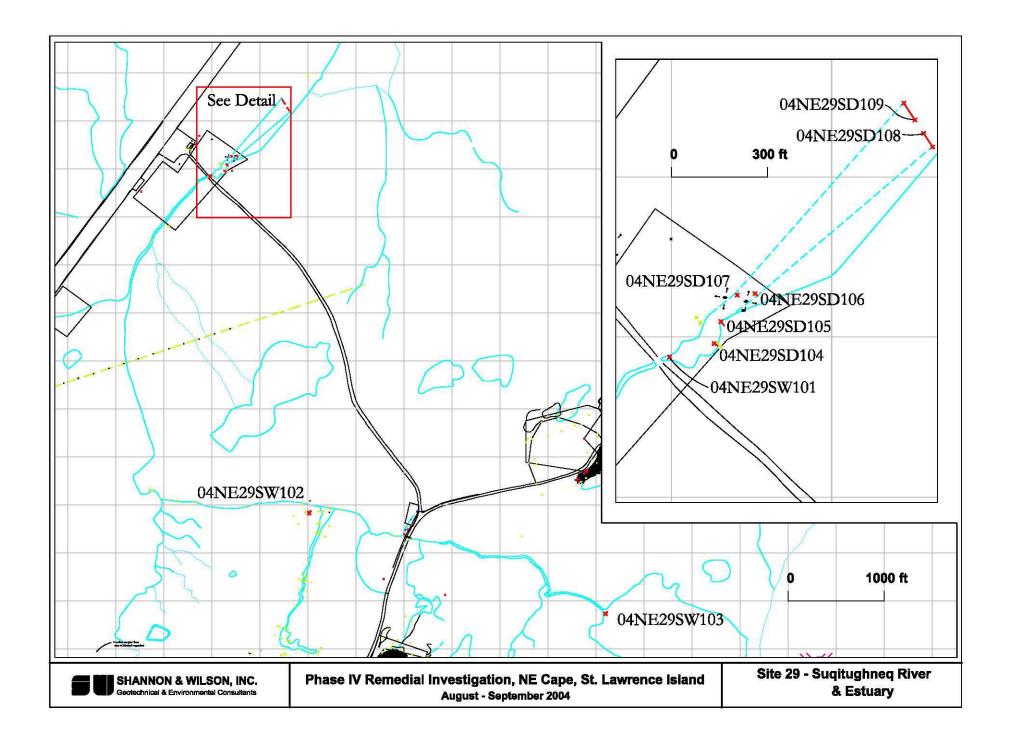

Thank you for the opportunity to perform this work. Please do not hesitate to call if you have any questions or need additional information.

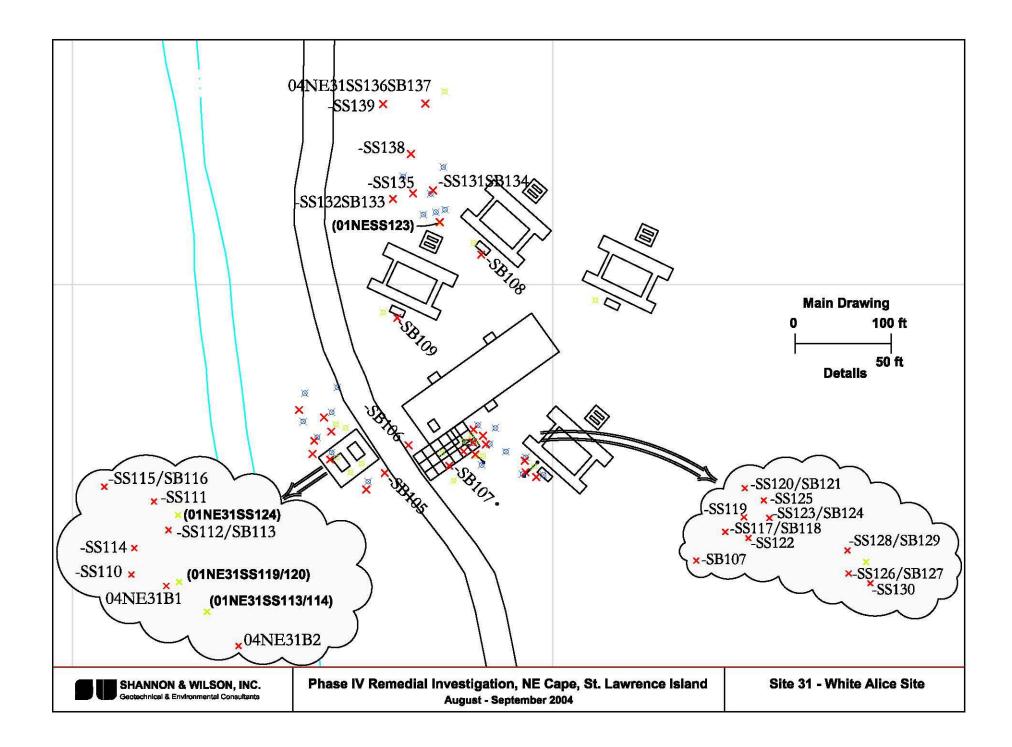

Sincerely. Why Milians, P.E., P.L.S.

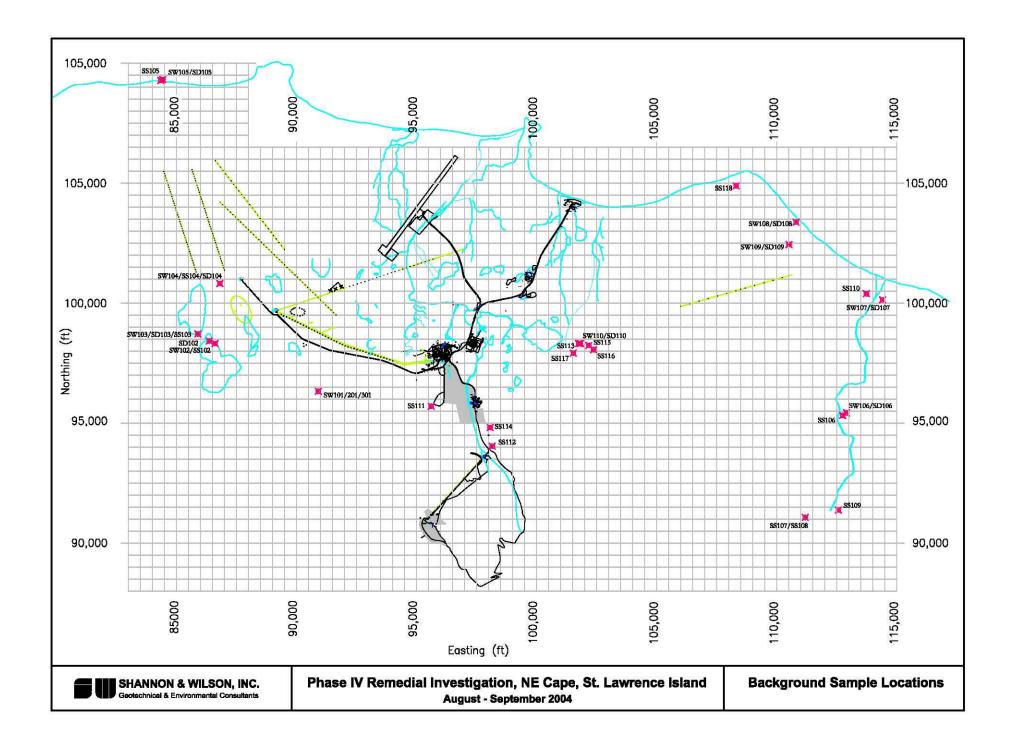






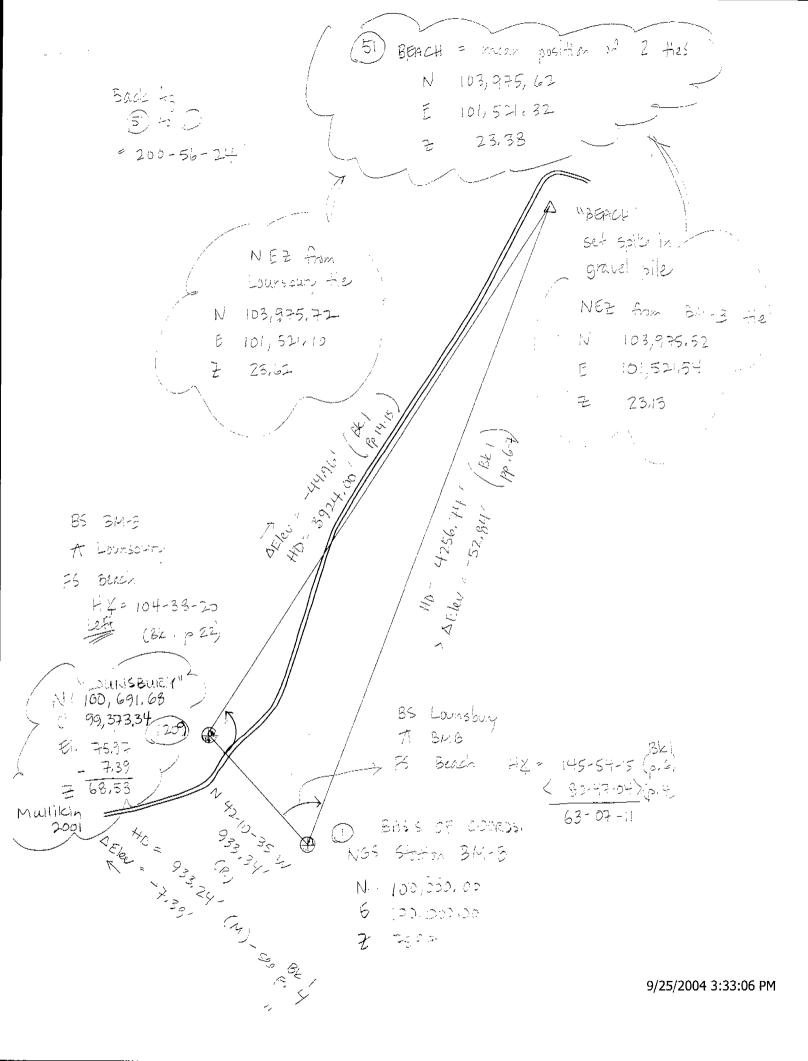






_							
	<u>_</u>				e and Elev	*1	
		<u> </u>				nvestigation	
						Island, Alaska	
_		·····		August	- Septemb	er 2004	
		Point No.	Northing	Easting	Elevation	Description	Source
		1	100000.00	100000.00	75.97	ВМ-В	т03
	¥ o	51	103975.62	101521.32	23.38	BEACH	2004
Ţ	Ĩ.	52	101206.36	99733.09	51.16	DRUM	2004
g			100283.05	99302.36	68.72	FILL	2004
ドフ	560 A150	54	95878.60	97366.74	210.93	ALICE	2004
CONTROL	a 3	55	103806.09	95498.62	19.33	ESTUARY	2004
0	-11	56	103549.54	95161.31	25.84	AIRPORT	2004
		401	103996.94	101497.29	16.7	04NE03B1	2004
		402	103948.40	101499.64	16.5	04NE03B2	2004
		403	104002.66	101484.45		04NE03B3	2004
		404	104038.97	101547.55	15.71	01NE03WP102	2004
		405	103982.50	101600.95		01NE03WP103	2004
		406	104030.70	101682.24		04NE03SD107	2004
		407	103842.22	101552.63	<u> </u>	04NE03SD108	2004
	1	408	104104.69	101629.21	8.69	04NE03WP06	2004
		409	103847.91	101458.12		04NE03WP05	2004
		410	100691.65	99373.39		BSCHK-LOUNSBURY	2004
-u		411	101277.88	99703.46		04NE06B1	2004
	7	412	101128.32	99758.11	46.6	04NE06B2	2004
	$\widehat{\mathcal{D}}$ –	413	101104.87	99712.14		04NE06B3	2004
	র	414	101126.38	99645.29		04NE06B4	2004
	3	415	101205.27			04NE06B5	2004
_	<u>v</u>	416	101263.20	99637.98		04NE06B6	2004
)	417	101192.57	99614.98		01NE06WP103	2004
	Σ	418	101133.22	99596.11	<u> </u>	01NE06WP7	2004
	<u>Z</u>	419	101304.04	99632.32		01NE06WP5	2004
١	011 0	420	101221.78	99588.78		01NE06WP6	2004
	B	421	100349.07	99385.54		04NE07SS101SB102	2004
	>	422	100328.53	99371.67		04NE07SS103SB104	2004
	2	423	100321.77	99353.30		04NE07SS105-nix	2004
	3	424	100345.83	99367.78		04NE07SS106-nix	2004
		425	100334.14	99346.01		04NE07SS107-nix	2004
	1	426	100246.07	99321.29		04NE07SS108	2004
- 112	1	427	100235.49	99312.81		04NE07SS109	2004

, <u></u>	Point No.	Northing	Easting	Elevation	Description	Source
<u> </u>	428	100254.59	99295.08	60.1	04NE07SS110	2004
	429	100263.64	99301.80	···	04NE07SS112	2004
	430	100259.08	99309.27		04NE07SS111	200-
	431	100250.43	99307.92		01NE07SS125lath	2004
	432	99063.57	97928.08		BSCHK-BMH	2004
	433	98276.85	96204.79		04NE13SS115	2002
	434	98289.97	96177.93		04NE13SS116	2004
	435	98275.94	96187.66		04NE13SS117	2004
n	436	98288.07	96167.51		04NE13SS118	200-
·	430	98278.20	96160.85		04NE13SS119	2004
	438	98238.18	96093.50		04NE13SS120nix	2004
	439	98243.14	96087.10		04NE13SS120nix	2002
	440	98250.14	96090.17		04NE13SS121nix	2004
~~	441	98244.18	96093.88		04NE13SS122nix	2004
$-\widehat{m}$	441	98231.64	96093.88		04NE13SS12511X	2002
-J-	442	98217.97	96089.82		04NE13SS105	
- <u>2</u>	443			··· ····		2.004
		98177.91 98221.79	96102.90		04NE13SS107SB124	2004
	445		96079.08		04NE13SS108	2004
	446	98206.26	96081.26		04NE13SS109	2004
- <u>7</u> -	447	98186.92	96085.79		04NE13SS110SB125	2004
-F	448	98179.16	96088.75		04NE13SS111	2004
<u> </u>	449	98214.32	96071.58		04NE13SS112	2004
₹	450	98195.15	96076.01		04NE13SS113	2004
_ 2 _	451	98176.65	96081.17		04NE13SS114	2004
Ŭ	452	98185.69	96079.46		MW88-8	2004
	453	98292.92	96213.46		MW88-5	2004
	454	98271.82	96138.17	·	MW88-6	2004
	455	98067.55	96317.35		04NE19B1	2004
	456	97970.52	96290.57		MW88-10	2004
	457	97854.27	96207.70		20MW1	2004
	458	97537.62	96207.60		22MW3	2004
	459	99063.59	97928.07		BSCHK-BMH	2004
	460	97587.19	96080.63		22MW2	2004
	461	97611.78	96090.69		04NE22B1	2004
	462	97783.55	95838.32	83.09	18MW1	2004
	463	99063.61	97928.15	70.1	BSCHK-BMH	2004
	464	98372.52	96436.66		BSCHK-GPS3201	2004
	465	96097.80	97375.50		04NE31SS131SB134	2004
	466	96089.09	97333.68	195.6	04NE31SS132SB133	2004
	467	96094.93	97354.60	195.9	04NE31SS135	2004


	Point No.	Northing	Easting	Elevation	Description	Source
	468	96135.91	97352.45	192.7	04NE31SS138	200
	469	96187.97	97323.28	186.8	04NE31SS139	200
	470	96031.06	97425.60	198.0	04NE31SB108	200
	471	95965.20	97338.27	202.2	04NE31SB109	200
	472	95832.58	97349.79	210.7	04NE31SB106	200
	473	95811.14	97392.31	209.9	04NE31SB107	200
	474	95803.59	97325.18	214.3	04NE31SB105	200
	475	95786.42	97305.91	214.9	04NE31B2	200
-	476	95817.62	97268.27	212.0	04NE31B1	200
	477	95823.56	97250.04	208.6	04NE31SS110	2004
	478	95861.56	97261.83	206.4	04NE31SS111	2004
	479	95846.73	97269.44	209.2	04NE31SS112SB113	2004
	480	95837.28	97251.62	207.9	04NE31SS114	2004
_	481	95869.28	97236.01	203.4	04NE31SS115SB116	200
-	482	95826.18	97407.40	210.0	04NE31SS117SB118	200
	483	95835.34	97417.02		04NE31SS119	200
2	484	95848.90	97417.60	210.2	04NE31SS120SB121	200
₹	485	95822.89	97419.43		04NE31SS122	200
मे नि	486	95833.44	97430.42		04NE31SS123SB124	200
3	487	95842.55	97427.45		04NE31SS125	200
	488	95804.49	97471.66		04NE31SS126SB127	200
5	489	95816.44	97471.07		04NE31SS128SB129	200
₹ 7	490	95799.37	97482.96		04NE31SS130	200
3	491	97713.97	95575.16		04NE14SS101SB104	200
5	492	97710.46	95559.86		04NE14SS102SB103	200
\$	493	98153.42	95666.35		17MW1	200
3	494	98258.81	95997.53		04NE13B1	200
\	495	98080.75	96390.05		MW88-1	200
0	496	98170.29	96455.04		MW88-3	200
	497	98258.68	96450.28		MW88-2	200
	498	98365.80	96328.02		MW88-4	200
	499	98341.55	95893.12		MW16-1	200
	500	98314.60	95857.04		MW16-3	200
	501	98389.69	95816.65		MW16-2	200
	502	98257.96	96601.12		MW11-3	200
1	502	98219.41	96793.59		MW10-1	200
	503	98175.48	96814.28		04NE10B2	200
	505	98302.86	96865.98		04NE10B2	200
+	505	97607.85	96561.46		26MW1	200
+	503	99932.97	96525.62		04NE29SW102lath	200

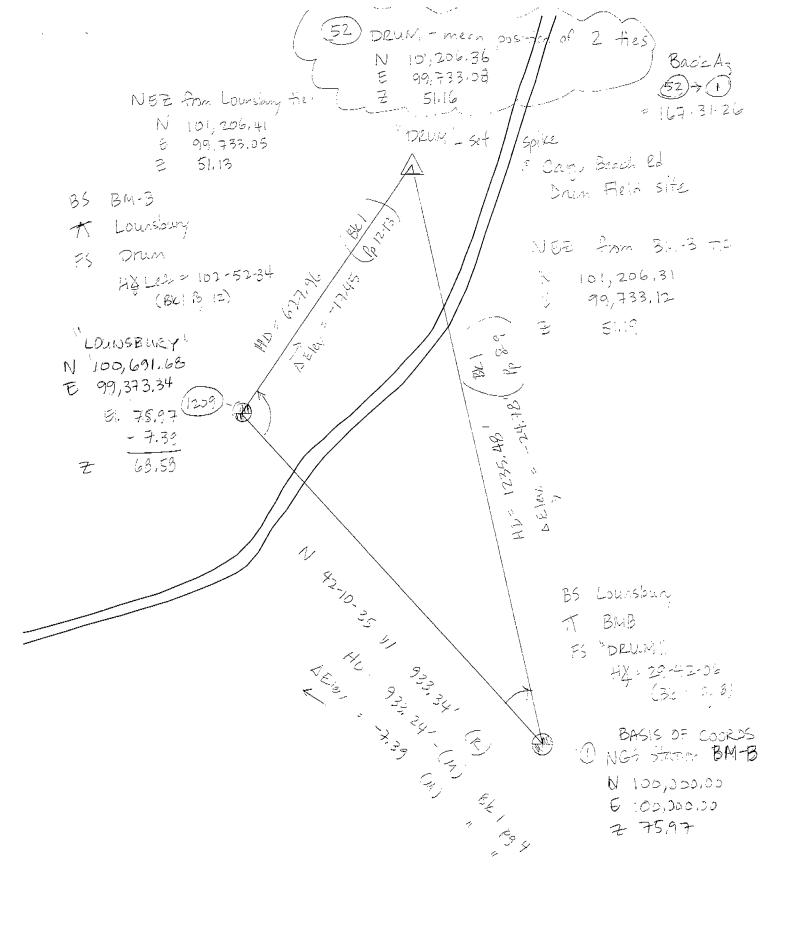
_	Point No.	Northing	Easting	Elevation	Description	Source
-	508	96188.37	97367.40	188.3	04NE31SS136SB137	2004
	509	95691.39	97419.47		FND-SPIKE	2004
	510	96064.85	97382.50		staked 01ne31ss1	2004
	513	98258.17	96120.48		staked 98NEC13SS802	2004
	512	99227.83	97286.91		26MW-3	2004
	513	99697.07	97501.23	·····	04NE08SW101	2004
<u></u>	514	99790.54	97572.05		04NE08SD103	2004
<u> </u>	515	99747.17	97539.04		04NE08SD102	2004
- <u>-</u> 7-	516	98885.69	99612.01	·	04NE29SW103lath	2004
<u></u>	518	100355.28	99394.93		staked 01NE07SS127	2004
	510	103806.04	95498.56		BSCHK-ESTUARY	2004
	520	103748.37	95332.30		04NE01SS102	2004
<u> </u>	520	103437.84	95493.96	·····	04NE29SW101lath	2004
<u> </u>	521	103457.84	95642.59		04NE29SD104lath	2004
- <u>p</u>	523	103472.84	95708.19		04NE01SS103	2004
<u> </u>	523	103481.02	95662.31		04NE01SS105	2004
	524	103628.66	95767.14		04NE29SD106lath	2004
<u>_ź</u>	525	103635.87	95699.14	· · · ·	04NE29SD100lath	2004
	520	103035.87	96223.39		04NE29SD107lath	2004
	527	104230.85	96313.42		04NE29SD109lath	2004
	528	103806.03	95498.56	·	BSCHK-ESTUARY	2004
		103263.04			04NE01SS104	2004
	530	103265.04	<u>94761.67</u> 95366.09		04NE01SS104	2004
- 	531				······································	
	532	100365.11	99393.03		04NE07SS113 04NE07SS114	2004
<u> </u>	533	100356.87	99410.34			2004
<u> </u>	534	100345.19	99403.12	·	04NE07SS115	2004
— <u> </u>	535	98263.21	96119.75		04NE13SS132/232/332	2004
0	536	98260.08	96113.75		04NE13SS133	2004
$\sum_{i=1}^{\infty} \widetilde{v_i}$	537	98252.68	96116.13		04NE13SS134	2004
	538	98121.38	96250.86		04NE88SS101	2004
<u> </u>	539	98038.01	96069.65		04NE88SS102	2004
SWIN	540	103479.80	95630.44		04NE29SD104	2004
<u></u>	541	103548.25	95651.98		04N329SD105	2004
~	542	103635.93	95758.89		04NE29SD106	2004
	543	103630.71	95703.09	i	04NE29SD107	2004
 	544	104178.22	96258.02)	04NE29SD109	2004
	545	104137.02	96285.12	•	04NE29SD108	2004
	546	103438.77	95493.59		04NE29SW101	2004
	547	99931.97	96525.56	i- •	04NE29SW102	2004
∇	548	98887.66	99612.36	0	04NE29SW103	2004

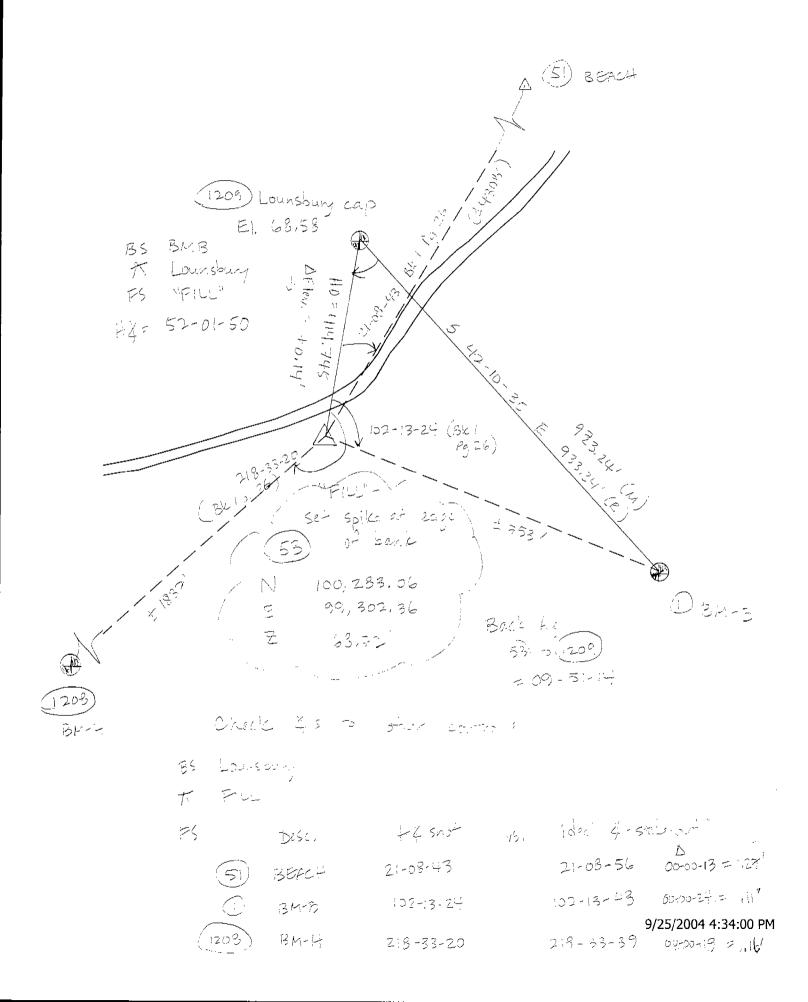
	Point No.	Northing	Easting	Elevation	Description	Source
{}	601	98323.86	86614.37		04NEBGSW102/SS102	2004
	602	98426.25	86369.73	·	04NEBGSD102	2004
	603	98714.49	85897.28	21	04NEBGSW103/SD103/SS103	2004
	604	100817.88	86813.59	20	04NEBGSW104/SS104/SD104	2004
	605	96328.86	90914.14	82	04NEBGSW101/201/301	2004
	606	109316.13	84438.38	9	04NEBGSW105/SD105	2004
	607	109278.93	84350.06	9	04NEBGSS105	2004
	608	95431.09	112914.38	23	04NEBGSW106/SD106	2004
	609	95324.50	112745.71	29	04NEBGSS106	2004
Ņ	610	91074.30	111187.54	110	04NEBGSS107/SS108	2004
ے۔ 	611	91384.74	112567.04	56	04NEBGSS109	2004
0	612	100142.88	114411.16	-6	04NEBGSW107/SD107	2004
)	613	100393.08	113737.71	-6	04NEBGSS110	2004
¥.	614	103376.88	110807.51	-3	04NEBGSW108/SD108	2004
Ē	615	102443.85	110515.44	2	04NEBGSW109/SD109	2004
ß	616	99932.70	96523.05	31	04NE29SW102-GPS	2004
Q Q	617	95707.79	95613.63	277	04NEBGSS111	2004
-b-	618	94044.28	98154.57	399	04NEBGSS112	2004
<u>T</u>	619	98324.63	101822.54	48	04NEBGSW110/SD110	2004
Ā	620	98316.51	101752.63	51	04NEBGSS113	2004
	621	94818.33	98065.30	318	04NEBGSS114	2004
	622	98239.27	102176.58	55	04NEBGSS115	2004
	623	98064.63	102376.08		04NEBGSS116	2004
	624	97923.86	101528.45		04NEBGSS117	2004
	625	104888.62	108308.63		04NEBGSS118	2004
JV	626	103549.83	95160.89		AIRSTRIP-GPS	2004
হ্ৰক	1208	99063.60	97928.16		ВМ-Н	M01
Ž	1209	100691.68	99373.34		LOUNSBURY	M01
V CONT	3201	98372.51	96436.64		GPS 3201	M02
	M01 = Mulli	kin 2001				
	M02 = Mullil					
		Surveys 2003			· · · · ·· · ···	
	2004 = This	Survey		ļ	· ·	

Different	ally-corrected C	SPS Data		
Phase IV				
NE Cape, S				
· · · ·	September 200	4		
	Datum:	WGS84		
	Lat - DD	Lon - DD	HAE - ft	MSL - ft
04nebgsw102/ss102	63.31170904	-169.02224161	44	20
04nebgsd102	63.31198816	-169.02372983	47	22
04nebgsw103/sd103/ss103	63.31277464	-169.02660468	46	21
04nebgsw104/ss104/sd104	63.31852951	-169.02104951	45	20
04nebgsw101/201/301	63.30626650	-168.99608843	107	82
04nebgsw105/sd105	63.34175743	-169.03557352	34	9
04nebgss105	63.34165652	-169.03610841	34	9
04nebgsw106/sd106	63.30380146	-168.86235906	48	23
04nebgss106	63.30351055	-168.86338509	54	29
04nebgss107/ss108	63.29189332	-168.87288310	135	110
04nebgss109	63.29273803	-168.86449930	82	56
04nebgsw107/sd107	63.31668039	-168.85322242	19	-6
04nebgss110	63.31736699	-168.85731574	19	-6
04nebgsw108/sd108	63.32553526	-168.87511644	22	-3
04nebgsw109/sd109	63.32298473	-168.87689863	27	2
04ne29sw102	63.31613037	-168.96200031	56	31
04nebgss111	63.30457657	-168.96751937	302	277
04nebgss112	63.30002991	-168.95207238	424	399
04nebgsw110/sd110	63.31173449	-168.92977608	73	48
04nebgss113	63.31171234	-168.93020113	76	51
04nebgss114	63.30214647	-168.95261589	343	318
04nebgss115	63.31150091	-168.92762359	80	55
04nebgss116	63.31102325	-168.92641088	89	64
04nebgss117	63.31063874	-168.93156445	97	72
04nebgss118	63.32967513	-168.89030974	24	-1

. .

_

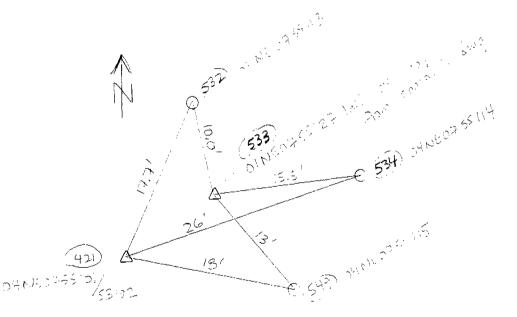

.


JOB:Name: NEC1 M Setup:North Azimuth Occupy:Occ: 51 Backst:Occ: 51 HI/HR :H Inst: 4.93	Date: 09-04-2004 Units: US Feet North: 103,975.6200 BS pt: 1 H Rod: 0.45	Time: 12:18:20 Scale: 1.000000 East: 101,521.3200 BS azm: 200°56'24"	Curvature: Off Elev: 23.38 BS crl: 0°00'00"	Angle: Degrees BEACH
Sd Shot:51-401 HI/HR :H Inst: 4.93	Ang R: 110°38'32" H Rod: 4.60	Zen: 109°08'31"	S Dst: 34.005	04NE03B1
Sd Shot:51-402 HI/HR :H Inst: 4.93	Ang R: 17°36'18" H Rod: 0.45	Zen: 101°45'19"	S Dst. 35.545	04NE03B2
Sd Shot:51-403	Ang R: 105°18'58"	Zen: 104°39'30"	S Dst: 47.265	04NE03B3
HI/HR :H Inst: 4.93 Sd Shot:51-404 HI/HR :H Inst: 4.93	H Rod: 2.48 Ang R: 181°33'05" H Rod: 1.53	Zen: 98°23'39"	S Dst 69.310	01NE03WP102
Sd Shot:51-405 HI/HR :H Inst: 4.93	Ang R: 244°07'09" H Rod: 4.30	Zen: 97°38'14"	S Dst: 80.645	01NE03WP103
Sd Shot:51-406	Ang R: 230°09'57"	Zen: 95°02'57"	S Dst: 170.750	04NE03SD107
HI/HR :H Inst: 4.93 Sd Shot:51-407	H Rod: 4.27 Ang R: 325°51'02"	Zen: 92°16'52"	S Dst: 137.135	04NE03SD108
Hi/HR :H Inst: 4.93 Sd Shot:51-408	H Rod: 4.65 Ang R: 198°57'10"	Zen: 95°05'07"	S Dst: 168.885	04NE03WP06
HI/HR :H Inst: 4.93 Sd Shot:51-409	H Rod: 3.05 Ang R: 5°23'22"	Zen: 91°38'54"	S Dst: 142.555	04NE03WP05

•

site 3 beach.cr5 09/25/04 16:03:50

Point	Northing	Easting	Elevation	Description
401	103,996.9411	101,497.2905	16.71	04NE03B1
402	103,948.4026	101,499.6354	16.47	04NE03B2
403	104,002.6625	101,484.4469	15.90	04NE03B3
404	104,038.9720	101,547.5501	15.71	01NE03WP102
405	103,982.5041	101,600.9526	16.06	01NE03WP103
406	104,030.6979	101,682.2428	8.98	04NE03SD107
407	103,842.2192	101,552.6321	18.58	04NE03SD108
408	104,104.6863	101,629.2085	8.69	04NE03WP06
409	103,847.9067	101,458.1185	21.16	04NE03WP05


. .

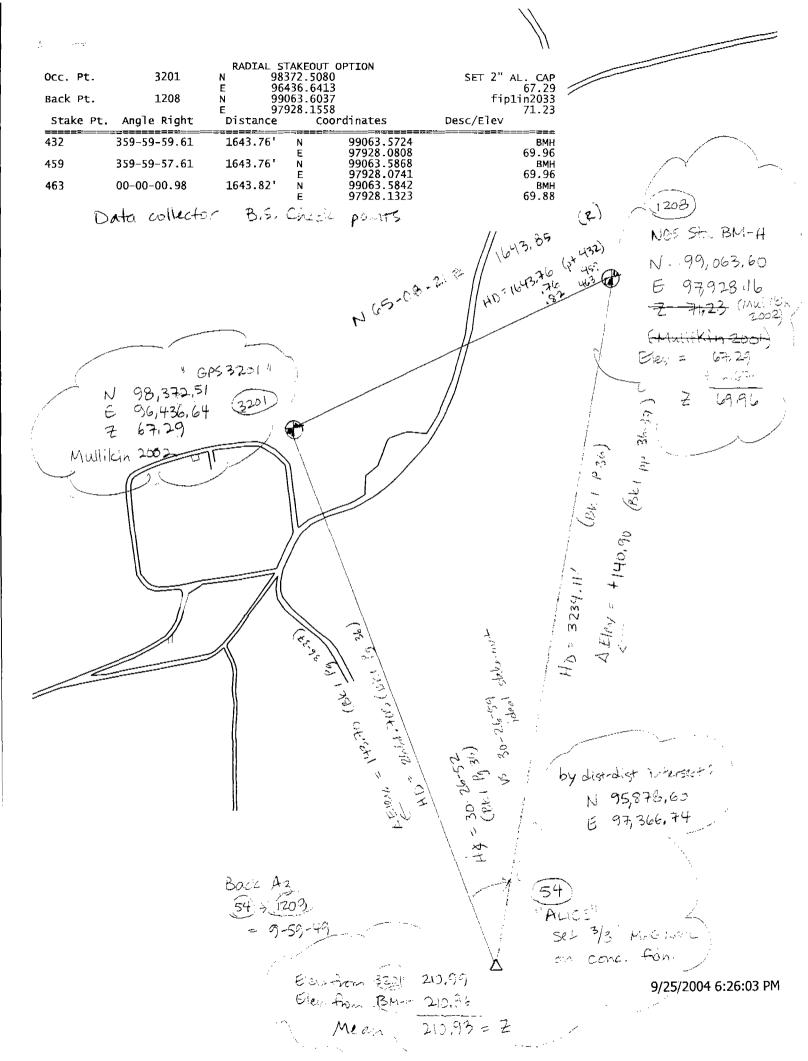
JOB:Name: NEC1 M Setup:North Azimuth Occupy:Occ: 52 Backst:Occ: 52 HI/HR :H Inst: 5.00	Date: 09-04-2004 Units: US Feet North: 101,206.3600 BS pt: 1 H Rod: 4.48	Time: 12:18:20 Scale: 1.000000 East: 99,733.0800 BS azm: 167°31'26"	Curvature: Off Elev: 51.16 BS crl: 0°00'00"	Angle: Degrees DRUM
Sd Shot:52-410 HI/HR :H Inst: 5.00 Sd Shot:52-411 Sd Shot:52-412 Sd Shot:52-413	Ang R: 47°25'21" H Rod: 0.45 Ang R: 169°58'45" Ang R: 354°41'23" Ang R: 24°08'09"	Zen: 88°27'43" Zen: 96°20'25" Zen: 96°22'27" Zen: 95°16'51"	S Dst: 628.160 S Dst: 77.890 S Dst: 82.465 S Dst: 104.075	LOUNSBURY 04NE06B1 04NE06B2 04NE06B3
Sd Shot:52-414 Sd Shot:52-415 Sd Shot:52-416 HI/HR :H Inst: 5.00 Sd Shot:52-417	Ang R: 60°08'25" Ang R: 101°58'42" Ang R: 133°20'37" H Rod: 2.61 Ang R: 95°48'58"	Zen: 94°01'48" Zen: 94°24'06" Zen: 94°22'29" Zen: 92°30'46"	S Dst: 119.050 S Dst: 126.215 S Dst: 111.115 S Dst: 119.020	04NE06B4 04NE06B5 04NE06B6 01NE06WP103
HI/HR :H Inst: 5.00 Sd Shot:52-418 HI/HR :H Inst: 5.00 Sd Shot:52-419 HI/HR :H Inst: 5.00	H Rod: 1.59 Ang R: 74°22'32" H Rod: 3.17 Ang R: 146°35'13" H Rod: 0.34	Zen: 91°44'00" Zen: 91°53'33"	S Dst: 155.345 S Dst: 140.410	01NE06WP7 01NE06WP5
Sd Shot:52-420 Occupy:Occ: 1,209 Backst:Occ: 1,209 HI/HR :H Inst: 4.60 Trav:1,209-53	Ang R: 108°34'25" North: 100,691.6800 BS pt: 1 H Rod: 4.63 Ang R: 52°01'50"	Zen: 92°04'20" East: 99,373.3400 BS azm: 137°49'25" V Dst: 0.170	S Dst: 145.220 Elev: 68.58 BS crl: 0°00'00" H Dst: 414.745	01NE06WP6 LOUNSBURY FILL
Occupy:Occ: 53 Backst:Occ: 53 HI/HR :H Inst: 4.89 Sd Shot:53-421 Sd Shot:53-422	North: 100,283.0560 BS pt: 1,209 H Rod: 5.30 Ang R: 41°42'24" Ang R: 46°52'37"	East: 99,302.3589 BS azm: 9°51'15" Zen: 90°31'24" Zen: 89°45'11"	Elev: 68.72 BS crl: 0°00'00" S Dst: 106.200 S Dst: 82.895	FILL 04NE07SS101SB102 04NE07SS103SB104
Sd Shot:53-423 Sd Shot:53-424 Sd Shot:53-425 Sd Shot:53-426 Sd Shot:53-427	Ang R: 42°54'32" Ang R: 36°19'37" Ang R: 30°39'39" Ang R: 143°02'40" Ang R: 157°45'34"	Zen: 89°27'49" Zen: 89°39'52" Zen: 88°59'32" Zen: 109°17'58" Zen: 106°51'20"	S Dst: 63.985 S Dst: 90.665 S Dst: 67.205 S Dst: 44.025 S Dst: 50.880	04NE07SS105-nix 04NE07SS106-nix 04NE07SS107-nix 04NE07SS108 04NE07SS109
Sd Shot:53-428 Sd Shot:53-429 Sd Shot:53-430 Sd Shot:53-431 Occupy:Occ: 1,209	Ang R: 184°30'00" Ang R: 171°47'24" Ang R: 154°04'12" Ang R: 160°28'29" North: 100,691.6800	Zen: 105°38'56" Zen: 106°20'11" Zen: 108°24'56" Zen: 109°14'13" East: 99,373.3400	S Dst: 30.515 S Dst: 20.240 S Dst: 26.295 S Dst: 35.050 Elev: 68.58	04NE07SS110 04NE07SS112 04NE07SS111 01NE07SS125lath LOUNSBURY
Backst:Occ: 1,209 HI/HR :H Inst: 4.19 Sd Shot:1,209-518	BS pt: 1 H Rod: 5.30 Ang R: 38°30'18"	BS azm: 137°49'25" Zen: 90°07'30"	BS crl: 0°00'00" S Dst: 337.090	STAKED 01NE07SS127

.

Site 3 Sideshots from Station BEACH sites 6 and 7 drums and landfill.cr5 09/25/04 17:13:35

•	Point	Northing	Easting	Elevation	Description
	53	100,283.0539	99,302.3601	68.72	FILL
	410	100,691.6501	99,373.3935	68.54	LOUNSBURY~ℬ≦C以≮
	411	101,277.8824	99,703.4589	47.11	04NE06B1
	412	101,128.3221	99,758.1148	46.55	04NE06B2
	413	101,104.8652	99,712.1358	46.13	04NE06B3
	414	101,126.3811	99,645.2946	47.34	04NE06B4
	415	101,205.2667	99,607.2420	46.02	04NE06B5
	416	101,263.2020	99,637.9816	47.23	04NE06B6
	417	101,192.5696	99,614.9768	48.33	01NE06WP103
	418	101,133.2228	99,596.1094	49.87	01NE06WP7
	419	101,304.0389	99,632.3214	48.35	01NE06WP5
	420	101,221.7753	99,588.7760	50.57	01NE06WP6
	421	100,349.0739	99,385.5398	67.34	04NE07SS101SB102
	422	100,328.5271	99,371.6684	68.67	04NE07SS103SB104
	423	100,321.7704	99,353.2989	68.91	04NE07SS105-nix
	424	100,345.8276	99,367.7767	68.84	04NE07SS106-nix
	425	100,334.1377	99,346.0129	69.49	04NE07SS107-nix
	426	100,246.0652	99,321.2894	53.76	04NE07SS108
	427	100,235.4932	99,312.8052	53.56	04NE07SS109
	428	100,254.5873	99,295.0754	60.08	04NE07SS110
	429	100,263.6391	99,301.8028	62.62	04NE07SS112
	430	100,259.0811	99,309.2686	60.00	04NE07SS111
	431	100,250.4313	99,307.9195	56.76	01NE07SS125lath
	518	100,355.2826	99,394.9252	66.73	STAKED 01NE07SS1

Point Listing made Sat Sep 25 1


. . .

7

Drawing Name: nec-field versio Project Name: NE Cape Project Path: D:\Land Projects Username: Shelley

Number	Northing	Easting	Elevation Full Desc	
532 541	100365.1088	99393.0347	67.00 04NE07SS113	-
533 548	100356.8688	99410.3438	67.00 04NE07SS114	
534 549	100345.1868	99403.1151	67.00 04NE07SS115	

. .

······				
JOB:Name: NEC1 M Setup:North Azimuth Occupy:Occ: 3,201 Backst:Occ: 3,201 HI/HR :H Inst: 4.42	Date: 09-04-2004 Units: US Feet North: 98,372.5080 BS pt: 1,208 H Rod: 3.00	Time: 12:18:20 Scale: 1.000000 East: 96,436.6413 BS azm: 65°08'21"	Curvature: Off Elev: 67.29 BS crl: 0°00'00''	Angle: Degrees GPS3201
Sd Shot:3,201-432 HI/HR :H Inst: 4,42	Ang R: 0°00′00" H Rod: 0.45	Zen: 89°57'22"	S Dst: 1,643.765	BMH
Sd Shot:3,201-433 Sd Shot:3,201-434 Sd Shot:3,201-434 Sd Shot:3,201-435	Ang R: 182°26'26" Ang R: 187°10'01" Ang R: 183°39'42"	Zen: 90°29'42" Zen: 90°30'24" Zen: 90°22'17"	S Dst: 250.815 S Dst: 271.565 S Dst: 267.055	04NE13SS115 04NE13SS116 04NE13SS117
Sd Shot:3,201-436 Sd Shot:3,201-437 HI/HR :H Inst: 4.42	Ang R: 187°26'32" Ang R: 185°58'55" H Rod: 0.20	Zen: 90°29'08" Zen: 90°23'30"	S Dst: 282.080 S Dst: 291.480	04NE13SS118 04NE13SS119
Sd Shot:3,201-438 HI/HR :H inst: 4.42	Ang R: 183°28'56" H Rod: 0.45	Zen: 89°52'31"	S Dst: 368.495	04NE13SS120nix
Sd Shot:3,201-439 HI/HR :H Inst: 4.42	Ang R: 184°33'02" H Rod: 0.20	Zen: 89°49'43"	S Dst: 372.715	04NE13SS121nix
Sd Shot:3,201-440 HI/HR :H Inst: 4,42	Ang R: 185°24'32" H Rod: 0.45	Zen: 89°55'40"	S Dst. 367.450	04NE13SS122nix
Sd Shot:3,201-441	Ang R: 184°20'04"	Zen: 89°51'30"	S Dst: 365.995	04NE13SS123nix
HI/HR :H Inst: 4.42 Sd Shot:3,201-442 HI/HR :H Inst: 4.42	H Rod: 0.20 Ang R: 182°53'01" H Rod: 3.60	Zen: 89°49'35"	S Dst: 376.415	04NE13SS105
Sd Shot:3,201-443 HI/HR :H Inst: 4.42	Ang R: 180°50'39" H Rod: 1.40	Zen: 89°16'18"	S Dst: 379.725	04NE13SS106
Sd Shot:3,201-444	Ang R: 174°36'52" H Rod: 3,50	Zen: 89°34'58"	S Dst: 386.340	04NE13SS107SB124
HI/HR :H Inst: 4.42 Sd Shot:3,201-445 HI/HR :H Inst: 4.42	Ang R: 182°00'15" H Rod: 1.10	Zen: 89°19'17"	S Dst: 388.060	04NE13SS108
Sd Shot:3,201-446	Ang R: 179°47'26"	Zen: 89°36'49"	S Dst: 392.355	0 4NE13SS1 09
HI/HR :H Inst: 4.42 Sd Shot:3,201-447 HI/HR :H Inst: 4.42	H Rod: 3.55 Ang R: 176°59'00'' H Rod: 3.60	Zen: 89°15'37"	S Dst: 396.950	04NE13SS110SB125
Sd Shot:3,201-448 HI/HR :H Inst: 4.42	Ang R: 175°47'49" H Rod: 0.80	Zen: 89°16'59"	S Dst: 398.040	04NE13SS111
Sd Shot:3,201-449 HI/HR :H Inst: 4.42	Ang R: 181°25'57" H Rod: 0.50	Zen: 89°41'18"	S Dst: 397.870	04NE13SS112
Sd Shot:3,201-450 HI/HR :H Inst: 4,42	Ang R: 178°40'22" H Rod: 3.60	Zen: 89°40'35"	S Dst: 401.895	04NE13SS113
Sd Shot:3,201-451	Ang R: 176°00'23" H Rod: 5.30	Zen: 89°11'57"	S Dst: 405.900	04NE13SS114
HI/HR :H Inst: 4.42 Sd Shot:3,201-452	Ang R: 177°14'57"	Zen: 89°00'26"	S Dst: 403.145	MW88-8
Sd Shot:3,201-453 Sd Shot:3,201-454	Ang R: 185°12'46" Ang R: 186°13'09"	Zen: 89°34'50" Zen: 89°33'33"	S Dst: 237.035 S Dst: 315.005	MW88-5 MW88-6
Sd Shot:3,201-454	Ang R: 185°14'03"	Zen: 89°39'21"	S Dst: 236.950	MVV88-5
Sd Shot:3,201-455	Ang R: 136°13'32"	Zen: 87°11'16"	S Dst: 327.855	04NE19B1
Sd Shot:3,201-456	Ang R: 134°49'49"	Zen: 87°18'23"	S Dst: 428.175	MW88-10
Sd Shot:3,201-457 HI/HR :H Inst: 4.42	Ang R: 138°41'42" H Rod: 11.30	Zen: 87°42'36"	S Dst: 567.010	20 MW 1
Sd Shot:3,201-458	Ang R: 130°12'07"	Zen: 87°25'37"	S Dst. 866.610	22MW3
HI/HR :H Inst: 4.42 Sd Shot:3,201-459	H Rod: 3.00 Ang R: 359°59'58"	Zen: 89°57'23"	S Dst 1,643.765	ВМН
HI/HR :H Inst: 4.42 Sd Shot:3 201-460	H Rod: 11.30 Ang R: 139°14'49"	Zen: 87°47'03"	S Dst: 862.890	22MW2
Sd Shot:3,201-460 Sd Shot:3,201-461	Ang R: 139°18'55"	Zen: 87 47 05 Zen: 87°40'59"	S Dst: 836.380	04NE22B1
HI/HR :H Inst: 4.42 Sd Shot:3,201-462	H Rod: 9.30 Ang R: 160°18′46"	Zen: 88°35'20"	S Dst: 839.810	18MW1

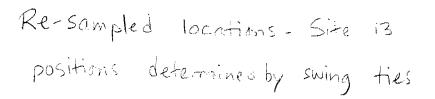
HI/HR :H Inst: 4.52 Sd Shot:3,201-491 Sd Shot:3,201-492 HI/HR :H Inst: 4.52 Sd Shot:3,201-493	H Rod: 11.50 Ang R: 167°27'56" Ang R: 167°48'18" H Rod: 8.40 Ang R: 188°59'02"	Zen: 89°05'40" Zen: 89°04'06" Zen: 89°26'35"	S Dst: 1,084.495 S Dst: 1,098.805 S Dst: 800.875	04NE14SS101SB104 04NE14SS102SB103 17MW1
HI/HR :H Inst: 4.52 Sd Shot:3,201-494 Sd Shot:3,201-495 Sd Shot:3,201-496 Sd Shot:3,201-497	H Rod: 5.40 Ang R: 190°20'40" Ang R: 123°55'59" Ang R: 109°39'43" Ang R: 108°01'48"	Zen: 89°06'34" Zen: 86°59'49" Zen: 86°55'25" Zen: 87°46'11"	S Dst: 453,650 S Dst: 295,865 S Dst: 203,345 S Dst: 114,730	04NE13B1 MW88-1 MW88-3 MW88-2
Sd Shot:3,201-498 Sd Shot:3,201-499 Sd Shot:3,201-500 Sd Shot:3,201-501 Sd Shot:3,201-502	Ang R: 201°19'46" Ang R: 201°36'05" Ang R: 199°09'20" Ang R: 206°26'55" Ang R: 59°42'55"	Zen: 89°02'11" Zen: 89°05'03" Zen: 89°07'40" Zen: 89°13'08" Zen: 88°18'32"	S Dst: 108.840 S Dst: 544.470 S Dst: 582.550 S Dst: 620.290 S Dst: 200.525	MW88-4 MW16-1 MW16-3 MW16-2 MW11-3
Sd Shot:3,201-503 Sd Shot:3,201-504 Sd Shot:3,201-505 HI/HR :H Inst: 4.52 Sd Shot:3,201-506	Ang R: 48°04'30" Ang R: 52°24'50" Ang R: 34°04'29" H Rod: 8.40 Ang R: 105°35'23"	Zen: 89°15'41" Zen: 88°27'43" Zen: 89°06'38" Zen: 86°45'09"	S Dst: 388.430 S Dst: 426.100 S Dst: 435.000 S Dst: 776.025	MW10-1 04NE10B2 04NE10B1 26MW1
HI/HR :H Inst: 4.52 Sd Shot:3,201-507	H Rod: 5.40 Ang R: 298°07'27"	Zen: 91°08'27"	S Dst: 1,563.305	04NE29SW102lath

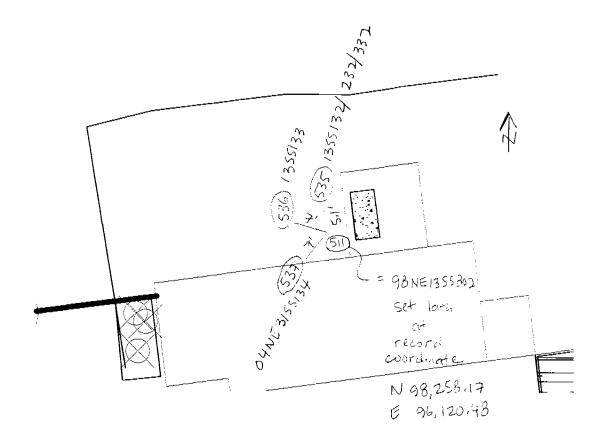
÷.

.

.

Sites 6&7 Sideshots frem Stations DRUM and FILL air complex or 5 09/35/04 19:39:4


main complex.cr5 09/25/04 19:29:41


ŀ

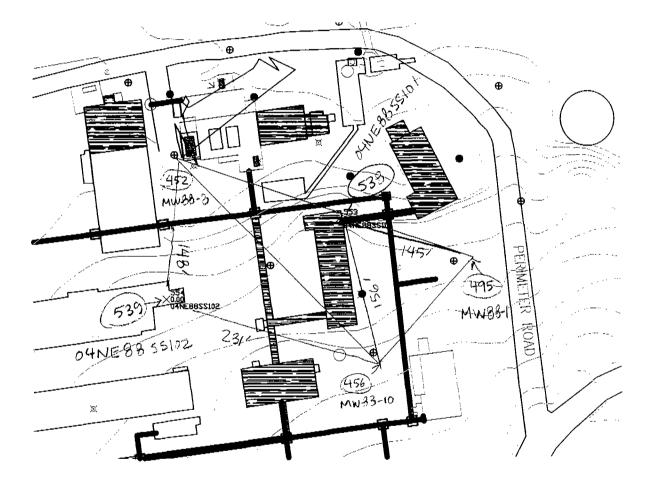
-

Point	Northing	Easting	Elevation	Description
432	99,063.5724	97,928.0808	69.96	BMH
433	98,276.8513	96,204.7938	69.09	04NE13SS115
434	98,289,9741	96,177.9331	68.85	04NE13SS116
435	98,275.9400	96,187.6634	69.52	04NE13SS117
436	98,288.0702	96,167.5063	68.86	04NE13SS118
437	98,278.1964	96,160.8480	69.26	04NE13SS119
438	98,238.1811	96,093.5025	72.31	04NE13SS120nix
439	98,243.1378	96,087.1008	72.37	04NE13SS121nix
440	98,250.1413	96,090.1652	71.97	04NE13SS122nix
441	98,244.1764	96,093.8841	72.16	04NE13SS122nix
442	98,231.6399	96,087.5810	72.65	04NE13SS105
443	98,217.9715	96,089.8182	72.93	04NE13SS106
444	98,177.9062	96,102.9037	73.12	04NE13SS107SB124
445	98,221.7855	96,079.0771	72.80	04NE13SS108
446	98,206.2594	96,081.2586	73.25	04NE13SS109
447	98,186.9165	96,085.7869	73.28	04NE13SS110SB125
448	98,179.1614	96,088.7503	73.09	04NE13SS111
449	98,214.3166	96,071.5779	73.07	04NE13SS112
450	98,195.1470	96,076.0064	73.47	04NE13SS113
451	98,176.6454	96,081.1691	73.78	04NE13SS114
452	98,185.6878	96,079.4644	73.39	MW88-8
453	98,292.9203	96,213.4618	67.83	MW88-5
454	98,271.8201	96,138.1715	68.83	MW88-6
455	98,067.5508	96,317.3464	82.49	04NE19B1
456	97,970.5217	96,290.5730	86.53	MW88-10
457	97,854.2675	96,207.7007	89.06	20MW1
458	97,537.6198	96,207.5977	99.31	22MW3
459	99,063.5868	97,928.0741	69.96	BMH
460	97,587.1894	96,080.6345	93.77	22MW2
461	97,611.7815	96,090.6885	94.22	04NE22B1
462	97,783.5539	95,838.3219	83.09	18MW1
491	97,713.9652	95,575.1559	77.45	04NE14SS101SB104
492	97,710.4633	95,559.8574	78.18	04NE14SS102SB103
493	98,153.4212	95,666.3549	71.19	17MW1
494	98,258.8112	95,997.5267	73.46	04NE13B1
495	98,080.7454	96,390.0536	81.91	MW88-1
496	98,170.2914	96,455.0405	77.32	MW88-3
497	98,258.6787	96,450.2768	70.87	MW88-2
498	98,365.8049	96,328.0233	68.24	MW88-4
499	98,341.5548	95,893.1215	75.11	MW16-1
500	98,314.6026	95,857.0442	75.28	MW16-3
501	98,389.6936	95,816.6471	74.87	MW16-2
502	98,257.9592	96,601.1218	72.33	MW11-3
503	98,219.4136	96,793.5935	71.42	MW10-1
504	98,175.4780	96,814.2782	77.85	04NE10B2
505	98,302.8640	96,865.9770	73.16	04NE10B1
506	97,607.8501	96,561.4630	107.37	26MW1
507	99,932.9686	96,525.6150	35.28	04NE29SW102lath

_ . . _

Point Listing made Sat Oct 09 12:06:04 2004

Drawing Name: nec-field version Project Name: NE Cape Project Path: D:\Land Projects 2004\NE Cape\ Username: Shelley


lumber	Northing	Easting	Elevation	Raw DescFull Desc	
511	98258.1700	96120.4800	0.00	98NEC13598NEC13SS802	
535	98263.2138	96119.7470	0.00	04NE13SE04NE13SS132/232/332	
536	98260.0814	96113.7489	0.00	04NE13S504NE13SS133	
537	98252.6846	96116.1296	0.00	04NE13S504NE13SS134	
	511 535 536	511 98258.1700 535 98263.2138 536 98260.0814	511 98258.1700 96120.4800 535 98263.2138 96119.7470 536 98260.0814 96113.7489	511 98258.1700 96120.4800 0.00 535 98263.2138 96119.7470 0.00 536 98260.0814 96113.7489 0.00	511 98258.1700 96120.4800 0.00 98NEC13S98NEC13SS802 535 98263.2138 96119.7470 0.00 04NE13SS04NE13SS132/232/332 536 98260.0814 96113.7489 0.00 04NE13SS04NE13SS133

Page 1 of 1

Point Listing made Sun Sep 26 11:57:33 2004

Drawing Name: nec-field version Project Name: NE Cape Project Path: D:\Land Projects 2004\NE Cape\ Username: Shelley

Number	Northing	Easting	Elevation Full Desc	
452	98185.6878	96079.4644	73.39 MW88-8	
456	97970.5217	96290.5730	86.53 MW88-10	
495	98080.7454	96390.0536	81.91 MW88-1	
538	98121.3834	96250.8647	0.00 04NE88SS101	
539	98038.0134	96069.6525	0.00 04NE88SS102	

Positions of Bulic Son: Sample trace from Plan Campley man (338) (539) determined by surger that from 1938 Minuto: Mally

NE Cape 2004

Site 31 White Alice.rw5 09/26/04 10:11:49

_

		<u> </u>		
JOB:Name: NEC1 M Setup:North Azimuth Store:Point: 54 Occupy:Occ: 54 Backst:Occ: 54	Date: 09-04-2004 Units: US Feet North: 95,878.6000 North: 95,878.6000 BS pt: 1,208	Time: 12:18:20 Scale: 1.000000 East: 97,366.7400 East: 97,366.7400 BS azm: 9°59'49"	Curvature: On Elev: 210.93 Elev: 210.93 BS crl: 0°00'00"	Angle: Degrees ALICE ALICE
HI/HR :H Inst: 4.95 Sd Shot:54-463 HI/HR :H Inst: 4.95	H Rod: 3.04 Ang R: 359°59'59" H Rod: 4.70	Zen: 92°31'52"	S Dst: 3,237.245	ВМН
Sd Shot:54-464 HI/HR :H Inst: 4.95	Ang R: 329°33'02" H Rod: 3.50	Zen: 93°05'54"	S Dst: 2,665.590	GPS3201
Sd Shot:54-465 HI/HR :H Inst: 4.95	Ang R: 352°17'33" H Rod: 3.55	Zen: 94°25'14"	S Dst: 220.030	04NE31SS131SB134
Sd Shot:54-466 HI/HR :H Inst: 4.95 Sd Shot:54-467	Ang R: 341°04'38" H Rod: 3.80 Ang R: 346°47'27"	Zen: 94°29'06" Zen: 94°16'14"	S Dst: 213.725 S Dst: 217.275	04NE31SS132SB133 04NE31SS135
HI/HR :H Inst: 4.95	H Rod: 3.45			
Sd Shot:54-468 HI/HR :H Inst: 4.95	Ang R: 346°49'31" H Rod: 3.55	Zen: 94°22'13"	S Dst: 258.460	04NE31SS138
Sd Shot:54-469 HI/HR :H Inst: 4.95	Ang R: 342°00'24" H Rod: 3.95	Zen: 94°40'44"	S Dst: 313.455	04NE31SS139
Sd Shot:54-470 HI/HR :H Inst: 4.95	Ang R: 11°06'46" H Rod: 4.00	Zen: 94°52'06"	S Dst: 164.020	04NE31SB108
Sd Shot:54-471 HI/HR :H Inst: 4.95	Ang R: 331°48'22" H Rod: 4.10	Zen: 96°03'57"	S Dst: 91.675	04NE31SB109
Sd Shot:54-472	Ang R: 190°13'31"	Zen: 91°12'57"	S Dst. 49.055	04NE31SB106
HI/HR :H Inst: 4.95 Sd Shot:54-473 HI/HR :H Inst: 4.95	H Rod: 3.80 Ang R: 149°14'49" H Rod: 4.10	Zen: 91°45'23"	S Dst: 72.175	04NE31SB107
Sd Shot:54-474 HI/HR :H Inst: 4.95	Ang R: 198°59'19" H Rod: 3.80	Zen: 88°19'31"	S Dst: 85.790	04NE31SB105
Sd Shot:54-475 HI/HR :H Inst: 4.95	Ang R: 203°25'32" H Rod: 4.00	Zen: 88°30'56"	S Dst: 110.480	04NE31B2
Sd Shot:54-476 HI/HR :H Inst: 4.95	Ang R: 228°14'00" H Rod: 4.05	Zen: 89°57'29"	S Dst: 115.825	04NE31B1
Sd Shot:54-477	Ang R: 234°45'09"	Zen: 91°26'09"	S Dst: 129.070	04NE31SS110
HI/HR :H Inst: 4.95 Sd Shot:54-478 HI/HR :H Inst: 4.95	H Rod: 4.20 Ang R: 250°46'41" H Rod: 4.00	Zen: 92°51'49"	S Dst 106.420	04NE31SS111
Sd Shot:54-479 HI/HR :H Inst: 4.95	Ang R: 241°52'02" H Rod: 4.30	Zen: 91°30'42"	S Dst: 102.420	04NE31SS112SB113
Sd Shot:54-480 HI/HR :H Inst: 4.95	Ang R: 240°15'32" H Rod: 4.00	Zen: 91°42'36"	S Dst: 122.365	04NE31SS114
Sd Shot:54-481 Sd Shot:54-482 HI/HR :H Inst: 4.95	Ang R: 255°55'33" Ang R: 132°12'18" H Rod: 4.10	Zen: 93°42'28" Zen: 91°35'20"	S Dst: 131.340 S Dst: 66.370	04NE31SS115SB116 04NE31SS117SB118
Sd Shot:54-483	Ang R: 120°42'53"	Zen: 91°31'43"	S Dst: 66.355	04NE31SS119
HI/HR :H Inst: 4.95 Sd Shot:54-484 HI/HR :H Inst: 4.95	H Rod: 3.90 Ang R: 110°17'05" H Rod: 4.10	Zen: 91°42'59"	S Dst: 58.920	04NE31SS120SB121
Sd Shot:54-485	Ang R: 126°35'53"	Zen: 91°16'44"	S Dst: 76.700	04NE31SS122
Sd Shot:54-486 Sd Shot:54-487 HI/HR :H Inst: 4.95	Ang R: 115°20'43" Ang R: 110°42'27" H Rod: 4.35	Zen: 91°22'49" Zen: 91°40'28"	S Dst: 78.085 S Dst: 70.635	04NE31SS123SB124 04NE31SS125
Sd Shot:54-488 HI/HR :H Inst: 4.95	Ang R: 115°14'22" H Rod: 3.90	Zen: 89°08'00"	S Dst. 128.465	04NE31SS126SB127
Sd Shot:54-489 HI/HR :H Inst: 4.95	Ang R: 110°47'23" H Rod: 4.70	Zen: 89°26'13"	S Dst: 121.450	04NE31SS128SB129

_

NE Cape 2004

Site 31 White Alice.rw5 09/26/04 10:11:50

		-v < Lata		
Sd Shot:54-490 Hl/HR :H Inst: 4.87	Ang R: 114°17'02" H Rod: 3.50	Zen: 89°06'08"	S Dst: 140.675	04NE31SS130
Sd Shot:54-508 HI/HR :H Inst: 4.87	Ang R: 350°07'31" H Rod: 4.00	Zen: 94°25'59"	S Dst: 310.700	04NE31SS136SB137
Sd Shot:54-509	Ang R: 154°16'18"	Zen: 86°33'42"	S Dst: 194.845	FND-SPIKE
Sd Shot:54-510	Ang R: 354°50'18"	Zen: 94°24'10"	S Dst: 187.465	staked_01ne31ss123

2

7

NE Cape 2004

2

¥

Page 1 of 1

site 31 white alice.cr5 09/26/04 10:11:37

Point	Northing	Easting	Elevation	Description
54	95,878.6000	97,366.7400	210.93	ALICE
463	99,063.6066	97,928.1515	70.09	BMH
464	98,372.5222	96,436.6565	67.25	GPS3201
465	96,097.8005	97,375.5036	195.42	04NE31SS131SB134
466	96,089.0904	97,333.6808	195.62	04NE31SS132SB133
467	96,094.9315	97,354.5989	195.90	04NE31SS135
468	96,135.9125	97,352.4541	192.74	04NE31SS138
469	96,187.9731	97,323.2803	186.76	04NE31SS139
470	96,031.0611	97,425.5996	198.01	04NE31SB108
471	95,965.2026	97,338.2716	202.19	04NE31SB109
472	95,832.5792	97,349.7874	210.74	04NE31SB106
473	95,811.1410	97,392.3061	209.87	04NE31SB107
474	95,803.5880	97,325.1849	214.29	04NE31SB105
475	95,786.4209	97,305.9071	214.94	04NE31B2
476	95,817.6174	97,268.2690	211.97	04NE31B1
477	95,823.5589	97,250.0391	208.60	04NE31SS110
478	95,861.5609	97,261.8275	206.36	04NE31SS111
479	95,846.7307	97,269.4420	209.18	04NE31SS112SB113
480	95,837.2809	97,251.6201	207.93	04NE31SS114
481	95,869.2811	97,236.0066	203.39	04NE31SS115SB116
482 483 484 485 486	95,826.1762 95,835.3352 95,848.9028 95,822.8902 95,833.4441	97,407.4012 97,417.0193 97,417.5980 97,419.4314 97,430.4164	210.04 210.01 210.22 210.07 209.90	04NE31SS117SB118 04NE31SS119 04NE31SS120SB121 04NE31SS122 04NE31SS122 04NE31SS123SB124
487	95,842.5485	97,427.4469	209.72	04NE31SS125
488	95,804.4905	97,471.6555	213.47	04NE31SS126SB127
489	95,816.4397	97,471.0701	213.17	04NE31SS128SB129
490	95,799.3746	97,482.9636	213.38	04NE31SS130
508	96,188.3701	97,367.4008	188.29	04NE31SS136SB137
509	95,691.3909	97,419.4728	223.49	FND-SPIKE
510	96,064.8467	97,382.4951	197.41	staked_01ne31ss1

DULME 295W103 NGS Sta. "BMB" E1,7597 $\leftarrow \mathbb{Z}$ (3) Constant E 2273, (E) I P 400 0 NGS 34" 1203 96,69,913 2-1/515 Site 8 Ò OUNE 29 SWI 101 - shot from 1 1044 (3201) See Main Complex (512) 26 MW-3 //position veritied by by cos -mapping error? (foz) hote:

The Y.rw5 09/26/04 10:54:16

.....

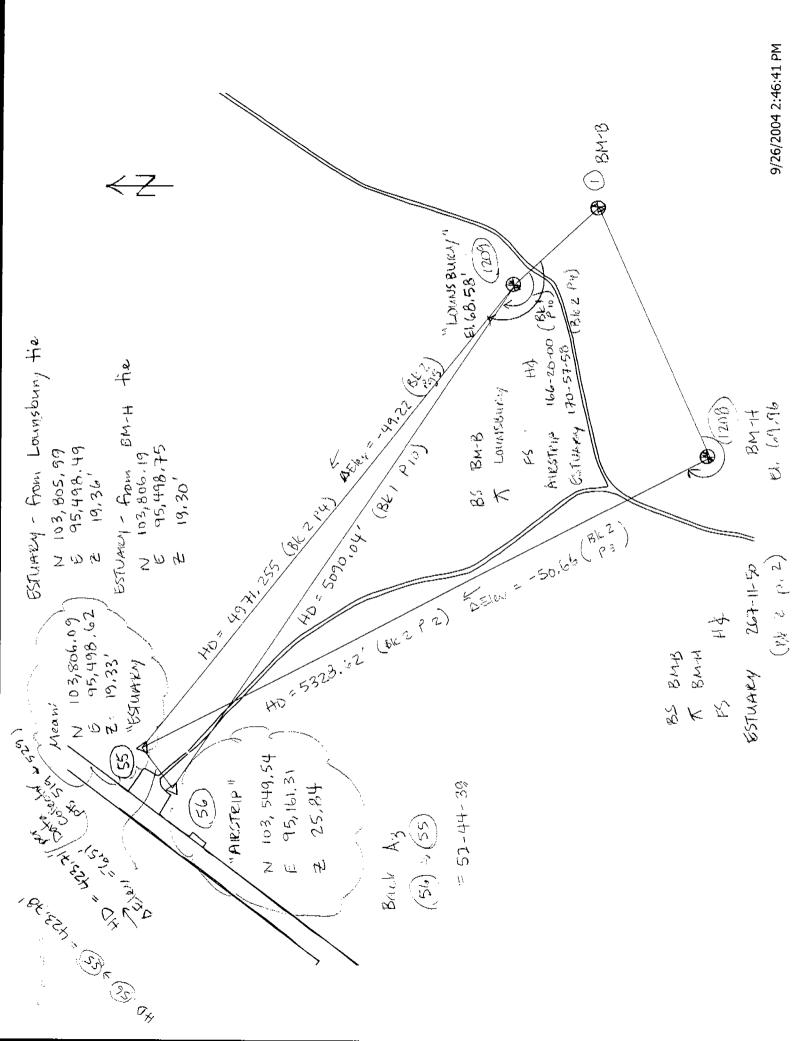
-. ----- ----

JOB:Name: NEC1 M Setup:North Azimuth Occupy:Occ: 1,208 Backst:Occ: 1,208 HI/HR :H Inst: 3.14	Date: 09-04-2004 Units: US Feet North: 99,063.6037 BS pt: 1 H Rod: 3.92	Time: 12:18:20 Scale: 1.000000 East: 97,928.1558 BS azm: 65°40'44"	Curvature: On Elev: 69.96 BS crl: 0°00'00''	Angle: Degrees FIP BM H
Sd Shot:1,208-512 HI/HR :H Inst: 3,14	Ang R: 218°41'10" H Rod: 11.50	Zen: 91°05'58"	S Dst: 662.060	26MW-3
Sd Shot:1,208-513	Ang R: 260°20'35"	Zen: 91°47'37"	S Dst: 764.270	04NE08SW101
HI/HR :H Inst: 3.14 Sd Shot:1,208-514	H Rod: 4.35 Ang R: 268°13'19"	Zen: 92°01'23"	S Dst: 809.980	04NE08SD103
HI/HR :H Inst: 3.14 Sd Shot:1,208-515 HI/HR :H Inst: 3.14	H Rod: 6.00 Ang R: 264°40'13" H Rod: 5.40	Zen: 92°06'09"	S Dst: 787.085	04NE08SD102
Sd Shot:1,208-516	Ang R: 30°21'09"	Zen: 90°30'56"	S Dst: 1,693.295	04NE29SW103lath

.

٠

.


NE Cape 2004

. . .

•

the y.cr5 09/26/04 10:54:08

Point	Northing	Easting	Elevation	Description
512	99,227.8294	97,286.9129	56.49	26MW-3
513	99,697.0660	97,501.2330	37.69	04NE08SW101
514	99,790.5408	97,572.0461	40.17	04NE08SD103
515	99,747.1653	97,539.0362	38.24	04NE08SD102
516	98,885.6907	99,612.0105	52.52	04NE29SW103lath

Airport.rw5 09/26/04 16:07:26

_

- -----

- --- ----

- --

JOB:Name: NEC1 M Setup:North Azimuth Occupy:Occ: 56 Backst:Occ: 56 HI/HR :H Inst: 4.77	Date: 09-04-2004 Units: US Feet North: 103,549.5400 BS pt: 55 H Rod: 4.86	Time: 12:18:20 Scale: 1.000000 East: 95,161.3100 BS azm: 52°44'39"	Curvature: On Elev: 25.84 BS crl: 0°00'00"	Angle: Degrees AIRSTRIP
Sd Shot:56-519 HI/HR :H Inst: 4.77	Ang R: 0°00'02" H Rod: 6.00	Zen: 90°52'06"	S Dst: 423,760	ESTUARY
Sd Shot:56-520 HI/HR :H Inst: 4.77	Ang R: 347°57'05" H Rod: 8.00	Zen: 91°11'18"	S Dst: 262.295	04NE01SS102
Sd Shot:56-521	Ang R: 55°49'01"	Zen: 93°04'49"	S Dst: 351.410	04NE29SW101
HI/HR :H Inst 4.77 Sd Shot:56-522 Sd Shot:56-523 Sd Shot:56-524 Sd Shot:56-525	H Rod: 5.40 Ang R: 46°18'40" Ang R: 44°23'50" Ang R: 38°47'57" Ang R: 29°48'56"	Zen: 92°33'11" Zen: 91°57'31" Zen: 92°34'15" Zen: 92°07'32"	S Dst: 487.835 S Dst: 551.480 S Dst: 501.690 S Dst: 611.395	04NE29SD104lath 04NE01SS103 04NE01SS105lath 04NE29SD106lath
Sd Shot:56-526 Sd Shot:56-527 Sd Shot:56-528 HI/HR :H Inst: 4.77	Ang R: 28°08'12" Ang R: 4°34'34" Ang R: 11°57'42" H Rod: 4.86	Zen: 92°21'47" Zen: 91°01'31" Zen: 91°01'00"	S Dst: 545.175 S Dst: 1,262.025 S Dst: 1,274.485	04NE29SD107lath 04NE29SD109lath 04NE29SD108lath
Sd Shot:56-529	Ang R: 0°00'06"	Zen: 90°52'04"	S Dst. 423.755	ESTUARY
HI/HR :H Inst: 4.77 Sd Shot:56-530 HI/HR :H Inst: 4.77	H Rod: 5.30 Ang R: 181°37'10" H Rod: 8.00	Zen: 89°56'57"	S Dst. 491.730	04NE01SS104
Sd Shot:56-531	Ang R: 341°50'00"	Zen: 90°50'44"	S Dst: 360.865	04NE01SS101

÷

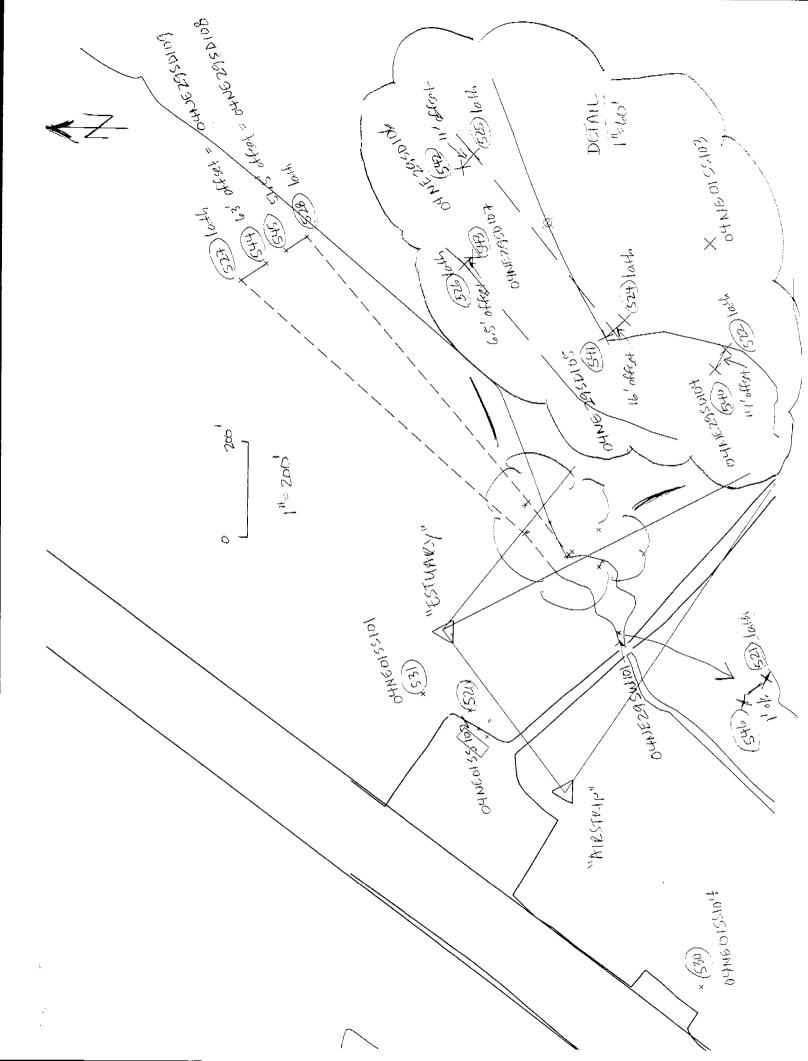
NE Cape 2004

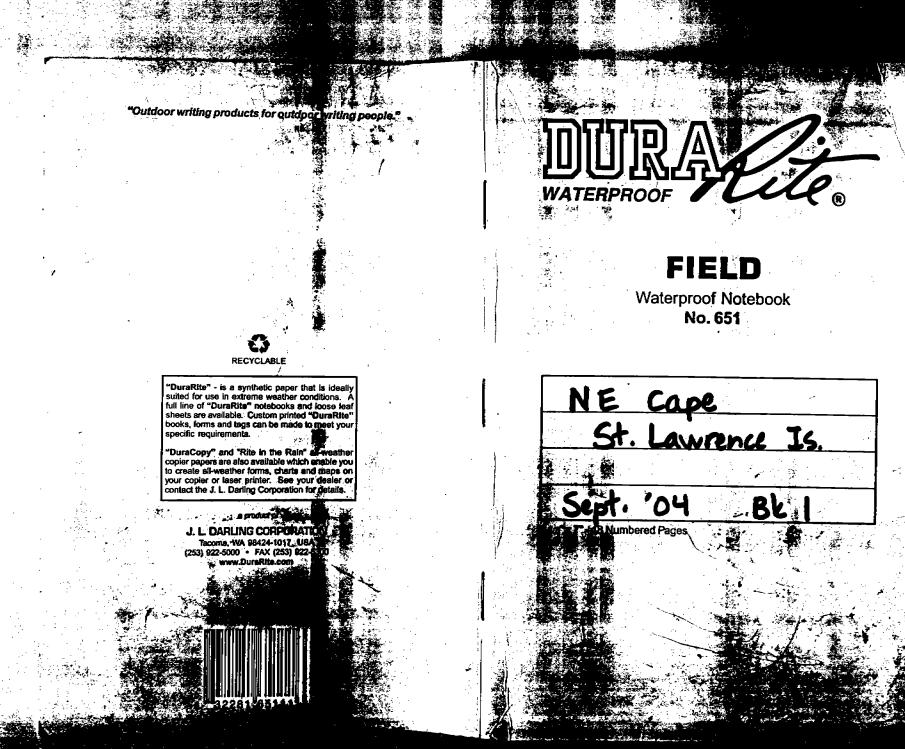
airport.cr5 09/26/04 16:07:20

Point	Northing	Easting	Elevation	Description
519	103,806.0411	95,498.5615	19.33	ESTUARY
520	103,748.3654	95,332.3000	19.17	04NE01SS102
521	103,437.8421	95,493.9603	3.73	04NE29SW101
522	103,472.8371	95,642.5874	3.48	04NE29SD104lath
523	103,481.0210	95,708.1926	6.37	04NE01SS103
524	103,536.0416	95,662.3138	2.71	04NE01SS105lath
525	103,628.6568	95,767.1408	2.54	04NE29SD106lath
526	103,635.8705	95,699.1372	2.74	04NE29SD107lath
527	104,230.8525	96,223.3899	2.66	04NE29SD109lath
528	104,093.9987	96,313.4249	2.63	04NE29SD108lath
529	103,806.0315	95,498.5626	19.34	ESTUARY
530	103,263.0389	94,761.6660	25.75	04NE01SS104
531	103,846.6293	95,366.0860	17.29	04NE01SS101

`.

.

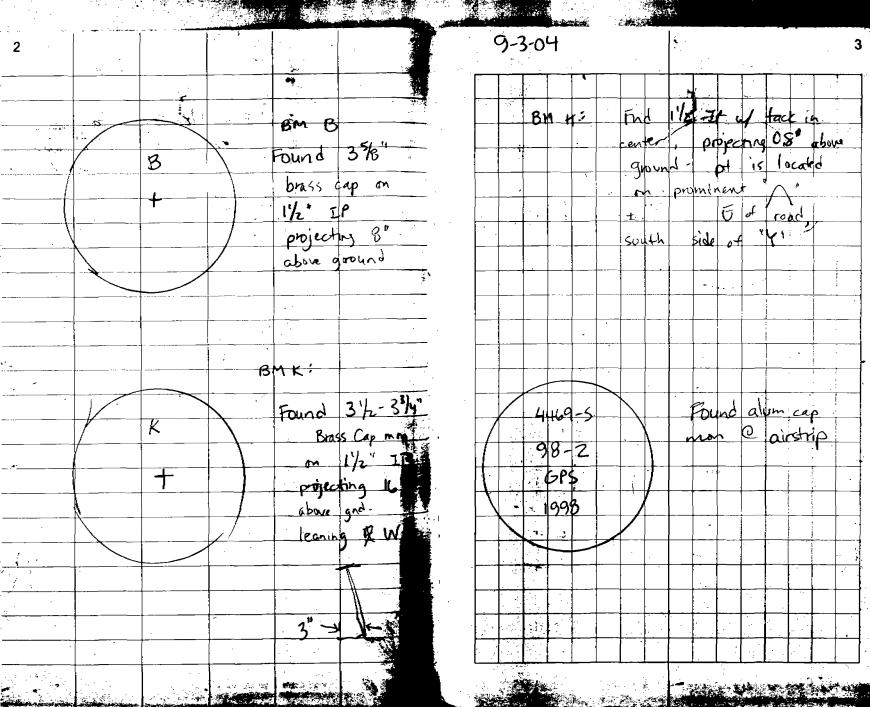

Drawing Name: nec-field version Project Name: NE Cape Project Path: D:\Land Projects 2004\NE Cape\ Username: Shelley


т., s.¹¹

0

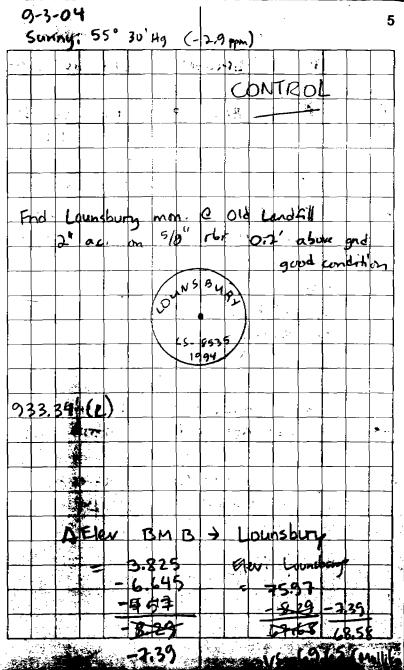
_____/

	Number	Northing	Easting	Elevation Full Desc
	507 516 521	99932.9686 9885.6907 103437.8421	96525.6150 99612.0105 95493.9603	35.28 04NE29SW102lath 52.52 04NE29SW103lath 3.73 04NE29SW101lath
Les geo ground	522 524 525 526	103472.8371 103536.0416 103628.6568 103635.8705	95642.5874 95662.3138 95767.1408 95699.1372	3.48 04NE29SD104lath 2.71 04NE01SS105lath 2.54 04NE29SD106lath 2.74 04NE29SD107lath
	526 527 528 540	103635.8705 104230.8525 104093.9987 103479.7991	95699.1372 96223.3899 96313.4249 95630.4412	2.74 04NE29SD107Lath 2.66 04NE29SD109Lath 2.63 04NE29SD108Lath 0.00 04NE29SD104
	541 542 543	103548.2548 103635.9290 103630.7094	95651.9776 95758.8876 95703.0885	0.00 04N329SD105 0.00 04NE29SD106 0.00 04NE29SD107
	544 545 546 547	104178.2212 104137.0227 103438.7704 99931.9702	96258.0156 96285.1197 95493.5885 96525.5581	0.00 04NE29SD109 0.00 04NE29SD108 0.00 04NE29SW101 0.00 04NE29SW102
	548	98887.6603	99612.3578	0.00 04NE29SW103
OUTNE 29 SIMIOZ			K	04NE29 Sunoz
		WyE2	0,6,W103	the 2' officer of
s / la la	え ~~ ~ ~ .			(516) Tath on tea bank
offset x (507) lath right brack				
OHNEZASWIDZ-)			


	_	
_	_	
_	-	
	-	
	 1	
	-	
	-	
-	-	
=	_	
_		
-	_	
	-	
	2	
_	-	
_	-	
=	-	
_	-	•
	-	
	-	7
	3	NCHES
		ES
=	_	
_	-	
	-	
	-	
_	-	
	-	
	4	
	-	
	- [
	-	
_		
_	.	
	5	
	-	
· <u> </u>		
. =	-	
=	•]	
<u> </u>	J	k (
	1	
_	1	

F

MURA	0;-	* *
WATERPROOF	tile _®	·
		• •
		ı.
Name		
Address		
Phone		,
Project		· · ·
	·	
	·	
	•	
	· .	
	-	
	ب ر در در ۲۰	
-		
er Vinyl Protective Slipcovers (item No. 30) Ips protect your notabook from wear & toer, Corple	13 M 1	5


		··· .
	CONTENTS	
PAGE	REFERENCE	DATE
2	Control 9-	03-04
>15,	18-19, 22-727, ->	9-04-04
16-217	Site 3 - Fuel Pumphouse Site @ Beach	9-04-01
20,32	Site 6 - Carao Beach Rd, Drum Fiel	9-04-0
<u>28-729</u>	Site 7 11 " Landfill	
<u>30->39</u>	Sites 13, 14, 16, 22, 26	905-04
36-> 43	5 Site 31 - White Alice Site	9-06-04
	5 Site 8 - POL Spill Site	9-67-04
I	Note: Portions of Site 29 (Sugir)	
	tied from Site 31 (see pt 507	p. 34)
	+ Site 8 (see pt sib	, p. 44)
·		
	see also Book 2	
	for Site 1 at lower porton	
	of Site	29
		7
		<u> </u>

and the second second

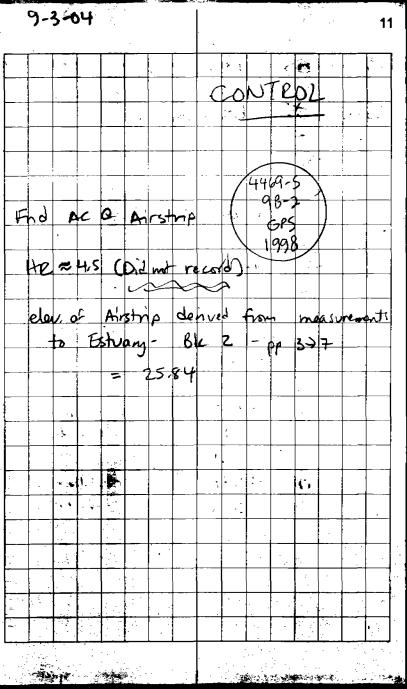
and the second state of the second of the second second second second second second second second second second

		•				
4		· _ 2,		- 2		
	BS	BM	K Z '	PANDO	<u>1</u> "	
						1
0	π	ВМ	B	HR_	3,825'	
. 6					1,165-	`
		,				F-4
	FS					
) 82-47	F-11			547 4.5	2
	2) -165-34				1.395m	
	1 ⁻	1-47-02				. •
1	onzon			8 - 82-6	17.04	
F		7-13-Do		7		,
<u>،</u> •	2) 554	- 25-45				
		77-12-5	 ۲			
	<u> </u>					
		933.2	+ Ft	284,45	2 m	
		933.24		-2.014		
	V 7 =	-6.655	L.	28445	2	
		- 6.640		-2074		
	-			1 .		
- <u></u>						ļ.
· · ·	· · · · · · · · · · · · · · · · · · ·					
	+					

1.558

9.71 k.	0	، در ا		LL				1	236 							
•	2	2	-0	T								. •				
•				Τ	T	T		1	+	Τ	T	1	T	Ţ.	T	1
			+	╞	╞	+	-		†	r,	JN.	to	$\frac{1}{1}$	+		+
	<u>}</u>		1	1.	+	+	+			$ \sim$			ΨL	- -	· 	
-			<u> </u>	[``	+	+				+-	\square	T		+		+-
4				 		1			┦∸			+				
	- u	_		<u> </u>		<u> </u>				- <u>i-</u>			- -	 :		
	ļ		ÉA		1	+-		{	ļ		-	+ .	+-		+	+
	·	set	5	<u>pik</u>	4	in.	g	avel		slo	6	26	4	iel	pu	nφ
				<u> </u>		+	-	9	486	qc#	1		hu	50	51	4
				-				∦	-	<u> </u>	<u> </u>	ne	ar	D	ead	ħ
. [1	145-	-54	15)	_	 		 		1	ļ.		-
	×Ŀ	bun	bu	ť			K-1	<u> </u>		<u> < -</u>			<u> </u>	-	<u>:</u>	
				<u> </u>	\downarrow		k 1			Co	mpi	ree		fon	ş¥	
				↓		λ	1				B5	L	juv	SBU	ey	
-	_9	24	20	4		A,	Хв	M-P	-	ļ	T	В	м-	B		
		_(p.4	<u>) ř</u>		\swarrow	1	. ·		<u> </u>	F.S	B	GA	41+		-
			•	l ≈ I		1		·.		=		63	0	7-1	1	
				ba				1.	<u> </u>		•		=	Ē]	
[ч к	hi	\$0M	4			•••	Par.	ŀ					
. [AE	10		B	mi	В -	þ.	Sp	iles	-	BE	A	11
			Ļ								-			· ·		Į
. [1					8 2 99	P			E	1er	. 1	۶и	B =	7
ŀ					-		67							<u> </u>	- 9	52.
. [-	2.8									23
-			 		<u>├</u> ─⁻			-				<u> </u>		.2	<u> </u>	36
L			<u> </u>			L	ــــ	Ł	└ ─ ───	<u>لــــــــــــــــــــــــــــــــــــ</u>		- p	π-p	15	6	0

•		- 				
				an a		
	· .	· · · ·				
•	6	1		}	1 N	
	0		ļ	ļ		
		BS	RAND	hus 1		
			Critec		same a	on py
		10	P	∤ ⇒	10 2 2	
		7\	BMI	<u>ጋ</u>	HR - 3.	65m
			!		1 14	10 J m
		ES	 		Ì	ļ
	-51)	1) 445-54	-18		↓ ↓	467
		z) 291-4	8-26	! 		1.423m
	· · · · · · · · · · · · · · · · · · ·	· 14	5-54-13) 	<u> </u>	·
	- - /.	tomm			he-ru	
	-	1) 214-0	5-40	4 - 1	+5-54-	15
	-	24 428-	1			
		1	14-05-4	2	 	
		<i></i>				
	<u>i</u>	1107	1 11 -		1297,4	<>
		- H0"	4256.	+10 +1 +40	1297.4	57M
		VD=	}			
	:		-57.105		-15,88) -15,813	
			-51,880		-12 -1-	
			m = 51.9%			
	:			 ;;;		
-	- 		ļ	ļ	F	
			 	1	- 1	
	-	·		2.64 6.3	•	
i e e a						
				1		
		ter der				


. 1997년 - 1997년 1997년 - 1997년 1997년 - 1997년 - 1997년 1997년 - 1997년 - 1997년 - 1997년 1997년 - 1997년 - 1997년 - 1997년 - 1997년 - 1997년 1997년 - 1997년 1997년 - 1997년 1997년 - 1997년 -

,

E ja		an a					-1						į.					14. 14. 19.		
8	<u></u>				8		9-3	5-0 ^L	ł	-	¥ 2	LET.	• • •			-				
(1209)	BS	Lounsk	sury c	чр				-									•			
	T	BM - B		HR=	3.825 fr 1.165 m	·									(য	RC	5L -	
•	FS					· ·		DRI				!								
52	i) 29-4 ² / 59-2			HR	= 4.61 ft 1.406m	•	Set	: sp	ike	<u>ri</u>	0	Ъ	Dr	m	51	prag	je j	Are	2 	
	M) 29-0																		· .	
<u>]-</u> `	i) 330-	12-52	4 ~ 20	3-42-0(•												 			-
•	2) 660.	35-46							<u> </u>							<u> </u>			· · -	-
!	m) 330-	17-50																		
	HO	- 1235.			577 m 577 m										·					í
		1235,	485	546.																-
	V)* ~ <u>)</u> 4,		<u>- </u>	30m			Č.	- 4			1					-			 •
		- 23,	955	- +	024				2	EI	ey.	P	M	-B	-		De	m		
· · ·					-						u		.8					75	97	B
							-	_				24	, 0 4. (р			-	24	78	5
						-				· :: *		יכ	1. 7	85				51,	87	
	n n The second					11 1		-A	We.	u D	ш. Шм	(¹ 7	5	16				1) (5

10	and the second s					
\bigcirc	BS	ВИ	8		рафия.	
(209)	x	Louns	oury C	p HI	= 4,57	
			1		1,39	3m
	FS		 	t 		— <u> </u>
(56)	1) 16	6-20-01	}			
	v 3	82-39-51	þ			
)	66-20-0	ю			
ł	Hinzon	· · · · · · · · · · · · · · · · · · ·	<u> </u>	66.20-0	0	
		93-40-09				
	2) 3	87-20-0	p	ļ <u>.</u>		
	<u>_m)</u>	93-40-0	.			
	HD=	5090.0	451	1551,	449m	
		5090.0	40'		4 4 8n	الأقر
					<u>Å</u>	
	VD:	- 42.880		-13.00	7	
		- 42,520		-13.00	on	
					285 	
· · · · · · ·					v l	
<u> </u>	· · ·			-		
					_	

-1

動物

			Sector Contractor	Contraction of the Party	10 C C C C C C C C C C C C C C C C C C C		7. 19 19 19 19	£1.			
· · · · ·	n≊⊾~	1.		·			9-3		ł	·	
12											
	01							1			
()	BS	BM B						+			[
\frown											-
(1209)	Т	Lounsbe	ng Cap					-			
	_F5		• • • • • • • • • • • • • • • • •	.10.	1110	-		·			
				14K=	4.61 8		spik	 !	n_	Old	-
î	257-1	07-34			1.406 m						-
. 7	514-1	14-52								 	
)257	! 1								, 	
	phizm		¥ = 2	7-07-26	•						
•	1) 102-	52-36		i				 		•	
	2) 205			¥left							
-		- 52-34		- 107	1-52-34						
	HO=	627.955	,	191.401	m					• ¹ L	
		627.960	•	191.40					•		
								1.			2.4. 2
	VD *	-17,440		-5,316	m		-		Ŧ		
		-17, 380'		- 5.298			- -			E	
										-	
								+	=		4
			· · · ·	· · ·			· · · · ·				17
											L
	ļ			: . · · ·				<u> </u>	Ļ	-1	2
	1 .		L	L				• • ·		: - · · ·	÷.,

5.15

5

-

13 × 62 ÷2 CONTROL Storage Artea Drup 1 -5 . Louisbury > DRUM 1.57 7.41 68.58 Elev. Louns. F. 17,45 4 61 51.13 ,45 Su alsop.

Maria

	14				4				-04											1	15
	\bigcirc	BS	BM F	• •					<u>че ссо</u> 55 <mark>°</mark>	151	<u> </u>			+	4			~			٦
			C)		- 44								-	1	~		RQ	1		-
	(51)	л Л	Read	Saike	OU F	A) Rung	· .				- m			+							-
	$-(\underline{-})$	· · · · · · · · · · · · · · · · · · ·	Otacy		Ho	le 1 Rump use site)		 						-							-
-				HT	= 4.92	1.505 m	•							+	·			-+			-
-	(1209)	FS			· · · · · · · · · · · · · · · · · · ·				i 		_ <u>-</u>				•	·				·· · · · · · · · · · · · · · · · · · ·	-
- - -		12-14-51							unsb		Co			-	· · · · · · · · · · · · · · · · · · ·		-				-
·		24-29-42			HR= 4	+481	Ē			<u>~</u> 7		r –		-							
-						,365m				~						-					
	Hows	12-14-51 347-45-1	11 14								-									-	-
-		695-30-1		4=12-14	1-51				/									<u> </u> 			
		347-45-0			•		,				•					:		·			
						 	*-			_				1							
		HD <	3924,000	f.	1196.036	m						•			:		-				
	\		39 23.995		1196.036	-	, ,				-					•.					
						5													<i>t</i>		
	- -	VD=	-44.340	FF-	+13.515	m		1	 F	tic	1511	-#	,			1 1					
			44,685		+13.620					- T	NE		B	enc	41 -		مال	nsh	m		1
												7. č 17.	4.93								
						7								- 1		Ø	ev.	Loui	15. 6	,8,5	咨
				- A.								-	4.4 4.4	8					- 4	14,0	il
				A1 ,0									40			Ē	Jan	BEPC	1 2	231	卢
																		1		1	ł
								-					:		1		See U	50			ļ
							i -	t	2.5 C								·· .		•		1
										a a financia						· 新教			ang ini	Sec.	3. 181

16						g	-04-	٥4	5	ite	, 7	5 -	В	ea	ch	F	ùe	1		•	y 17
	BS 8	мв	1			· · · ·			•••						+						
						·															
<u></u>	τ r	each Sp	pike	H]=4.9	3' <u>'</u> ,					<u> </u>			. •		i						
FS	FS HX	НÐ	VD	HR	· · · ·																
401 82	110-38-3	2 32.125	-11,150	0.45	×	04	NE	03	BI		<u>-</u>								┝─┤	[]	
402	17-36-18	35.545	101-45-1 9	4.60	<u> </u>		-		BZ		÷									[]	<u> -</u> 4
403	105-18-58	47,265	109-39-30	0,45	√	-			B 3	\$							 				visit 1
- - -	-				D' togy		-														0,08
404	181-33-65	69.310	98-23-39	2.01+.55	= 7.56 2.20	0	NE	03	W٩	102	-		HP	m	as'a	<u>} </u>	<u>e b</u>	ottor	p. 0	f f	ipe
405	244-07-0	9 80.645	97-38-14	1.06 + 55	1.61 2.92		ļ			103	,		_	 					<u></u> ∔{	+	hread
•					= <u>1.61</u> 2.97]												 				
	230-09-57				4.30	01	t N	203	551	2 Id	7										<u> </u>
: _	325-51-02				4.27					10	8					·					
					4.27	.															
408-409	5-2322	142.555	91-38-54	1.581.55	3,13 2414	04	N	0	5 W	PO	5					-					
409-40	R 198-57-10	168.885	95-05-07	4.18+.55	4.73 [31	Ø			4. 1	_0	6	<u></u>									
······					- Jo		ћ.,	-			9										
					~4.65																
· · · · · · · · · · · · · · · · · · ·									1 1 1 1		ž.	• .									
· · · · · · · · · · · · · · · · · · ·				· · ·	4 -9			副	*												
		N	umbers	in bra	let the			् .स				· .						· -			
· · · · · · · · · · · · · · · · · · ·			dist.												•				-		
·			on of f			1	٨	×.													
· · ·			und sur			•			5	· · ·		- -								· · - ,•	
		97	SUL	Tack a							f #				ن مور م	-				登 就	

.

	and the second second														- 					
	18	-		 • • .	•			9	-04	-04	`-								 ₹	19
	\bigcirc	BŚ	BM-	в		+341 •1549 /1-								8			20			
	(52)	T	Drum	Spike	C Cargo -	Beach D	<u>num</u>													, , , ,
							8									· · ·				
				<u> </u>	5.00' 1.	524m		-	+		*: 		-		 					
	(1209)	FS	Lounsb	uny Ca	₽				+					· ·						
		N 47-7	25-27		HR	= 4.48	· ·													
-		17	50-42			1,365	5 m										•		.	
- - -		n) 47-	25-21	 					+					<u> </u>	 	_			• 	
	<u> </u>	inzm		4-4	7-25-20						•		. 						•	
			84-43				;		+				+						/ <u>;</u>	
		2) 625-							+						$\left - \right $			-	• 	
		M 312-	34-42		· · · · · ·															
			40= 62	7.935	191	395 m														_
			62	7.930	191	394m			1			JE	lei	,	DR	Wh	<u>_</u> }	lo	nsp	ng
	·		VD - +1	6.855	+ 5.1	37 m		-					5	00	r (*		19er	1. La) uns	68,5
			*	6.895	+5.									08						17/40
	. 					-					· 			.48					1.11	<u>51 18</u>
		<u>.</u>			·			-					17	40	╏			se a	ko p	-
								Ļ	<u> </u>	1-576°, [<u> </u>		<u></u>		╏			<u></u>	-þ	<u> </u>
		 	l			A AND				nite Antonia	nter a Friday e a	in it	i.	·						

「おおいい」の「「「「「「「」」」のできた。

20							0	3-4	~Y	2	517	Ð	6		D	 	· ·	54		1			2
	· · · · · · · · · · · · · · · · · · ·						• • • • •	- 									T	1 15 T		•	T	1	┱╌┿
	BS	BM-	B				•								<u> </u>	<u> ^:</u>	<u> </u>		<u> </u>	-	+	╞	
				Beach		- 第1 - 19 	-	<u> </u>				<u>د ور</u>								+	+	+	+
(52)		Spike	c Carg	0 1 Drum	Felc				÷						-	.÷-	<u> </u>		┼──	+		-	
				.10			I													+	+	+	
FS	-HÀ	<u>5D</u>	24	HR			•														∔ }	+	+-
11.2	17	1-0-11	- (/)	11.110		:			فلنم ا		68								<u>}</u>		+	+	+
410	47-25-21	-620.16	88-27-45	4.48				5		00	6-9	1	La	<u>ths</u>	bur	¥∸	+c	<i>α</i> ρ:	<u> </u>				·
	+ 10 50 HC	2200	0 20-21	5 0,45							6 13	_				<u>}</u>		1	<u>+</u>	+	+		·+
	169-58-45				<u> </u>				<u> </u>	EU		B2				-	1-		†		+		
	<u>354-41-23</u> 24-08-09	1			<u> </u>				'			B3					+	+	<u> </u>		+	 	
	6-08-25			,								B4					1	-	+	+	+		
	101-58-42				<u>+</u>						- 1		e	Ň	: م ر	D	SC	in	The		ic	RY	
	133-20-37			-								B 6						got/		lpdo	e)		
			/1 00 01		₽	above			· ·									1					
417 0	95-48-58	119.02	92-30-46	2.144.55-	2.69	[2.37]	•	01	NE	06	W	710	3	7									
					08 -				1.1			с. С.		ļ		H	ei	4 +		- off	on	F	
418	74-22-32	155.345	91-44-00	1.12+.55=	1.67	591		Ó	NE	56	WP	- 				1 °	1	th	1 2	Τſ	J ·	1	de_
415 420					0.42-							6					r	bot	im	0	d .		1
425 419	1	1		2.70+.55	2.70	95	1					5		/		·	ot	fen	hse		L.		121
			· · ·		3.25				1									-	ap-			<u> </u>	
	·				3.17				2			い				4 (衑		010	4	hat	kere	
	*C] numb	r in bro					5	6	Z					•	T,	ļĮĮ	′ 			Γ.		
		is di		ound from	h .		to		S			•. •				ľ	Щ		<u> </u>				<u> </u>
		mean	ned point				Par. 10	۲ ۲ 2		ia Gri		ari,	La como	 19. j.			•				ž		
		1 R	C				An.			e canad	1. j. o		\mathbb{P}^{+}_{+}	Eir in Eire	-	善		ži k		£.52			10.75

ي ۽ سو

- 1 - 2

	y. 3					en e							20 m.) 22				-	1.e	- <u></u>		
rater, c	22						and the second	Ċ)-0 ¹	1-0 ¹	1	· · ·									23
	(51)	ßS	Spike	C for	Deach =	TUM Freid				24		3				<u>_</u>					
		~								es.						INT	20				
	(1209)	\cdot \star	Louns	oury		1								-	<u>.' 3</u>		+	.			
*							: .		_	١-		ļ					· \				
-		FS	BM-B	ا ب		 		. 							_		<u> </u>				
1			16			74			ļ	÷		<u> -</u>									
	· · · · · · · · · · · · · · · · · · ·	1) 104	- 38-31			- <u></u>						. 		·		· [. 	-				
	'	2) 209	1-16-45 - 38-23			· · · · · · · · · · · · · · · · · · ·										_					
· · · ·				<u>x</u> - 1	04-38-2	o		-							_						
-	Hom		-21-51	7		-		-										<u> </u>	; ;		
- - -			43-25											\rightarrow				<u>.</u>	· -		
		m) 255	-21-43								-					_			;		
	\$		Closing	Angle	fr	·															
				ŀ			-									_					
	·	B	мв-Ц	ounsburg	Beach										_	_					
	ų. ——————					· · ·						<u> </u>	<u>.</u>	┿╽		÷	<u> </u>				·
									. .					-							
										3					_	-+					
					·							<u> </u>									
	·										-			<u> </u>							
								}						<u>.</u>							
				-				·							-		<u> </u>				
						2000		<u> </u>	<u> </u>	ц.		<u> </u>		-			[<u> </u>	Ļ
		·		5 - 16														بر 1994 - ۲۰۰۹ 1994 - ۲۰۰۹ 19	+ .	(jil - 3.) 	

		-A																74 			
	24							(ን ሳ	백건	6 4	Υ.s. i			÷.		÷.				
1 1 1		BS	BM B												40						
2		π	Lounsta	n Cap	ТН ТН	- 4.60												11 K	02		┦
	(1209)	,				1.403m			· ·												
	`	FS 1) 52-01	-50		: He=4	.63		Se		pil	L	<u>e</u> .	eog	و <mark>ما</mark>		ban	¥,	E_	510	e n	Dau
	—	2)104-03	-39		-	.412m	- - - - - - -				-										
		m) 52-0	- 50	¥	52-01-5	0.						+ 									
-		1) 307			· · · · · · · · · · · · · · · · · · ·		а. Та.						•		•						
		•	-58-619 7-58-10		• <u>•</u> ••	e .	1						•	•				×			
				,								-			<u> </u>		· · · · ·				-
:		- HD	- 414. 414,	<u>+ 45′</u> २.45 ⁾	126.4			· .			· ·				•						
																<u>-</u>					
	· <u> </u>	V0 =	- +0,191 +0,14	כ 0'	+0.04	۲ <u>۳</u>												•			
	5. 			-							Ø	ler	<u> </u>	1		-	te	v.Lo	luns	68 +4	- T
	·													- -			+			* (_
	· ·													_			-			- 1 68	1,(
	·							-			r.	-									Ì
										s_∰_£								• • • •	ŧ		

	26							9-0	4-6	× ۲						*	••••		· · ·	:	27
	1209	BS.	Loung	bury	cap	-					H			12.11				-		5	
	53	Т	spike	in fil							· · ·	• •		5	,C	DA T		20			
· · ·	·	FS		H¥							-		•			-	+			÷ · · ·	
· ·	Beach s	pike (s	IJ	21-08-1	+3	· · · · · · · · · · · · · · · · · · ·															
	BM-	в)	102-13-7	ц цсң								· 								
		۷		176-56-	01	: : :															
	BM-+	+ (121	8)	218-33-26)					· · ·									- - - - - - - - - -		
	· · · · · · · · · · · · · · · · · · ·						-														
																	·		+		
₽								_+	• 	-						-					
			1								<u>,</u>										
		, 															ŀ	-			
		· · · · ·								8											

Same and a second s

						-		9-0	9-0	4	S	ite		7 -		La	nd	4	11			29
	-(1209)	BS	Low	nsbury											<u>) (</u> 1		1.4					\square
-	6	π	Soil	ce_in_F	5'11							1	•		`						-	
+	- <u>&</u> -				HI= 4,8	<u>'9'</u> ,492 m	-	. 													-	
		FS	H¥	5D	Z\$	HE	-												_	<u>·</u>	-+ -+	
	421	41-42-24		106 20	90-31-24	5,3	-	DU	ŧN	60.	755	In	. /	SB	10	2	· 	· .			-	
	422				89-45-11	5.3	-					10	3		10							-
-	423				89-27-49		- 1 :					10			_			esc		¹⁴ 15		$\left \right $
	424				89-39-52		-					10	6 97			s Ann	- 1	-		NCEL N Si		+ +
	426				88-59-37		-				_		8	-		Toc	atic	ักร	+0	s 10	uh "	
,	427	· · · · · · · · · · · · · · · · · · ·			106-51-2							્ય				5.8	- a		01	NEO	7755	
•	428		184-30-00	30,515	105-38-5		-					. 1	ю.			:			_		- <u> </u> .	
	429	 	· ·		106-2011						· -		12			÷.,	_				- ·	
	430	· · · · · · · · · · · · · · · · · · ·	154-04-6	26.295	108-24-9	5.3				· · ·				· · ·		- 1	<u>ب</u>	-		.	-	$\left - \right $
<i>*</i> л] µ	431		160-28-29	35.05	109-14-13	5.3		0	N	Еb	79	51	25	'	(610	-	ite)			
		ļ			· · · · · · · · · · · · · · · · · · ·												ġ.					
														-					·			
		<u> </u>			<u> </u>				· ·		*	i. T	4				_				╶╂╼╌┥	
	<u>.</u>	· · ·						ن ے۔										ا مد میں ا			ل <u>بــــــــــــــــــــــــــــــــــــ</u>	لیسی مربعہ میریہ

1. S. S.

ţ

1. A.

-

				<u>- 19</u>				- 389			9887 - 1944 6 - 1946	o sa -	يني مي ا	578 - 123 - 1			n Marina da Marina			a a a a a a a a a a a a a a a a a a a	ية من المركز الم
	30							9	5-	04		ÖV	ea	\$			1.	12		-	ec.l
		8)				··				- <u>-</u> -	· · · · · · ·		55			121	te	いつ 	,		BID
·]	(106)	BS .	BM H		-			HR	=	3.0	6′		91	5 M		·,		<u> </u>			
				÷	-	-	1			•											
	(2) 6201	\mathcal{T}	GPS 3	201 200	12 4	1=4,415'		Fm	2	2	4 a		n.	5/8	rb	F	b	45	a	bora	
		-				1,345m		. [, 1	a	vod	i	ind	ιťλ	2	mb				44	9.5
	F5	HÀ ES	SD	24	HR	ABLEY,	ł I						•							GP	
ĺ				<u> </u>		<u></u>														32	21
	432	0-00-00	1643,765	89-57-22	3.00	2.67		ßS	C	±κ	: B	ME	Ł	Ø	21 =	60	1.8	ì.		200	2
	433	182-26-26	250,815	90-29-42	0.45			84	N	-17	5	511	5			1		÷			
2	434			90-30-24								44	4				e .				
	435			90-22-17								\mathfrak{n}	7								
	436	187-26-32		'								11	š								
	437	185-58-55		90-23-30		;						119				-	•;	n - 1			
			01110	~		·							,								
	438-/	183-28-5	0 368.495	89-52.31	0.20			04	NE	513	4	120			4	ian	лец	ES.	CA	JCE	эı
	489	184-33-07	372.75	99-49-43	0.45							121	. •.			-			Ĺ	ហា	Ŧ
1.1	4040			8-9-55-40								121	1		-				5	amp	le
}	441		_	89-51-30		• •		_				12	3	;			بر:	\mathbf{J}		ບ່	
								, já	-			1						9 - 5- 9 - 7	4	lat	hs
1000 - 1000	<u> </u>	182-53-01	376.415	89-45-35	0.20			041	16	12	<u> </u>	104	2. 载					2	G	186	ied
	443			89-16-18	l l				-	-		ખ	8 E		. : .			6			
	, 			89-34-58				Ţ		÷				5	сці.	u:		+		- ;	
		182-00-15			3,5		ŀ	2.				101	÷		, ,						
	4486	- ·		89-39-49	N			T				109	21.2					5			
	4487		· · ·	89-51-77						Ĩ		<u> </u>	100	CR.	25		۰.				
	1714 1	170 3700	276.70	<u>ז גירוירט</u>			[, [L	. rø ¹⁵			≝≚∤		<u> </u>			<u>14 </u>	Į	<u>. '91</u>	<u> </u>	
· .				1	• •				2. 1977 - 1977		FK 7								. '		

and the sea

Jan 3

13 - Bldg

and

51

Ь

will the new sample exarting 40 MW 88

98 NEC 1355802

ť.

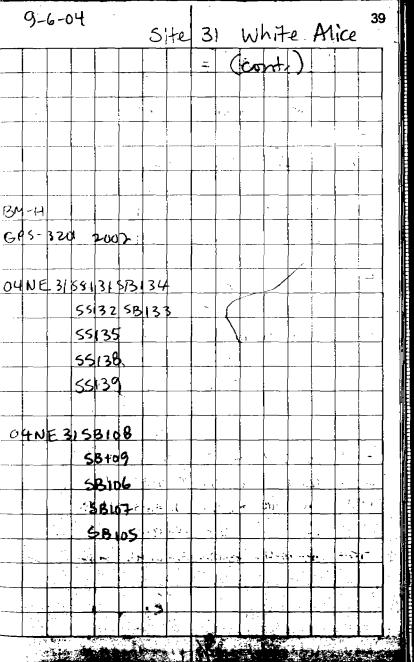
		نىنىڭ <u>انلە</u> تىرىمى م				
	32		· · · ·			
	(1208)	B5 -	BM H	ł		
	(323)	K		101 207 200) 7	
	FS	HΣ	SD.	7)	HP.	
	448	175-47-	49 393.0	1 89-16-59	3.60	:
		9 181-25-5			^	
	450	178-40-2	2 401,895	89-4035	0.50	·
1. 2.	451	176-00-23	405.900	89-11-57	-3.60	¦ ;
	• •	W BATTE			29	
	452	<u> </u>	402.875	89-11-19 39-21 39-34-50	3.30+0.5> 5.30	- 3.92-
	454			89-33-33		
	_ 452	177-14-57	403.145	89-00-26	5.30	
	455	136-12-2	7 377.456	87-11-16	53 D	
	456		·	87-10-23		
	457	•	567.01			
	458		1	87-25-37	11.30	
	459	359-59-58	1643,765	89-57-23	3.00	2.67
t d	460	139-14-49	862.890	87-47-63	11.30	
	461	139-18-55	836,380			
	462	160-18-46	839,810	88-35-20	9.30	<u> </u>
The second s	44.7					

	100 Act 107		8-99 ⁻⁰⁰ -	10	<u>.</u>		E)	<u> Second</u>	2 Y 47.	
9-5-04	Site	13	(0	mti)					33
				١						
	•	. ~	`							
									_	
				:	,					
04NE 1355			ĺ							
			·, , ,	2 -		• • •			~	i ·
	(12	<u> </u>	<u> </u>	• .					:	!
	113		L.					ļ		
	114	<u> </u>		•			 			 :
		+					· · ·			!
MW 88-8	- N P	1-01		.55				co		
	- cent		₽ í	asi	'g	W	pt	F 1	ωp	1 6.06511
- 88-6	I I I	of	<u>_</u> 4	casi	ig	:	1 14	<u> </u>		
88-8	- <mark>- Ν</mark> ρ	t o	<u> </u>	ca	<u>Ś</u> ł <u>h</u> ź	<u> </u>				
	-									
04NE 9 BI		<u> </u>				,	-			
	N p+	<u> </u> ca	bins		00	en.		1		
20nw1	Np [†]					*			- 	<u> </u>
2 MW3					F	ļ	<u> </u>			
CIK BS			<u>11</u>	pi			-		<u> </u>	
1 MW2	N pt				1				L	
25 B)	N of							,		X
CUTCES (America)		<u> </u>	-	١	بە ت.	<u>i</u> 	<u>.</u>	L		<u> </u>]
					فالمتعوق			;		Res.

THE REAL PROPERTY AND INCOMENTAL PROPERTY AND INCOMENTY AND INCOMENTAL PROPERTY AND INCOMENTY AND INCOMENTAL PROPERTY AND INCOMENTAL PROPERTY AND INCOMENTAL PROPERTY AND INCOMENTY AND INCOMENTY AND INCOMENTY AND INCOMENTAL

فيهير	فالإستعاد فعقب فسأنع فأقفا		1.41.00.000.000.000	(x), ***		
	34 (1208					
	TR	BS	Вин	··		
·		02	· · · · · · · · · · · · · · · · · · ·			
	(12)	て	GPS	3201 21	L	Į= 4.52'
						1.385
	FS	Η¥	SD	Z¥	HR	
				· · · · · · · · · · · · · · · · · · ·		
	465491	167-27-5	, 1084,495	89-0540	11.5	
		167-48-18	1098,805			
	493	188-59-02	800,875	89-26-35	8,4	
	494	190-20-40	453,65	89-06-34	5.4	
	495	123-55-59	295.865	86.59-49	<u>5,4</u>	 +- ····
	496	109-39-43		86-55-25	5,4	
	497	108-01-48	114.73	87-46-11	5.4	
	498	201-19-46	108.84	07 89-70-11	5.4	ļ
	499	201-36-05	544.47	89-05-03	5.4	
	500	199-02-20	582.55	89-07-40	5,4	
	501	206-26-55	620.29	89-13-08	5.4	
	502	59-42-55	200.525	88-18-32	54 🇯	
	503	48-04-30	388,43	89-15-41	5.4	·
	504	52-24- 5 0	426.10	88-27-47	5.4	
	505	34-04-29	435. vo	89-06-38	5.4	
	506	105-35-23	776,025	86-45-09		
:	507	298-07-2	7 1563.305	91-08-27		
; '						• =

9-8-04 PM		A A	•				3	5
overcast 55		V\a	<i>i</i> h	Cor	nple	N		!
light wind				Ar			``	
								1
								1
	!					•	+	-
I ALE ILISTO	L SB IØ	F	!					
								4
04 NE 1455101 58 10) 4							
	03					:		
17MW1	-							
13 81								
	t of	Cae	ina					
		-	<u> </u>				[1
MW 88-3 N	-				_			
MW 88-2 N								
MW88-4 N								
MW16-1 N							_ + +	-
MW16-3 N								
MW10-2 N					_			
MW 11-3	Ĺ							
MW iD-1 N								
04 NE IDB2								1
OH ALE IN BI				•				1
04 NE ID BI 26 MW-1			<u>·</u>	<u></u>			-	1
		are	m					
04 NE 2951/102	<u>- r</u>	- 6	an	- 10o	King	day		مله
	<u> </u>	ple	WÁ	51	liser	ГЦ	<u>heive</u> n elev	1
	i				1. 			З уч


の記念を行う

ند کر بر ا

, n. .

-					and the second second second		ي. مانيني ا				معدر م	منبعی	j. ji	- 464		× 1	1				
36	*			· · ·	s ja s sen		9-6	-0,	4	A	Μ		,	Sì	te	3	1				37
					1. Sec. 1		over	cast	(55'				W٢	vite	2 P	Mid	æ		12	•
(2) (320)	BS	GPS	3201 2	005	4e+4.7		,301	mp	h v	hind					1.2					30	· - ,
7-67		BSAD	~																		
(54)	Т	TBM	ALICE		HI=4,95	m	PF	or		con	cre	e	t9	nil	2-1	JY.	¥	AT: C	e 4	. <u>;</u> }e	
126 22	D F5	BM -	1.	1 1971	1+R= 3.04		·								<u>.</u>	set			MAG	ND	L
																on	N	sid	e of		
	1) 30-	26-50							ļ							01	3!-1	wide	ese	all	6454
	2) 60-	53-44						<u> </u>				L		_			Ì.	top	Ì۲	0.1	<u></u>
		26-52	~ ~ ~ ~								→	2	2.0	7				a	owe	conf	:re#c
Hons	m	- 33-07	4 5	0-26-52			20.5	l ap	X					08	,]			
	\$ 659	06-16					(m)		ľ	V	را ر 				1.1						
-		8-33-08																			
· :			1							-											
	H0 - 1	2661.70		2661.7					1.0					60	.96	·					672
b	GPS 3201	811.286*		811.293					E	der	đ	<u>м-</u>	H =	70	de.			321	120	02	جل
					:	· ·		<u> </u>				H	2	1	,04						47
	VD7 -	144.15		- 143,75	5, .				4-4	ary	r	NO		7	3.0	87	500			7	1.97
- Juli		-43.937	•	- 43,817				F	-	A			1		2.8				. :	14?	3.95
		14 J - 17 - 1									·	•.				a 8				וג	5,91
	15 5 C	M-H		· .							1			_N	مە	*	2	5.8	18-	_]
	40 10	85- 31	34.110	323	1.105							• • •		• •				•		· · · ·	·
t	-		985.759-	୍ରମ୍	.757 m								E o		าน	E		10 .	93 -		·
·																	12			÷.,	
•	ND to	135 = -1	42.72	- 143	,905		10 A 10 10 A 10 10 10 10 A 10 10 10 10 10 10 10 10 10 10 10 10 10 1									r A	jan M	ŝ.		<u></u>	
Decar States in	and the second second	and and a start of	350 h	47	5				1.46					1.65		(e c			1 97年1		eren al non

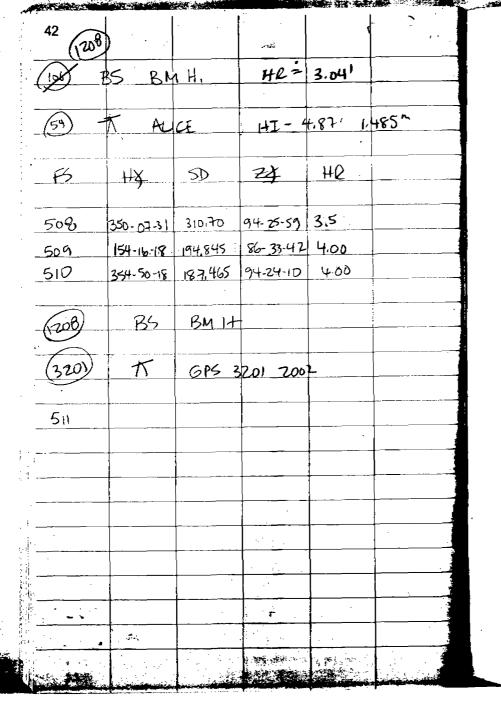
	38			1				9-6	-04
•	38 (1208)	B5	SES BI	1-H				<u> </u>	
-	(100 (54)	Т	твм	"AUCE"	HJ	= 4,95			
	FS	Н¥	5D.	ZŽ	HR				
•	463	359-59-59	3237.245	92-31-52	3.04	fried		M-14	
	464	329-3302	2665.59	93-05-54	3.04 54	Ha 4,70	G	AS-37	201
	465	357-17-33	220.03	94-25-14	3,50		01	INE ?	
, I	466	341- 04-38	213,725	94-29-06	3.55				5
	467	346 47-27	217.275	94-16-14	3.80				S
	468	346-49-31	258,46	94-22-13	3,45			+	5
·	469	342-00-24	313,455	જુમ-યહ્યન	3,55				5
	470	11-06-46	164.02	94-57-06	3.95			4NE	31
	471	331-48-22	91.675	96-03-57	4.00			┥┥	
	472	190-13-31	49.055	91-12-57	410			<u> </u>	
	473	149-14-49	72.175	91-45-23	3.80				
	474	198-59-19		88-19-31	4.10			<u> </u>	
2 4 2 1 4 2	475	126-35-53	-76.70-	91-16-44	-4,10		.	<u> -</u>	
								┨╌┟╧	
				.	- <u>1</u>				<u>-</u>
			en in	u		1.84			<u> </u>
Į.	Barris - Tables	المعادية المعادية الم		AND AND A	Security St.				517. TA

And the second second

- 163 -

(All					
(19)	BSNO)ВИ-Н			•
	T	TBM	"ALICE"	HJ	=4,95
F5	HÀ	SD	24	HR	· :
	/				
475	203-25-32	110.48	88-30-56	3.8D	
476	228-14-00		89-57-29	4,00	
		129.07		44	
477	234-45-0	1 23.0 -	91-26-09	4:05	
478	250-46-41	106.42	97-51-49	4.20	
479	241-52-02		91-30-42	4.00	
480	240-15-32	122,365	91-42-36	4,30	
491	255-55-53	131.34	93-42-28	4,00	!
				4	
482	132-12-18	66.37	91-35-20	4,00	
483	120-42-53	· .	91-31-43		:
484	110-17-05	58.92			
485	126-35-57		91-16-44	4,10	
486	115-20-43		91-22-49		
487	110-42-27		91-40-28	Ч,ю	
488	115-14-22		89-08-00	4.35	
489	110-47-23		89-26-13	3.90	· · ·
490	11447-02			4.70	
	_ ·]	۱ . ۱			(· · ·

			•		ST	FOL	3			1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C			lia			
								2	NH;	6	on	- 5		•	•	
s. Sec.								·								
					<u>.</u>			•	5							
•																
						2	۱. 								ć.	
					. 				Ĺ	Ĺ					Ĺ	1 mm
OL	N	E 31	B	2				13	1							
			B			ŀ.;	1					· ·				
				r!					<u>,</u>							
04	NE	31	ss	110									 			
04	NE	31	55	11		-										
		·	55	12	SB	113	<u> </u>				 	i 				
	[55	114	 					}		 		ļ		
	 		55	115	S	3116				l 			 	 		
	ļ										 				 	
			5:	5117	2	<u> Вн</u>	8			<u> </u>		ļ		ļ		
		. 	54	119	_		 							 		
 	. 		59	517(2	531	21		-		 					
	 	 	50	12	2_			 			 	[<u>\</u>			
			5	12	3 -	BI	24			<u> </u>		Si	e°			
	 		5	617	25	-	a	pt.	ent	ree	65	5	S II !	\$	 	
			5	<u>\$12</u>	4	\$ <u>B</u> 1			-		· ·			ļ		111
 			S	512	8 0	61	29	. 					ļ	<u> </u>		
			3	5131	31		*			ť					_	
						. •		i						-	-	2.1


Notes Street and and

4

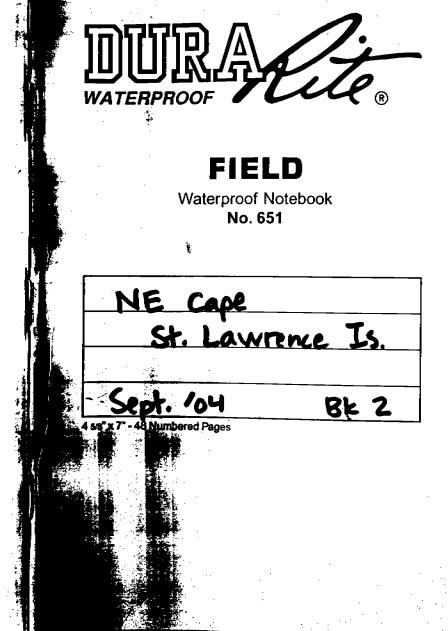
ξ×,

「「「「「「」」」」「「「」」」」」」

÷

9-7-04 Site 31 + White Alice (cont) CHNE3 55 13658137 Terra? Spille - uprill end of diversion Set State @ DINEBISSIZ3 (PF 12)3) state at location of 98NEC 1355802 5eff 1

أفيد	2 2 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	- 61 -1				
<u> </u>		1 34	1		**	
÷	44					· · · ·
` ·				5 ×		
t	$\overline{()}$	20	2	* F.W.*		
		BS	3MB		·	
-	(n	a l				
	$-\sqrt{n}$	P	M-1+	= IH	314'	0.960m
	_(2)	7) 9	M1-17		214	0,000
:	7-					
	FS	НÀ	50	2\$	He	1
	F7	<u> </u>		- 29		
	512	218-41-10	(1206	91-05-58	202	
	516	1				
	_ 513	260-20-3	764.27	91-43-37	11.5	
	514	268-13419	809.98	92-01-23	4.35	
	515	264-40-12	787.085	92-06-09	6.00	
			•	90-20-56		
	516	30-21-09	1643.293	90-50-50	5/10	
		[
		+				
		· · · · ·			·	
· +		+				
	·					
		·+		+	<u> </u>	
(); f				1		
é S	·					
E I	<u> </u>					
. [!	· · · · · ·		<u>.</u>			
l.						
1	·	+· <u>·</u>				
s.t.				Surgeriter	and the second	
1.		I States	1		and the second	


.

.

	9`-=	ł-0	作		Site	e 8								-	. 4
														1	
														+	+-
					<u> </u>				 	·	 		<u> </u>	<u> </u>	+
									[-		 		
												ļ	ļ		ļ
									<u> </u>				<u> </u>	1-	
					i				1				 	: 1	
									_				-		+
Œ	B FG		26 M	hW-	-3	-	N	P	4	top		<u>s</u> s'u	ha		
~u	NT	3	rsi	kht	51	ĺ		nter	1	29				ļ	
				1	6				ľ					1	
		08	1		1	<u>↓</u>			-		¢.	2		-	1
04	NE	08	SD	102	+		гъ		Shi	u y		<u></u>		+-	<u> </u>
04	NE	ງງ	SW	101	E	Nel V	enty	-	† St	ta U	÷.	12	ft	et-	
u	2	, _ II	<u>ب</u>	2.	5',	hig	-	2 .1	000	_	Los		\$ 80	SEI	, Ni
1	יצע	и	12				1					() 		+	
		Sta	6 _1	5	†næ		ups	m e i	m	at_	à	12	╞╌┶	g i	<u>an e</u>
									ļ				_	 	
				ļ									 	 	
•									Į	[ĺ				
				1							<u> </u>			Γ	1
<u>.</u>									<u> </u>	<u> </u>			<u> </u>		+
				-					-	-	<u> </u>	-	<u> </u>	+	.
-	i														
						1		·		1	<u> </u>				
										<u> </u>				<u> </u>	1.
			.•	<u> </u>			ļ		ļ. ·		<u> </u> -	<u> </u>		Į	
							·					<u> </u>			
	·									·					
															1

									È ф		1 A	- 	<u>, </u>							A.15.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	46					- 33			:	• ••				· · · · ·			· · · .						
											·.			<u> </u>							<u> </u>		
- <u>'</u> ,e, '				r					1.											ļ.	1		
]									_								<u> </u>		
		5										Р/	7				<u> </u>						
						1			1	6	Ч			_				 			[
						1.				10											ļ	Li	
						hY														<u> </u>			
						∇^{-}									_					L			
				10											<u> </u>								
				NP													ļ				<u> </u>		
			Y,	η																			
							•						•							<u> </u>			
														_					 	L			
																			ļ	<u> </u>	-		,
																			<u> </u>				
																i				<u> </u>			i
				:		T · · · ·		•				-							ļ				
	:							1. ·		· ·		_		<u> </u>									
•						1	ų.					_								<u> </u>	-		
				· .			a de la construcción de la constru La construcción de la construcción de						_				-		ļ .	<u> </u>			
Đ	 		,				a a constant				•	:		1									
							. 1			1										-			. ,
						· .	A. A. A.																
	939 <u></u>		+												. <u>.</u> 1 							ъ.	
							ŧ				5 7 20		i		· .						<i>₹</i> ***	s 5.	n. Tainn
				<u>.</u>																			

"Outdoor writing products for outdoor writing people."

RECÝCLABLE

"DuraRite" - is a synthetic paper that is ideality suited for use in extreme weather conditions. A full line of "DuraRite" notebooks and loose leaf sheets are available. Custom printed "DuraRite" books, forms and tags can be made to meet your specific requirements.

"DuraCopy" and "Rite in the Rain" all-weather copier papers are also available which enable you to create all-weather forms, charts and maps on your copier or laser printer. See your dealer or contact the J. L. Darling Corporation for details.

a product of

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA (253) 922-5000 • FAX (253) 922-5300 www.DuraRite.com

	៣ពារា		2:	
		- He	Te.	
	·····-	•		
1		·		
*		•		
Name			· · · · ·	
<u>ــــــ</u>	-			
Address _	······	<u> </u>		
Phone	·····			
			······································	
<u></u>				
Project				
·				
			·	
			·	

	CONTENTS	÷ .
PAGE	REFERENCE	DATE
2>35	Control	9-7-04
577	Site 1 + Estuary Partion Site 29	9-7-04
		-
	· · · · · · · · · · · · · · · · · · ·	
↓		
	·	- ·
		•
	:	
		_

Lever Stre

ŝĈ

a Maria and Andrews

1. Same

				elle.	No. Contraction
- 18- 2 Mar 124					
$\Box O$	<u>185</u>	BM-B	·		
6512	0				
106	<u>т</u>	BM-H	HI	= 3.14	
				343 1	
	F5	"ESTUP	RY"	HR= L	20 +.66
]]				-4.86'
			<u> </u>		1.482m
<u> </u>	1) 26	-11-54		祥福	
	, , , , , , , , , , , , , , , , , , ,	+-23-36			
!	m)26	9-11-48	· · ·	· ·	· · · ·
att		· · · · · · · · · · · · · · · · · · ·	X = 2	67-11-50	<u></u>
	り 92	48-11			
		-36-17			:
	M 92	48-09			
	· · · · · · · · · · · · · · · · · · ·				
	:				
i	+0 = 53	28.615		1624.165	
	54	10,020		1624.66	<u>r</u>
				<u> </u>	
				· · ·	:
·`	VD" -4			-14.996m	
	<u> </u>	18.675		-14, \$%*	
·					· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · ·				
	. •				
	1			1	í

	_								,		Γ			<u> </u>	
					-					NT	0 01		<u>†</u>		
ļ	1											*	+		
İ													+		-,
2		50	ke	L	his			-	1	sus!	: 0	1.0			
Y					n 0				-	pus,	n_6	1.80	1		
1	4		1 2 1 2 10	all	2	o di				fie (1	£	1		
					2			La la							
														-	
										+				ļ	
														-	
								····		1					
Ļ												•	1		
														: i	
		; .													
Í										·					r
Ì	\wedge	Fle	10.		BN			ю	E	sti	AR	Y		 	
								1		. .	[
		-	3	14				E	×.	BI	J - [-	+ =	69	96	
		-	48	.gu	ł								Б٥		r 1
				, 8,	<u>+</u>				on.	BE	stra		19		
			- 5							p.		~	19		1 1
ſ		3								M	4.0	 	÷	33	+
					1			1		 		1	1		

jā:

- **1**

が変化する

A

		1000	ST T		YER A	
	· ·		B			
\odot	B۶	BM	-8	· · ·		
*		· · ·				
(120)	$\mathbf{\Lambda}$	<u> </u>	Unsbory	HIT	4,19	1.278"
						· · · · · · · · ·
(55)	FS	u	ESTUMEY	"	= 4.86	· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
	D	_13	0-58-00		<u> </u>	
	2)	34	11-56-01			
 	n)	17	>-58-01		·	····
	Honz	m	i 	<u> </u>	0-57 - 5	8
	<u></u>)	18	9-02-03			
	ι)	i i	+8-04-10			
	M)	18	9.02-05		•	
			····· · · · · · · · · · · · · · · · ·	,		
ł	10=		71,255		515,242 +	
	·· <u> </u>	49	71,255'		515,242.	
	10-	- 48	3.650		14.029-	
	·	-4	8.455'	ل ــــــــــــــــــــــــــــــــــــ	14.769-	
	des	Hot				
JI						
517			·			· "IDEAL"
518					·	STALED
			ļ		·	

10- A	تۇ	7-1	54							• •		·		•	5
	, <u></u>	·		ri	1	.						;	·	· ,	-
			· ·		 	Ĺ	ļ		-01	UTI	ROL	-			
					·				-						
c			3		::-'	F1			•						
					-										
					· -		1					-			
							<u> </u>			 					
	*						-								
							 	†					 		
							+			 			 		
	_						<u> </u>	}				··			
			<u> </u>				<u>+-</u>				·		 		
				<u> </u>					·			 	;	<u>-</u>	
										{ 					
	_													,	
							₽	i					 		
		1	E	er.	<u> </u>	lou	shs.	→ (- 1)	5sti	han]
				4	19		 	0	ent-	C 1	-oui	مړ	68	<u>58, </u>	
		L		- 41	<u>b. 5</u>	5					 		<u> 4</u> °	.22	
				L	1.8	6							19	36	
					9,2		Ì	 					•	८ ७	
											 			1	
		:													
01	NÊ	67.	551	27	ł	N	13,	00,	359	5,24)		i ''	-	
	1	н Х				E				4.9					
		÷	•		·		<u></u>	t	L				L	·1	

1

. . . .

6				
GS	BS	Estua	1	HI-486
い				
(50)	T	Airstri	ρ	HT = 4,77
FS	нд	SD	24	HR
		-		AA
519	00-00-02	423,76	96-520	
520	347-5705	262.295		6.0
521	55-49-01	351,41	93-04-49	9.0
522	46-18-40	487,835	92-33-1	5.4
527	44-23-50	551.480	91-57-31	5.4
524	38-47-57	501.69	92-34-15	5.4
525	29-48-56	611.395	97-07-32	5.4
526	28-08-12	545,175	92-21-47	5,4
_52Y	4-34-34	262.025	91-01-31	5.4
528	11-57.4	2 1274,485	91-01-00	5.4
529		-11-22 57/0	010-52-04	HI=4.77
(530	181-37-10	491.73	89-51-57	
529	60-00-06	423.755	90-52-04	
531	341-50-00	360.865	90-50-4H	9,00 800
				Ĩ.

1. Nil

Number

	6	}- -7	1-0	14	C	<u>ج</u> اندام		a		ς.		d		: 		7 lary
ſ										•	<u> </u>	2	•		»т\	any
	<u>.</u>	2 17 3 1		0	5	11	e	1	-	BI	vrr	P P	tre	a		
ļ		ц.,											-	<u> </u>		
		at.	Ner	. 6	hip	ort	•									
		74			ļ .	•	=	1	<u>9.3</u>	3 (se j	. 3)	+	6.5		
							=			<u>84</u>						
		1														
	0 4	₩Ł.	01	54	02		557	TU/	p	4	4	eles	12	-	6.5	
	04	NE	019	5510	2									·		
	04	NE	29	SU	DI		OF	FÆ	7 =	k	(no	re)	'			
	ОЧ	NE	29	50	104	}	OF	e si	ET_	- 10	<u>ار</u>	Sa	nple	Q	54	6
			01	55	103			0_06		•	ĺ					
			29	50	105		01	FFS	ET:	-16	1	[[£Ч	\mathbf{b}
			29	5D	100	l	0	FFS	бŢ	-	1	; ; ; ;			54	5
	l		25	5D	107			FFS		i					543	5
		2.44	29	250	109			DFF		i				ļ	544	D
			20	50	108		0	FF	ET	=	51,5	5			545	51
	0	1.0	ÐH											!		
	7Ti 04	NE	101	551	οч											
ľ		πυ									Δ	eler	1	-6	,51	
ľ		NE			5 }		e	nter		fr =	9.6)				
ŀ							Ť	Å	xec							
	<u></u> :	19 - A	· ·													
ł	<u> </u>			• •												
L		<u>1 - 25 - 1</u>	L		L		L	L		L	L	L	L	L		Ld

1. 14 55 41

100

and the second

. . . .

ې . م د نو

1. A. A. A.

「「「「「「「」」

																	-			<u>.</u>	4						
		村						·													•	. 19 19		75 54			
			· .				· .																•.	-			
-	÷.	-			-	-	•				-	-	-	-			-		-			-					.*
9	-																										: • •
								: 														:-					
, 					.			i				:			i	L				 				ļ			•
:		-		<u> </u>	-	_	! : 														<u>-</u>		·	_i			۰
					i 								,		•							<u>.</u>			<u> </u>		
 1	 				! 	Ļ	f 		! 														<u> </u>		İ.		
T	<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>							·		• • • •									-			
	 	 		<u> </u>	ļ	ļ									+	-		· ·			 			-			
P			 											:			!	·				ļ	-				1.
1									Į	[;				 													.
1			<u> </u>	-		-			1			1				-		÷					1				5
·- /	_ _				,																						dhe biya d
					(1	V							ŀ-	. <u> </u>													
· · · · ·							27							 			· ·		ļ	į							<u>14.12</u>
			<u>12 (</u>				6									-											
	ومدادته						R			IF.	÷				- 			t ·					Į.				
																	·										- 7 7)
			***						_ 	/					<u>.</u>							2			· · · ·		
	4.4		*	1.			7.		/	- Ń	-0														· ·		
											· · -	\sim	$\overline{\mathbf{v}}$	<u>~</u>				·		<u>i</u>		:					77° - 2
		-									· · ·		×	$-\langle - \rangle$													
A4 ₂₀										1									· · · · · · · · · · · · · · · · · · ·					······································			
8 8																											
8					 									 	 										_	· · ·	

鎆 1

ではない

APPENDIX H

Field Sampling Forms

SH Ge	IANNO otechni	N & WILSON cal Consulta	, INC. nts	FIE	LD LOG	OF BORI	ING	JOB NO	2.1.16821-3
LOGGED I DRILL COI	BY JU RAN	NCY HESS DR DONNA DISCO	ONG J DAL	BENHE	TP VNOR)ACA85-03-1) NO. 0.3 BI	-003 T.D.6 No CAPE 3004 ELEV	PHASETERI
DRILLER	<u>JOEV</u> RANK	MNING AL	TYPE DRI	1 Mabic	æ <u>31</u>		on <u>NORAF OF</u> 8-18-64		
SAMPLE NO. H	 т		E DATA LENGTH NO. SAVED	SAMPLE IMC BATEL ACLION PIDROG	GROUNDWATER		FIELD CL4	ASSIFICATION	
55	OFF Z	9-6-4	4"	1814 0.0	······	MOIST DE 3-1	DER OF ORG	AVELLY SILL ANILS (SEW 10 ANALYTIC. CLT, + 2000	AGE?)
036152	2 435 4	1-1-1	94	1825 0.0 een	<u>5'</u> I CE	6-0-27	K MOOH	SILTAND O	
	(p 15.5?	1-62-5		1240 0.7 ppn	ГСЕ	~ 2" Acc 10" So	DEN ICERICA		YTICAL)
	 	-							
	· · · · · · · · · · · · · · · · · · ·								
DEPTH			FIELD L	.OG OF B	ORING		REMARKS		
FROM TO				· 			FROZE N C	~3A	
							HAMMER LIFT	STROKE SAMPLER NO, OF TU	· · ·
							WATER LEVEL	TIME	DATE
							FOOTAGE DRILLED AT NO. SAMPLES: RE	COVERED	<u> </u>
								DISTRIBUTION THIS HO DONE DR	ILLING 1850
							BORING NO. 1	2 <u>361</u> SHEE	TOF_/

.

.

	SHANN Geotec	ION & WILSON hnical Consulta	I, INC. Ints	FIE	LD LOG	OF BOR	ING	JOB NO.2	ACA 85-03-D- T.O.6
LOGGI	ED BY	DENTERVNA	KEENE	د		JOB 🔥	ECARE ST. LAU		
DRILL	CONTRA	DENITER VIVIA CTOR <u>DEN</u> DISC <u>E MININGER</u>	2, 1ALI DI DVRV	RILLIA	16	: BORING	NO. 03 B2	ELEV	
DRILLI		E WININGER	TYPE DRI	и <u>Мов</u>	1653	LOCATI	ON Southwes	IT SAE OF F	UmPHOUSE
SIZE &	TYPE O	E , FRAME	HR ROT	ARY_	<u></u>	DATE _	8-18-04	WEATHER	F
		SAMP	LE DATA	TIME		<u> </u>			
SAMPLE NO. TYPE	HL FR	RESISTANCE	LENGTH NO. SAVED	DRILL ACTION PIDRDG	CONTACTS/ GROUNDWATER		# FIELD CL/	ASSIFICATION	
038251	0	2-1-2	2"	15514	6 "695	WER !!	ANG BROWN	MOD SANI	2, Mus
55	18			0.000m	•	NO ANAL	N HE ODOR	WIN ES	
2R157	178	7	8"	15:23	(last, s	Hill Brown	to DK Sre	¥
55.	3.534	-1-1.1 ar		0.4 PF	- C Con	Thewe	(_to_t-ozco	ice-rich St	
			18‴			1" Pect	- 1	RK BROWN)	
038253	552	I 5-9-11	18	15:40	1	14 to 1	TELPULATE	32SBR -1	SILT, Wet
55	PUF	<u>r</u>		0.0 PF	<u>fn</u>	CONEL	SEAMS OFICE	2 SBD -1545	SILF
<u>030254</u>	1 -	115 1-12	18"	1558		Rot	EN WET		
<u>·S</u>	<u>8</u> F			0.0 pp	<u> </u>				
	7.5	7	ļ	1					
ļ	1								
				1	Į				
						ļ			
DEPT	ГH		EIELD	LOG OF I	BORING		REMARKS SU	REACTIS DR	Y-MOIST AUD-
FROM	то						COARS - SAND		
		Ice e	ncounte	ed a	<u>it 5'</u>	······			
		Ice en (Leuse	s) 12/4 s) 8/19						
		1		•	(,	HAMMER WT.	DDSTROKE	9994.87 24.5 24.5
							HAMMER LIFT		
		I				······		NO. OF T	
							WATER LEVEL	TIME	DATE
						· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	
							6"bgs	15705	81(8/94
			<u></u>				FOOTAGE DRILLED	<u> </u>	·····
								TTEMPTED 4	
							NO. SAMPLES:	2	
	Ī		······································				HI HI		
	İ						1	DISTRIBUTION THIS H	
	ŀ						ON HOLE 1410		RILLING 1605
	ŀ				·		DRILLING 1500	, OFF HO	LE / 630
					·		BORING NO	3 <u>82</u> SHE	ET / OF /
	ſ				-				

	SHANN Geotec	ION & hnical	WILSON Consulta	I, INC. nts	FIE	LD LOG	OF BORI	NG	2 Јов NO	2-1-16821-3
	CONTRA	CTOR	ISCOVER DETTA	CONTRACTORIA	UNE		BORING	ACA85-03-D-0 ME NO. 03 B3 DN <u>~13FT NU</u> <u>8-18-03</u>	ELEV	
SAMPLE NO. TYPE	H FR			LE DATA LENGTH NO. SAVED	DME ORTEL ACTION P.D	CONTACTS/ GROUNDWATER		FIELD CLA	SSIFICAȚION	
036351 SS	-	FT].	.1-2	16	19 2 5 9.6		2× Me	04 3 of silt 7 0-	secules	
0311352 138352	<u>}</u>	r.5	-1-4	84	1935	48' · Tee	34 102	+ PERT, WIT		
	55	<u>.</u>	1-1321		3.0		PSSAn	nfié ónly	IN TOP 3"	
			· · · · · · · · · · · · · · · · · · ·	 						
								,		
DEPT	H			EIELD				REMARKS		
FROM								HAMMER WT HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL FOOTAGE DRILLED FOOTAGE DRILLED NO. SAMPLES: REC DRILLING DRILLING DRILLING	DBBB AT U W. HC DBD STROKESAMPLERSAMPLER NO. OF TUI TIME TIME TIME TIME TIME TIME TIME STRIBUTION THIS HOLE DONE DR DONE DR DONE DR	DC. WHERE C
			-	<u> </u>				BORING NO.	363 SHEE	TOF

	SHAN Geote	INON & WILSC chnical Consuli	N, INC. tants	FIE	LD LOG	OF BOR	ING	JOB NO.	32-1-16821-2
		Randy 1		9 DAK	oner		ACA 85-03-	- D-003 Tr	0,6
		ACTOR DISC		/			NO. 19661		and a contractor
						13			
DR	ILLER $rac{w}{\mathcal{T}_{\partial}}$	ininger 45 , Cale, Fran	CAS TYPE DR	ILL <u>Cust</u>	vin Hic/rotaz	1	ON NE port		
SIZI	E & TYPE	OF CASING No .	casing -	& "Auge	<u>.</u>	DATE	\$121/04		
MPLE N			PLE DATA	time	1				E. Wind.
TYPE		TO BLOWS/6 IN.		ACTION PIDUP				ASSIFICATION	
06K.		2 19,19	, 6"	1530		BROKE	for >	PNOT SAN	Aut
51 51	an-fie	12-12	1.01		- BA	1/1127 5	UN COM	SE GRAVE	(V. Kor (-)
ODF	2/0.	2 47-18	12"	15/0		LT. BR	cnif		
obie		1.5	<u>q</u> "	0.5			J CATLANC	ANT2	
		5 7-13-19	2	123				······································	·····
		· /			1	}			
				1					
									·
				-					·
				-					
	PTH		FIELD	LOG OF I	BORING		REMARKS	· · · · ·	
ном 0	TO 0.1	Lichen, st	unted wor	oily pla	ats			2 2 3 to	
		COURT			·····	<i>PI</i>		ien auger	to 3,5
0	~ >	CUITING		· .		H	dire spor	00.06 STROKE	
					SFT BEYOR	10			1.5' -2"IDSS,
					· /-		1		
		SAMPI	EOLEB	SI SI F	ROM 6.5	+07.5	WATER LEVEL	TIME	DATE
			MIMEDI	45 09	NEOLESB	/1/		1	
		AT 1540			<i>Co</i> .				
i					PROM 10	1011.5	FOOTAGE DRILLED		
		GT. AT 1 64 NEO	-		TTED AS		NO. SAMPLES:		h. A
					R DRO/1	2RD	R		<u>`</u>
		1			(AKIO)			DISTRIBUTION THIS	
		· _ ·		,), RCRAM	Z 11	ON HOLE 147	DONE D	
1					· / ·		DRILLING 145	OFF HO	LE ~1630
		(Sev 6020	[14]0[104/	·			· · · · · · · · · · · · · · · · · · ·	·

the second second second second second second second second second second second second second second second s	Geotechnical	DN & WILSON, & Environmental Cons	ultants	<u>ا ا</u>	LD LOG	· · · · · · · · · · · · · · · · · · ·			2-1-11682
LOG	GED BY	JULIE K	CENOR			ЈОВ 🕰	12 CAPE 2004 DACA 85-03	MASELY F	<u> </u>
DRIL	L CONTR	ACTOR DISC	wery i	Ru	NG	BORING	5 NO. <u>Uebl</u>	-D-003 7.0), Q
DRIL	LER b	E MNINER	TYPE DF	RILL MOB	nilé 31	LOCATI	ION CARCO BO	Acut DRup	FED
						DATE _	8-19-04	WEATHER 65	FCDY
		SAM	PLE DATA						· ·
SAMPLE NO	ᅴᇍᆝᅳ	CM DRIVING RESISTANCE TO BLOWS/6 IN.	LENGTH NO. SAVED	PD PD	CONTACTS/ GROUNDWATER		FIELD CLA	SSIFICATION	
6625	15	10-10-	~2"	1550	~5A	MET SAM	MACRUPOL G	CANITE AN	D COARSE
55	6.5	$\frac{5}{2}$ 1				POLLI	SHOPN OR G	OK MAN	M. ELLEC
<u>I</u> BE	26.9	25-7-	- 3"	1555		3" (00	K FRAGNIKED	GRAMICH	Cock IN
26575	$\frac{1}{2}$		rour		+	NOPSI	R ANAUTICA	, Concire	2
6625		6.16. 5 12	3'fall	1615		2" We	T & GREY 3	A	SAMO
<u>55</u>	11.	I IP	<u> r2</u>			5'PO(LINSHON E TOI	702,407 T	MeOH)
68257	2/12	10/6	3" Route	=1625		SANO	TR. SIT TH.	SANDES SA	malist
<u>55</u>	12	71.510	h4"	0.466		-3" ROLL	-IN SILO	· · · · ·	د،
2662	53/4.	5 12-9-	le"	1750		6" LT C	E-C	. GRAVEL	SAND,
55	16	ψ		0.2A	m	Chana FS+	15 ANEMAR (ANALY TICALS	ANTE)	
					1				
									· · · · · · · · · · · · · · · · · · ·
DEF	! РТН	,					REMARKS 56	T INTERVAL	srolaf
FROM	то	ļ		LOG OF	BORING		SAMPLE FOR		
TIME	1510	coner	- ES SA	mfie	(0682 F	51)	PAH, PCBS, N		,
					ATTINGS (802, 402	ETPCS 1 10	- nieurs
		TER JE G	200	1 1	1 5 1 2	<u>1</u>		STROKE_	
					BOULDER -	<u> </u>	HAMMER WT HAMMER LIFT	SAMPLER	
					SFT to "		ROD DIA.	NO. OF TU	RNS
		1			RECEVERY.		WATER LEVEL	 TIME	DATE
					S.S. SMAR			· · · · · · · · · · · · · · · · · · ·	
		Poor Re	CONFO 1		<u>- (_U(_</u>	<u> </u>	l		
	10	ABYLI	mmer	inter	5 HEAVIN	VI-SOND -	ļ		
	1730				MSTUCK. A		FOOTAGE DRILLED		
	(745)		- ,	<u> </u>	MUC. M	1.10	NO. SAMELES.	COVERED 3	
		{·····································		Brille.	DEES NOT	APLEAR			
	ļ	TO BE H						ISTRIBUTION THIS H	
			•				ON HOLE 1940		RILLING 1802
	. <i>r</i> .			-					
	۴.						DRILLING 1500	OFF HOL.	<u> 1845 </u>
	<i>6</i> .					7. je	BORING NO.		

, ; |

	•			· ·	· ·		·
	SHANNON Geotechnie	N & WILSON cai Consulta	l, INC. nts	FIE	LD LOG	OF BORING	JOB NO. <u>32-1-16821-3</u>
		NIE Ka				JOB DACA85-03 D-0	003 T. D. Q CAPE 2004
		DR <u>DISLO</u> N				BORING NO. 0633	
DRILL	ER JECV	VININKE		_L		-	440 BEACHDRUM FIELD
SIZE &	TYPE OF CA	SING AU	GOR /A	RHA	mmer	DATE 8-20-04 WE	ATHER 105°F FTUY COY.
		SAMPI	E DATA				
SAMPLE NO.	H FROM	DRIVING RESISTANCE	LENGTH	DRILL	CONTACTS/ GROUNDWATER	FIELD CLASS	IFICATION
TYPE		BLOWS/6 IN.	NU. SAVED	PiD			
0635	3	18-21-	12"	1209	DAMPE	Molsi BROWN GRAVELY	SUBANGEC) SANDY (P)
55	4.5	20		1.2	SHOG ?		t, 802, FS)
068352	15	11-15-	14"	1229	~4.5'	WOT SIVINY SANDY (n Lr. GREX	n-c) GRAVE (F-C)
55	10.52	15		0,6			
066353	Ю	18-15-	84	1300			AND, TRALEFSAND
55	11.5	14		0.0		4GREY 3"Rock 11	
066354	15	12-32-	<i>8</i> ^{<i>u</i>}	1500		MAT LA GREY M-C SAI 12 ANG COARSIE TH	VD(ANGULAR)
55	16.5	18		0.7		SL, SILTY	
UUB 35	20	6-6-	Full	1530		MOT LT. GROY SL. SILTY	1 M-CANGSAND
	215	12	(18")	0.4			
	ļ					、	
L							· · · · · · · · · · · · · · · · · · ·
	1	l i		l			

Ĩ

			l	<u></u>				
DEI	РТН то		FIELD LOG OF	BORING		REMARKS	······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FROM	TINE 11=7 1205	RS SAMLUE -21 A (=0. AIRHAMMET AIRHAMMET AIRHAMMET AIRHAMMET AIRHAMMET	8 pp~ (1) 2-0.5+53 2-10-2.5F 2-25F 2	0,55 660 50) NO ODA FT. VANCENHESUC 1. AUGER/10 2. GRO/BJEX 2. /103), PAH (SW6020/74 B 103	R I FORK I ROOKS (AKIOIY SIM, FCBS	HAMMER LIFT ROD DIA WATER LEVEL 4.52 FOOTAGE DRILLED NO. SAMPLES: RI TIME ON HOLE _1050 DRILLING _1100	ECOVERED 5	URNS DATE 8/20/04 HOLE DIFFSING 13PD AILLING 1528 HE555

SHA Geotec	ANNO chnical 8	N & WILSON, I	NC. ants	FIE	LD LOG	OF BOR	ING	JOB NO.	32-1-16821-3
LOĠGED	вү 🕳	JULIE KE	ENOR			JOB _	DACA 86-03-D NE CAPE 20	-003 T.O.6	
DRILL CO			VERY D	RILIN	6	BORING	SNO. 0684	ELEV	
		MNEER				LOCATI	ION SITE 6 - CA	RGO BEPCH	DRUMAGED
SIZE & TY	YPE OF	CASING ALL	HAM MER	, And	an	DATE .	10N <u>SITE6-CA</u> 8-20-04	WEATHER 70	F PARRY?
					······				
SAMPLE NO.		RESISTANCE	LENGTH	TIME DRITEL ACTION	CONTACTS/ GROUNDWATER		FIELD CLA	SSIFICATION	NOT SAN-REP
DUBASI	3.5	12-12-	9"	PID	<u> </u>	1	ST BROWN SIGT	(WINOD) THE-ORG (S	क्रियाद्मा ?) ह
SS	5	2-12-		1.2	warraz @	3" (HEA	Ruk 12	-407)	1
0,6452	5	2-16-	54'	1705	- 57.57	6"MUI	m(m) + 1	LIKELAY SL	VALY (F. PNG)
(6.5	21		0.6	5	214-02	: JARS TRACE	IN CATCHEN E DRGSM. PE	
066453	10	7-10-	<u>G'</u>	1745	ERINDINE	SAND		SILTY GRI	AVELY(F-C)
	11.9	2 11		0.0					
				4			······································		· · · · ·
				+	 				
				-			·		
 +-									
				4			······································		
					<u> </u>	<u> </u>	П		
DEPTH FROM T	го		FIELD	log of e	BORING		REMARKS		
		10.5 Proli	class	SILT			IN AUGER	- IS FUL AFTIC	16 BITPLUG
		COBBLES			4		TIO TIDICE EIC		
TIME		AUGORT				15, AIR	HAMMER WT.	STROKE	
1172	25	HAMMER	-	D^8	Fr		HAMMER LIFT	SAMPLEF	
	ľ	An KOR 1	10 10						
	F	Sa. 2 a a	T. CA	GRC	Palaza (a)		WATER LEVEL	TIME	DATE
		SUBMITTER 8260), DRJ (5.5	1700	8.20-04
	f	8082), Per			• • •	-	FOOTAGE DRILLED	16	
	Ī					<u> </u>		2	
ju	F55	06BASI A	ts of NE	5065B	105		NO. SAMPLES: AT		
		063953							
1	╞			···			ON HOLE		RILLING 1755
	╞			<u> </u>			DRILLING 1625		LE 1900
	┝		<u></u>						
	F						BORING NO 8/20/029.	JUDY SHEE	ETL OF/
·							0/20/04,	· · · · · · · · · · · · · · · · · · ·	

LOGGED BY	JULIE KEE	ever			JOB Z	ACA85-03-	D-003 T.O.6	
						NACA 85-03- - CARE 2004 NO. 0685		
	астоя <u>DISCO</u>	•			12			
	E, COLE, FRA NINÉER	YPE DRI	LL		1	ON SITELOC		
SIZE & TYPE	OF CASING	HAMME	2 Au	Fal	DATE _	8-21-04		
······	SAMP	LE DATA		·····				
SAMPLE NO. 분 TYPE 껍	TO DRIVING RESISTANCE BLOWS/6 IN.	LENGTH NO. SAVED	TIME DRILL ACTION PID	CONTACTS/ GROUNDWATER		FIELD CL	ASSIFICATION	
16559 3	4.9.4	12"	1100		DWIST	nGH Slory		SE - K.UR
55. 4.	5		D.6		6 516	1		
X66552 =	2 3.3.4	12"	115		SILT MO	brown to redis	4 brown yra.	velly, sau
<u>55 (j</u>	5		0.4			52-D-112	0635522	-= 1125
665533 10	7-2574	12	1130	8-V-	G' WET	Lt. BROWIN	Sling GRA	tra (c)
55 11.	5		0.7		3" BREI	ien Rock		····
		·						·······
				<u> </u>				
						- <u></u> :		····
							······································	
			[· · · · · · · · · · · · · · · · · · ·			······································	
							· · · · · · · · · · · · · · · · · · ·	
DEPTH						REMARKS		
FROM TO								····
03	(ARHANI	vor)	· <u> </u>					
3 11.5		r*	<u> </u>			·		
· .	TO SGS FO					HAMMER WT.	STROKE	
	(AK 102/103)	× ×	<u>1, PCBS</u>	(SW 8082), fe	eramatics	HAMMER LIFT	SAMPLER	
ma	(SN/ 6020/74	1 (ROD DIA.	NO. OF TL	JRNS
111111115	4 .			14		WATER LEVEL	TIME	DATE
	668552	_		· · · · · ·	07	8		
1120	063583	HS 04	NESUSI	5108				
	10-10-13	101.01	680	·		FOOTAGE DRILLED	11.5	
1125	TO NCA (U OGBSSZA			/	1	A NO. SAMPLES:		a je
	Reflicate	-			4			
	MUMME			<u></u>			DISTRIBUTION THIS H	_
I	F					ON HOLE 1020	DONE DE	AILLING 13
					11	DRILLING 1035	5	E1200

LOGGED BY JULIE KERDUAL K. HESSENC DRILL CONTRACTOR DISCOVERY DRUCINE DRILLER DE WININGEL TYPE DRILL DRILLER DE WININGEL TYPE DRILL UCATION STREK - CARGO BEACH DRUM FIRE COURT RATION STREK - CARGO BEACH DRUM FIRE LOCATION STREK - CARGO BEACH DRUM FIRE CONTACTS: GROUNDWATER SAMPLE NO. Z FROM PRIVING RESISTANCE BLOWSSE IN. NO. SAVED RUM GROUNDWATER SIGN DRUM BEACH STREK - CARGO BEACH DRUM FIRE CONTACTS: GROUNDWATER SIGN STIFFE BROWNSE BEACH CONTACTS: CO
DRILLER JOG WININGEL TYPE DRILL LOCATION STREGE - CARGO BEACH DRUM FIRE COURT REANK SIZE & TYPE OF CASING <u>ARE HAMMAR Augus</u> DATE <u>8-21-04</u> WEATHER <u>60°F CEOLODY</u> SAMPLE DATA SAMPLE DATA SAMPLE DATA SAMPLE DATA SAMPLE NO. <u>2</u> FROM DRIVING RESISTANCE <u>LENGTH</u> THEE CONTACTS' TYPE TO BLOWSGEIN. <u>NO. SAVED ROUNDWATER</u> TYPE TO BLOWSGEIN. <u>NO. SAVED ROUNDWATER</u> DECLOSE 5 3/8/5 <u>2</u> 1245 SUGATO <u>COUNDWATER</u> SUGATO <u>COUNTER</u> SUGATO <u>COUNTER</u> SUGATO <u>COUNTER</u> SUGATO <u>COUNTER</u> SUGATO <u>COUNTRY</u> SUGATO <u>COUNTER</u> SUGATO <u>SUGATO</u> SUGATO
DRILLER JOG WININGEL TYPE DRILL LOCATION STREGE - CARGO BEACH DRUM FIRE COURT REAL AND MER Auger DATE BLOWSHIG AND AND AND AND AND AND AND AND AND AND
UNE, FRANK SIZE & TYPE OF CASING <u>MR. HAMMER</u> , Augu DATE <u>8-21-04</u> WEATHER <u>(EOF CLOUDY</u> SAMPLE DATA SAMPLE NO. <u>H</u> FROM DRIVING LENGTH THATE CONTACTSU TYPE BUSUSSIE IN. NO. SAVED RIDON BLOWSJE IN. NO. SAVED RIDON DOBLOSH <u>4</u> 3/7/7 <u>4</u> 1210 DOBLOSH <u>5</u> 3/7/7 <u>4</u> 1210 DOBLOSH <u>5</u> 3/7/7 <u>7</u> 1215 DIGELECOVELY <u>5</u> MOVE BORNE ~2 FT CAST DUGLOSH <u>5</u> 3-4-FT 12" 1315 DUGLOSH <u>5</u> 3-5 3-7/8/FT 0.5400000000000000000000000000000000000
SIZE & TYPE OF CASING AND HAMMER, Augus DATE 8-21-09 WEATHER COF CLOUDY SAMPLE DATA SAMPLE DATA SAMPLE DATA SAMPLE DATA SAMPLE NO. HE FROM DRIVING RESISTANCE LENGTH THATE CONTACTSU RESISTANCE BLOWSGEIN. NO. SAVED RID TYPE 00 TO BLOWSGEIN. NO. SAVED RID GROUNDWATER CONTACTSU GROUNDWATER FIELD CLASSIFICATION GROUNDWATER CONTACTSU GROUNDWATER CONTACTSU GR
SAMPLE NO. H FROM DRIVING RESISTANCE LENGTH TUME ACTION CONTACTSU GROUNDWATER FIELD CLASSIFICATION TYPE TO BLOWS/6 IN. NO. SAVED PID CONTACTSU GROUNDWATER FIELD CLASSIFICATION Deblosi 1 3/7/7 P 1210 LENGTH GONTACTSU GROUNDWATER FIELD CLASSIFICATION Deblosi 1 3/7/7 P 1210 LENGTH GONTACTSU GROUNDWATER Deblosi 1 3/7/7 P 1210 1210 GONTACTSU GROUNDWATER GONTACTSU Deblosi 5 2/8/5 2 1245 1245 SUGT GONTACTSU Deblosi 2 2/8/5 12 1315 SUGT GONTACTSU GONTACTSU Deblosi 3.5 3/4/5 12 1315 To Deblosi GONTACTSU <td< td=""></td<>
TYPE TO RESISTANCE BLOWS/GIN. NO. SAVED RUDWATER PORTOSIA 1 3/7/7 \$ 1210 (ETUPHY) 5.5 1/7 \$ 1210 (ETUPHY) 5.5 2/85 2: 1245 544 t VEGETANON Collection Collection Defloss 5 2/85 2: 1245 544 t VEGETANON Collection Collection Defloss 7 3-4-5 12: 1315 5100 Collection Collection Defloss 7,5 3-4-5 12: 1315 7' MOVE BORNE VELOSTATION Defloss 7,5 3-4-5 12: 1315 7' MOVE STIFE BROWN-COLLEY SUCCEMENTALLY DEFLOSS 0.4 MOVE DOLLET
SIGNAL 5.5 1245 125 1245 125 125 125 125 125 125 125 12
deflese 5 3/85 2: 1245 Sug + VEGETANON (SLOUNEH) NOVE BORNE~2FICKIN SUG + VEGETANON (SLOUNEH) PRORE COVERY > MOVE BORNE~2FICKIN SUG + VEGETANON (SLOUNEH) TORE SUBPRIE VELOTION SUG + VEGETANON (SLOUNEH) TORE SUBPRIE VELOTION ORGE SUBPRIE VELOTION TORESTIFFE REDUN-CREY SUSPACELY SILG
Oblight 2 3.4.5 12" 1315 The Bear Charter St. Stand St. Stand St. St. St. St. St. St. St. St. St. St.
aBlos 3.5 15-7.89 0.400 514
aBlos 3.5 Styres 0.400 7. Mois STIFE Kown-Ciccy SL Skindly
aB1B1 7.7 - 7.8745 0.400 SILF
Nor 5 3. Fle 0 110 SILF MOIST BROWN UNKNOWN OWALL
District State Contraction of Contraction of Contract
pretoszile. 7 4-5- 12 SLC GRANDIN (5) SILT
S Ultran
Ublos 10 4660 12 400 moist STIFE CREY-EROWN MOTION SL. SRAV.C
11.5 0.2pp Parcitas worde?
DEPTH FIELD LOG OF BORING REMARKS
0 4 ARHAMMON
A LEF MIGER -> NO RECORDELY, MOVE 2 FOVER
HAMMER WT STROKE
SAMPLE DEBLEST PROM ~0.8 Fr (DEIVENAT HAMMER LIFT SAMPLER
2+3.5 G) SUBMITTED AS OANEOLO SBIDG ROD DIA NO. OF TURNS
AT 1315- WATER LEVEL TIME DATE
SAMPLE DUBLE SZ FROM 6.5708 Fr.
SUBMITTED AS OGNEDO SBILO AT 1350
BUTH TO SKS ROT GRO/BTEX (AKIOI) FOOTAGE DRILLED 11.5
S. 197(2) DON (04,102/103) PAUSIAN
Para (Sul 9/92) Para autoris(Fill and NO SAMPLES: 7
7470/1041).
TIME DISTRIBUTION THIS HOLE
ON HOLE 1205 DONE DRILLING 140
DRILLING 1220 OFF HOLE 1425
BORING NO. DOBLE SHEET 1 OF 1 8/21/04

· .

	Y JULIERE	Itants 7				NOD CE-12	- D-003 T.O.	1.
				·	j			
	TRACTOR DISC				BORING	NO. 1051	ELEV	
	DEMINNEER		LL		LOCATIO	ON SITE 10-	WEATHER COF	rms
COU	E OF CASING ALC	ER.				8-23-04	WEATHER COOPS	-BREEZES SMAKIN / HE
		LE DATA						
AMPLE NO. H	FROM DRIVING RESISTANCE TO BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	CONTACTS/ GROUNDWATER		FIELD CLA	SSIFICATION	
BISI	0 8.9.8	12"	1445		BROWN,	SL. SILTY GA	ROUTS MEPD	SAND
	5 8-10		0.4		-	MOTOLOIL?	1 OPOR	
G152 1	5 7-12-10	14.	1455		Moisr 5	L SILTY G	tonary Fi	SAND (P
6	5		0,2		DARK	GRAWN	Andre BRONN	
3/33/10	2 18222	116	1515		MOLET DE		1 49 174. 60	M(F-C)
1	1.5 LOUCE		ø	when				
3154 14	2 2040 G	. 8"	1535	Just @	MUISTE	SPUD F	SILTY GRAVE	rig(fc
	e.5		Ø	16.5	BROKEN	WE SUP ON	OUTSIDE OFS	Amplie
1		<u> </u>						2. A.
					<u> </u>			
		FIELD I	LOG OF E	BORING		REMARKS		
····				<u> </u>		REMARKS		<u>لا</u>
	SUBMI	TTO SE	-s For	R GRS / E	•	REMARKS		۷
	SUBALI- (AK101)	- to SG SW8260	-S For	<u> </u>	•			لا بىلى
	511BALI- (AK 101/ (AK 102	<u>r to SG</u> Sw826(2/103) :	-S For	RGRO/B DRO/R	es		STROKE SAMPLER	بر بیگر:
	511BALIN (AK 101 / (AK 102 10 B(570 56 5608260 2/103) 3 52 AS	-3 For -3).AM 	RGRO/B DRO/R NEIOSB	104,	HAMMER WT		
	50BM1 (AK 101 / (AK 102 10B1 10B1	570 56 566260 2/103) : 52 AS 53 AS	-3 For 5).Arm 5 091 8 04	R GRO /12 D DRO /R WE10 SB NE10 SB	104, 105,000	HAMMER WT HAMMER LIFT [®] ROD DIA		15
	50BM1 (AK101) (AK102 10B1 10B1 10B15	F TO SG SW8260 2/103) : SZ AS S 3 M 4 AS	5 For 5) ATM 5 04 M 5 04 6 04 N	R GRO /A D DRO /R NENSB NENSB N	104, 104, 105,000 16.	HAMMER WT	SAMPLER	
	SMBA11 (AK101) (AK102 10B1 10B1 10B1 SAMPLE	F TO SE SW826(2/103) : SZ AS SZ AS SZ AS SZ AS OGNE10	-S FOI ().AM S 04N S 04N 04N 05NS ((R GRO / R D DRO / R WE IN SB NE IN SB IN DE INSB IN DI AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT [®] ROD DIA		15
	SMBA11 (AK101) (AK102 10B1 10B1 10B1 SAMPLE	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO /A D DRO /R NENSB NENSB N	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL	SAMPLER NO. OF TURN TIME	15
	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA. WATER LEVEL	SAMPLER NO. OF TURN TIME 14.5	
····	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA. WATER LEVEL FOOTAGE DRILLED NO. SAMPLES: AT	SAMPLER NO. OF TURN TIME	15
	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL FOOTAGE DRILLED A NO. SAMPLES: AT RE	SAMPLER NO. OF TURN TIME 140.5 TEMPTED 4 COVERED 4	NS DATE
1	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL FOOTAGE DRILLED NO. SAMPLES: AT RE <u>TIME</u>		NS DATE
····	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA. WATER LEVEL FOOTAGE DRILLED NO. SAMPLES: AT RE TIME ON HOLE _14_3E		DATE
	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL FOOTAGE DRILLED NO. SAMPLES: AT RE <u>TIME</u>		DATE
····	501BM1. (AK 101 / (AK 102 10 B1 10 B1 10 B1 S SAMPLE ANALYZ	F TO SG SW8260 2/103) : SZ AS SZ AS SZ AS SZ AS OLANE 04NE10 GEO FOR	-S FOI 5) ATM 5 09 M 5 09 M 8 04 04N 05/15 (C - PAH	R GRO / R D DRO / R WE IN SB NE IN SB NE IN SB IN D9 AUSO	104. 105 mm 105 mm 105 mm	HAMMER WT HAMMER LIFT ROD DIA. WATER LEVEL FOOTAGE DRILLED NO. SAMPLES: AT RE TIME ON HOLE 14.3F DRILLING 1440		DATE DATE

	N & WILSON, I & Environmental Consul		FIE	LD LOG	OF BOR	ING	JOB NO.	32-1-16821-3
LOGGED BY	J. KEENA	V		······	JOB	DAEA 85-03.	-D-003 T.OL	<u>e</u>
DRILL CONTRA	CTOR <u>DISC</u>	every I	Ru	NE	BORING	мест sno. <u>10 В2</u>	-D-003 T.O. RE 2004 ELEV	
DRILLER JO	EWININGER	TYPE DRI	LL	·	LOCATI	ION SITE 10-	BURIED DRI	MS
SIZE & TYPE O		ber_			DATE _	8/23/24	WEATHER 65	SMOKY
	SAMPI	E DATA	KIM C	1				
	OM DRIVING RESISTANCE O BLOWS/6 IN.	LENGTH NO. SAVED	PIP	CONTACTS/ GROUNDWATER		FIELD CL	ASSIFICATION	
103251 O	8.8.8	<u></u> 2''	1300	2.	RENER	145 66 Pirss 1 N ROCK	0155)	2P\$1
P.S. CALL			1315		B" GAO	Ker Routs	eć -	
55 5	10-10-9	8	1200	SLOW, GRNDING	MOIS	r SILTY MET	TLYANICS (C:	Americo 2013)
10B251 7	11 11 21	10'	1320	(and	BROWN	GRAVERY (C) SANDY (R)S	ult (Fm)
6.5			1.5	1	TR-ORD	F(RU03)	THE R	
1 . 1	12-20-	10	<u> </u>	H20: 05	G" Blow		carrany 19 5	npr sign
106252 10	- 42		1340	14000	3" BROKE	TROUN TR-01		
NB253 [[64	1355			F. BROWN S	Man Roye R	SIL
1.4	7 45(6)	-0	0.4			SE IRUNNY	J	
10825415	7-23-	12"	1410	<u> </u>	maro	SAND (F-C		ARAVELY
10.0			0.3	+	3.	Porh Rock		
							·····	
DEPTH		FIELD	LOG OF E	BORING		REMARKS		······································
FROM TO						CROUND MA	DATAT 11 FT F	L'S MAYBE
1000000	I SILT TR	on Ala	NNP (Stoken full	1-~05	WATTER PU	sten when in st	Roon.
				=pppe	Bolurk	·		
	RESISTAN	NE (B	MLD .	<u>m)</u>		HAMMER WT.		P
				1010		ROD DIA.	SAMPLER NO. OF TU	RNS
	SUBMIT			1 1	- , /			
	SW(8260)					WATER LEVEL	TIME	DATE
4	_			-105B/01	(<u> </u>	
i l				E 10 SB 1	•	, s. ,	<u> </u>	
				ENSBI		FOOTAGE DRILLED	19.5_	
	SAMPLE GOD POUL			· ·	_ ·	NO. SAMPLES.		
	FOR PAH	3/14 M	V12700	2(2453)	or/) F	RECOVERED	
l i				·····		TIME	DISTRIBUTION THIS H	
		<u> </u>	<u> </u>			ON HOLE 12	5 DONE DF	RILLING 1410
						DRILLING 12	55 OFF HOL	E 1425
							1027	
						BORING NO 8/23/04	10BZ SHEE	TOF
م م						<u>of Lator</u>	-	

S(I)		ON & WILSON, I & Environmental Consult	NC. Iants	FIE	LD LOG	OF BOR	ING	JOB NO.	32-1-16821-3
LOC		Randy		1 g		JOB _/	VE Cape 1	ACA 85-03	- D-00; RG
		ACTOR Disco		Donthis		BORING	NO. 13 B1	ELEV	
DRI		lining or + S. Cole, Fran	TYPE DRI	Hoine LL <u>Cider</u>	courte Inter	LOCATI	ON Main Open	rations Comp	ler, next to
SIZI		F CASING		/		DATE _			ar, cool breeze
		SAMP	E DATA					froi	7 E. 505 F
SAMPLE N	~~┥╘┝━	CM DRIVING RESISTANCE TO BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	Time CONTACTS/ GROUNDWATER HECODEFICE			ASSIFICATION	
13BI	5	- 5/8/11	12"	rocky	13:1P	Brunn	Sil silts, S 19 Petroleur	and gora	al, moret in cottles
51	6.5			ļ	110000	adequ	ate whene	For Nut, Att	Ch. not Gransize
130	$\frac{18}{10}$	5 527-	6"	rocky	13720 50 ppm	Wra	un, st silty,		. 1
120			811		1345	DEgrai	- sandarigra		in cobbles.
RIS	2	7/9/11	<u></u>	(arit #/	17800	Mciste	-		atortacz .
126	14.	61 de la	6"	<u> </u>	1345-P 1350 F		= Duff. 13315		
BLC	6153	2/9/20/8		-		alu	Lined 2 Sp minicon parts		s- niec
,30	2 /8	7/10/7	12"	1	40 1413	Grage	sundy silts	- Graull in	copples, wet
BIS	6419.	5 1101			55PEM TH Forts		Graibsizes		. 1
130	2 25	7/1/7	12"		15:10		Gravelly SAN		
BISI	5 26	7/12/7			6.Cern		nse madium SA		
13 BI	32	- 6/7/3	8"		15.40		non nedrum		
56	33,.	5 811/3		1	O.Zer-		at Soz, ARION	14/5	
DE	PTH			LOG OF I			REMARKS		
FROM O							Drilling .	through 5	ticky
1	את	slisilty, so	andy Gl	AVEL	in Lobbl	<i>c.s</i>	Contaminate	& material	into
4	\$ 11.5	Strong	dicsel	wenthe	ered) odor	-	the second second second second second second second second second second second second second second second s	the second second second second second second second second second second second second second second second se	aterial - high
مانتو <i>سر</i>		<u></u>	514 OC	it of	Casing			D.16 STROKE	+ OF CRUSS COUNTRINACTION
15	(8	DK. gray	bandy si	At ing	provel & coby	Hes	ROD DIA.	NO. OF T	URNS CHIES
	}	1	-	-	ing diest a	(WATER LEVEL	TIME	dedett.s
[]		Siltp	lugse	enduce	i casing.	- 100 160			+
23	25	Drill act.	ion/co	itt in	\$ <i>\$</i>	OUF	4		+
		suggest		k		Datyst.	FOOTAGE DRILLED		
25		Soil ag	ain				NO. SAMPLES; AT		
			euse T						
30		Clean, (Sand i.			shed me	ateriol.	TIME	DISTRIBUTION THIS	HOLE
. 4d					clage Clag	cil4	ON HOLE 12/7	DONE D	RILLING 17:30
		- , 47, 1	Igne >	119	Lagy Ling			OFF HO	LE
		·		· · · · ·	······································			3 <i>13 </i> shei	
							8/26/04		= 1{ UF
فيصيب الم						······	Aller		/

106		, <u>(</u>	Rundy H	tssone			JOB (VE Cape DAC.	485-03-0-	003-70.6
			DA Discour		11,200			ano. 13/3/		
DRIL	LCONI	HACIC	DH UTSEEU	113 011			2			
DRIL	LER			TYPE DRI	LL		LOCATI	ON 13B1, Main Op	evotions Com	elex
SIZE	& TYPE	E OF CA	SING				DATE _	8/26/04 v		nd to 10 501
	тт		SAMPI		1 .	TIME				
AMPLE NC	DEPTH	, TO	DRIVING RESISTANCE BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	GROUNDWATER		FIELD CLAS	SIFICATION	
<u>38</u> 39.5	13	BI	15/27/14	Ø	Hand	16:45	Not	1000E 13 - 30	down more	<u>.</u>
40	13	BI UZ	618/24	6"	Hani	17:10 DiZeem	Olive Inco	progenera, g.	revelly, clay	ML-CL
11.2	15.	Dr	 	<u> </u>		Dicker	3/4 04	902 + AKIO	For Aquita,	
					1				14900	· · · · · · · · · · · · · · · · · · ·
								<u></u>		
		··								
								······································		
		·····						, AS		
					-		Aruta	d t		
						yet		1		
					1	70				
DEF				FIELD		BORING		REMARKS	······································	
FROM	TO				<u> </u>					
		}					·····			
								HAMMER WT		
1	·									,
1								ROD DIA.		
								WATER LEVEL	TIME	DATE
								•		
					<u>_</u>					
		<u> </u>						FOOTAGE DRILLED	<u></u>	
								ATTE NO SAMPLES	MPTED	à de series de la companya de la companya de la companya de la companya de la companya de la companya de la com
				· · · · ·				· · · · · · · · · · · · · · · · · · ·		
					······					
			۰ <u>۰</u>					DRILLING		

ŚIJ		N & WILSON, I & Environmental Consult	NC.	FIE	LD LOG	OF BOR	ING	JOB NO. 32	-1-16821-3
		Pen 1-lecone-				JOB A	JE Cape, DACA 85	-05-D-003	T. 0.6
DRILL		NCTOR Discon ninger 2 sen Lole Frank	very Dr	illing.		BORING	NO. OYNE	ELEV.	
DRIL	LER <u>Ja</u>	lot Frank	YPE DRILI	<u>A:-1</u>	rotary	LOCATI	ON USACE NE (32) 32) 32) 32) 32) 32) 32) 32) 32) 32)	Caper, SW ;:	le of complex
SIZE	& TYPE O		teel			DATE -	4129/04 WE	ATHER	
		SAMPI			HNUIOI				·
SAMPLE NO TYPE		CM DRIVING RESISTANCE BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	Time CONTACTS/ GROUNDWATER Headspace		FIELD CLASS	IFICATION	
51	6	Zara	18" dr		1354	1	Brown moist g	-	1
	7.5	7/9/8	6"		0,0	1	In 407 Mr DH, Ix		
52			18"1, 4"		14:05	/	silty sandy Gk	AVEL, we	······································
	11.5	-5/8/10	4~		0.7		1x Yor MeOH	·	
53	161	- 81 8 /9	15" dr 6"		14:27	15rown,	sendy GRAVEL	·, w?r	
					0.3	1×407	SCOH, KEOZ		
54	20	14/9/13	18" J,		14:50	Drown	Sendy GRAVEL,	w? !	;
	21,9	5	6"		0.5	1x407	Meuri 3/4 802		
						· · · · · · · · · · · · · · · · · · ·			
								·	
					[
				:					
	<u>TH</u>		FIELD L	OG OF I	BORING	<u> </u>	REMARKS		
0	10	1		 le	/ Cal		·		
	2.5		sacked r		y Drill 9	£ .			
2,5	~()	The set	harder	Metr	y print a		HAMMER WT. 300	16, STROKE	
i	کي ت	Sandy 6							8"*2"1055
	, <u>,</u> , , , , , , , , , , , , , , , , ,	Hit some	thing he	- A. o	1-our spoc		ROD DIA. 2	NO. OF TUR	VS
		possibl	e frozen	ج ز	1-our spoo		WATER LEVEL	TIME	DATE
		/						· · · · · · · · · · · · · · · · · · ·	
							ч —		
							FOOTAGE DRILLED	<u></u>	
							NO. SAMPLES: ATTEM	PTED	
							RECOV	ERED	
		 				i 		RIBUTION THIS HOL	<u></u>
							ON HOLE 13: 20		
							BORING NO. 171	w / sheet	
							<u> </u>		

	Geote	J. Keeval	7		ويستنبذ والمتعادية	1	DACA 85-03	31,003 7	0.1
LOGO	GED BY	Or neerver				JOB	DAGA 8 7 03	1. 200-0-0-	υ φ
DRILL	CONTR	ACTOR DISC	overy R	21UINC	, ,	- BORING	3 NO. 18.MW1	ELEV.	
							SITE 18 (EAST NON MAIN SPE	rofemerg.	Power-BLA
URILI	lote	E WIMMAGR							
SIZE	& TYPE C	F CASING	HARMER	-BMIL	asint	DATE .	8-24-04	WEATHER	P. Fold
		SAM	PLE DATA	TIME	1	-			
SAMPLE NO. TYPE		ROM DRIVING RESISTANCE BLOWS/6 IN.		ACTION PID	CONTACTS/ GROUNDWATER				
8 MWISI	6	17-19-	<u>q</u> "	1145			AND (E-m)	CRUSTED	RUKK.
55	(0.4			ϕ				1	
Routes	\$10		4	1215	FS	1" M	CRUSITOD RC	GRANCE (F	·c)
the maint	11.4		6	1.249	18mui	MANG		n	
SWW157			12"	12447	ROCK	Mobist	11-BROWN	SILTY SAM	ar(F)th
<u>51110157</u> 547.	16.			Ci3pp	K	-CCAV XXX	SA	ND (FM)
8 mw153			10"	1310	~191		- SILTI GOR	vayaet (c	-E)
N. Alt	21.		H ⁰	0.legg	t Lud	17	N Rock	EJ = MW	1-201
<u>yne</u>			54"	1512		2 WEY	SILL SLONG		(E-n-)
Y Marrie St	471	1 11 6 -		11-11/-	i 4	1 11 11 1			
	_	2 11-35- 5 Conce				SAM	DENSE SI	1 A BROWN	
8MW15: 55	24.			0.3				1 A BROWN	
	_					SAM		1 A BROWN	
	_					SAM		1 A BROWN	
	_					SAM		1 A BROWN	
<u>\$</u> \$	260		4 10 ⁴	0,3		SAM	I CATTIFETC	22802 C	72 200 mis/misi
	260		4 10 ⁴		BORING	SAM	REMARKS Loc	A FACINAN (2x BUZ C	72 200 mis/misi
<u>S</u> S DEP	ТН		FIELD	LOG OF		Couk (I CATTIFETC	A FACINAN (2x BUZ C	72 200 mis/misi
<u>S</u> S DEP	ТН	7 Rechuse	FIELD	LOG OF	GT NO AD	Couk (REMARKS Loc	A FACINAN (2x BUZ C	72 200 mis/misi
<u>S</u> S DEP	ТН	PIR HARYM	FIELD FIELD	D.J. LOG OF I	GNO AN	Gent	REMARKS LOC	(2x 802 ((2x 802 ((2x 802)	Zent Ficcal
<u>S</u> S DEP	ТН	AIR HARYM SLOW (RX MET SIL	FIELD FIELD ERINSIDO ELISS SII	LOG OF I E CABIN NEE ROC D CUT	Ky Ky ZNGSC ~	Gok .	REMARKS LOC REMARKS LOC (RECENTLY HAMMER WT	(2x 802 C	Zon picali
<u>S</u> S DEP	ТН	PIR HARYM	FIELD FIELD ERINSIDO ELISS SII	LOG OF I E CABIN NEE ROC D CUT	Ky Ky ZNGSC ~	Gok .	REMARKS LOC REMARKS LOC (RECENTLY HAMMER WT HAMMER LIFT	(2, 802 C	92 200 mis/misi 200 mis/misi 200 mis/misi 200 mis/misi 200 mis/misi 200 mis/mis/misi 200 mis/mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/mis/ 200 mis/ 200
<u>S</u> S DEP	ТН	2 Rechust	FIELD FIELD ER INSIDA RESS SIL T/SAM	D.J LOG OF I LOG OF I CABIN NECROC D CUT	ENO ADA KY INGS C ~ ALTONIAT	Spint Rouk (1) Couk (REMARKS LOC REMARKS LOC (RECENTLY HAMMER WT HAMMER LIFT ROD DIA	(2, 802 (2, 802 (3,	722 20115/MSI 201720000000 2017200000 20172000000 201720000000000000000000000000000000000
<u>S</u> S DEP	ТН	P ROPUSA AIR HARYM SLOW (RX WET SIL WET SIL WET SIL MET SIL WET SIL WET SIL	FIELD FIELD ERINSOD RESS SIN AT SAM	D.J LOG OF I E CABINS NEC ROC D CUIT MATERY	ENO AN KY INGSE ~ ALTONIAT	Earl Rouk (1) Rouk (1) Court Search NE X-1500	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL	(2x 802 ((2x 802 () (2x 80 ())))))))))))))))))))))))))))))))))))	74. 20. <u>15</u> <u>15</u> 20. <u>15</u> 20. <u>17</u> 20. <u>1</u>
<u>S</u> S DEP	ТН	AIR HARYM SLOWFRX MET SIL STHROU ROD STUC WATER	FIELD FIELD ERMSIDO ELISS SII ET/SAM EN/SAM	D.J LOG OF I E CABIN NECROC D CUT MATERI MATERI MATERI MATERI MATERI MATERI MATERI MATERI	ENCO AN KY ZNGSE ALTONAT ESITE AL SING AT	5000 Rouk (1) Rouk (1	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL C 19 35	(2, 802 (2, 802 (3,	722 20115/MSI 201720000000 2017200000 20172000000 201720000000000000000000000000000000000
<u>S</u> S DEP	ТН	P ROMAN AIR HARYM SLOWFRY MET SIL MET SIL	FIELD FIELD ERINSIDO ERISS SIN T/SAM EN AT 25 COMING WS: 18M	D.J.J LOG OF I E CABIN NEC ROC D CUIT MATERI	ET NO ADA KY INGSE ALTONIAT ESINE AC SING AT EMW CON	500 Rouk (1) Rouk (1) Rouk (1) STR. 15200 ~ 27 FT. STR. DETPHUS	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 %	(2x 802 ((2x 802 () (2x 80 ())))))))))))))))))))))))))))))))))))	74. 20. <u>15</u> <u>15</u> 20. <u>15</u> 20. <u>17</u> 20. <u>1</u>
<u>S</u> S DEP	ТН	2 Rochush AIR HARYM SLOW (RX WET SIL WET SIL WET SIL WET SIL MET SIL WET SIL MET SIL WET SIL WET SIL WET SIL MET SI	FIELD FIELD ER INSIDO CESS SIN F(SATA CAT PIL) KAT 2E LOMING W: 18M TD SGS P	D.J LOG OF I E CABINI NEC ROC D CUIT MATERY	ET NO ADA KY TNGS C ALTONIAN ESITE AC SING AT EMW COM BTEX (AK	Eor Rouk II Rouk II Cor -20FT. NE -2	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 K FOOTAGE DRILLED	(2x 802 ((2x 802 () (2x 80 ())))))))))))))))))))))))))))))))))))	74. 20. <u>15</u> <u>15</u> 20. <u>15</u> 20. <u>17</u> 20. <u>1</u>
<u>S</u> S DEP	ТН	P REPUSA AIR HARYM SLOW (RX MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL METER METER METER METER METER METER METER METER METER	FIELD FIELD ER INSIDA ELISS SIN FIELD ER INSIDA CAT 25 COMING INSI 18M INSIS ISM SES I	D.J LOG OFI E CABINI NECROC D CUIT MATERI MATERI MATERI WI (SE ER GRO SID2/103	ET NO AM KY TNGS C ~ AL TONAT ES ITE AL SING AT EMW CON (BTEX (AK), TX (SGS	Eor Rouk II Rouk II Cor -20FT. NE -2	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 % FOOTAGE DRILLED NO. SAMPLES:	(2x 802 ((2x 802 () (2x 80 ())) (2x 80 ()) (2x 80 ())) (2x 80 ())) (2x 80 ())) (2x 80 ())) (2x	74. 20. <u>15</u> <u>15</u> 20. <u>15</u> 20. <u>17</u> 20. <u>1</u>
<u>S</u> S DEP	ТН	P REPUSA AIR HARYM SLOW (RX MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET SIL MET STAL METER INSTAL METER INSTAL METER INSTAL METER INSTAL METER INSTAL METER INSTAL METER INSTAL METER INSTAL METER MET	FIELD FIELD ERINSIDO ERISS SIL ET/SAM ELISS SIL ELISS SI	D.J.J LOG OF I E CABINI NECROC D CUITI MATERY MATER	ET NO AN KY T. GS C ~ AL TONAT ES ITE AC SING AT EMW COM (BTEX (AK), TX (SG3 7041) :	SPINT Rock (1) Rock (1) Soft Stender Stender Soft Soft Soft Soft Cr,	REMARKS LOC RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 % FOOTAGE DRILLED NO. SAMPLES:	(2x 802 ((2x 802 () (2x 80 ())))))))))))))))))))))))))))))))))))	74. 20. <u>15</u> <u>15</u> 20. <u>15</u> 20. <u>17</u> 20. <u>1</u>
<u>S</u> S DEP	ТН	PIRCHISM AIRCHARYM SLOWPR SLOWPR WET SIL WET	FIELD FIELD ER INSIDO ELISS SIL T/SATA CAT 25 COMINIC WI: 18M D SES I SIL AS C	D.J.J LOG OF I LOG OF I NECROC D CUTT MATERY WI (SE ER GRO VI (SE ER GRO VI (SE ER GRO VI (SE ER GRO VI (SE	ET NO AD KY INGSE ALTONIAN ESINE AN ENWICON BTEX (AK), TX (SGS 7041): SB101,	GOR -20FT. VE ~27FT. VE ~27FT. STR. DETRUS NI/SW SOP), C.,	REMARKS LOC REMARKS LOC (RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 K FOOTAGE DRILLED NO. SAMPLES: R	(2x 802 ((2x 802 () (2x 80 ())) (2x 80 ()) (2x 80 ())) (2x 80 ())) (2x 80 ())) (2x 80 ())) (2x	92 202
<u>S</u> S DEP	ТН	2 Rectust AIR HARYM SLOW (R) WET SIL WET SI	FIELD FIELD ER INSIDO ELISS SII F/SATA KAT 2E COMINIC WI: 18M D SKS I SKLOZD SI AS C SZ AS	D.J.J LOG OF I E CABINI NEC ROC D CUT MATERY	E- NO AM KY 1. Cose ~ al Torra ESINE AC SING AT E MW COM BTEX (AK), TOC (SGS 7041): SB101, ESB101, ESB101, ESB101,	Ever Ever	REMARKS LOC REMARKS LOC (RECENTLY HAMMER WT HAMMER LIFT ROD DIA WATER LEVEL ~ 19 K FOOTAGE DRILLED NO. SAMPLES: R	(2, 8, 2, 6 (2, 8, 2, 6))))))))))))))))))))))))))))))))))	92 202
<u>S</u> S DEP	ТН	2 Rectust AIR HARYM SLOW (R) WET SIL WET SI	FIELD FIELD ER INSIDO ELISS SII F/SATA KAT 2E COMINIC WI: 18M D SKS I SKLOZD SI AS C SZ AS	D.J.J LOG OF I E CABINI NEC ROC D CUT MATERY	ET NO AD KY INGSE ALTONIAN ESINE AN ENWICON BTEX (AK), TX (SGS 7041): SB101,	Ever Ever	I CARCINET	(2, 8, 2, 6 (2, 8, 2, 6)) (2, 8, 2, 6 (2, 8, 2, 6)) (2, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	922 221 mis/misi 221 ficente 102 mis DATE 8/24/04 HOLE

SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	BORING JOB NO. 32-1-16821-3
LOGGED BY J. KEENER / R. HESSONS	JOB NE Cape DALA85-03-D-003 TAG
DRILL CONTRACTOR Discovery Dostling	BORING NO. 1981 ELEV.
DRILLER Wininger Hous Type DRILL Air/Auger Toggie, Frank Size & Type OF CASING TUBEX, ARGAMMER	LOCATION MAIN OPS, COMPONNIO
SIZE & TYPE OF CASING TUBEX, AR HAMMER	DATE 8-25-04 WEATHER 65 High FOG
SAMPLE DATA	
SAMPLE NO. # FROM RESISTANCE DRIVING LENGTH DRILL ACTION CONTACTS/ GROUNDWATER TYPE TO TO BLOWS/6 IN. NO. SAVED ACTION GROUNDWATER	FIELD CLASSIFICATION
19BISI 5 12-11- 10" 1615 3	" SARE CLAND
SS 6.5, 24 7° 0.2m 3"	GREY/BROWN GRAVELY(P) SILTY SAND (M-C) M
196152 1012 10 12	SAND (EC) BROWN
8 1.5,3.5 19 16.5	MOD HC COOR (402+ NEOH 402, BOZ).
1961321 17517-14117, 11 40 GWGW77	STRONGHEODOR
1017 19 -1 241950 FT =	24 HZ- SHEPTION WATERS
	Chrsh= O ROCK
21' 21.5 8-17-14 6 12.8 1900	PSONIX
1987 421-5 4-6- 6 1820	(/
127 m 23 19 0 27 m 40	
No Anal. 28 17/48/26 6" 9:48	Crushed Rortz - 1155 weathering
26 Itendeperce 29.5 Ø 21000	+ han previous tradegace anty -weetrate
	Stop duilling - last Breet all look like chippell rock - could it bedrock? No analytical.
DEPTH FIELD LOG OF BORING	REMARKS 4/BORING FOR FUELS, V/BURING
	FOR BTEX, TOX, METALS, WAT'LATTERIA
SIET/SOMO FILINUTES TO ATRITAMYLOZ O-5 Fr. SLOW DRVING 6.5-	PARAM. Z/RORING FOR GRAINSTRE
10 NOD. WEDATEROP DIESELODOR INCUT	THILE
RIDIPOR along 1 Remains 7.	
Sinty, 1700 PID-RDG. = 1 ppm in BREATHINE ZO	
Gravel 3- Uppen in down - Wind preat.	
- there in about which preating	WATER LEVEL TIME DATE
21' Crashed rock - weathering	
decorasing w/ depth -Bedrect?	FOOTAGE DRILLED 29.5
29.5	NO. SAMPLES: ATTEMPTED
BOB	RECOVERED
	TIME DISTRIBUTION THIS HOLE 7444005 OCFSITE 1620-1637
	ON HOLE 1270 DONE DRILLING
	DRILLING 1555 OFF HOLE 11:15-5126
	BORING NO. 19/51 SHEET 1 OF
	8/25,26/04

SHANNON & Geotechnical & Enviro	WILSON, INC.	FIE	LD LOG	OF BORI	NG	јов NO. <u></u>	2-1-16821-3
	ULIE KEEN	AL.		JOB DACA 85-03-D-00			
DRILL CONTRACTOR	DISCOVERY	1 DRILL	INE	BORING NO. ZOMWI ELEV.			
DRILLER JOE WI	WINCESE TYPED	RILL MOB	ILE	LOCATIO	DN MAIN dek	ATTON'S CON	Prex_
SIZE & TYPE OF CAS	ING TUBEY, A	nR Han	IMER		8-25-04	VEATHER	
SAMPLE NO. E FROM	DRIVING RESISTANCE BLOWS/6 IN. NO. SAVE	ACTION ACTION	CONTACTS/ GROUNDWATER	apph	FIELD CLAS	SIFICATION	· ~ ~
20 muni151 203 - 55 10.57	35-24 - 12 45 10"	1000		IL GOLDINE	blown SL SI L(Ft) Andre Ten Cock	may (E-m upil, mais) 51674 F
	20-27-10" 22-10'	1618 Dar	-		(Some Distri		nten?)
55 11.5	10 5				riy (F-C)	VIRUSIY SANG (HTMLT)	(EZ)
54. 16.5	13-19-12	1100 \$ 000	-	GAND	(F-m) *		
21.5	16-29-12 47 9 42-32 (0	1130 Ppp		DASE BROWN SILLY GRAVELY(F) SAND (F-M) MUIST			
20mw/ste 25 - 25' 24.5	42-32 (ë 32 1	1210 April	-22.5 - 6w	15 SP	Kolks y sich (mlie only	PF? DALL	ere Thought
		-					
DEPTH FROM TO	FIEL	D LOG OF E	BORING		REMARKS Sul		
51	LT LUMINGS 1	r-lfr		SILT, UNEVEN/ROMEN, RECENTLY			
				HAMMER WT STROKE			
A	IR HAMMER	27030	off Bfs		HAMMER LIFT		
			~		WATER LEVEL	TIME	DATE
		<u> </u>	,;;;i,		•	266	
	· · · · · · · · · · · · · · · · · · ·	······				 EMPTED	
			<u>````````````````````````````````</u>		NO. SAMPLES.	OVERED 5	
		<u> </u>	•			STRIBUTION THIS HO	
	······································			1.000 (1990)	ON HOLE		LLING 1270
	<u> </u>				BORING NO. 20	MW1_SHEET	OF/
<u> </u>					8-25-04		

Į

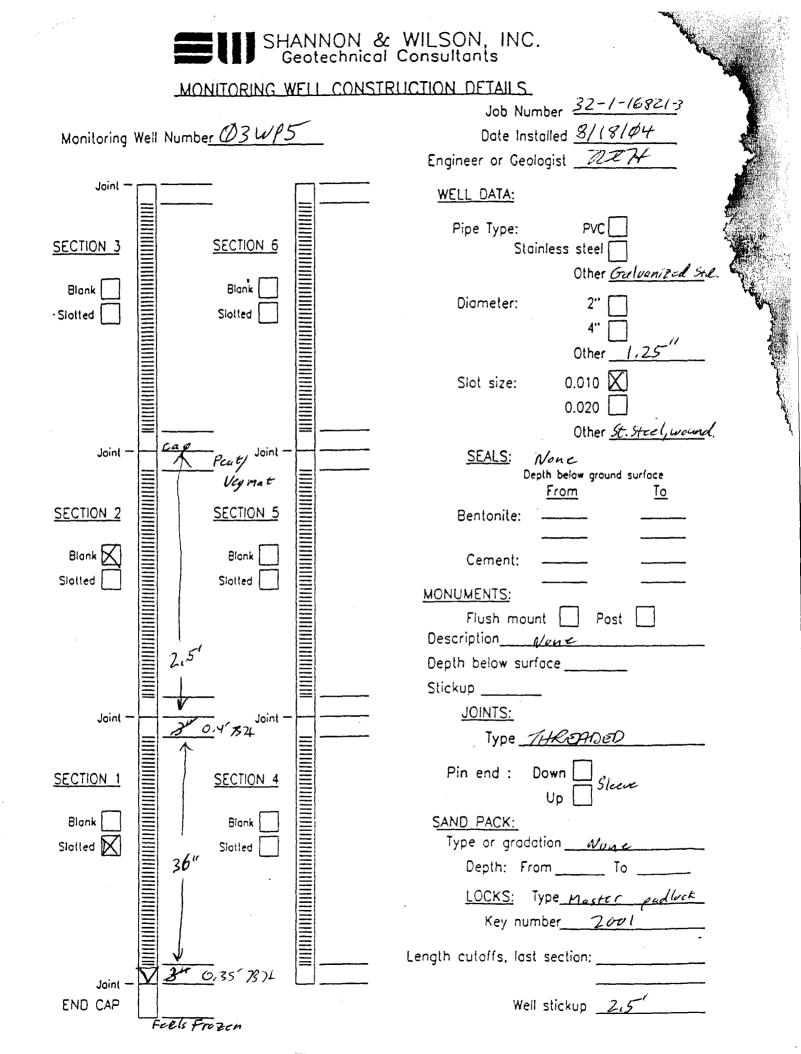
SHANN Geotechnica	ON & WILSON, II	NC. ants	FIE	LD LOG	OF BOR	RING	JOB NO.	32-1-110121-3
LOGGED BY	JULIE KOR	nor			JOB DACA 85-03-D-003 7.0.4			
DRILL CONTR	ACTOR DISCE	WERY F	RILIN	16	BORING NO. 20MW ELEV.			
	E WININGER	TYPE DRI	_L	.: 	LOCAT	ION MAIN OPERA	nows comple	JA, SITE 20
SIZE & TYPE C	DF CASING TUB	EX, AIR	HAMM	ich	DATE	8/24/04	WEATHER COPF	OGRY
		E DATA	TIME					
┝─────┥╔╴┝━	TO BLOWS/6 IN.	LENGTH NO. SAVED	TIME DACTION	CONTACTS/ GROUNDWATER			SSIFICATION	
2014INTST 5	30-22-		182555	SILT 8, 7?	MOUST S ROCK	The shown , /		
55 6.		-4	<u> </u>	~2'5	3480	cks / n	165 SAMPLA	<u>50</u>
10	- 70(4")	- Ø						
			 			/		
		 	1					······
					/			
								· · · · · · · · · · · · · · · · · · ·
DEPTH FROM TO		FIELD I		BORING		REMARKS 35An	RES /BORN	FOR GRU/
	COARSEG	Rovel	BROWA	J.SILT:	BTEX, DROKRO, TOL, 4METALS, SFT			
10'	REFUSP	n ->	move	E RIG		INTERVAIS.		
	-			SHEET F	HAMMER WT STROKE HAMMER LIFT SAMPLER			
	826	and	ATTE	MT1		ROD DIA.	NO. OF TUP	
						WATER LEVEL	TIME	DATE
							· · · · · · · · · · · · · · · · · · ·	
	/					*		
		<u> </u>				FOOTAGE DRILLED		
						NO. SAMPLES: ATTI	EMPTED OVERED	
	/			·				LE
						ON HOLE 1820	DONE DRI	LLING 1900
						DRILLING 1835	OFF HOLE	
						BORING NO. 20		OF
						8-24		

	ON & WILSON, I	NC.	FIE	LD LOG	OF BOF	RING JOB NO. 3	2-1-16821-3			
LOGGED BY	B. Honran	NJKE			JOB <u>OTHE</u> USACE NE Cape DACASS-03-D-003, 7.0.6 BORING NO. 2281 ELEV.					
DRILL CONTR	ACTOR Disco	sery Vr.			BORING NO. 2231					
-					-	ION Top (5) side of Main Com				
SIZE & TYPE (çter	DATE	8 28-64 WEATHER 55	Cef			
	CM DRIVING RESISTANCE TO BLOWS/6 IN.	E DATA LENGTH NO. SAVED	TANK	CONTACTS/ GROUNDWATER		FIELD CLASSIFICATION				
220947666		1) Jaim		<u> </u>	L+ bri colles	dry, gravelly SAND	> <i>j_i</i> ×			
51 77	3 ¹ / ₂ ¹ /2 ¹ / ₂	15″	0,3	د 10	brain	to gray, moist to dry sandy	GRAVELS			
CLANDE TO	125 12/28/19	15" 18" d-ive 16"	0.3	Ĩ.	1 * 802	1x M-OH 4 02				
27,09,002 17		1' Jrive			6. xy,	dry, sandy GRAVIEL	×			
53 18			0.5		18807,	PROH Y 02				
2220 20	5 7/20/31	18%.	12128		510-36 9	Ground rock (cutting & Rock	75-ATH x B/29			
54 2:	7162	17"	0.2		18807, 1	× MeoH Yoz				
						······································				
						-				
						·····				
						· · · · · · · · · · · · · · · · · · ·				
DEPTH FROM TO		FIELD L	.OG OF E	BORING		REMARKS				
0' 5	Recent a	Cohlol.	Fill							
51	Refusal		<u> </u>	<u>,,,,, , , , , , , , , , , , , , , </u>						
7' 12'	Solid ro	ck, har	I drill	action co	utting	HAMMER WT. 300 14STROKE				
52	Hop 1 main				HAMMER LIFT SAMPLER $\frac{18'' \times 2'_{1D}}{5}$					
15	Comment .					ROD DIA. 2 NO, OF TURI	^{NS} —			
18'-25	Just also		,	· · ·		WATER LEVEL TIME	DATE			
54	Je Comme	strop h	a chiller	had bro	hen up					
	<u></u>									
						FOOTAGE DRILLED 27				
						NO. SAMPLES: ATTEMPTED RECOVERED				
9						TIME DISTRIBUTION THIS HOL ON HOLE <u>1065</u> DONE DRIL	,			
		<u></u>	<u></u>			DRILLING (000 OFF HOLE				
	· · · · · · · · · · · · · · · · · · ·					BORING NO MUT - SHEET	OF			
						* 22B1				

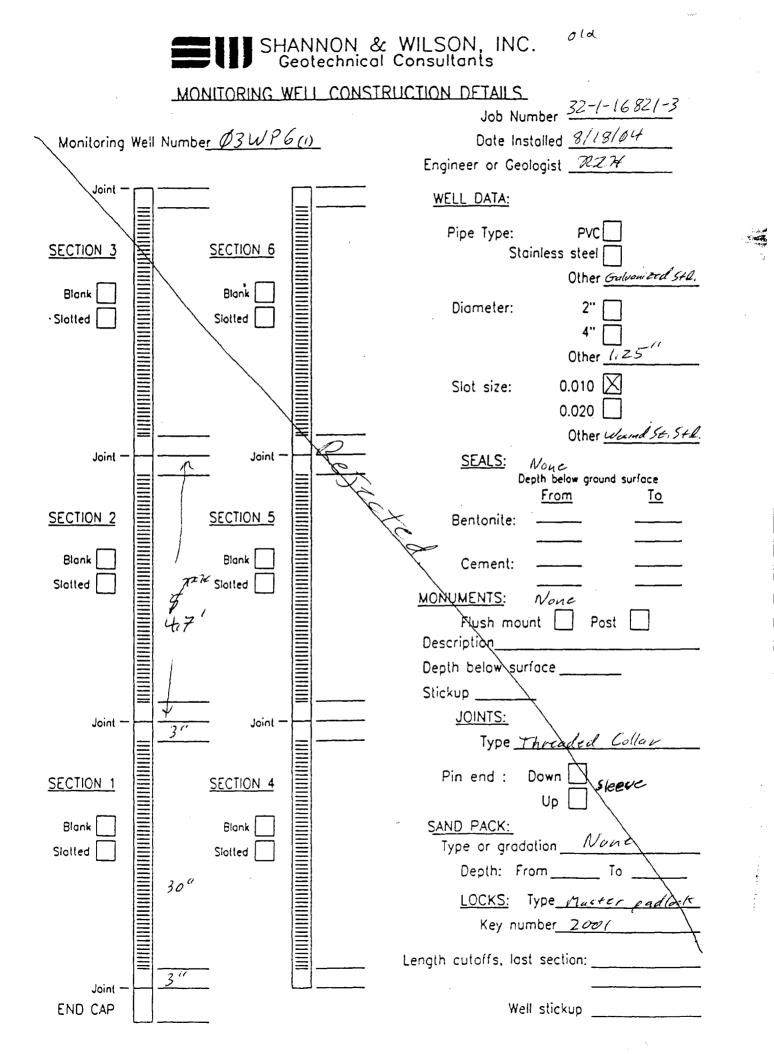
,	SHANNON & WILSON, INC. Geotechnical & Environmental Consultants	FIELD LOG	OF BOR	ING	JOB NO. 3	2-1-16821-3	
	LOGGED BY B. Heavne-		JOB U	SACE DACA85	-03-D-003,7	1.06	
	DRILL CONTRACTOR DIGCOVERY	Drilling	BORING	INO. 22MW2	ELEV		
	DRILL CONTRACTOR DICCOVERY Wininge - & Sons DRILLER Joy Cole Frank TYPE	BRILL Air/Rotors	LOCATI	ION Top (S) side	of main to	-plev_	
	SIZE & TYPE OF CASING 4" Stee		DATE _	8/38/0-1 w	еатнея <u>50° ч</u> ,	nd	
	SAMPLE DAT.	Time					
	SAMPLE NO. I FRCM DRIVING LENGT TYPE I TO BLOWS/6 IN. NO. SAV	ACTION GROUNDWATER		FIELD CLAS		· · ·	
	$\frac{72}{51} \frac{6}{7.5} \frac{16}{16/32/23} \frac{18}{12}$	Head 15:17	Brown debin HC 00	to stay Grave	in baiter	4 slight	
		15:45	Beto	2 Meon 1x 802 Sran Silly San	I, GRAVEL	w/rock y	
,	52 14,5 24/25 12	Oi Boon	Brown	meist say	ell, SAND		
	27 17 16/17/18 18"	Jr. O.Fgen		,			
	22 22 20/1/ 18"	d- 16:47 ¥ 22'	Br. 5. Mo		GRAVEL)	a colling	
·			Mar	jund water co	itset (~6")	
	54D 25 15/21/20 55	1.0 ₀₀	Br. 514 Silty, Sandy GRAVEL in cobbios				
<i></i>	27 31 17/25/25 15",	1- 17:28 17:28 17:28 17:28					
*				· · · · · · · · · · · · · · · · · · ·			
, i V				1			
	EPTH FIE	LD LOG OF BORING		SYPSYD SP	DOMS MIX-1	1.	
	0 2 Fill meterial -	steel concrete, 46	h	scapled		<u>17 pan</u>	
	into more set			· · · · · · · · · · · · · · · · · · ·	·		
•	~7.4 moist L/C od			HAMMER WT. 300	-		
		. A ruck again - : e I cell Bedrue		HAMMER LIFT			
		of just proch m.		WATER LEVEL	··	DATE	
		for dust to stick t		45 S	TIME	2128/04	
	Jeb-is			12	612		
	14 ruck /fractures						
	22 Water				MPTED	Чч.	
	30' Possible froze	-n meternal ?-Mois	sture	NO. SAMPLES: ATTEMPTED RECOVERED			
	on hamme-				TRIBUTION THIS HOL		
	35 F-05+ 38' B.C. B 72.14 BILING			ON HOLE 15 00		1	
	38' B.C. B DZ 14- BILiller			DRILLING 1510			
			بة . بة .	BORING NO. 22		OF	
	4 <u></u>	997			···		

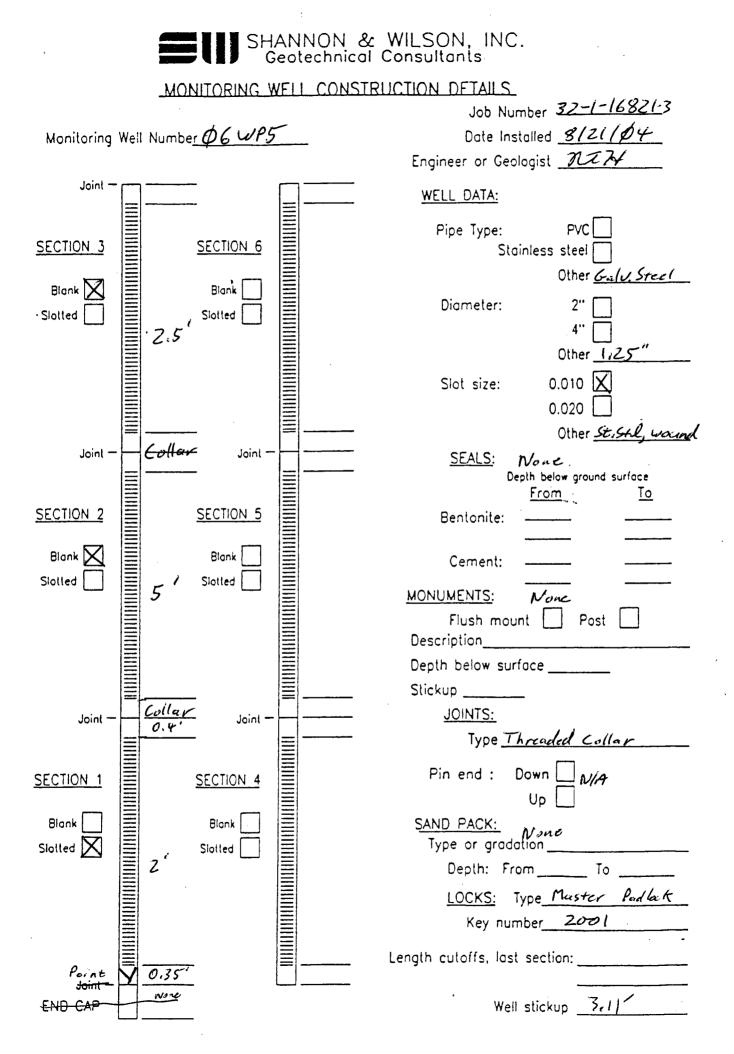
			& WILSON, II		FIE	LD LOG	OF BOR	ING	ЈОВ NO, <u>З</u>	2-1-16821-3
LO	GGED BY	SED BY Randy HESSong Ju						V.E. Cape, DiAC	,485-03-	D-003, TO. 6
DR	ILL CONT	RACTO	DR Disco	very 1	Drillin	5	BORING NO. 22M4/3 ELEV.			
DF		linin	ie, Frank	TYPE DRIL	L Air For	ory	LOCATI	ON Top (S) side of 1	Main Cample	AT USM TH PM
			ASING WSH			<u></u>	DATE _	8/27/04 WEA	THER <u>Clear</u> ,	fairly (alm
		·	SAMPL	E DATA		HNUIDI				· · · · · · · · · · · · · · · · · · ·
SAMPLE	DEPTH	TO	DRIVING RESISTANCE BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	Time CONTACTS/ GROUNDWATER Mendsgare		FIELD CLASSIF	ICATION	
51 1220m		5 Z	9/19/9	18" drive 10"	Hard	0.5	GROIDA	tornlight Gra	insize .	samele Di
52			1011-	_[0	(O.Spem	Fractule	red contic @ 12,6 h brown, couchy,	413,5	17 dein. (1981)
	12	t	16/10/17	16"		O. OFFA		ICS. IX MEDH & GRO BIEK	PROTRAD P.	AH. TOC. MS/MSL
53	1		10/15/19	16"		(())	In cobbi	-spoon.	crured	
54	2					1.0ppm	Same "	(374 Full), (XM=0H rare mal us \$3,	Moistar	
	23.		13/37/28	12"		O.Zeem	Cobbsec Lean Mil	The sport May Be The sport May Be Furg will 100. 188	Fare O	- Piner water OR
55	Z	7	28/11/52			LZ?	Brown	, silty, sundy		moint or freza GI
	28	5	23132132	1014"		D. Oppm	1×802.	1×170011		Fren litely RR
HSI	<u>ر ج</u>	?	26/56 vet	10t drive		Xr	Crychem		·	295.2"-+
	34,	_				O. Uppun		icry - nestly coush	Mend's	ample eace oille
56	33		31/34/36		1 A.		Defin	itely FRZED	turning	
	39.	5	<u> </u>	14″		O. IPPU	in sun.	QA/QC recovery-	3+902 , 3 *	MrCH RK
FROM	PTH TO	-		FIELD L	.OG OF I	BORING		REMARKS		
O'	3		Recent	Cobbly	. <i>f</i> ,11	·		Exact start		in grand
3	12	4	Lutting	TSPice	.1 of	MOC		Not casily a		
12						? Mug 6	e	HAMMER WT. 300 PG. STROKE Stol.		
		1	-	<u> </u>		aminants		HAMMER LIFT	SAMPLER	18"xZid 55
		Le	erch.			····		ROD DIA	NO. OF TUP	RNS 3
15	19		ipical c	2060/5-	drill	action		WATER LEVEL	TIME	DATE
122	27					= pretty				
Í						Sample		н		
			· <u>···</u> -··	21	tart	of frui	2,04		40.5	
		-	g tàin						ED	
37		Not enough recovery to confirm freeen/Good waterthing						RECOVE	RED ~7	· \
			CONTITU	- ret		Good in	eter though		BUTION THIS HO	LE
		1	7					ON HOLE 10:15		- 1
38			Definit	C NOZ	- 7 4	······································		DRILLING 10:35		12
40.5	42	Di hu	rue seo rd-ficzeu	Abit Abit 1, 8" rca	cou fit sandin	or gianus or soit +	lar huasb ctuch.	BORING NO. 224	SHEET	OF

/

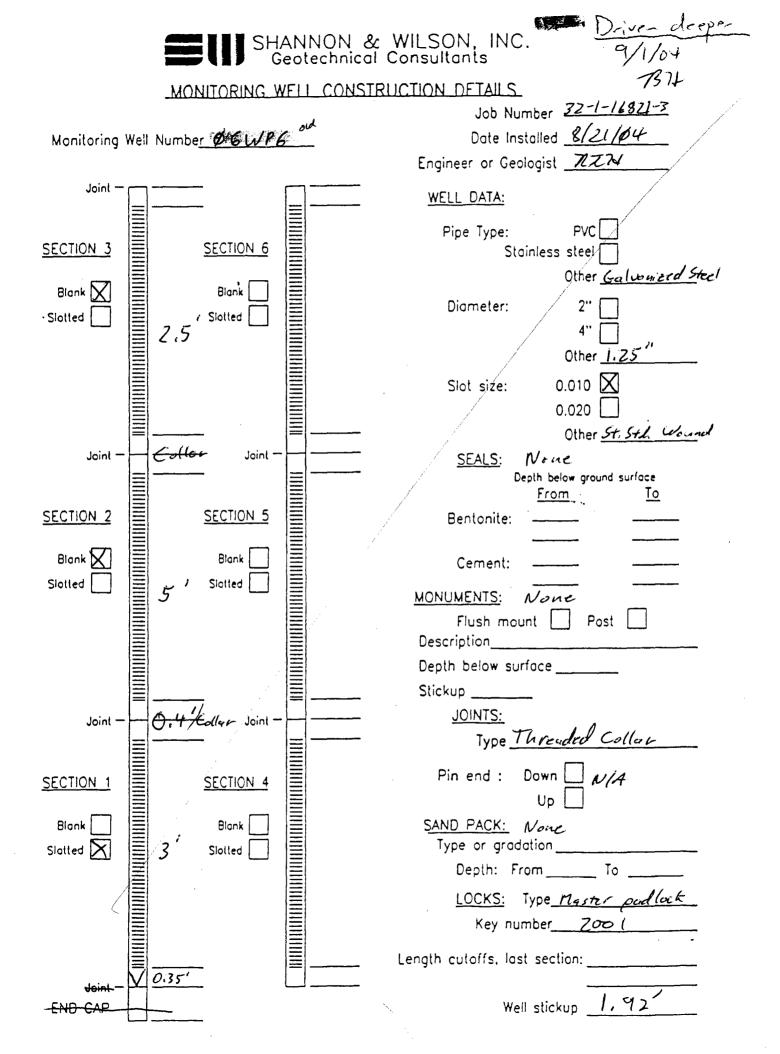

Geotechnica	ON & WILSON, II	NC. ants	FIE	LD LOG	OF BOR	ING	јов no. <u>3</u>	2-1-16821-3	
LOGGED BY	RandyH	esson	2	јов _/	V.E. Lupe DAC	A85-03-D	-003 70,6		
	ACTOR Discon	Ing Dr.	illing	<u>,</u>	BORING NO. 26 MWI ELEV.				
£	ninger VSon Cole, Frank				LOCATI	ON Among Seren i	tents above	merin site	
ر د 7 تی SIZE & TYPE (Cole, Frank DF CASING _4"C	Irive Sme	1. runn	e mauld	DATE	ON Arrany Serry	48-52 MEDTHEROURCO	St, W. wind	
		E DATA				mples - Simp			
	CM DRIVING RESISTANCE	LENGTH		CONTACTS/ GROUNDWATER		FIELD CLAS	SIFICATION		
	TO BLOWS/6 IN.	NO. SAVED			Drill	Action			
┣ ├									
			······						
DEPTH	╷╶╻╵╴╵╸╸╸ ┙ ┨					REMARKS			
FROM TO	-Brown,				1.6/-				
0 6	Typrals		and y	SKITUEL	CODIES				
6' Xere	Darkerbrown		Fine Sol	nd moist		HAMMER WT.	STROKE		
	PIL	, Seren	10.0	pour ai	rtsoil.	HAMMER LIFT			
7' 11'	Durk brown		21	raid w/or	ganics	ROD DIA.	NO. OF TUP	RNS	
	Moist; Ol					WATER LEVEL	TIME	DATE	
11 16	Lighter redie in cobbles,				4 42.1				
16 18	Silter le		· • • •				12'		
					NO. SAMPLES: ATTEMPTED				
7K 7K 232 238									
1 78	Pretty mu				5	<u>TIME DI</u>	STRIBUTION THIS HO	<u></u>	
35-36	Brown soil Meistare i-				ID GOOD	ON HOLE 9.20			
374/1	Water en			<u> </u>	DRILLING 9,48				
42'		· / ·		SITC 26 M BORING NO. M	WI SHEET	_/OF			
	button of Water 0 Jurine well	38,6	belie	pulling (asing				

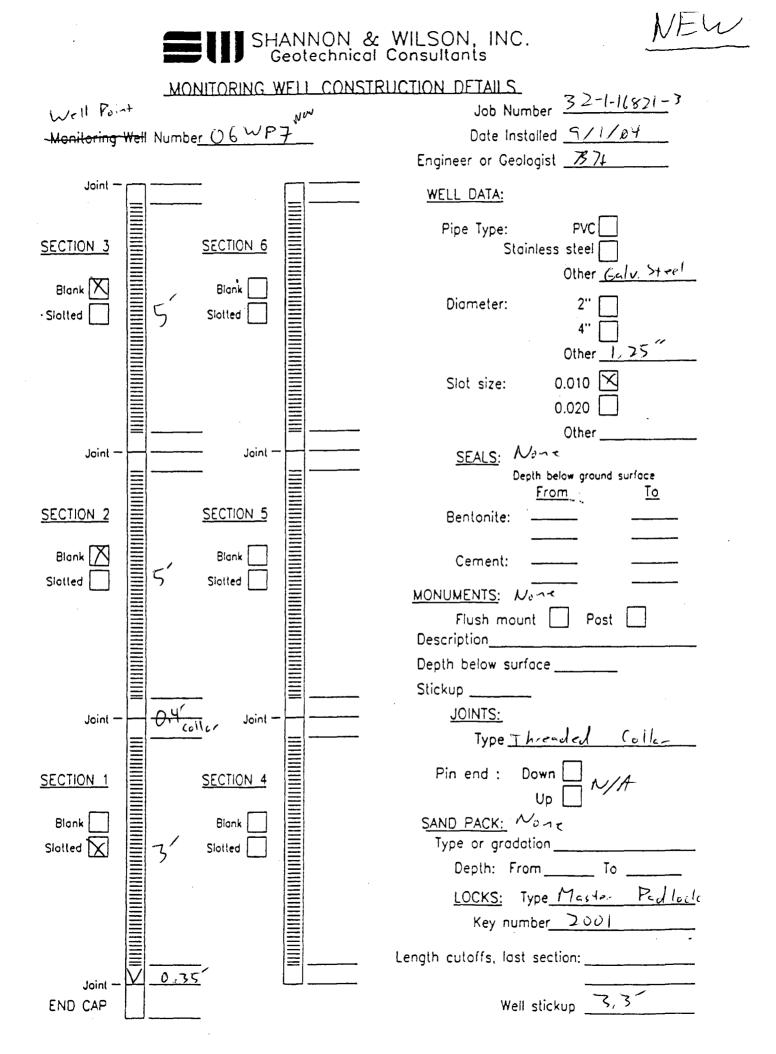
SHANNON & WILSON, INC. Geotechnical & Environmental Consultants						LD LOG	OF BOR	ING	JOB NO.	-1-16821-3
LOG	LOGGED BY Randy Hessony						јов 🗸	I.E. Cape, S	to Locarina	e Isd.
DRILL CONTRACTOR Discovery Dilling							BORING	BORING NO. 04NE26MW3 ELEV.		
DRIL		Vinne	inger 450n E, Frank	5 TYPE DRIL	L Home	built	LOCATI	ION Risc off main	road betwee	CH
			e, from R asing <u>Oder</u>				DATE S	ION <u>Risc of Main</u> Sug-culvert <u>B122104</u>	WEATHER Smally h	070 C
			SAMPI	E DATA	V 0 50,	1 Samples	<u></u>			
SAMPLE NO	DEPTH O	FROM TO	DRIVING RESISTANCE BLOWS/6 IN.	LENGTH NO. SAVED	DRILL ACTION	CONTACTS/ GROUNDWATER		FIELD CLA	SSIFICATION	
				k						
<u> </u>	┿									
			-							
	-									
 	+-	· · ·			 					
						<u></u>				
			1			<u> </u>				
DEF FROM	то			FIELD L	.OG OF E	BORING		REMARKS	, , ,	
0	0.1	T	hin tunde	a veneta	tion. 1	ichen a	 0+1	General (it while drill	hology obse	
	l .	C	06618,	gravelly	-Sile	lichen e (or Catoles	(silt)	cuttings 4		* 04
Oil	5.5	5 5	ilty, sa	udy gro	wel 1	n cubb	les	HAMMER WT.		
55	5.7		vet soi	1, +40	is wa	iter 4 soi	Lup.	HAMMER LIFT	SAMPLER	
5.7			Sandy	-Grad	rel in	r c a b b l c	es, wet	ROD DIA.		NS
								WATER LEVEL	TIME	DATE
					<u>.</u>			FOOTAGE DRILLED	26	
22.2			(rrab S	ilt - mer	liner 7	tight he		RE	COVERED	
	-		dvill	activi,	- T,	tight by		11 -	ISTRIBUTION THIS HO	
	26	F	BO,B,					ON HOLE	DONE DRIL	LING THIS
		-		<u></u>						11150
								BORING NO<	6 MW 3 SHEET	OF

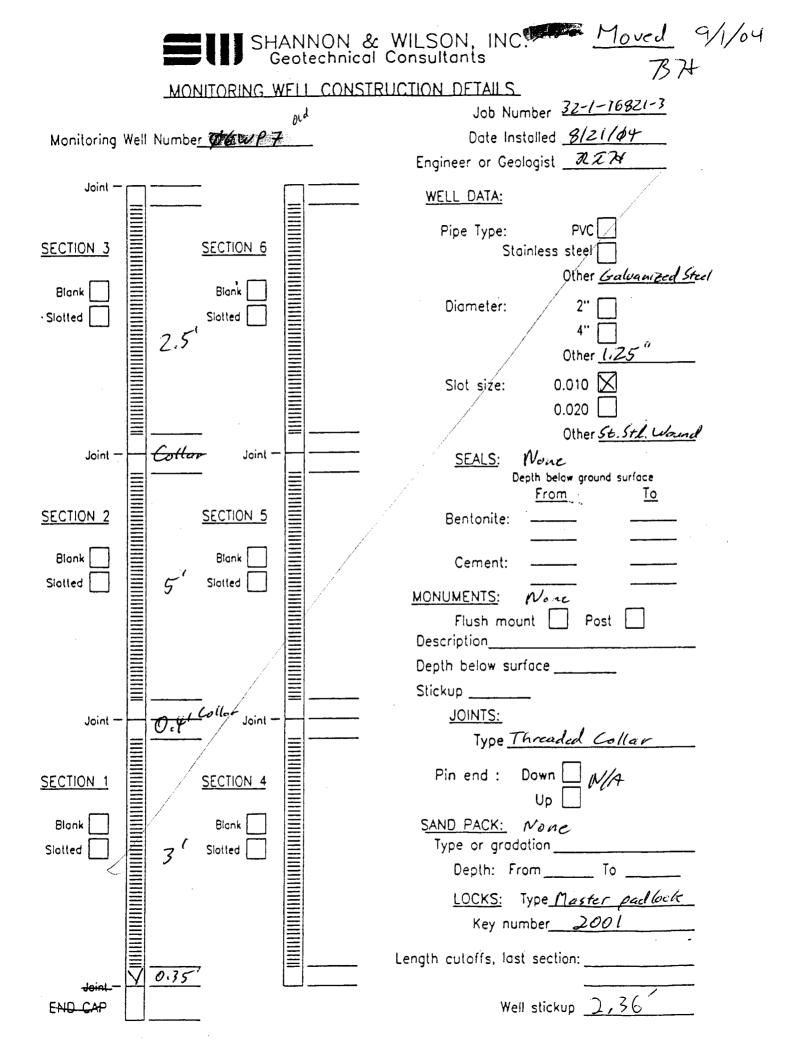

ł

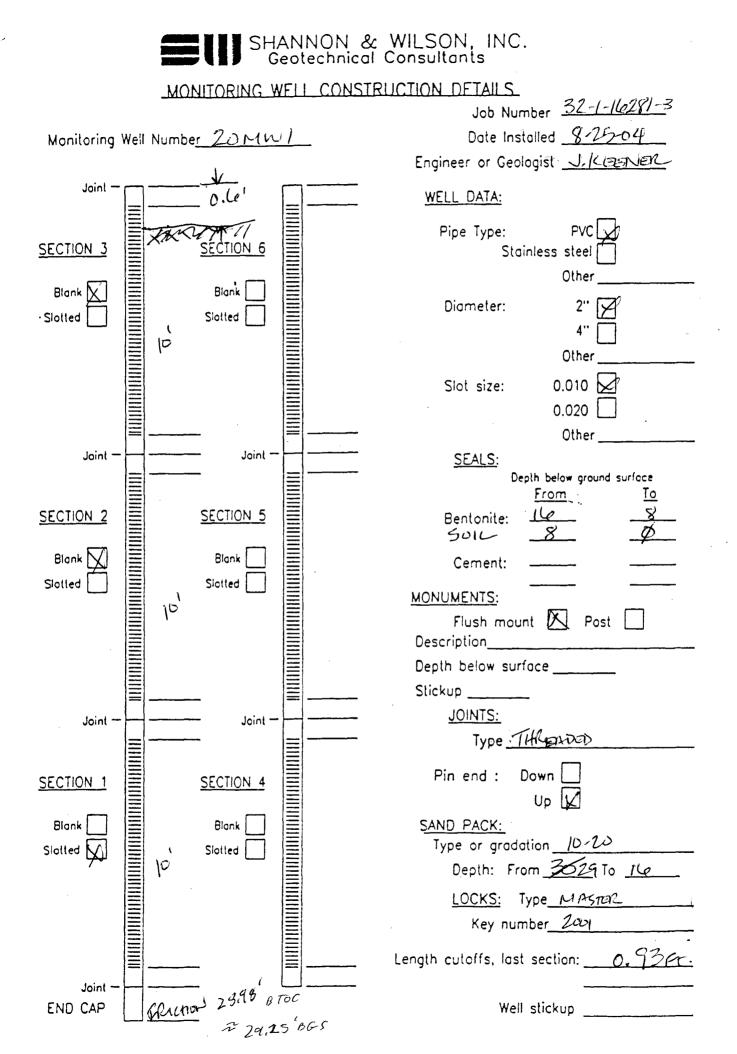

Contraction of the local division of the loc

8/22/04 13:45 04 NEZ6MW3 Start 17:45 Finish Shallow investigatory Well Surface: Cobbly, gravelly Silt, minimal vegetatroy silty, sandy Gravel to gravely ant below surface (0.1') Active frost patterning - post glacial. to $\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$ Easy Cdex drilling initially boulders slow under water. Water / Net ground coming up casing @ 5'7" 695 K Lots of water @ 10 th down to 212.5 Reduced (shat off water 12.5-14.5' 15' - Lots of water - w/finer/med. sand Air compressor having hard time with amount of water (125psi, 375 fm) Casing down to 25.4' - Keyed into silt angular -Plan to instal 20' of screen, -magbels 17' Word hard Fine Boulder Sandi Difficult to clear out -break ,- 22.2' Casing pulled up out of silt > Over 26 The Gray Sile -bottom Likely 100 gal/min water according to dviller! - Till of bonny 5-" B 10 h 5'6' - Cargo Beach Seilis Grand Esugi Rive en Sand (d. hears -5011 is Sile




			SH. G	AN eot	NON & WILSON, INC. echnical Consultants	New - small move, deeper
		MON		/FL	CONSTRUCTION DETAILS	
					Job Numb	er <u>32-1-16821-3</u>
Monitoring	Well	Numbe <u>r</u>	Ø3WP\$6	\mathcal{O}	-	led <u>8/21/04</u>
					Engineer or Geolog	jist Ben Heavner
Joint —					WELL DATA:	
SECTION 3			SECTION 6		Pipe Type: Staint	PVC
_			, —			Other <u>Gal. Steel</u>
Blank			Blank Slotted		Diameter:	2'' [] 4'' []
						Other5
					Slot size:	0.010
				IIIII		0.020
		<u> </u>			<u></u>	Other St. Steel Wound
Joint -		<u>Cop</u> P	et/ Joint-		<u>SEALS</u> : No-	
			met .	IIIII	Depti	h below ground surface From <u>To</u>
SECTION 2			SECTION 5		Bentonite: -	<u> </u>
					-	
Blank 🗶 Slotted 🗌		4,7'	Blank Slotled		Cement: -	
				IIIII	MONUMENTS:	
	Ξ				Flush mount	
					Description <u>Non-</u>	
					Depth below surfa Stickup	ce
		<u></u>			Stickup <u>JOINTS:</u>	
Joint -		0,41	Joint -		Type <u>/</u>	and led
						L_1
SECTION 1			SECTION 4			IWN Sleeve
Blank			Blank		SAND PACK:	
Slotted		3			Type or gradati	on Nont
		/			Depth: From	
					LOCKS: Typ	De Master Pallock
						er_2001
		0.35			Length cutoffs, last s	section: 0.3
Joint – END CAP					Well s	tickup 0, 48

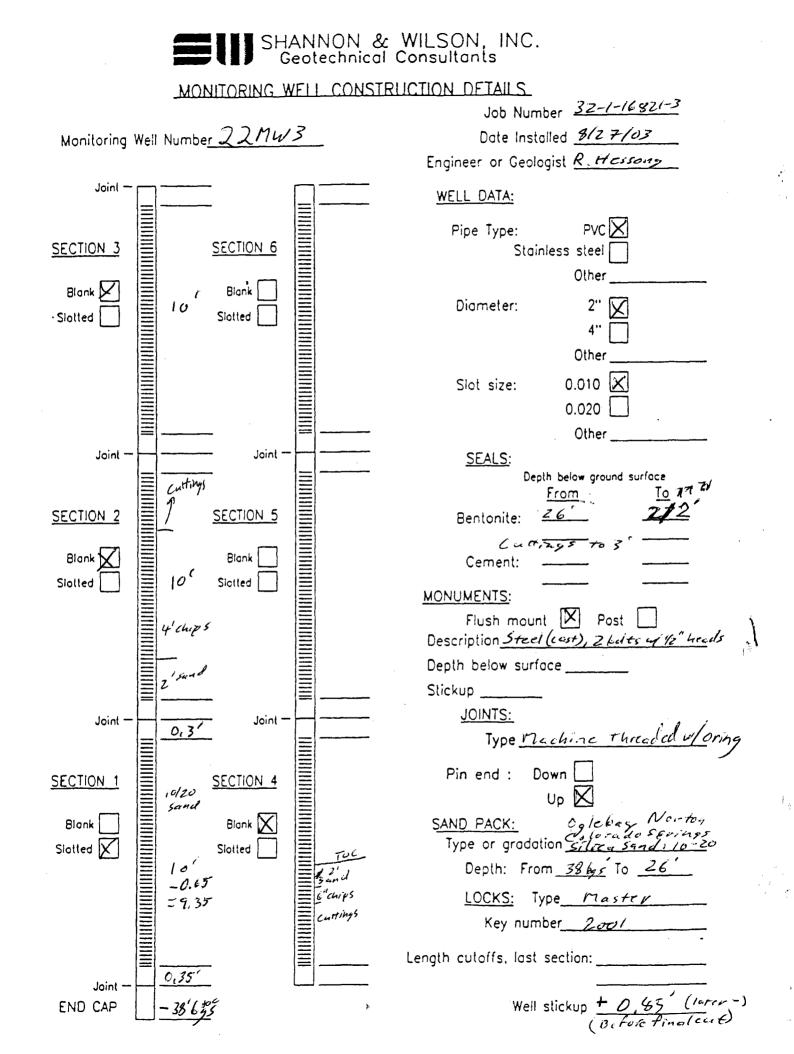



SH.	ANNON & WILSON, INC. eotechnical Consultants
	VELL CONSTRUCTION DETAILS
	Job Number 32-1-16821-3
Monitoring Well Numbe <u>r 17M</u> W	Date Installed <u>8129/04</u> Engineer or Geologist <u>Ben Hesune</u>
	Engineer or Geologist <u>Ben Heavner</u>
	WELL DATA:
SECTION 3	Pipe Type: PVC Stainless steel
Blank Blank Blank Slotted	Other Other Diameter: 2" X 4" 1
	Pipe Type: PVC Stainless steel C Other Diameter: 2" X 4" C Other Slot size: 0.010 X 0.020 C
Joint - Joint - Joint -	
SECTION 2 SECTION 5	Depth below ground surface <u>From</u> <u>To</u> <u>Bentonite</u> : <u>1.97</u> <u>6.5</u> <u>Canthings</u> <u>Cement</u> : <u>Slowsh</u> <u>Is</u> <u>23.16</u> <u>MONUMENTS</u> :
SECTION 2 SECTION 5 Blank X Blank I Slotted I 10'	Cement:
-1.82	Flush mount Post Description Cast Steel -/2x + but hads Depth below surface Stickup
	Stickup
	Tune
SECTION 1	Pin end : Down Up Up S Up S SAND PACK: Osleber Meton SAND PACK: Osleber Meton Coo Springs Type or gradation <u>Silice Send</u> 10-50 Depth: From <u>6</u> .5 To <u>18</u> LOCKS: Type Key number Length cutoffs, last section:
SECTION 1 Blank Blank Blank Blank Blank	SAND PACK: Osleber Monton
Slotted T G. 45' Slotted	Type or gradation <u>sities</u> <u>sind</u> 10-30 Depth: From <u>$6^{2}5^{2}$</u> To <u>18^{2}</u>
	LOCKS: Type
	Key number
	Length cutoffs, last section:
Joint - 0.35 END CAP	Well stickup

		SH	ANNON Seotechnic	& WILSON, INC. al Consultants	· .
	_			STRUCTION DETAILS	NE CAPE 2004 ober <u>32-Ho821-3</u>
х.		03-17-0037		Job Nun	nber <u>schulders</u>
Monitoring	Well Numl	be <u>r 18MW1</u>			alled <u>8/24/04</u>
ta'al				Engineer of Geol	ogist <u>MUEREDR</u> OC
Joint —			_	WELL DATA:	· 1
		<u>}</u>		Pipe Type:	PVC 🔀
SECTION 3		SECTION 6			nless steel
Blank X		1/Blank			Other
		Slotted		Diameter:	2" 📈
					4" 🗂
	j)				Other
	l)			Slot size:	0.010 🛛
					0.020
			=	• •	Other
Joint -		Joint -		<u>SEALS:</u>	oth below ground surface
					From To
SECTION 2		SECTION 5		Bentonite:	<u>14</u> FT.
Blank 🔀	d ,	Blank		Cement:	
Siolled	圓,	Slotted			
	미	•		MONUMENTS:	
				Flush mour Description	
				Depth below surf	oce
			=	Stickup	_
Joint -	.	Joint -		JOINTS:	
				Type <u>1</u>	HREADED
SECTION 1		SECTION 4		Pin end : D)own
<u>JECHON I</u>		SECTION 4			υρ 😾
Blank		Blonk		SAND PACK:	
Slotted		Slotted		=	tion 10-20
	G/ E			Depth: Fro	m <u>26'</u> To <u>14'B</u> CS.
					ype MASTOR
	ر/ ,			Key num	iber 2001
	1 1			Length cutoffs, last	section: <u>2.84' +</u>
Joint -		AD 25.8 BTOL	L		
END CAP	gun	25.5 00	• .	Well	stickup
		26	BG-5		

. 1

.....



SHANNON & WILSON, INC. Geotechnical Consultants

			MONITOR	NG_W	EL I	CONSTR	UCTION DETAILS	
								umber <u>32-1-16821-</u> 3
	Monitoring	Well	Numbe <u>r 22</u>	MW2	<u>. </u>	-	Date In	stalled 8129104
							Engineer or Ge	ologist <u>BDH7 RTH</u>
	Joint —						WELL DATA:	
		\equiv			\equiv			57
	CCOTION 7		CCOT				Pipe Type:	PVC
	SECTION 3	E	SECT	<u>10n 6</u>			St	ainless steel
	Blank 🗙		Blar					Other
	· Slotted	E		=			Diameter:	2'' 📉
			0 Slotte	•				4''
					\equiv			Other
		E					Slot size:	0.010 🔀
								0.020
			<u></u>					Other
	Joint -			Joint —	\vdash		SEALS:	······
			<u> </u>					Depth below ground surface
		E						From <u>To</u> 24 20.8
	SECTION 2	E	SECT	<u>10N 5</u>			Bentonite: Cuttings	20-8'
	Blank		Bla	~			,	<u>2070</u>
	Slotted			_	E		Cement:	
					E		MONUMENTS:	
							Flush ma	/
Ĺ.							Description <u>ca</u>	st steel w/ 2x2 boits
46.5	5	E					Depth below su	urface
5							Stickup	
	Joint -	-	0.25	Joint —		<u></u>	JOINTS:	
		\equiv	0:15				Type_	
	00000		05.05				Pin end :	Down
	SECTION 1		<u>SECI</u>	<u>10N 4</u>	冒			
	Blank		Bla	nk 🕅			SAND PACK:	
	Slotted					10'	Type or grad	Oglebay Notion Colorado Springs dation Silica Sandi 10-20
			9.45, Slotte	•			Depth: F	rom <u>38'</u> To <u>24'</u>
						- 3,46 - ,14		
								Type
		E					Key III	umber
							Length cutoffs, la	st section:
	Joint	·	10,3	5				
	END CAP		344	7 6toc			W	ell stickup
				8 865				
			~ 1 •	-				

Ý

		SH. G	ANN	INON & WILSON, INC. technical Consultants
	MON	NITORING Y	VELL	I CONSTRUCTION DETAILS
Monitoring We	ell Numbe	, 26MW(Job Number <u>32-1-168>7-</u> 083 Date Installed <u>8/30/04</u>
•				Engineer or Geologist B. Henner R. Hesson
Joint		-		WELL DATA:
SECTION 3		SECTION_6		Pipe Type: PVC
				Stainless steel Other
SECTION 3 Blank A	10	Blank Slotted		Diameter: 2" 🕅
				4"
				Other Slot size: 0.010
				0.020
≡ − − Joint	┋╎	- Joint -		Other
50111		-	=-	
SECTION 2		SECTION 5		<u>From</u> <u>Io</u> Bentonite: <u>22.5</u> <u>24.8</u>
Slotled		Blank 🔀		10' $\frac{4}{\text{Certifier}} = \frac{4}{3.2} = \frac{22.5}{4}$
Slotled	10'			- 7.55
R				MONUMENTS: Flush mount Post Description
Bess of send 1111				Description Depth below surface
Bass of chips		_		Stickup
L Joint -		- Joint -		<u>JOINTS:</u>
		-		Type
SECTION 1		SECTION_4		Pin end : Down Up X
Blank		Blank 🔀		10' SAND PACK: Og leber Norton Type or gradation Co. Spring Silics Send 10-55 Depth: From 24.8 To 42
Blank Slotted		Slotted		$\frac{10}{\text{Depth: From } 24.8} \text{ To } 42^{-33}$
				LOCKS: Type
				Key number
	┋│	-		Length cutoffs, last section:
Joint		- -41,9 ¹ 6roc	L	Well stickup
On h	ן ז ה-י	-The proc		

	Ge	NNON & WILSON, INC. otechnical Consultants
	MONITORING WE	LL CONSTRUCTION DETAILS
		Job Number <u>32-1-16821-3</u>
Monitoring Wel	1 NumberothEZ6MW3	Date Installed <u>8122/04</u>
		Engineer or Geologist Rundy Hessong
Joint -	Monumer	WELL DATA:
	0.41	Pipe Type: PVC
SECTION 3	SECTION 6	Pipe Type: PVC Stainless steel Conter Diameter: 2" Stainless Steel Conter Diameter: 2" State Steel Conter Slot size: 0.010 Steel Conter Other Other Conter Other Conter
		Other
Blank K	Chif's Blank	Diameter: 2" 🕅
	fo, Slotted	4"
		Other
	Sand	Slot size: 0.010 🔀
	4 Slag 4 pact.	0.020
		■ Other
Joint -	Joint -	SEALS:
		Depth below ground surface From To
SECTION 2	SECTION 5	Bentonite: -5.5' -0.4'
SECTION 2 Blank		Depth below ground surface $ \frac{From}{-5.5'} = \frac{To}{-0.4'} $ Cement: $ \underline{MONUMENTS:} $
Blank	Blank	Cement:
Slotted	Siotted	MONUMENTS:
	1 .	Elush mount IX Post
		Description Steel cap, 1/2" but heads
		Description <u>Steel cup, UZ" but heads</u> Depth below surface <u>Just abave</u> Stickup <u>No concerte</u>
]	
Joint	Joint -	JOINTS:
		Type Threaded
SECTION 1	SECTION 4	Pin end : Down
Blank	Blank	SAND PACK:
Slotted 🔀	5 Slotted	Type or gradation <u>10-20</u>
Slotted		Depth: From <u>26</u> To $5.5' - 5'/3 bass!$
		LOCKS: Type
		Pin end : Down Up X Up X <u>SAND PACK:</u> Type or gradation <u>10-20</u> Depth: From <u>26</u> To <u>5.5' - 5'/3 bagd</u> <u>LOCKS:</u> Type Key number <u>2004</u> Length cutoffs, last section: <u>0.7'</u>
		Length cutoffs, last section: 0.7'
Joint	073	
END CAP	Press Fit 24.2 btoc	Well stickup

S	J
Shannon &	Wilson, Inc.

Job No: 32-/-16821-3 Page / of Owner/Location USACE NE CAFE, ST. LAWRENCE INSLAND, SITE 3 Random No.: Well No.: 03 WPO2 Date: Weather: Time Started: _____ Time Completed: _____ MEASUREMENT DATA Measuring Point (MP): -JOPOF CA-SINE Height of MP Above or Below Land Surface: <u>3.6</u> MP Elevation: Water Level Elevation: Total Depth of Well Below MP: 6.12 Fr DTW Below MP: 8/22 3.94 / 6.54 1745:4.25 Time of Depth Measurement: Water Column in Well: Diameter of Casing: $1.25^{"}$ Gallons per ft: $0, 0.04^{-}$ Gallons in Well: Gallons to be Pumped/Bailed : Development Information: **FIELD PARAMETERS** Odor:_____ Color: Time: Volume: ORP: <u>32</u> pH: 6 Sp. Cond. 0.6 Temp: 12 12.4 Turbidity: BROWN DO: mg/L 1745 04 1541 75 108 9,11 2,19 Evacuation Method: PuRGE: Portstautic Pump _____ Sampling Method: ______Sample Time: _____ Sample ID, Analysis, Preservatives: Remarks: ______ Sampling Personnel: WELL CASING VOLUMES

GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46

Ę.

	GROUNDWATER SAMPLING LOG	
	Shannon & Wilson, Inc.	1
	Job No: <u>32-1-16</u>	2921-3
	Dumer/Location 46 Am - AVE / AP = ST 1 And P = VIE / 100 - ST - 3	
	Owner/Location US ACLE, ME LAPE ST. LAWRENCE ISLAND, STRE 3	
	Well No.: <u>03WP03</u> Random No.: Date:	
L	Weather: Time Started: Time Completed:	
	MEASUREMENT DATA	1
	Measuring Point (MP): <u>-TOP OF CASING</u>	
	Height of MP Above or Below Land Surface: 2.93 Fr.	
X	MP Elevation: Water Level Elevation:	Â;
	Total Depth of Well Below MP: 609 FT	7
	Time of Depth Measurement: DTW Below MP: (0-0-1-1-3-11-6-1-3-3)	5 3
	Water Column in Well:	
	Diameter of Casing: Gallons per ft: Gallons in Well:	
•	Gallons to be Pumped/Bailed :	
	Development Information:	
	FIELD PARAMETERS	
5/22		Rennel
1475	Volume: ORP: 21.8 pH.5.0 Sp. Cond. 0.454 Temp: 9.9 DO: 1.85 Turbidity: 5117 -11 33.3 5.54 MS/ 0.413 C 10.46 MS/ 1.2	
1817	13 ~12 80 -716 5167-7552 cm 2 0.378-0.350 9.74-10.64 57-3.49	<u>.</u>
	Evacuation Method: Purcher of PERISTALTIC PURC.	. ·
	Evacuation Method: Per. Pump polyethyler the Sample Time: 12:04	< see bedi
	Sample ID, Analysis, Preservatives:	
	Remarks:	_
	Sampling Personnel: BDH	_
	· <u>WELL CASING VOLUMES</u>	
	GAL/FT 2"=0.16 3"=0.37 4"=0.65 6"=1.46	

i.

and the second

· · · · · · · · · · · ·

į.	1	
	۶.	
GRÖUNI	WATER SAMPLING LOG	ې. د

AT HERE

Shannon & Wilson, Inc.

0 iN

Shannon & Wilson, Inc.				- And And And And And And And And And And	- tene -
		e e e	Job N	10: <u>32-1-168</u>	21-3
			Page		
Owner/Location USACE	. ,		View and the second		*.
Well No.: <u>Ø4NEO3WP</u>			Date: <u>8/20/00</u>	+ + 4 22/0	5-1,8/24
Weather: Haze Smile S	$\frac{\partial}{\partial}$ Time Started: _	1430	Time Completed:	4 de ⁶ e	in the second
MEASUREMENT DAT.		8122	#		
Measuring Point (MP): <u>N. s</u>	ite Top Caphe	susing			·
Height of MP Above or Below	Land Surface: 274	Frags 2.			
MP.Elevation:	^{&**} W	ater Level Elevation:	3001		
	Total	Depth of Well Below I	MP: 5.48		,
Time of Depth Measurement:		3	9120104 MP: 3.010 13:25	4/22/0	4 1431 🔊
	W	/ater Column in Well:		3.070	1653
Diameter of Casing:		:: <u>0.064</u> Gallon:		q	· ·
		Gallors to be Pumped/		<u> </u>	
Development Informatio				10.5.5	
Development Informatio	15:43 Lailal	devin 3 mil	-)17:09 3.10' -	- bailars (Filt	· 15/12
FIELD PARAMETERS	5/21/018 3,10-	build dry 10:2	5 111 5,10	aind dry 11:16	-
	11:48 3.17-	bailed day 11.52 Color	3		
TIME Wolume: ORP: 18 pH:	<u>; </u>			- Lovék	- CBin
1503-1651-11 40-540	<u>5.82</u> Sp. Cond. <u>0.6</u> 5.96 mS/ <u>0.78</u>		DO: ~12 mg/L 14 34	$\frac{(\mu)4}{2} - \frac{(\mu)4}{1055}$	SIUTY
	(m ²				
			له روم. ۲۵ میرو ۲۰ میرونی	xi zi	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
	· · · ·				'n
Evacuation Method: <u>Pers</u>	MALTIC PUMP	>			
Sampling Method:		Sample Time:			er back
Sample ID, Analysis, Preservati	ves:	CRU/BR	EX (AK101/SW8 AK102/103)	Zec) PAHS,	3
Remarks:					
Sampling Personnel: <u>BDH 9</u>	JAK				
	<u>WELL C</u>	CASING VOLUMES			
	GAL/FT 2" = 0.16	3"=0.37 4"=0.6	5 6'' = 1.46		
Guil 4 1 IN	~ 0.1				
N125 , 2			16)**		
× 0.16					
× 0.1- 5,025-			Ç7		2 - 50 g 1
0.10	с — А Х	÷	1 - P <u>1</u>		

λ.

Shannon & Wilson, Inc.

Job No: 32-1-16821-3 Page 1 of Owner/Location USACE, NE Cape St. Lawrence Ted Sites Well No.: 03 WP 06 (2) Random No.: _____ Date: 8/21/04, 8/22/04 Weather: Hazy 50's light Variatime Started: Time Completed: **MEASUREMENT DATA** New Succt - Point driven (decour 8/20) Near old Measuring Point (MP): N side Top cup housing Height of MP Above or Below Land Surface: 0, 48 MP Elevation: Water Level Elevation: • Total Depth of Well Below MP: DTW Below MP: 1445-3.46 1532.50/1 Time of Depth Measurement: 82 Water Column in Well: Diameter of Casing: $1/4^{4}$ Gallons per ft: 0.004 Gallons in Well: Suger purge Gallons to be Pumped/Bailed : Development Information: 15.01-3.46 projed dry 1507 / 16.04 3.61 projed dry 17:14 - 3:43 parged day / 1904 NoDThe guise prised day **FIELD PARAMETERS** Odor: "BURNED" DIL Color: GREY Time: DO: 17. pH: 6.9 Sp. Cond. 0.76 Temp: 7.67 1540 Volume: ORP: -178 Turbidity: SICT 0,95 (e-7,6,64 0.8 1740 0.881 Evacuation Method: PERSTALTIC PUMP Sampling Method: REPUSTALTIC PUMP Sample Time: 14 33 GRO/BREX(AKIO, SUSZ60), DRO/RRO (PK102/103). PAH SIM Sample ID, Analysis, Preservatives: 09NE03 Remarks: Sampling Personnel: BEN HEAVINER, JULIE KEENER WELL CASING VOLUMES

2		
		-

Shannon & Wilson, Inc.

		-1-16821-3
Owner/Location USACE	N.E. Cape St. Lawrence Isd. Site	of
Well No .: ØYNEØ300P6	N.E. Cape, St. Lawrence Isd, Site Random No.: Date: \$120104	
	track ime Started: Time Completed:	
MEASUREMENT DATA		
	de Top Cap housing	
	and Surface: 1.25 the New (after driving)	
MP Elevation:	·	
•	Total Depth of Well Below MP: 7.51	Shere .
Time of Depth Measurement:	Total Depth of Well Below MP: 7.51 <i>Gleo, 15:20</i> DTW Below MP: 6,11 6:55	• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
, -	Water Column in Well:	
Diameter of Casing:	Gallons per ft: Gallons in Well:	
	Gallons to be Pumped/Bailed :	\$
Development Information		
	: Surge + purge aforioro buller - 15:25-15-32 purged d 17:00 - 17:05 purge dry after drivit dreper. Se	Northest
5/ FIELD PARAMETERS	21 10:27-6.4 Likel dry 10351	
•	_ Odor: Color:	-
		ty:
F		
<u> </u>		· · · ·
Evacuation Method:	· · · · · · · · · · · · · · · · · · ·	
	Sample Time:	
	es:	
I0	WELL CASING VOLUMES	
	GAL/FT 2'' = 0.16 3'' = 0.37 4'' = 0.65 6'' = 1.46	3
DA WED WATL D.	rby 8/22/04 rby 8/21 - secother succt	
	1 white an other sheet	

	۹	

Shannon & Wilson, Inc.

GROUNDWATER SAMPLING LOG

Ŧ

Owner/Location Office, NC	Cape, St. Lawrence Isd., Site 6
Well No.: WP 6-3	Random No.: Date:
(a i NE 6 6 WP 1 6 3) Weather:	Random No.: Date: Time Started: Time Completed:
MEASUREMENT DATA	
	of casing
Height of MP Above or Below Lanc	d Surface: 2.45
MP Elevation:	Water Level Elevation:
	Total Depth of Well Below MP: <u>9.24'</u>
Time of Depth Measurement:	DTW Below MP:
	Water Column in Well:
Diameter of Casing: 1,25	Gallons per ft: 0,067 Gallons in Well:
	Gallons to be Pumped/Bailed :
Development Information.	
FIELD PARAMETERS	Odor: Color:
FIELD PARAMETERS Time:) Volume: ORP: pH : 0.125 4.1 6.7 0.125 4.1 6.7 0.125 4.1 6.7 0.125 4.1 6.7 0.125 4.1 6.7 0.25 30.8 6.3 0.575 44.3 6.1 0.5 121.5 6.0 0.75 120.5 6.0	Odor: Color:
FIELD PARAMETERS Time:) Volume: ORP: pH: O_{-125} -4.1 6.7 O_{-125} -4.1 6.7 O_{-125} -4.1 6.7 O_{-25} 30.8 6.3 O_{-375} 44.3 6.1 O_{-5} 121.5 6.0	Odor: Color: Sp. Cond. Temp: DO: Turbidity: $\frac{4}{7}$ 0.158 $\frac{7.45}{7.57}$ $\frac{5.21}{7.57}$ $\frac{7}{1}$ 0.245 $\frac{7.57}{7.57}$ $\frac{3.41}{7.45}$ $\frac{7}{1}$ 0.245 $\frac{7.57}{7.57}$ $\frac{3.41}{7.45}$ $\frac{7}{1}$ 0.208 $\frac{6.73}{7.57}$ $\frac{5.10}{7.10}$ $\frac{7}{7}$ 0.486 $\frac{6.54}{5.51}$ $\frac{-1}{7.70}$ $\frac{79}{64}$ 0.150 $\frac{6.411}{7.70}$ $\frac{7.70}{7.126}$
FIELD PARAMETERS Time:) Volume: ORP: pH: 0.125 4.1 6.7 0.125 4.1 6.7 0.125 4.1 6.7 0.25 30.8 6.3 0.55 121.5 6.0 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 150.2 5.6 Evacuation Method: $P = 1.54.41_{1.5}$ Sampling Method: $-1.54.41_{1.5}$	Odor: Color: P_{4}
FIELD PARAMETERS Time:) Volume: ORP: pH: 0.125 4.1 6.7 0.125 4.1 6.7 0.125 4.1 6.7 0.25 30.8 6.3 0.55 121.5 6.0 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 140.4 5.7 0.755 150.2 5.6 Evacuation Method: $P = 1.54.41_{1.5}$ Sampling Method: $-1.54.41_{1.5}$	Odor: Color: P_{4}
FIELD PARAMETERSTime: pH :Volume: ORP: pH : 0.125 4.1 0.125 4.1 0.25 30.8 0.35 44.3 0.55 121.5 0.55 121.5 0.75 1404 5.75 $1 191.2$ Sampling Method:Sample ID, Analysis, Preservatives:Remarks:	Odor: Color: DO: Turbidity: <u>4</u> 0.258 \times 7.45 \sim 5.21 \times <u>7</u> 0.245 7.57 3.41 <u>7</u> 0.245 7.57 3.41 <u>7</u> 0.245 7.57 3.41 <u>9</u> 0.256 6.73 5.10 <u>7</u> 0.456 6.73 5.10 <u>7</u> 0.456 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.54 6.54 <u>7</u> 0.456 6.54 6.54 6.54 6.54 6.54 6.54 6.54
FIELD PARAMETERSTime: pH :Volume: ORP: pH : 0.9 -6.7 0.125 4.1 0.25 30.8 0.35 14.3 0.5 121.5 0.5 121.5 0.75 140.3 0.75 140.3 0.75 120.5 0.75	Odor: Color: DO: Turbidity: <u>4</u> 0.258 \times 7.45 \sim 5.21 \times <u>7</u> 0.245 7.57 3.41 <u>7</u> 0.245 7.57 3.41 <u>7</u> 0.245 7.57 3.41 <u>9</u> 0.256 6.73 5.10 <u>7</u> 0.456 6.73 5.10 <u>7</u> 0.456 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.51 <u>7</u> 0.456 6.54 6.54 6.54 6.54 <u>7</u> 0.456 6.54 6.54 6.54 6.54 6.54 6.54 6.54

Turbidimeter not available

	,
	Job No: $32 - (-16821 - 3)$
	Job No: <u>32-1-16821-3</u> Page <u>1</u> of Well No: <u>0614185</u> Bandom No: Well No: <u>0614185</u> Bandom No: Date: <u>8122(048/2)</u>
	Well No.: 06 WP.5 Random No.: Date: 8123/048/24
	Weather: Time Started:
	MEASUREMENT DATA
	Measuring Point (MP): Top of Casing
	Measuring Point (MP): Top of Casing Height of MP Above or Below Land Surface: 3.11
	MP Elevation: Water Level Elevation:
	Total Depth of Well Below MP: 10,78
	Time of Depth Measurement: DTW Below MP: 7,18
	Water Column in Well:
	Diameter of Casing: 1,25 Gallons per ft: 0.064 Gallons in Well:
	Gallons to be Pumped/Bailed :
	Gallons to be Pumped/Bailed: Development Information: \$7.24' project dry 12:34 \$7.24' project dry 10:31 v1.29t 9/3: 7.99' Purged dry 12:34
	FIELD PARAMETERS
	Time:) Odor: None noted Color: redish brown
15.34	Time: Odor: None noted Color: redish Lown Volume: ORP: pH: Sp. Cond. Temp: DO: Turbidity: DO: Turbidity: D -190.8 7.77 0.755 mg 5.19°C 4.31 mg 7.96
1538	$O_{a} O_{a}
1542	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Evacuation Method: Peristallic Pump
	Sampling Method:Sample Time:
- 	Sampling Method:Sample Time:Sample ID, Analysis, Preservatives:
	Sampling Method:Sample Time:Sample ID, Analysis, Preservatives:Remarks:
a a a a a a a a a a a a a a a a a a a	Sampling Method:Sample Time:Sample ID, Analysis, Preservatives:Remarks:Sampling Personnel:Sampling Personnel:
	Sampling Method:Sample Time:Sample ID, Analysis, Preservatives: Remarks: Sampling Personnel: WELL CASING VOLUMES
	Sampling Method:Sample Time:Sample ID, Analysis, Preservatives:Remarks:Sampling Personnel:Sampling Personnel:

and the second second second second second second second second second second second second second second second

NE	2
Deep	er

sw.	
Shannon & Wilson, Inc.	

.

Job No: 32-1-16821-3
Owner/Location USACE NE Cope, St. Lowrence Isd., Size 6
Well No.: $06 w P6$ Random No.: Date: $9/2/09$
Weather: <u>Cloudy</u> 10-50's Time Started: Time Completed:
MEASUREMENT DATA
Measuring Point (MP): <u>Top</u> of <u>Casing</u> Height of MP Above or Below Land Surface: <u>4.41</u>
Height of MP Above or Below Land Surface: 4.41
MP Elevation: Water Level Elevation:
Total Depth of Well Below MP: 15.85
Time of Depth Measurement: DTW Below MP: 57
Water Column in Well:
Diameter of Casing: Gallons per ft: Gallons in Well:
Gallons to be Pumped/Bailed : Surge 2 Purge we peri pumpe high flow Development Information: <u>11:00 DTW: 4.57' purged dry 11:08</u> , 5 of 20:07 DTV: 6.81' purged dry 20:14 9/3 11:50 DTW: 6.72' purged dry 11:56 FIELD PARAMETERS
Time: Odor: Color: Grayish Brown
FIELD PARAMETERS Time: Odor: Color: $6 \sim y_1 \circ L & B \sim - \gamma$ Time: Odor: Color: $6 \sim y_1 \circ L & B \sim - \gamma$ Volume: ORP: pH: Sp. Cond. Temp: DO: Turbidity: D7 \sim Volume: ORP: pH: Sp. Cond. Temp: DO: Turbidity: D7 \sim Volume: ORP: pH: Sp. Cond. Temp: DO: Turbidity: D7 \sim 17:20 Og - 194.9 6.53 O.408 Sp. Cond. Temp: DO: Turbidity: DO: Turbidity: DO: Turbidity: DO: Turbidity: DO: DO: DO: DO: DO: D.20 D.20 D.20 D.20 D.20 D.20 D.20
Evacuation Method: Peristaltic Pump
Sampling Method: <u>OHNEO</u> Sample Time: 1535 9/5/04
Sample ID, Analysis, Preservatives: <u>OYNEOGGW 102; 2 × 1L HCL 2×1L UP. Gx Vo</u> A HCL 1×2 BTEx GRO PRORRO PCB; RCRA mells Polyu Remarks:
Sampling Personnel:
WELL CASING VOLUMES
GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46
Note: Volume after filling flow-through cell (V2 tigt)
Turbedimpte not available

\$

\$

<u></u>	9/1/04	73
Shannon & Wilson, Inc.	GROUNDWATER SAMPLING LOG	
· · · · · · · · · · · · · · · · · · ·	77-1-11	(CO)
	Job No: <u>32-1-16</u> Page 1 of	821-
Owner/Location USAC	E, N.E. Cape, St. Lawrence Ist. Site 6	
Well No.: 06 WP 6	Random No.: Date: <u>3/23/04,8/24</u>	
Weather:	Time Started: Time Completed:	
MEASUREMENT DAT		
Measuring Point (MP):	v Land Surface: 1,92	
Height of MP Above or Below	v Land Surface: 1,92	
MP Elevation:		
	Total Depth of Well Below MP: 10.81^{1835} DTW Below MP: 5.42^{1835}	
Time of Depth Measurement:	DTW Below MP: 5, 42 (8,29	
·	Water Column in Well:	
1	11	
Diameter of Casing: $1,25$	Gallons per ft: 0.064 Gallons in Well:	
Diameter of Casing: <u>1,25</u>	Gallons per ft: <u>0,064</u> Gallons in Well: Gallons to be Pumped/Bailed :	
Diameter of Casing: <u>1,25</u> Development Information	Gallons per ft: 0.064 Gallons in Well: Gallons to be Pumped/Bailed : 4.56 Ch on: 16.44 particulation -1651 1.75 of $8/24^{\circ}$ 10:39-5.78 particulation	ldr.
Diameter of Casing: <u>1,25</u> Development Information	Gallons per ft: <u>0,064</u> Gallons in Well: Gallons to be Pumped/Bailed : 50.76 Parse per Parp high Cha- on: <u>16:44 parsed day -1651 1.75ge 8/24 10:39-5.78 parsed</u> 8/24 16:13 6.76 no parsed	1 Jr.
Development Informatio	Gallons to be Pumped/Bailed : 5-5-5-5-5-5-7-5-7-5-7-5-7-5-7-5-7-5-7-5	1 dr., ~ i.s
Development Information	Gallons to be Pumped/Bailed : 4030 Prise of peri Prop 6156 Flor on: <u>16:44 project dry -1651 1.75gt 8/24 10:39-5.78 prise</u> 8/24 16:13 6.76 no prise	ldr., ~ 1.5
Development Information FIELD PARAMETERS Time:	Gallons to be Pumped/Bailed : $4uge + parge + periperiperiperiperiperiperiperiperiperi$	
Development Information FIELD PARAMETERS Time:	Gallons to be Pumped/Bailed : $4uge + parge + periper property on: 16:44 parge + 10:39-5.78 parge 8/24 16:13 6.76 8/24 16:13 6.76 0dor: Color: Color: $	
Development Information	Gallons to be Pumped/Bailed : $4uge + parge + periper property on: 16:44 parge + 10:39-5.78 parge 8/24 16:13 6.76 8/24 16:13 6.76 0dor: Color: Color: $	
Development Information FIELD PARAMETERS Time:	Gallons to be Pumped/Bailed : $4uge + parge + periper property on: 16:44 parge + 10:39-5.78 parge 8/24 16:13 6.76 8/24 16:13 6.76 0dor: Color: Color: $	
Development Information FIELD PARAMETERS Time:	Gallons to be Pumped/Bailed : $4uge + parge + periper property on: 16:44 parge + 10:39-5.78 parge 8/24 16:13 6.76 8/24 16:13 6.76 0dor: Color: Color: $	
Development Information	Gallons to be Pumped/Bailed : $4m_7e$ $parse$ $periped$ $parse$	
Development Information	Gallons to be Pumped/Bailed : $& & & & & & & & & & & & & & & & & & & $	
Development Information	Gallons to be Pumped/Bailed : Surge * Proje * Proje * Proje * Algh Flue on: $ 6:449$ purged drop -1651 $ 6:499$ purged drop -1651 $1.75gt$ $8/24$ $10:39-5.78'$ purged $8/24$ $16.136.76'$ no proje S Color:	
Development Information	Gallons to be Pumped/Bailed : \$\Gamma_1 \cong \co	
Development Information	Gallons to be Pumped/Bailed : $4 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6$	
Development Information	Gallons to be Pumped/Bailed : \$\Gamma_1 \cong \co	

÷.

New	
Relocated	į

	•
Shannon &	Wilson, Inc.

Turbid imeter not availably

GROUNDWATER SAMPLING LOG

			Page	
Owner/Location_USACE	NE Cape	St. Lawrence Isl	Size 6	
Well No.: $\mathcal{O}6 \mathcal{W}P7$	Random No.:	Date:	1/2/04	
Weather: Cloudy, 10- 50	Time Started:	Time Co	ompleted:	
MEASUREMENT DAT				
Measuring Point (MP): To	p of Casing			
Height of MP Above or Below	Land Surface: <u>7, 3</u>		· · · · · · · · · · · · · · · · · · ·	
MP Elevation:	Wate	er Level Elevation:		
	Total De	pth of Well Below MP: 12	.40	
Time of Depth Measurement:				
	Wat	er Column in Well:	,	
Diameter of Casing:	Gallons per ft:	0,064 Gallons in Well:		
Development Informatio	n: 1126 DIW9.36	and dry 1137~1.75	or rate	
۹/۲ FIELD PARAMETERS	2073 DIW 9.35' HIGO DIW 4.75' 1206 DIW4.75'	part day 2029 part day 156 73 part day stopped p	X mping - Irss tur	1. J. ~ 1 50 10-
Development Informatio	2073 DIW 9.39 HIGO DIW 4.75 1206 DIV9,44 Odor:			i J, -1 50 100
Time: $pH:$ Volume: ORP: $pH:$ $0 - 25$ 42.5 55 0.5 42.5 42.5 $7:010.75$ 55.2 $7:05$ 101.6	Odor: <u>Sp. Cond.</u> <u>0,092</u> <u>0,092</u> <u>0,080</u> <u>0,080</u> <u>0,080</u> <u>0,080</u> <u>0,080</u> <u>0,080</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,092</u> <u>0,090</u> <u>0,092</u> <u>0,092</u> <u>0,090</u> <u>0,092</u> <u>0,090</u> <u>0,092</u> <u>0,090</u> <u>0,092</u> <u>0,090</u> <u>0,092</u> <u>0,090</u> <u>0,090</u> <u>0,090</u> <u>0,090</u> <u>0,090</u> <u>0,075</u> <u>5,891</u> <u>0,077</u>	Color: Temp:DO: %~ <u>5.94</u> 	 	D7
Time: Volume: ORP: 21.0 45.5 25.5 42.5 42.5 42.5 7.5 7.5 101.6 Evacuation Method: Production Method	Odor: Sp. Cond. 	Color: Temp: DO: 3.5492 -5.5492 -4.61 -4.38 -4.17	Turbidity: <u>5.95</u> <u>7.31</u> <u>8.50</u> <u>9.02</u>	D7
Time: Volume: ORP: $pH:$ 2l.0 2	Odor: Sp. Cond. 	Color: Temp: DO: 36-4 5.64 -4.61 -4.38 -4.17 Sample Time: 1327	Turbidity: <u>11.30</u> <u>5.95</u> <u>7.31</u> <u>8.50</u> <u>9.02</u> <u>9.02</u>	D7-
Time: Volume: ORP: 21.0 21.0 21.0 21.0 21.0 22.5 42.5 42.5 55 0.5 60.9 705 101.6 Evacuation Method: Sampling Method: Sample ID, Analysis, Preservation	Odor: Sp. Cond. 	Color: Temp: DO: 36-4 5.64 -4.61 -4.38 -4.17 Sample Time: 1327	Turbidity: <u>11.30</u> <u>5.95</u> <u>7.31</u> <u>8.50</u> <u>9.02</u> <u>9.02</u>	D7-0
Time: Volume: ORP: $pH:$ 2l.0 2l.0 2l.0 42.5 45.5 40.4 42.5 40.4 40.5 40.4 40.5 40.4 50.5 40.4 40.4 50.5 40.4 40.4 50.5 40.4 40.4 50.5 40.4 4	Odor: Sp. Cond. 0,092 0,092 0,092 0,085 0,080 0,075 5,89 0,075 5,89 0,075 0,075 0,075 0,075 0,075 0,075 0,075 0,092 0,075 5,899 0,075 5,899 0,075	Color: Temp: DO: 36-4 5.64 -4.61 -4.38 -4.17 Sample Time: 1327	Turbidity: <u>11.30</u> <u>5.95</u> <u>7.31</u> <u>8.50</u> <u>9.02</u> <u>9.02</u>	D7-0
Time: Volume: ORP: 21.0 21.0 21.0 21.0 21.0 22.5 42.5 42.5 55 0.5 60.9 705 101.6 Evacuation Method: Sampling Method: Sample ID, Analysis, Preservation	Odor: Sp. Cond. 0,092 0,092 0,092 0,085 0,080 0,085 0,080 0,080 0,075 5,89 0,075 5,89 0,075	Color: Temp: DO: 36-4 5.64 -4.61 -4.38 -4.17 Sample Time: 1327	Turbidity: <u>11.30</u> <u>5.95</u> <u>7.31</u> <u>8.50</u> <u>9.02</u> <u>9.02</u>	D7 6

	፟፟፟ትኩለተቅም		00	B	ed 9, H
Shannon & Wilson, I		WATER SAMPLING L	<u>.0G</u>		-
,				* 	ICD:
				Job No: <u>32-1-</u> Page 1 0	- <u>16 82[-</u> of
Owner/Location_U.	SACE N.E.	Cape, St. Lawer	ence Isl	, Site 6	······
Well No .: Dou	1P 🐖 Random N	lo.: Da	ate: <u>\$/53/0</u>	4,8/24	
Weather:	Time Star	ted:	Time Complete	d:	
MEASUREMEN	T DATA				
Measuring Point (MI	"): Top of Cas	ing			
Height of MP Above	or Below Land Surface:	2,36	- · _ · · ·		
MP Elevation:		Water Level Elevation: _		. 16:25	
		Total Depth of Well Below M	P: <u>9,76</u>		
Time of Depth Measu	irement:	DTW Below M	2: <u>8,08</u>	- (18:21 4,14	
A Z		Water Column in Well:			
. –		s per ft: <u>0.06</u> 4Gallons in			
. –	Surge + p- formation: <u>1625 p-</u> 8/24 1624 8				
Development Inf	Surge + p- formation: <u>1625 p-</u> 8/24 1624 8	s per ft: <u>0.06</u> 4Gallons in	ailed : 56 616- 7 - 9/34 10		
Development Inf <u>FIELD PARAM</u>	Surge + p formation: <u>1625 p</u> 8/24 1624 8 ETERS	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 56 616- 7 - 9/34 10		
Development Inf <u>FIELD PARAM</u> Time:	Surge + p- formation: <u>1625 p-</u> %/24 1624 & ETERS Odor:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 56 610- 7 1 3/34 10	Atc 50 8,18 pm	
Development Inf <u>FIELD PARAM</u> Time:	Surge + p- formation: <u>1625 p-</u> %/24 1624 & ETERS Odor:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 56 610- 7 1 3/34 10	Atc 50 8,18 pm	
Development Inf <u>FIELD PARAM</u> Time:	Surge + p- formation: <u>1625 p-</u> %/24 1624 & ETERS Odor:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 56 610- 7 1 3/34 10	Atc 50 8,18 pm	
Development Inf <u>FIELD PARAM</u> Time:	Surge + p- formation: <u>1625 p-</u> %/24 1624 & ETERS Odor:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 56 610- 7 1 3/34 10	Atc 50 8,18 pm	
Development Inf	Surge + p- formation: <u>1625 p-</u> %/24 16024 & ETERS Odor: 	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u>per prophy</u> <u>refer dry - 1627 ~,759</u> .79 and project Color:	ailed : 5 6 6 6 7 7 5 7 7 10 5 7 10	Atc 50 8,18 pm	
Development Inf	Surge + p- formation: <u>1625 p-</u> %/29 16024 & ETERS Odor: 	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba 	ailed : 5	Turbidity:	
Development Inf	Surger P Sormation: 1625 p S/29 16024 & ETERS Odor: Odor: PH:Sp. Cond PH: Preservatives:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u></u>	ailed : 5' 6'10- 7 9/34 10 DO:	Turbidity:	
Development Inf	Surger P Sormation: 1625 p S/29 16294 & ETERS Odor: Odor: Odor: Odor: PH:Sp. Cond PH: Preservatives:	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba 	ailed : 5 ⁶ <i>(10</i>	Turbidity:	
Development Inf	Surger P Surger	s per ft: <u>0.06</u> 4Gallons in Gallons to be Pumped/Ba <u></u>	ailed : 5 ⁶ <i>(10</i>	Turbidity:	

s	
Shannon & Wilson	, Inc.

			Job No: 32-1-	16821-3
	a a simo u o		Page of	
		102 STORAGE TANKS	Data: S. Grall	_
	Well No.: <u>10-1</u>	Randolli No	Date: <u>9-5-04</u> Time Completed: <u>1630</u>	-
		Time Started. $\underline{-1290}$		_
	MEASUREMENT DATA			
	Measuring Point (MP): <u>100</u>	7.55'		
	Height of MP Above or Below Land			
	MP Elevation:		n:	
		Total Depth of Well Belo	WMP: 1.92 WMP: 4.89', 7.15e134	0
	Time of Depth Measurement:		•	
	14 QK		ons in Well: <u>1.07</u>	
	Diameter of Casing:			
		Gallons to be Pumpe	3d/B ailea -:	
	Development Information:	3	+ _	_
	FIFT D DADAR/FFTEDC	15 mg/2 Alk, Fe	0,0	
	FIELD PARAMETERS		tuRBID lor: 4. BROWN -> SL- TURBIC	~
1273	Time:(,		,
1326	$\frac{11}{200} = \frac{11}{4.6}$	Pp. Cond. 0.12.3 Temp: 9.40 8 0.105 9.28 9.28	$\begin{array}{c} \text{DO:} (\underline{0,25} \\ \underline{4,11} \end{array} \text{ Turbidity:} \underline{} \\ \underline{4,11} \end{array}$	`. `
1328	2 210 5.00 7.560 2410 5.2	$\frac{10.01}{3}$ $\frac{10.01}{9.95}$	4.98	
1334	<u>3"</u> <u>248.4</u> <u>5.2</u>	6 ~ 6.58 <u>9.50</u>	$\frac{\overline{0.98}}{0.91}$	3
340-1403	<u>5 11 293 1 5.</u>		8 0.89 9	15,88.6
jle18	135,4 5.4		3.80 81	0.3
	Evacuation Method: <u>GRUND</u>		13E (
	Sampling Method: CALUNDE Sample ID, Analysis, Preservatives:		350 (Noltro@1353)	
		220, PAH, G-196/2n/Hg, 1	14A.P.	
	Sampling Personnel: <u>PH</u> , JK			
		WELL CASING VOLUME	 S	:
	C A I	L/FT 2" = 0.16 3" = 0.37 4" = 0		
	OAKTON TUP BIDI METOR			
ILA D	(0.39 BTOL @1413, 6.20'			

GROUNDWATER SAMPLING LOG

			Job No: 32-1-16
Owner/Location SINE 11			Page of
	Random No.:	Date:	5-04
	Time Started: 1640		
MEASUREMENT DATA			
Measuring Point (MP): <u>10</u>	C		
Height of MP Above or Below I	Land Surface: <u>F2.7</u>		
MP Elevation:	• Water Level	Elevation:	
	Total Depth of W	Vell Below MP: <u>20</u> .	3
Time of Depth Measurement:	DT	W Below MP: <u>9.72</u>	· · · · · · · · · · · · · · · · · · ·
	Water Colum	nn in Well: <u>10,58</u>	
Diameter of Casing: <u>2"</u> P	Gallons per ft: 0.16	Gallons in Well:	1.7
	Gallons to b	e Pumped/Bailed :	
START PURPINE 1650	n:		
FIELD PARAMETERS	DIESEL		,
	Odor: SL. WEATH.	Color: MOREL	/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.95 7.47 7.70 7.78 7.78 7.78 7.87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Evacuation Method: Enurt	2605 3tof De	285 -> 15-20	noll MK.
Sampling Method: GUNG	Sample Sample	Time: 1725	0
Sample ID, Analysis, Preservati	ves: 04NE11GW102		
	nin		

WELL CASING VOLUMES

GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46

,

Sampling Personnel:

GROUNDWATER SAMPLING LOG

Job No: 32-1-16821-3 Page of Owner/Location USACE NE Cape
 Well No.:
 //e-/
 Random No.:
 Date:
 9/12/04
 Weather: _____ Time Started: _____ Time Completed: _____ 9/9 152; DTW= 15.73 FT BTOOL BACK MEASUREMENT DATA Measuring Point (MP): Top of PUC casting Height of MP Above or Below Land Surface: + Water Level Elevation: MP Elevation: Total Depth of Well Below MP: - 16.7' Time of Depth Measurement: <u>9/12 11:20</u> DTW Below MP: <u>15,94</u> Water Column in Well: Diameter of Casing: _____ Gallons per ft: _____ Gallons in Well: _____ Gallons to be Pumped/Bailed : Development Information: FIELD PARAMETERS Time: Odor: Color: Volume: ORP: _____ pH: ____Sp. Cond. ____ Temp: _____ DO: _____ Turbidity: _____

Evacuation Method	: <u>Peristaltic - No</u>	t enough water, distarts sediment, got a fly!
	Not Sampled	Sample Time:
Sample ID, Analysi	is, Preservatives:	
Remarks:	Discussed Lack of	f water w/ DOM, PM > Don't sample

WELL CASING VOLUMES

				Job No:
				Page of
Owner/Location				
Well No.: 16-2	Random No.: _		Date: 9/1	2/04
Weather:	Time Started:		Time Comp	oleted:
MEASUREMENT DAT	<u>'A</u>			
Measuring Point (MP):	p of PUC case	ng		
Height of MP Above or Below				
MP Elevation:				
	Total	Depth of Well H	Below MP:	.1051
Time of Depth Measurement:	9/12@11.48	DTW B	elow MP: (9/9)	530: 15:48' 15:57
Ĩ		Water Column in	Well:	
Diameter of Casing:				
		Gallons to be Pu		
Development Informatio				
	J			
FIELD PARAMETERS				
Time:	Odor:		Color:	
Volume: ORP: pH:	Sp. Cond	Temp:	DO:	Turbidity:
	·			
	<u> </u>			

Evacuation Method:	GeoSquirt - Not enough water	_
Sampling Method:	Sample Time:	
Sample ID, Analysis,	Preservatives:	

Remarks: Not Sampled (Sec 16-1)

Sampling Personnel:

WELL CASING VOLUMES

				Job No:32-	-1-16821-3
11. 1.	NE			Page	of
Owner/Location USACE Well No.: <u><u>le-3</u></u>			Date: 7/1	E/04	
Weather:				leted:	
MEASUREMENT DATA	_	· _ · _ · _ · _ · _ · _ · · · · · · · ·	· · ·		
Measuring Point (MP):	_				
Height of MP Above or Below L					
MP Elevation:		Water Level Elevation			·.
Time of Depth Measurement:	9/12 Total 17:11	l Depth of Well Bel /5.93' DTW Belo	ow MP: <u>16.</u> ow MP: <u>9/9</u>	lei' 1530 - 15.8,	, '
		Water Column in W	'ell:		
Diameter of Casing:	Gallons per	ft: Gal	llons in Well:		
		Gallons to be Pump	ed/Bailed :		
Development Information	ı:				
FIELD PARAMETERS					
Time:	Odor:	Co	olor:		
Volume: ORP: pH:				Turbidit	ty:
	·				
Evacuation Method: <u>Baula</u>	r - barely e	nough watt			
Sampling Method:		Sample Time:		=	·
Sample ID, Analysis, Preservativ	/es:				

Remarks: Not Sampled - Sec 16-1

Sampling Personnel:

WELL CASING VOLUMES

SII	
Shannon & Wilson, Inc.	

w 22

GROUNDWATER SAMPLING LOG

Job No: B2-1-16821-3 Page ^t of Owner/Location USACE NE Carpe, corner of perimeter Doad, NW Random No.: _____ Date: <u>9-9-04</u> Well No.: (TMW) Time Started: _____ Time Completed: _____ Weather: **MEASUREMENT DATA** Measuring Point (MP): Height of MP Above or Below Land Surface: -0.3Water Level Elevation: MP Elevation: Total Depth of Well Below MP: - H 17.1 DTW Below MP: (9.63)Time of Depth Measurement: Water Column in Well: 1.47 Diameter of Casing: 2^{4} CVL Gallons per ft: 6.16 Gallons in Well: $1-2^{2}$ 3.4 Gallons to be Pumped/Bailed : Development Information: <u>-9/7 15:42-15755 2185 l.</u> 1620-1634 (~1GANON), 1639-1705 9.65" NHZD FIELD PARAMETERS SLIGHTLY TURBID. Color: APPRILY & Time: Odor: Sp. Cond. 0. 394 Temp: 5-0 Volume: ORP: 108 DO: pH: 6. Turbidity: 767 6 230' Vacuation Method: CKM Sample Time: 1700 Sampling Method: Sample ID, Analysis, Preservatives: 04me & Gw 103 - G/B D/R 4 METALS, NAP Remarks: Manop Pump up SHONDBE O 4NESTEW 104 Sampling Personnel: ______, RHESSONE

 $\frac{\text{WELL CASING VOLUMES}}{\text{FERFOUS }}$ $\frac{\text{WELL CASING VOLUMES}}{\text{WELL CASING VOLUMES}}$

		•
C1	0	337'1

Shannon & Wilson, Inc.

				No: 32-(-/69	
Owner/Location_USACE	N.E. Cape	Across pe	Page	= 1 of from Site 14	
Well No .: 18 MW-1	Random No.:	Date	: 9/9/04/9/	10/04	
Well No.: 18 MW-1 upper 505 Weather: Overcast, breezy,	Time Started: 17.36	. Tir	me Completed: /	9115	
MEASUREMENT DATA					
Measuring Point (MP): <u>Top of</u>	PUC casing,	<i>N</i>			
Height of MP Above or Below Land	21				
MP Elevation:	Water I	Level Elevation:			
Time of Depth Measurement: 19:30				9/10 199.65	
Diameter of Casing:		Column in Well:			
Diameter of Casing:					
		s to be Pumped/Bail	·····		4 - 19 - 19 - 19 - 19
Development Information: 1 Furged 30gallons - Ver and top water level. 18 FIELD PARAMETERS	Noll Makes go G clear mid- B:30 - 19:30, Lo RUMP 1817-	column, nearly column, nearly its of corn of	Asca Oros la clear a pilon lasc	t hard botte + 6-7' of pu	ing, lead, tub
Time: (Odor:	Color:_S	LATURBIC	<u>).</u>	
Volume: ORP: <u>230</u> pH: <u>6.66</u> <u>>1</u> <u>214.6</u> <u>5.8</u> <u>16</u> <u>2.13.2</u> <u>6.00</u> <u>26</u> <u>2.5</u> <u>214.0</u> <u>6.00</u> <u>36</u> <u>3.5</u> <u>218</u> <u>6.00</u> Start sample @ 4 gel. purre	1 6.034	4.08	DO: 1 <u>4.8</u> 1 <u>4.52</u> 1 <u>4.61</u> 14.60 14.60	Turbidity: <u>47.2</u> <u>36.3</u> <u>36.6</u> <u>24.2</u>	750ml/m ,24.6
Evacuation Method: @ Pumo for	Ş				
Sampling Method: GRUNDFOS		mple Time: 1835			
Sample ID, Analysis, Preservatives:	04NE186W/04	4.4/R. D/R,	4 m		
Remarks: <u>D.O. readings</u>	way too high.	Calitrate p	H& Cond.	regularly.	
Sampling Personnel: <u>R</u> Z? 4	JK	Pressure.		- Necel a trava	51134
	WELL CASI	NG VOLUMES			
GAI	L/FT 2" = 0.16 3" =	0.37 4" = 0.65	6'' = 1.46		
		·			
			4.		
•					

Shannon & Wilson, Inc.

	Job No: <u>32-1-16821-</u>
	Owner/Location_USACE NE Cape Page of
	Well No.: <u>70 Mw-1</u> Random No.: Date: <u>9/10/04/9/1-87</u> Ewind to 10
	Weather: Mostly Clear, 505 Time Started: D=13:50 Time Completed: D=14:35
	MEASUREMENT DATA
	Measuring Point (MP): Top of PUC casing
	Height of MP Above or Below Land Surface:
	MP Elevation: Water Level Elevation:
	$q/10$ Total Depth of Well Below MP: $\frac{29.98^{2}}{440}$
	Time of Depth Measurement: 13:48/1448 DTW Below MP: 22.48/23.32/22.58
	Water Column in Well: 45-5-
	Diameter of Casing: $2^{\prime\prime}$ Gallons per ft: 0.16 Gallons in Well: 1
	Gallons to be Pumped/Bailed : 31
	Development Information: Geosgairt w/1/2" tubing - moved up todown through water column Some resty color, but significant clearing around
	Vater column Some reisty color, but significant clearing around 35gal. 48gal. total purge. fund 1042 - FIELD PARAMETERS
	Time: Odor: NONE Color: SILTY TOURB, D, LT. BROWN
1043	Volume: ORP: 157.3 pH: 7.08 Sp. Cond. 0.118 Temp: 3.58 DO: 13.73 Turbidity:
1047	$\frac{1}{2} \frac{220.5}{700} \frac{6.19}{6.22} \frac{6.09-0.1}{0.08} \frac{4.04}{5.23} \frac{12.09}{12.14} \frac{721}{397}$
1052	$\frac{3}{4} \frac{2004}{213.7} \frac{6.14}{6.057} \frac{0.21}{0.05} \frac{5.43}{5.25} \frac{12.75}{12.77} \frac{259}{191}$
101	$\frac{1}{5} \frac{2.17.6}{2.18.2} \frac{5.78}{5.97} \frac{1}{6-193} W \frac{5.17}{5.25} \frac{12.57}{12.87} \frac{122}{548}$
11-1	
	Evacuation Method: GRUNPAS, SET AUMPAR 2665 Broc
	Sampling Method: <u>GRUNDFOS</u> Sample Time: <u>105</u>
	Sample ID, Analysis, Preservatives: 04NEZOGW104 G/B, 10/RU, 4M, NAP
	Remarks: 12/min purge - Surprisingly turbid.
	Sampling Personnel: CHESSER
	WELL CASING VOLUMES
Aik	$\frac{\text{WELL CASING VOLUMES}}{\text{GAL/FT} 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46}$ = 0.18 Forfours
pusil	=0.18 Folfours
5.~	

	Job No:
	Page of
	Random No.: Date: 9-6-04
Well No.: MN 88-	
-	Time Started: 1645 Time Completed:
MEASUREMENT DATA	
v	
Height of MP Above or Below Lar	nd Surface:
MP Elevation:	Water Level Elevation:
	Total Depth of Well Below MP: 24. 6
Time of Depth Measurement:	DTW Below MP: $15.87'(1827=15.85')$
	Water Column in Well: 8.29
Diameter of Casing: <u>2" PVC</u>	Gallons per ft: $D.lle$ Gallons in Well: 1.3
	Gallons to be Pumped/Bailed :
Development Information:	
STARY PUMPINE 17	15, DRYE 1742,
STORE PUMPINE 17 FIELD PARAMETERS	19, DRYE 1742, NEARLY
STORE PUMPINE 17 FIELD PARAMETERS Time:	Odor: Color: Color: Color:
$\begin{array}{c} & \text{STRAL fumfind 17} \\ \hline \textbf{FIELD PARAMETERS} \\ \hline \textbf{Time:} \\ \hline \textbf{Volume: ORP:} \\ \hline \textbf{PH:} \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \\ \hline \textbf{PH:} \hline \textbf{PH:} \\ \hline \textbf{PH:} $	NEARY Odor: Color: Color: Color: Conc Conc Sp. Cond. Temp: Color: DO: Turbidity: Z8 0.068 5.03 3.23 12.53 81 0.107 5.05 3.12 7.97/7 No 0.102 5.08 3.20 5.76 No 0.102 5.08 3.21 7.97/7 No 0.102 5.08 3.20 5.76 No 0.102 5.08 3.21 7.97/7 No 0.102 5.08 3.21 7.71/00 No 0.102 5.08 3.21 7.71/00 No 0.104 5.96 -05000 3.24 5.34/4.90 74 0.104 5.97 3.24 2.000000 2.0000000 9000000000000000000000000000000000000
STARL PUMPING 17 FIELD PARAMETERS Time: Volume: ORP: pH: 1 GALL. 211 3 2 GALL 212 5 7 207.5 5 4 266.3 5 4 266.3 5 4.5 202.1 5 4 206.3 5 4.5 202.1 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 4 206.3 5 5 207.1	IG, DAYE 1742, Odor: Color: Color: Color: Current Sp. Cond. Temp: Left DO: Turbidity: ZS 0.068 5.03 3.23 12.53 XI 0.107 5.05 3.12 7.97 /m No 0.102 5.05 3.20 5.76 No 0.102 5.05 3.21 7.97 /m No 0.102 5.05 3.20 5.76 No 0.102 5.05 3.21 7.97 /m No 0.102 5.05 3.21 7.97 /m No 0.102 5.05 3.21 5.76 No 0.102 5.05 3.21 7.71 /m No 0.104 5.96 -050 /m 3.24 5.34/49 74 0.104 5.97 0.050 /m 3.24 2.006 @m SUN//MIN SUN//MIN 3.24 2.006 @m 2.006 @m SUN//MIN SUN//MIN 3.24 2.006 @m 3.24
STARL PUMPING 17 FIELD PARAMETERS Time: Volume: ORP: pH : $1 GAU \cdot U$ $2 GAU \cdot U$ $3 GAU \cdot U$ 3 GAU	IG, DYE 1742, NEARLY Odor: Color: Color: Clark Sp. Cond. Temp: Let DO: Turbidity: ZX 0.068 5.03 3.23 12.53 X1 0.107 5.05 3.12 7.97/7 X0 0.102 5.08 3.20 5.76 No 0.102 5.08 3.21 7.97/7 X0 0.102 5.08 3.20 5.76 No 0.102 5.08 3.21 7.97/7 X0 0.102 5.08 3.21 7.97/7 X0 0.102 5.08 3.21 7.97/7 X0 0.102 5.09 3.21 5.76 X12 5.16 uscratting 3.31 5.34/49 X143 5.34/49 5.94 5.94 9.94 X143 5.94 9.90 9.90 3.24 2.60 X143 5.74/49 9.90 9.90 9.90 2.60 9.90 X143 5.91 9.91 9.92 9.90 9.90 <
STARL PUMPING 17 FIELD PARAMETERS Time: Volume: ORP: pH: 1 GAU · UI 3. 2 GAU 212.0 5. 7 207.5 5. 4 206.3 5. 4 206.3 5. 4 206.3 5. 4 206.3 5. 4 206.3 5. 4 5.5 202.1 5. 4 5.5 201.2 5. PURGE Evacuation Method: GRUNDES Sampling Method: GRUNDES Sample ID, Analysis, Preservatives	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Grad fumlind 17 FIELD PARAMETERS Time: Volume: ORP: pH: $1 GAU \cdot UI$ 3.5 2 GAU 212.0 5.7 207.5 5.7 4 206.3 5.7 5 7.7 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

-ALK= 15 M9/L

/

Shannon & Wilson, Inc.

				Job	No: 32-1-1	6821-3
	a Interior USALE	= NE	ane	Pag	ge of	
	Owner/Location USACE Well No.: MN 88-2	Random No.:		Date: 9/7/6	24	
	Weather: 55°C	Time Started:	1130	Time Completed:	1300	
	MEASUREMENT DATA					
	Measuring Point (MP): TOL	·		······································		
	Height of MP Above or Below La	and Surface: -0.5	/			
	MP Elevation:		er Level Elevation			
		Total De	epth of Well Below	MP: <u>19:45</u>		
	Time of Depth Measurement:		DTW Below	MP: 7.61 -	e 11:40	
		Wa	ter Column in Well	: 11.84		
	Diameter of Casing: <u>2" WC</u>	Gallons per ft:	0.1ψ Gallo	ns in Well: <u>1.9</u>		
		Ga	llons to be Pumped	l/Bailed :		
Pun	Development Information Purper 1159 12:					
(FIELD PARAMETERS			SILTY		
	Time:	Odor: 3LW.He	Color Colo	r: SLAMEBIO		
1199	Volume: ORP: 256 pH/o.	01 Sp. Cond. 0.144	7 Temp: <u>4.8</u>	DO: 6.23	Turbidity:	- 750 ml/
1208	4 CALLON 208 5 2 145 5	88 0-14	e <u>5.65</u>	<u>0.47</u> 0.47	36	
12H	$\frac{22.5}{3}$ $\frac{128.5}{107.5}$ $\frac{5}{5}$	$\frac{90}{0.94}$ $\frac{0.147}{0.15}$	2 5.83	<u>0.32</u> 0.27	$\frac{4/3}{12}$	NTU 1
1221	4.5 95.8 1	<u>5.95</u> <u>0.15</u>	$\frac{4}{5.71}$	0.27	59	3
122	7 ~ 7 83.2 (1.02 0.15	9 4.94		93	<u>×/_</u> 2
[Pullie Evacuation Method: Caruma	DRUS				
	Sampling Method	Gar	Sample Time:	1230	·	
	Sample ID, Analysis, Preservative	es: 04NE88EV	J102, GR	BREX, DRO/PH	20, 4 METRI	PAH, NAV
	Remarks: MRG. INCROPS	OD BURNESAN	npyne			
	Sampling Personnel: J.K.	NOR R. HESS	orve			
		WELL CA	SING VOLUMES	1		
	C	GAL/FT 2" = 0.16 3	6'' = 0.37 $4'' = 0.37$	65 6'' = 1.46		
	1.34 mg/il Fortows					
	1.34 mg/l Fortons to mg/e Ack					
	Ŭ A.					

Shannon & Wilson, Inc.

GROUNDWATER SAMPLING LOG

				2-1-16821-3
Owner/Location			Page	of
Well No.: MW 88-3	Random No.	Date	9/7/04	
Weather:				
MEASUREMENT DATA				·····
Measuring Point (MP):	-			
Height of MP Above or Below La	and Surface: - 20.5			<u> </u>
		vel Elevation'		
MP Elevation:				(
Time of Depth Measurement:	Total Depth C	DTW Polow MP.	11.46 12.70	> Pump
1 ime of Depth Measurement.				-
- AYOU			8.14	
Diameter of Casing: $2^{\vee}PVL$	· · · ·			
	Gallons	to be Pumped/Baile	d: <u>3.9</u>	,
Development Information	: Looks pretty 4	cat, fronsta	rt.	
Rents 1302 +7747	-1251 RumP 2/26	and - Are -	copar - Welly	reales t
ny simil 127	1.) (1 1200		qua	
FIELD PARAMETERS	11.5 bruc in abo	at 20min,	yet can't pu	mp store
FIELD PARAMETERS	11.5 bruc in abo	at 20min,	yet can't pu	mp store
FIELD PARAMETERS	0dor: s	cit Zamin, Color: <u>5L</u>	yct cant pur	mp stores
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> .32.Sp. Cond. <u>0.24</u> J To	crt 2.9min, Color: <u>50</u> emp: <u>6.27</u> I	<u>yet cant</u> PM - TURBID 7 NG DO: <u>1.30</u> Turbic	inp 5600 co may wern lity: <u>48.9</u> 24
FIELD PARAMETERS	11.5 bruc in abo Odor: <u>\$</u> .32.Sp. Cond. <u>0.24</u> J To	cit Zamin, Color: <u>5L</u>	yct cant pur	mp stores
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> .32.Sp. Cond. <u>0.24</u> J To	crt 2.9min, Color: <u>50</u> emp: <u>6.27</u> I	<u>yet cant</u> PM - TURBID 7 NG DO: <u>1.30</u> Turbic	inp 5600 co may wern lity: <u>48.9</u> 24
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> .32.Sp. Cond. <u>0.24</u> J To	crt 2.9min, Color: <u>50</u> emp: <u>6.27</u> I	<u>yet cant</u> PM - TURBID 7 NG DO: <u>1.30</u> Turbic	inp 5600 co may wern lity: <u>48.9</u> 24
FIELD PARAMETERS Time:	11.5 brec in abo Odor: <u>\$</u> .32 Sp. Cond. <u>0.24</u> J To 2.16 	crt 2.9min, Color: <u>51</u> emp: <u>6.27</u> 1.2 	<u>yet cant</u> PM - TURBID 7 NG DO: <u>1.30</u> Turbio	ity: <u>48.9</u> 20
FIELD PARAMETERS Time:	11.5 brec in abo Odor: <u>s</u> <u>32</u> Sp. Cond. <u>0.2ie</u> J To <u>2.16</u> <u>0.158</u> <u></u>	crt 2.9min, Color: <u>50</u> emp: <u>6.27</u> <u>1.2</u> 	yet can't \$60 - TURBID 7 NO DO: 1.30 Turbic 1.25 	inp 5600 co may wern lity: <u>48.9</u> 24
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> <u>32</u> Sp. Cond. <u>0.24</u> 9 To <u>246</u> <u>0.168</u> <u></u>	crt 2.9 min, Color: <u>51</u> emp: <u>6.27</u> I <u>1.2</u> ple Time: <u>161</u>	5	inp 560 co may wern lity: <u>48.9</u> 24 <u>13.19</u>
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> <u>32</u> Sp. Cond. <u>0.24</u> 9 To <u>246</u> <u>0.168</u> <u></u>	crt 2.9 min, Color: <u>51</u> emp: <u>6.27</u> I <u>1.2</u> ple Time: <u>161</u>	5	inp 560 co may wern lity: <u>48.9</u> 24 <u>13.19</u>
FIELD PARAMETERS Time:	11.5 bruc in abo Odor: <u>\$</u> <u>32</u> Sp. Cond. <u>0.24</u> 9 To <u>246</u> <u>0.168</u> <u></u>	crt 2.9 min, Color: <u>51</u> emp: <u>6.27</u> I <u>1.2</u> ple Time: <u>161</u>	5	inp 560 co may wern lity: <u>48.9</u> 20 <u>13.19</u>
FIELD PARAMETERS Time:	11.5 brec in abo Odor: <u>s</u> <u>32</u> Sp. Cond. <u>0.2ie</u> J To <u>2.16</u> <u>2.16</u> <u>2.16</u> <u>2.168</u> <u>2.168</u> <u>2.168</u> <u>2.168</u> <u>32</u> Sp. Cond. <u>0.2ie</u> J To <u>2.168</u> <u>32</u> Sp. Cond. <u>0.2ie</u> J To <u>2.168</u> <u>35</u> Sp. Cond. <u>0.2ie</u> J To <u>2.168</u> <u>55</u> Sp. Cond. <u>0.2ie</u> J To <u>55</u> Sp. Cond. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10</u> Sp. <u>10Sp. <u>10</u>Sp. <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp. <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>10Sp</u> <u>1</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	crt 2.9 min, Color: <u>51</u> emp: <u>6.27</u> I <u>1.2</u> ple Time: <u>161</u>	5	inp 560 co may wern lity: <u>48.9</u> 24 <u>13.19</u>

	Job No: 32-1-16821-3
Owner/Location USACE/NECape	Page of
Well No.: $\underline{MWBB-4}$ Random No.: Date: $\underline{917}$	FT04 9.8
	eted:
MEASUREMENT DATA	
Measuring Point (MP): <u>Top of Casing C North</u> Height of MP Above or Below Land Surface: ² -0.3	
Height of MP Above or Below Land Surface: $\tilde{\sim} - \mathcal{O}_{i3}$	
MP Elevation: Water Level Elevation:	
Total Depth of Well Below MP: <u>16.1</u>	btoc
Time of Depth Measurement: 10:40 DTW Below MP: 7.62	
Water Column in Well: <u>9.48</u>	······
Diameter of Casing: Z Gallons per ft: C_{ℓ} Gallons in Well: 1	
Gallons to be Pumped/Bailed : $\overline{*4}$	
Development Information:	<u></u>
FIELD PARAMETERS	
Time: Odor: MOOHZ Color: SL. TURB	1 i 54 10
	Turbidity:
$\frac{1109}{2} \frac{1.5}{2} \frac{1.5}{-51} \frac{1.34}{6.44} \frac{0.299}{6.213} \frac{4.46}{4.75} \frac{0.2}{6}$	$\frac{27}{26}$ $\frac{137}{137}$
	<u>26</u> <u>382</u> 5.26 Zo.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{24}{24}$ $\frac{12.5}{12.5}$
1150 <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u></u>	<u>21</u> <u>D.2</u>
Evacuation Method: Grandfos - pump C (2'6 toc	
Sampling Method: GeuNPFiss Sample Time: 1125, 1130,	1135
Sample ID, Analysis, Preservatives: 04NE88GW104,04ME88GW203	+ othe 886W 304
Remarks: MS/MSC ON METTALS (1), GRO/BIEX, DRO/RED, 4METAL	5
Sampling Personnel:K, FH	
WELL CASING VOLUMES	
GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46	
1110 CALIBRATED FURBIDITY MEDER	

	Job No: <u>32-14/6921-3</u>
Owner/Location USACE NE CAFE	Page of
Well No.: <u>MW 88-5</u> Random No.: <u>Date: 9-8</u>	-04
Weather: 50° CDY WINOY Time Started: 1220 Time Comple	ted:
MEASUREMENT DATA	
Measuring Point (MP):	
Height of MP Above or Below Land Surface:	
MP Elevation: Water Level Elevation:	
Total Depth of Well Below MP: <u>149</u>	<u> </u>
Time of Depth Measurement: 12^{2} DTW Below MP: $7,28$	
Water Column in Well:7. 62	
Diameter of Casing: 2" PVL" Gallons per ft: 2" Gallons in Well:	
Gallons to be Pumped/Bailed :	3.6
Development Information:	
fump 1244- izve (DRY), 1319- Get commerces + sample	
FIELD PARAMETERS	SLIGHT
Time: Odor: MODAL Color: Valowish	
Volume: ORP: 21.4 pH: 5.73 Sp. Cond. 0.454 Temp: 3.95 DO: 1.4 12416 -6740 21.1 5.80 0.421 5.24 0.4	$\frac{52}{63}$ Turbidity: $\frac{407}{419}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{665}{44} = \frac{296}{3^{3}}$
1258 3 1.7 5.91 0.391 0.89 013.2 -5.8 5.91 0.290 7.33 0	30 <u>298</u> .29 266
1320 4 -27.81 6.1 0.391 075 1	.2 289
Evacuation Method: GRUNDFOS -SET PUMPAT 12FT BES	
Sampling Method: General Sample Time: 1325	
Sample ID, Analysis, Preservatives: <u>OANE88MW 105</u> ERJERTX, DR	S/RRO & METRIS, N.A.P.
Remarks:	
Sampling Personnel: <u>RH, JK</u>	
WELL CASING VOLUMES	
GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46	
1010545 For = 1.79 malo	
Kerrows Fe = 1.79 mg/e ALK 25 DROPS -> 125 mg/e	
ALK 25 DROPS -> 100 CM	

and the second

r.

			Job No:	32-1-16821-3
	Owner USDAG NIK	LADE DATA SE	Page_	_/of
			Date: <u>9-8-64</u>	,
			Time Completed:	
	MEASUREMENT DATA	· .		
	Measuring Point (MP):	/		
	MP Elevation:	_ Water Lev	el Elevation:	
		Total Depth of	Well Below MP: 15.18 Fr.	
	Time of Depth Measurement:	I	DTW Below MP: 4.05 Fr.	
			umn in Well: 7.13	
	Diameter of Casing: $2^{\prime\prime}$ PVU	Gallons per ft: 0.10	e Gallons in Well: <u>1.1</u> b be Pumped/Bailed : <u>3.4</u> .	<u>-</u>
		Gallons t	be Pumped/Bailed : <u>3.4.</u>	
	Development Information:			
	fuml 1738-1750 (Dr	(y), 1808 - 1824	7 1840	
	FIELD PARAMETERS			
			Color: SL. TURBID, GRE	1
1742	Volume: ORP: -5.8 pH: (2.7) 1/2 CAU -33 (4.7)	4 Sp. Cond. <u>0.9</u> Ter	$np: \underbrace{ie.35}_{o.11} DO: \underbrace{4le}_{o.10} Tur$	bidity: 500m /min
1741	<u>1</u> -46 (e. ⁴	$\frac{\overline{21}}{\overline{12}}$	$\frac{7.28}{8.77}$ $\frac{0.42}{0.32}$	114
1750	1.5 -57 6.	21 0.16623	8.43 2.81	89.2 7 67.3 34
181 182	$\frac{1}{7}\frac{-55}{-38}$ (1.	56 <u>0.616</u>	<u>8.04</u> <u>1.05</u> <u>0.73</u>	
183	2 4.5 -48.8 6.4 Evacuation Method: Gruno	37 0.502	5.75 6.14 AT 1367. BRUL 0.14	245
185				
	Sampling Method: <u>Blunpfo</u>		le Time: 1835	S FAH
		UTING & GAVIDA, G	Rolfman, DRO/RRO, 4Mon	<u>\$, {'141</u>
	Remarks: Sampling Personnel:	shill fix out tol -		
	Sampling Personnel. <u>CAUS</u>	WELL CASING	VOLUMES	
/	GA		37 4'' = 0.65 6'' = 1.46	ij
Ωυ	& CLOUPP DOWN N IT M	1878 - Slimmark	77 $4 - 0.05$ $0 = 1.40$	
1.0		pops = 90 mg/l	-	
	MK 776	2015 = 90 mg/L		
	T-erfouts-	the		

Ν.

	s.			Job No:	321-16	121-3
Owner/Location 2004 U	COTE NE COL	7.5		Page	of	
Well No.: <u>MW 88-8</u>			Date:	9-9-04		-
Weather: <u>55°FCDY</u>				Completed:		
MEASUREMENT DAT.				·	1	-
Measuring Point (MP):						
Height of MP Above or Below						
MP Elevation:		Water Level El	evation:			
	Tota	l Depth of Wel	l Below MP:	1K.GIA		
Time of Depth Measurement:	·	DTW	Below MP: _j	2.019		
		Water Column	in Well:	0.491		
Diameter of Casing: 2" (V	Gallons per	ft: 0.14	Gallons in We	n: <u>l.1</u>		
		Gallons to be	Pumped/Bailed	3.2		
Development Informatio	n:					
pume 13/6 - 134	\$					
FIELD PARAMETERS						
Time:	Odor: Hz		Color: <u>SU</u>	TURBIO		
1319 Wolume: ORP: -376 pH:	(0.42Sp. Cond. 0, 2	Temp:	ZIE DO): <u>0.33</u> Tur	bidity: <u>25</u>	<u>, (</u>
1324 2 -30.8	6. 26 0. 3		1.45	0.18	<u> </u>)
32 <u>4</u> 2.5 -40.2 (32 <u>4</u> -3 -43	(2.40) (2.40)	313 -	<u>7.45</u> <u>1.5</u> 3	0.28	11. 9.() 03
1342 7 -50.5	6.44 0.	318	7.42	0.80	24	13
Evacuation Method:	mas ser fu	m and 1ª	54 Bruc	/		
Sampling Method: Grunn	rfois.	Sample Ti	me: 1335			
Sample ID, Analysis, Preservat	•		_			
Remarks: <u>CROBID</u>	storo/pro, 41	MOTALS,	PATH, NA	P		
Sampling Personnel:	ETION, R. HES	Sonle				
	WELI	<u>L CASING VOI</u>	LUMES			
	GAL/FT 2" = 0.16	3" = 0.37	4" = 0.65 6"	= 1.46		
CALIBRATIC YSI (COMP.	·, 2PT.FH), T	URBIDIMI	ETER			
ALK- KOROC	s=qomgl					
HLK- HOROC Kennows - 3:32	o ng/L					

Job No: 32-1-1/0821-3	
Owner/Location UYATE NE CAPE	
Well No.: <u>MW88-13</u> Random No.: Date: <u>94107</u>	
Weather: Time Started: 1145 Time Completed:	
MEASUREMENT DATA	
Measuring Point (MP): 102	
Height of MP Above or Below Land Surface:	
MP Elevation: Water Level Elevation:	
Total Depth of Well Below MP: 25.55	
Time of Depth Measurement: DTW Below MP: <u>9-4e, 1800=20.11</u> 911: 20.36	
Water Column in Well: 5.2	
Diameter of Casing: 2° $\mathcal{O}\mathcal{I}$ Gallons per ft: $\mathcal{O}\mathcal{I}\mathcal{I}$ Gallons in Well: $\mathcal{O}\mathcal{I}$	
Gallons to be Pumped/Bailed : <u>~74 2.5</u>	
Development Information: fullian-hknucks	
Pump 1220 - 1234, 12+7- Ran 1024 - 3 Times	
FIELD PARAMETERS	
Time: Odor: AUD HC Color: BROWN TURBIN	
Volume: ORP: $\frac{ 9 }{ 102 }$ pH: <u>627</u> Sp. Cond. <u>6.135</u> Temp: <u>605</u> DO: <u>4.62135</u> Turbidity: <u>932</u> N <u>1102</u> <u>7.34</u> <u>0.124</u> <u>5.76</u> <u>1.05</u> <u>1.05</u>	NI)
$\frac{1279}{127} - \frac{100}{127} - \frac{9.90}{5.124} - \frac{0.126}{5.124} - \frac{9.79}{5.42} - \frac{1.03}{5.94} - \frac{594}{400}$	<i>co</i> ~
$\frac{1251}{2.34} \frac{22}{2.44} \frac{130}{130} \frac{5.81}{(2016)} \frac{0.123}{0.119} \frac{4.16}{3.46} \frac{3.11}{7.56} \frac{531}{301}$	
1231 123.7 6.04 0.116 8.16 1.90 1.90	
$\frac{1269}{1266} \xrightarrow{-7} 1169 + 169 + 6.00 = -117, 0.107 - 9.41, 5.96 - 1.92, 2.90 - 69.8$	
1256 3 1254,695.98 6.117,0.107 9.41,5.85 1.92,2.90 69.8 Evacuation Method: GMIN,607 Sor FUNDAT 23FT	
Sampling Method:Sample Time: 300	
Sample ID, Analysis, Preservatives: 04NE886W108 GR0/15727, D/R 4M NRP	
Remarks: GATVOY DEV: * 4 GARUONS W/BANDA 9/10.	
Sampling Personnel: SK, F1	
WELL CASING VOLUMES	
GAL/FT 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46	
$\frac{\text{WELL CASING VOLUMES}}{\text{GAL/FT } 2" = 0.16 3" = 0.37 4" = 0.65 6" = 1.46}$	
for	

			Job No: 32-1-16321-3
	Owner/Location USACE N.E. C.	FC. St Lawrence Ts	Page of
		Date: <u>9/11/</u>	
		Time Complet	
	MEASUREMENT DATA		
	Measuring Point (MP): <u>Top of PUC cas</u>	ing	
	Height of MP Above or Below Land Surface: $-\ell$	-	
	MP Elevation:	Water Level Elevation:	
	Tota	al Depth of Well Below MP:	57'
	Time of Depth Measurement:		_
		Water Column in Well:	FF
	Diameter of Casing: $2^{\prime\prime}$ Gallons pe	r ft: <i>l¹.16</i> Gallons in Well:	e-+ 1.1
		Gallons to be Pumped/Bailed :	
	Development Information: <u>Top GewSqu</u>	int fump - 25 Concor	15
	fuetre 1825-		
	FIELD PARAMETERS		
	Time:Odor:Odor:	Color: Norkly	WORR TWER
1926	Volume: ORP: 215 pH: 6.10 Sp. Cond. 0.	V 1 Temp: 2,67 DO: 13	2.73 Turbidity: Sugne/
	<u>~1/2690 216 5.86 00</u> <u>1 216: 5.71 0.0</u>	$\frac{13}{278} \frac{13}{4.64} \frac{13}{12}$	12-87 -94 $-6-59$
1233	$\frac{1.6}{25}$ $\frac{2.17}{2.17.2}$ $\frac{5.75}{5.85}$ 0.0	$\frac{576}{578}$ $\frac{519}{547}$ $\frac{12}{578}$	-84 2.13 -75 1.2
18to	3 211.3 5.83 0	<u>178</u> 5.54 12	<u></u>
1848	4 13114 5. 0-		2+13 + post - sampling
	Evacuation Method: GRUMGOS	•	Litour throng nut purged tracing 63
	Sampling Method: GRMMADES	Sample Time: 1845	
	Sample ID, Analysis, Preservatives: 4NE_22	GWIIS G. D/R. NA	<u>.</u> P
	Remarks:		
	Sampling Personnel: CH, SK		
	WEL	L CASING VOLUMES	
	$\beta \mathcal{U} = 5$ GAL/FT $2'' = 0.1$	6 3'' = 0.37 4'' = 0.65 6'' = 1.46	
	$p_{1} = 5$ GAL/FT 2" = 0.1 GGR GUS = 0.03		

163 123 164

GROUNDWATER SAMPLING LOG

Shannon	&	Wilson,	Inc.

				32-1-16821	<u>-3</u>
Owner/Location USAUE ME CA			Page	/ of	
Well No.: $22MW3$ R		Date: 9	-11-04		
Weather: 405 Winkoy T			npleted: 17		
MEASUREMENT DATA					
Measuring Point (MP): <u>100</u>					
Height of MP Above or Below Land Sur	face: ~-0,2				
MP Elevation:	Water Level	Elevation:			
	Total Depth of V	Vell Below MP:	1 (10'5	chans)	
Time of Depth Measurement:	D	TW Below MP: _32.	4		
•	Water Colu	mn in Well: <u>5.6</u>	• .		
Diameter of Casing: <u>2" / / / / / / / / / / / / / / / / / / /</u>	Gallons per ft: 0-1	ℓ_ Gallons in Well:	0.9		
		be Pumped/Bailed:			
Development Information:	- fum or 36 Fum mor	G BTUL Pur	P1420- ~	55 GALLO	, ک
FIELD PARAMETERS					
Time: Odo	I NONE	Color: NOACU	1 CLEME		the to
Volume: ORP: 158 pH: 6.29 Sp	. Cond. b. 93 Temp	. <u>t.le</u> DO:	13.1 Turb	idity: <u>35.5</u>	Russil FLOW
1.5 191 5.47	0.089	519 7.12	1.42	22.9 49.6	PATE
$\frac{26}{184}$ $\frac{184}{152}$ $\frac{9.51}{5.35}$	0.08	8.67	10,95	80.4	-731.7
102-45 (2) 5.31	either 0.151	1.41	10.XL		
711 70 2051 5.60	(0.084)	47.63	2/3.3	<u> </u>	s ampling
Evacuation Method: Grumfos					
Sampling Method: GPung for	Sample	Time: 1705			
Sample ID, Analysis, Preservatives:	ANEZZEW 10	= 114 G, D	Rufero.	NA.P.	
Remarks:					
Sampling Personnel: <u>JK_ Pit</u>			·····		
	WELL CASING V	OLUMES			
GAL/FT	2'' = 0.16 $3'' = 0.37$	4" = 0.65 6" = 1.4	46		
Altalinity, 5-10					
Fe st JOIOD my/2					

Start Start

	GROUNDWATER SAMPLING LOG Shannon & Wilson, Inc.
	Job No: <u>32 (-168 21 -3</u> Page 1 of
	Owner/Location USATENE LARE
	Well No.: $26 \mu \omega - /$ Random No.:Date: $9 - 12 - 04$ Weather: $50^{\circ}s C \omega \chi$ Time Started: 10ω Time Completed: 1830
	Weather: 50's Cuty Time Started: 1600 Time Completed: 1830
	MEASUREMENT ¹ DATA
	Measuring Point (MP): <u>Tut</u>
	Height of MP Above or Below Land Surface: Est-0.25
	MP Elevation: Water Level Elevation:
	Total Depth of Well Below MP: 38 41.9
	Time of Depth Measurement: 1620 DTW Below MP: 387 36.74
	Water Column in Well: 126 5-16
	Water Column in Well: 1.26 $5.16'$ Diameter of Casing: $2'' PVC$ Gallons per ft: 0.16 Gallons in Well: 0.8
	Gallons to be Pumped/Bailed :
	Development Information: Goburrows 1445 1643-1725 Snumbo. Turbio. Turrul fum stoos -> fum? porm ~ 12/3 Drums.
	pulled lime stoos -> fumil porme ~ 12/3 Deums.
	FIELD PARAMETERS
	Time: Odor: Color: MPRLycupa
1753	Volume: ORP: 276.8 pH: (0.26) Sp. Cond. 0.00 Temp: 4.94 DO: 13.25 Turbidity: $1200/1$
1756	$\frac{1691001}{2} \frac{244.6}{2644} \frac{6.95}{5.72} \frac{0.058}{0.058} \frac{5.39}{20.07} \frac{12.43}{13.3} \frac{14.69}{10.33}$
18:00	-4 257.9 5.12 0.050 4.31 13.21 5.03 > 3.88
	$\frac{10}{10} \overline{2274} \overline{5.39} \overline{0.058} \overline{5.7} \overline{5.31} \overline{12.18} \overline{12.18}$
18 10	
	Evacuation Method:
	Sampling Method:Sample Time: 1805, 1810, 1815.
	Sample ID, Analysis, Preservatives: <u>04NEZ(0EW 102, 202, 302, G/B, D/R, PAH, NAP</u>
	Remarks: MS/MSD EN 102 FOR G/B. D/R ->ONLY SAVE PROSEG SANGLE,
	Remarks: MS/MSD EN 162 FOR G/B D/R PONLY SAVE PROSET SANFIE, Sampling Personnel: Jk NOT MS/MSD, But Dulucicane, WELL CASING VOLUMES
	Well CASING VOLUMES
	$\int \int GAL/FT = 0.16 3'' = 0.37 4'' = 0.65 6'' = 1.46$
(e	All 5 to $ng/L_{GAL/FT}$ 2"= 0.16 3"= 0.37 4"= 0.65 6"= 1.46 MOWS = 0.01/(0.00) mg/L

750nl/min

 $j_i^{\mathbf{1}}$

Shannon & Wilson, Inc.

GROUNDWATER SAMPLING¹LOG

	Job No: <u>32-/-/6</u>	
	Owner/Location USACE NE Cape, St. Lawrence Isld AK Site 26	
	Well No.: $26Mw3$ Random No.: Date: $8/25/04$	
	Weather: Time Started: Time Completed:	
	MEASUREMENT DATA	-
	Measuring Point (MP): Top of PUC casing, N. side	
	Height of MP Above or Below Land Surface: <u>-O.Z.</u>	
	MP Elevation: Water Level Elevation:	
	Total Depth of Well Below MP: 2422'	
	Time of Depth Measurement: DTW Below MP: 235-5-06	
	Water Column in Well: 19.16	
	Diameter of Casing: $2^{\prime\prime}$ Gallons per ft: $\mathcal{O}_{\ell}\mathcal{G}$ Gallons in Well: $\mathcal{R}\mathcal{O}_{\ell}\mathcal{G}$	
	Gallons to be Pumped/Bailed : <u>i</u>	
	Development Information: Screen ?? Phoe "Pump Olt" broc Start 1923 Use Lgallon to adjust flow - Illmin = Surget 27 19126 = 12 minlgal @7 63 rold Hz, Warch Parameters for info. Purge 20gl 14:39 = DTW=5.07 FIFI D PADAMETERS 457 557 Varying dentis & flow rote in the	-H- No drawelow
	63 rold Itz. Warch Parameters for info. Purge 20gul 14:39 = DTW=5.07	
	FIELD PARAMETERS YSI 556 Vurying depth & flow rate up to	10gem
	Time: 15:00 Odor: Cora Oil-Not Story Color: Loroedish & www	
15-00	Volume: ORP: $\frac{90.8}{0.8}$ pH: $\underline{6.65}$ Sp. Cond. $\underline{C.153}$, $\frac{56}{1.57}$ Emp: $\underline{3.7C}$ DO: $\underline{1.71m}$ Turbidity: $\underline{6^4}$ 8 $\underline{2gal.}$ $\underline{90.8}$ $\underline{6.62}$ $.148-201$ $\underline{402}$ DO: $\underline{1.71m}$ $\underline{1.65}$ $\underline{49}$	t NTU
15112	7 1 903 659 144-705 416 116 42	9
15:16	5 4 al 93.8 6.51 , 152-203 3.95 1.73 32	.0
	$\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$ $\frac{1}{175}$	
	2 gal 95,7 6.48 0,177-178 4.42 1173 240	7
	Evacuation Method: Grandfos RediFlo-2	
	Sampling Method: <u>il</u> Sample Time: <u>15738</u> Sample ID, Analysis, Preservatives: <u>\$</u>	
		Ifare, total Luca
	Remarks: Development blended into Purging - very good aquifer teconnection.	
	Sampling Personnel: <u>Ben Heavner</u> , Randy Hesseng	_
	WELL CASING VOLUMES	
	GAL/FT $2'' = 0.16$ $3'' = 0.37$ $4'' = 0.65$ $6'' = 1.46$	
	Ferrous Iron Hack powder pillow i 0,48 mg/2	
	Alkalinity Hach powder eillows 55 mg/2 Methy orange alkalinity a	r Calo
16:14	4 757° 01179~5/ 174~ 10661 77.8 11214	
18.59	4 3.53°C 0.179 ~ 5/cm 1.74 mg/2 6.61 77.8 11.34	
	- (), UT dtu	

APPENDIX I

Field Log Books

CONTENTS REFERENCE DATE PAGE EMERGENCY #5 AK AirForce Rescue Coord. Center: 1-600-420-7230 or 1-907-428-7230 Bering Air: 1-947-443-5464 Nome Hospital: 1-907-443-3311

ite in the Ray ALL-WEATHER WRITING PAPER ALL-WEATHER HORIZONTAL LINE BOOK Name Randy Hessong Shannon & Wilson, Inc. Address 5430 Fairbanks St. Ancherage, AK 99518 Phone (907) Project Phase IV RI, N.E. Cape, St. Lawerence Island, Att This book is printed on "Rite in the Rain" All-Weather Writing Paper - A⁷ unique paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather For best results, use a pencil or an all-weather pen. Specifications for this book Page Pattern Cover Options Left Page Right Page Polydura Cover Fabrikoid Cove Lined Lined Item No. 390N Item No. 390N

2 8.9/8/04 5 9/8/04 5 9/8/04 8×19/04 32-1-16821 14:30 - Lyndon C-130 on ground 15:00 - Taxi to TSiAIA for 17:00 Flight to Nome. In N.E. Cape. Tim Pugenia Meet Ben Heavner - Soul Field WIAMES on board. Eric Schmidt - AK Minerals (Cook) Exploration Suc. (= AMES) Orizzle stopped, wind steady Off load gear, begin camp satup. Meet Locals-Eugenz Dinner & 20,00 + guys from Shut Down = 22,00 Sauconga See Lyndon C130 Here in Kotzebue - It's flying! Aurica Inn in Nome 20:30 9 × 10/04 8/9 mg/133/04 8:45 Preshift Safety Myg. 4 people on site. Satellite phone use review, 10:30 - To airport - Bering Hir. Wr. Overcust, calm, 50°F VISIT WAKAN cargo about Brecze from E increasing Shipment of samples. A.M. Freezers vanning Pickup air bills. Confirm 4 tent platforms & frames Lyadon C-130 flying. 2 tents Up + Land C NE Cape ~ 13730 in 12:45 lunch Eugenet Mana Stop 65 Navahoe. Shower setup, Sampler Staff WX: Over cast, diminishing drizzle Sur wind it 15 met. SCTUP

8/10/04 16321 REN 16821 4 8/11/04 Arter lunch - Run water from creek 400 Call John S. + NO carbon through samplers activated carbon in treatment system for into drums, use water supply sump organics - call Mike & get, to get \$\$ 150 yal into bladder. Transfer 100 gal to downs at camp Caltinue setup. for use, Eugene stops by No chlorine here to stenlize system. 19:00 0 mner, Work on heaters. Drip heaters in Tents O.K. Togo type heaters for 20130 - 23:30 More Sctup, water system shower & Kitchen not functioning. Secan to be electronics issue. 8/11/04 Wind sock up at N.E. end. K 7276 Camp plumbing near complete. Same bad parts. 9150 - Preshift. 1(100 (23,00) Bed. Eugenes daughter Wr. Fairly Calm, 505 1200 ceiling & Saci-in-law star in Work on Sugi water sampling of 8/12/04/ 2111 Ben. Jars, labels, etc. Noon call to AMES - Flights will 9.20 pre-shift / Safety Mtg. be to normal afternoon. WX: Clouds hangin on mountains Shift faces to more camp Vain overnight - stop = 7:30. light setup so Fim can leave N. JAN brace, good visibility, 50 F on tomarrows flight. - 2 trats up. Bizd, lunch

カモマレ 16820 16321 NIN 8/12/04 9/12/04 Setup fuel containment, generator Use nostly GAC treated water. Some residual un treated, - No douting enclosure; general organize. Dinner - 1 hr. 11:00 Tim calls Mike Smith - AMES-May run shower in morning. Lyndon has cancelled HERC No flights in today. flight due to Gambell / Saucronga Continued low clouds, light rain, variable wound. weather reports. \$2,001 Ben- sample labels & prep. 10:00 Offi 3274 8(13/04 13:00 Sample Laver Sugi R. Fuss w/heaters 10:00 Pre-shift WZi NNE und 5-15the, 54°, 10m Wxi light fog, rain clouds to fog, vain internitiont. 13:50 Lunch, 714:20 No Satellite Phone pickup. Tent heaters ; One more operational. Package samples Inverter / battery checks & tests - working Water system problems - Jet pump too hard. Water system - Jet pump fine on seems to cavitate over 40 psi, little ZKW generator, no good on Cuts on over sept. Checkvalve bad - repaired. make 5kW - try various things to optimize. (Ground, shorter wire, +mitte) Used a samp pump to help JEW power is Just dirty" Heaters jet pump. No bleach to shock System, & pring poeter other power.

RAN 16821 NIU - 16821 8 8/13/04 9/3/04 Horiba pH a little Alaky - 1ct soak. One tax has been a nusquee around other water instruments O.K. camp. Locals say they will keep ege out. Have had problems we 13:00 Lanch of Eugene. Vabid Fox. (Eugenes son Floyd) 17ite Flaget shors a fox near 14:20 - OVM calibration in consistent. camp. Wx break? 1730 Dinner. Wx. descends again Dry, clean detector. Wone carge - bad wire. Re-solder, 18:30 - Pump more water through Cutout section. activated carbon fray creek HNU fine. Prepare to try showering 20,00 OF 1430 Phone locks on Satelite. Shours works Call John Spielman. 8/14/04 · Julie & Drillers helpers have returned home from Nome. - No MS/MSD for QA samples O.K.d in High winds overnight from S. Plans. Cooks tent moves. Fuel Jug upside _____ No HNO3 preservatives in total down, but not empty - minor fuel metals samples appraved. Just release, maybe 1 to 2 gallons. note on COC trust acid must No major damage in camp be added Z4 hrs. before analysis. all had poor sleep, wet gear. 9.30 - Call John Spic man - No flying · Call John or Lyndeg # 8:30 to give in A.M. if reception todage Wxi Winds to BEKES, primarily South to give weather report for upper 505 F, misty, fog around, HERC. but velatively clear hole overhead.

10 28 821 Headspace: O.Oppm (HN/4) Phore Rindy I - POL release area w/ weeks truked in Put quailable weight next to 12:00 ->13:00 Lunch. thead space Camp 15 01 11.45 02 69 5 HS? OUR acting HNU 101; 84 ppm "the" (Kewater - slow continuens alimb Mar trat back 214 dava Treat water 13150 - HSOZ (cames O. 6 bys same soil Work on anchoring teats Fill or 1/3 drum -oun out of hot Hand dig Auch spill area -Califrated today to loop a Iso screen ul our 5800 PED touts for anchors find hot spots. spots use this for now Screen up gin-Will need to fuss of OUR more. 40/4/18 XX74 16521 1430-21630 Tour M. O. C., drainage basin 4 White Alice sites ul Ben 16:507 Sample Sugi River Photo: Junction box in a land fill 9:20 > 20:20 - Prep (papernette TCC samples COCS prolableds for tomorrow 18-20-19-20 Miner Just below Side ceiner of MOC. -Type that may contain PCB potting. Tent anchoring was effective. 136 fre-Suite WX: Higher winds overnight, to 45ke? Mitgldrizzly, 500 - 1000' certing, Puoto: Cable Junction Box W/ Macin 17:50 In camp. Complete labels, Continued (5kt winds, 505. background, 401-51/8 2/14/04 avea XXX _ __

2274 7774 16821-3 16821-3 8/15/04 8/16/04 Wzie 15-1800' ceiling, light SE wind BentEriz - water treat +pump Ben - Upper Supt water sample dry. Randy - Dailies, Sumple tructeing 910 Call Lyndon Operations (Air Cargo) W/ W & report - Here is starting Tim - Pallets to ship out - Wx cleaning up alittle. Lunch 13700 - 13:30 Engines. Call Bering Air - Wx report. Call John S. - No flights today, callinly, They are planning to come out Prep & Sample POL Release - Pipeline Walk / Ride avound ny in an hour or two - call back Superfughney Estuary, looking for where in Thr. Sediment sample locations. Esturing Final Package 5 coolers is more of a lake. Water level is I to NCA, 4 to SGS over I foot higher than upon our avrival. Water level is 12:00 Lyndon Herr. on ground. 6 higher than low tide (est), To winninger on board up and yesterdays storm surgess dall rig. Just topped the day a little in a couple of places, Ho Dinner D Load out 2 pallets Mextra Came gear, trash, Samples. Checksamples (Wy quite nice) Benny Air diverted while Iterc. 20:36:0#. takes off? - Call Benny - flight delaged until evenings. Pinner 13,00 Lanch 13:45 Look @ QA letter from Julie Sharp-Pahl.

Rand 16821 18821 XTH 8116104 8/17/04 15 12:30 Bering Air plane in w/ Work on camp set up w/ Julie Keener, Frank and cole Wininger new stuff. Send Ben to 1300 Safety Meeting - primarily recon Cargo Brach Road Sites. general camp temorgency response. Jo sets up & test drilling 13.30-1400 Lunch Equéponent. Continue working on latrine -18:50'- Call Bering I weather report 2 augers for anchours. Ica Frozen Review Bras findings. Premius IRA activities may interfere with Silt at 3'bgs Some site access, but looks pretty Drill thrive tent anchors good over alla 19:30 Dinner Ben Oth Joott. Paper work Setup latrine, General campl 20,00 - Dailig Rpt. Sample prep. 20:30 0A whi mistz vain, continued calon, - Het 8/17/04 19:30 Dinner Whi Misty, lifting, E. breeze Whi 1800' overcast, It E. breeze, dry. 0900 Call Berny Air w/ weather report. They anticipate an 1130 departure Meren. 9:30 BKfst done Joe & Ben work on latnice hole Randz works on carbon filters for watersystem

16821 NAW 8/18/04 3/14/04 Whi Mostly clear, wild E. wind, work - melting perma frost & big stockyde. 505F 10-15 Kt quists acruight. - Unexpected - BIXB2 essentially clean, while strong odors from 9.24 Pre-shift safety Mity, stackpile, and location where Vrill crew continues we trut truck sunka tire. - Ice frozen grund is gute auchors, then set up for sites 346 solid over t'Tos bgs. -Samplers Calibrate HNa, Add anormer boring near BI -Prepare sampling & Decon materials shallow to ice - some fact odor. for Sizes 346. 1:00 - Samplers scanting sites Well points installed up hill and Doilleus freling (loading down stroin pumphouse site. Ø3WPR5 is up hill () of site in 13:00 713:30 Lauch tundra. Water level in partially 14700 Settingup at SAC 3. driven screen is 0,5 bgs. Drive 15,00 15 50. Spoon at \$382 point flush to ground, add 2.5 risch Gotta Keep after drillers for \$3 WPG is in the last vegetated esc, car, hand protection. hollow between pump house and Air Monstoring; O. Oppm at beach. Water encountered about breathing & in hole -4 bgs. 15:45 - Same breathing ain -20138 Back in camp 16:05- nove to 03B1 - · 20145 Dinner. Trouble getting rig close due to previous pipeline exc.

9:20: Work out better decourplay 9:40: Pre dift Safety meeting 9:00 BKfiti Whi Partly clear, light E wind, 16821-3 Calibrate OUM 540B - STILL Slow 13:30 + 14:00 Lunch our tighteded, can't open. and decon water Filed in time No value to remove presure toats from filter system. Filter casing - Winingers set up for decours uddrums (2) on duill vig & but the all look good. Yor Lunch. 14:10 On cite, 5ite 6 - Bent Julie set up sumpling year for Site 6. Water problems - Primary ١ Strapped down. Check lamp, winning of OUN 5800 HØ/61/8 ズイズ .6921-3 Air monstering 14:45 - Open, modulers NP6-3 WL=6.88 bys Total derth 1,22" Tulic & Randy - Sample logging toger work 20:40 + 21,00 Drillers/Ben gather wets 19-45 Dinner. Randy off SACC (8:00 - Darlies, forms Crew back @ 17:00 - help it samples, Eucountrolled at 06 BZ. Difficult dvilling - boulers, then soft heaving sand for intener tent anchors No inpacted to any soil (by PID) to try anger/hammer coubor Corn cil in ait system seens to cling. Pillers cleans refert scar 40/6/15 LIX

(692 (20 Whi Over cast - fairly think burning off. Led averyight (year 405?) Mild variable preczes 9730 Pre-shife hty. 9rep for Sites 647 11:56- Leave Message on Cares Cossabooms phone - Site Z sample locations definitely in debris. QA sample set 11:45 Call Office - John S. ou 11:00 Ben 45 to Site 7 landfill. Appears \$1NE#255127 location 10:30 but of camp read to Fairbonks - ne contact oncell. Talk with Tim Tens basic status - ne emergent nerds, site 3 bonness te permeties to site 6 - on 2 29 toing - boulders. has been plewed (last year?) Sample QINEUTSS125 is part way up a definite de ens pile. Lots of drum in visinity help setup on \$603 8/20/04 1224 16821 12:45 - Site six - still drilling in 12,00 - Photos & GPS of SAC 7 Ben & handy pref to sample Site I gediment, develop well points. plan is a mix of the old 14.00 - 14,30 inne h. samples. No flowing water for last 5 days of observations Stream ou Internettent Stream surface water 14.50 - Ben Flands @ Ste 3, Develop WP05 06. Site 6-15' - ger to 20 analysis - probably just nearly -Things to discuss up John so view I call next we lecations. can get directich. should include I more metals lorse coubles le 11 bas Locals hunding reindeer avour use 5/20/04 71-52 20

XXX NZ74 16921-3 16821-3 8/20/04 8/20/04 17:20 - Backat Site 6 quarry access road and another Site 3 well points slow + divisshort drainage from the area in organizsilt plat. immediately south of the Pump house site (The quarry Ciew at Site 61- on \$6BZ (2" access road was reported to have today, grinding toward 10' 875 been made by the original site contractors by pushing the thank Air manstoring has remained caseal. No clust, no vagors detected in tundra aside so that equipment could drive on the comptost to access pock for road development.) air. Water levels in existing wells, Site 6 Sample sediment (roots peat) instead FOC -870C Ground-Toc & DTW WP6-3 6.96 2.44 4.52 of water. (Saturated tendora-holes fill whereaster) Botton 9.24 AVC 64 Vie-34.76 20 476 7 86 3.86 4 7172 5:45 \$4NE\$35D1\$7 0,8695 Brown WP6-2 Nowatter 3.08 organic sitt and active grass roots. Below Jupiction of 2 small drainages 18730 - Drillers work on decon (down grade from Sites rad) Head space. D. 6 ppm 1×402 425mlMcOH - AKIDI/SUB260BTEX, for 15 to 20' of drilling for 1×802 - DRO/RRO, PAHSIM next hole. Takes too long to start hole. Decide that 1515 16115 \$4NEØ35D1\$8 018 695 - same at comp, each day, with tangar national up grade from site 3 pad and former OlNEOJWP. Headspace EDiOppm staff at rig in drums. 1× tozet 25m McOH-Attloi/5260BTEX 19115 of site 14802 - DROIRRO

16821-3 Monday 10:40 - Crew hammering up surface 9118 Pre-shite. Duils complete Wir Hazy, scattered clouds, culm, 10ilo - on road. (9:45=20:30 Dinner. decon, samplers prep year nove than adequetes (2x depth B'or less Sample to 11.5 secon 19,75 > 19,45 - Setup decon 5050 23,30 packing forms Size 3 wellpoints. of prensus investigations re org. - pet samples on ite. Sitz material in 85 - Water at Eric to call in supply order for Lett megrage to: John Spielman 40/12/8 2 IN 20/02/8 NXX-ノスフィ 16921-3 Site 3: WP6 not making much water -No volatiles in air detected ut drive a second point new by thegen slaw recovery. Itave brough Ben ILD with -aread (Site 6) Seen to have hit better water be located in the fines white portion of a frost-patterned ground cell, while B2, B3, and Borings 135 & B6 appear to Exact depths at soil samples are not realistic. Soil may have moved some distances with augering. With water at 4-5 bgs done see need to go to 20 - difficultur soft soil between vects that the coarse lock petters. to a lesser extrat B4 are in area. anyer, had on rig also. is very dificult to sample. bl docation back in cobblel sand The trost circulation encates 40/1218 XX XZV

ハモフィ 16871-3 16821-3 रेसार 8/22/04 nu 8/21/04 teut EBUPICEScoren is below water -WZ: Misty, Smoky haze, near 60°F possible minor Confinement from Minor preced from E., incurasing through silts below organic mat. gill Pre Shift Sty Mtg. Wx: High have has settled down to ground - 100 d. visibility, smoke odor, fog, traces ash. Drillers: Weld trailer hitch - good satety procedures. Move compressor Rinsate - Site 6 split spoons TO Shallow well (const. Lamp) tocation Site 6: Bt in north Complete BI to Clean angers 10-11.5 bys. More over and use Sumplers: Treat decon water w/ air hammer to breakup rock to Granular activated carbon (GAC) about 8 bgs. Drive well points Lable & package samples, COCIWell paper work with air hanner assistance. Aim for top of screen C 5 to 6 bgs. 11:30 - Eriz (cook) minor 1/4" cut on Use available air to blow fines from R. pinting - clean & bandard. (clauring knite) well point screen, 19:50 Off site 20115 Dinner 13100 Lunch + 13,30 21,00 Julie & Ranky label 13:32 - On Site - Site 26 Deep(Shallow investigatory wells. -22:42 22:12 13:45-Down hole hammer to probe 155 5°, Then Odex-see boring Log. Att

Photos: Comera Rendy 2 It Frame (#27) 20:12 Dinner. 16821-3 19156 Off site Water I 6 down put in 15 scoun. Randzer incamp, H Silt (glacial till likely) encountered at 22.2-22.5 bgs - gray, little evidence of they drys out. background. 26 MW3 location to NNW, 2nd Supi bridge road intersection in Movie Night - Souche the ty #26: To SSE, MOC steel + # Smally haze. 25: 19:5 of casing in outline of mountains through Water coming out, sitting on boulder. 26mar 3 4012218 、ススル & duillers, Ben to Site 346 wells bive Call Berny - Still gueschige sevenge Wir hile they get 14 45 vin / Wir while they get 16821-3 1128 Preshift Safety Meening 9:40 Call Bring Air up with reporte-1.5 mile vis mild winds. Oct. 5 Call back in a hour and see 15,45 - Ros + W. und - Fly. (6;45 - Ros + W. und - Visibility Whi Clear but smalles - mild E. 12,20 + 12,18 Lunch for shipping, Complete repairs/ upgrades on water system, 10:50 - Call Benny - what they til nid attemp it it stags. Crew sets up for Site 10 bonnings Randy + Ben final prep samples Erecze -605 F dering locations - leave Julie 12:45 - Site 10 - soliest 40/23/04 N. Z.Z 29

17,00 Crew back in Camp 9-9,-20 Breaktest 11:45 - Fog lifting a little. 12:15 - Flying utather Mark Site 14 fills sample locurious Ben to sites 3/6 wells. 10:50 - loca ye MMWI. - SEt on hale 20:15 +22:30 - Dailies, elanaing legging Ux low tog less then /4 mi vis Rill Pre-shite safe to nty -Have prof tor moc wells. Workon dailies - print for 4:30 Dinner 16821-3 Located marte other wells, borings al oder schep, at MOC. ouchage to Join Spictman. Set for Mac wells 40/74/04 2123/04 メびズ 16521-2 18 Mul mating water Set PUC to 26 bys 16:15 Photo #24 Mul et Site 18 Location ter samples are in angular tock fill 2 3' from edge of fill Photo #23 18Mul w/ Emergency 14:10 - Call Bering air - Fly able 13.30 - To depth in 18MU/ 14:00 Lunch Seil may not to present win 2 ter last 24m. - they will 15:30 - Bering and flight coming ect a cilot going East line of Zeri god marked, West line towner at building also 12 - Supplies 3 coolers out to SGS (#6,78) orange paint. narked - fiverglass will & feded Vouce toundation in background H Yill 2013218 NLV

32-1-16921-3 32

8/24/04

Nahi 16921-3

Mark PGB soil sample locations at Site (B-Electrical Bound Building, Pad 13-1 earg - a corner is exposed through soil. Dimensions given.

Pad 13-2 - No sign of pad, former sample locations. Scale on plans not crante complete did in locations. TBNE 13 55802 markings gone. - Look Escores data. Samples between 88 MW5 488MW6 fairly easy to mark based on line tetween wells. Sample locations 96NE1355 107 + 108 gone.

18:00 18mul complete Move to 20 MW1. No samples recevered toll' Move. site 22-very altered. No obvious locations 20.00 0# 5.80 LOIGO - Zli30 dinner Randy - pore doiller test lise 22.70 AF

3/2-5/04 AZX Whi Foggy, nid SOSF, NE breeze, Sunding Smell.

8:25 Pre-shift. Prep for 20 MWI & 17 MWI @MOC More water From Sites 346 well perints. Dritlers get odex hammer dimensions.

Call John Spicknau: Hanner dimensions so Kyle Brown can get a spare headed out here. - Request John work w/ Kyle on getting appropriate materials out for separating upper & lower aquiters at site 26 dequell. - Concrete for flush mount wells? Note Jacking of older wells. - Discuss getting samples from youttings diverter. Difficulty getting soil samples from solit. spoon in roctigic cooly ground. Prill setup not condusive to sampling very for off 5 intervals. - Directed not to move holes. bet what we can get

Fuel inventory to full gasoline, 2 control litter Test Grund tes pump / DI vince, Tubing in NEXPOLY by Nexa En 16521-3 + full diesely (partral polyethylene 12" i.el - Hope to have (ord of samples SGS receives them - Discuss slow well point 10 20000000 lock of whet & Site John will check to carting aquifer it test results clean? to dell through silt - consider to ship tomo, now ulusace it no solit spoul - 26 MW3 + Water will be nocled Coolers to SGS out sectoring troin split specia with seed truth effects John will discuss sampling diverted cuttings - Air ball number 2 42/52/54 number for 3 12 X 12 21:24 + 01800 Sample Eactory 26 Mw 3. - Mattes good water min. (10-15) it 19B1 - 7 com out of Casing 3-4 com in air - branning 19130 Dinner (R) 18:30 Off Site Volatiles reduce once carry dinca 16, 40 - Lower to for BB - X wells turther level, down wind diele. wells, 12:30 > 13/20 Lunch. W/ 354 (- 1260) dein down. Mark site 22 locations for Ben to 261443 Randy ul crew to 1400 Live stags up wind. Sample stationizypun 14.00 - Work on Developing take supplies to 26MW3 4015215 Site ul good light メンズ

White Brezzy to iste catof E overnigh - high 405, for on mountain Clear corrhead

3/26/04

16521-3

6:24 Pre-shife Mity, Contrinued sample porp-Julie Ben to preat de con water Marily - 1981 9i3\$ On Site 19131 - about Veady to dirive specification - Still lookst acts ble bedoek. - Caliboring complete. 79:28.

10:00 - In camp, Call Berning air-Noon Alight - Finish cooler pack -3 concrete Vaders in. Ben Calls John Si to informi cookes shipp! 12:00 Lunch. 12:30 - Head back for 13B1 at MOC, Julie & Rundy - Julie to check wells, - Grag till-like site at 12-85' - possible bed vock @ 23' - Verg- senelly, but winds from E. have kept pild. readings in eventhing zone Minimals

3126104

15:00 Ben has purget d'econ water treated. Will work on site6.

16,00 - Lots of water in 13B1air cff- still coming out. Artesian or presserieca' from prilling? <u>Photo 21</u> - 13B1@38' - hatch "<u>20</u>' - """ to 5. - monatorias. i7:30 camera R2

13-45 Dinner

7774.

20:30-24th Dailies, sample logs, forms,

Proto 12 22 mus driling to E 10:15 - 22and 3 dolling 405 cur nights Whi Lood clear, mild W. Everte 16520-2 Whit Warning, brease moves arind to come from SE 60SF and day. Photo 19 comere RZ Drilling 22 Mus 13,00 + 13,57 Lunch. and warm are from doiling meters tropen after lunch. Breating rock of Site 22 wells betare (Imul. PCB at Size is for Ben & Julie Julie it difficult to tell. material at 23' bgs and down is tossE. to Timista well seconda, Julie updates Qittal table, then Vact w/ Ben - PCB samp ing Schell Consider possibility that tight Drill steel well cleand, - Set up No oders, of PID hits in air presuite 5:44 Satets. 40/22/64 Horle 272 clean well installation. Normal decen, with fresh rinse water, and used water that was used for 3 split-Com cil is used to bubilizate air divilling system. Pam is also used on divil steel threading This split spoon was randomly selected from sub-graced sized meterical to 6 × UOH w HC & (CAW/875X), 2 × 1 & w/HC & (DRO/RRO) 17.45 Ringate Sample OthE2250201 Start Setting well 22MW3@ 16-15 Confirm frozen ground. Start samplable wells. The Bert to look at upper site of freezen difficult to define 15745 - 38 foot sample has energy 4 2×1 l unpres (PAH (teci)) 1×250, 0 coly (merals) of times today on an apparently two that were weed a number Julic to continue investigation influence of cornoil on analysis Good sample to determine 40122/5 and and 16821-3

1830 Winder 1830 - 2000 Notes 22,00-23,00 Dallizs 18:00:22 Mus completed to final 2 fill & manument set 1821scoons as sinse yesterday before adding I packet of alconax. There did appear to of the split sport. Include only turneds, (top 12 of Det Jug used as 2 fannel over an impresented Il, then transferred to other jors) be a deep-set alyness to parts 40/**4**2/94 NEX - Direct crew to pall out & Mark location for borning. 14:00 Call Berny Air - arrays for 12,30 Lunch - 13,00 25% Chilly grand tag - Circu over head Ser wind tos. 8,48 fre shift/Satety Mtg, Drill22MWZ - Ben to logo 5-12591 port darlits, Admini Rundy to deal of fuch instrument Julie to oversee & label suples Keep going down. - Make 228 (montorny hellad Muz, tlight torenew Inil harmer is Nome, will send out find demon - DAN 2281 > Thin some of for zenue as 2282 analyze 3 recoved so uples tarly dry staining, able to 1. The bedrock - 10' of Inling Navahor, -22 mul lit what acts AZY 4018218 バチン

12,20 12,30 Land 8:40 Pre-suite 16421-2 low 505 F. decent Uisi Elitz (9 20 2 20,20 Cimplete Pager with Julic watts out labelling Sav 19, 30 Dimer 27: light rain until 08,00. Oucleast (Randy/ Julie) nous Ngut Pad 13-2 Sample locations so letter Crew to 17Mull, A Rundy & Julie pre latest 22 surplis, 17Mul 1: Good water @ (0 695 cocs ter samples 22muz the lefe open - install Julie - Sample handling well tomorraw Bentlandy of crew well ing tal based on whething red location Rundy - admis 14:00 - Rundy + July to SAC 13 8129/04 40/8218 オンプ メルビ 17,00-lowite Site 16 15.55 OYNE/35921; QC duplicate of OYNEI355121, 1×408 - PCB 16:00 & 4NOUSS321 - QA replicate of 15:50 04 NEI355121; 1.0.1.3 695 16:10 04 NE 1355122 1.3-1.4 695 16,45 Q4NE1355.123 3.0-3.2' 695 15:45 OUNE1355120 1.27.3 695 16521-3 \$4NE1355121, 1X &= - PCB Sog 2 in cottles & debriz. 18402 PCB DK. Scen love Medium SAND, no 132 Brean, st. silry, sandy GRAUEL in childer maist pits of sulfar for in 1×400-PCB Brain st. salty sandy GolfUELin Conbles, Moist, Fill X Boz glass: PCB gosz refores Druin, Shi silty, sandy GRAVEL, meist, In cobbles, bits of wood. 1×402 PCB. it jead under Fill (re-tor) 4016218 イレン

26 MWI location. 17:30 Look at Ste 26, se lect 1692/-3 44 9,20 crew setting up on here 10:20 - Call Boring Air - Wrx. causistant - They plan to fly @ 13.00. Overcast 2020'. 8.36 Pre Suite May, Photo IT NZ 26MWI location 18730 Dranel Look at White Alice, Mark Scetic 21×1 Wind 5 10-15 Francesu 49-50'F 20:00 - Que 142 grave comate during divilling, to E. 10.50 - 26 mull sample supping, suptate to Den-AIN, CA. auger schap. 40/02/8 A VEIC 40/22/8 Maria オキン 15.30 OYNE 1455101 1.4 4.6 bys: Dark brown, 15,00 - Julit & Rendy - Site 14 PCB same ling Price tor PCB samples 13750 - Corolers 12 - 15 out or, Berring Air of Idorian diesel (cripty) 5:45 Call Office / John S. cell 14:00 - Circu installing well 24 into Veretation laser under recent Fill. 1×402. - PCB sh silts, sendy GARUEL, maist, in chables trace cignuics. Just below old 16522-7 Editecte & 26 mul Bea to overse drilling Julie + Randy finalite sample Willith number on COCS + find, We site 26-Juell results, Call in mining 1200 12.30 in ach. ~ 13.00 Shipmene 200 - Grinding on big rock @ 39"- 12.05- break for lunch, Shen Call Being Air & They will went for thered Sump to air bounder 411215 - Hard-オイン

betare facility construction. 1×402 PCB Confocated w/ 145101 16:35 O'HNE 2059204, Out Suplicate 46 15,40 04 NEZEZZALO 275 Dark brown 16:40 QANE 1459304 QArelizate of chi Sulty sandy bravel; reist, the organize. They Below eld vegetetter Brainish grey, sandy SILT, in cobbles, noist - Lens may be soil from 14,00 26MW3 Completed 108-1-3 1455104; 18 8.2 -100 SI Silty, sanay GRAVEL, incust directly beneath 2655102 1xtez-PCB 16:20 \$4NE 26 591032,0-2,2 895 Dank brun 16.30 QUNE 2658 104- 2.0-2.2 675 cryanics. W.F. Cleaning wormer 0 \$ \$ \$ 104 - 1 Etoz - PCH layer, 1×402 PCB. Ben to get 03 Mulie Euroed again 14222 19 8 メルン 6-12.57 16821-2 9:26 - Pre-shite safety Mitz, - Prep ter white Alice Wx-High Ourcast, carling 505 F 9:15 - Call Jehn Spielman - 565 doesn's 19130 - Procer work. - 21:30 have GW results -terraneis Giztchen - hout 784-3932 18:30 Dinner USACE W.G. # EY-OY2 - Cocs 17.00 To White Alize Site 31-Pyoto 15 RZ 1455 101-104 to W Photo 16 RZ Sample locations 1455/01-104 to E. Energency fiver terindation behind borings - place pinthess - Ben to quere out Bupicz base on witching ood reactions, More time locating sample location again 40/1218 5/30 VY XRX 22X 47 メドメ

16 921-3 48 13:00 Lunch > 13:36 RETURN to White Alize Phito 14 RZ Drill on 3132 Inlie decenning 52 seven, Ben Digging Other 3155 111. 9155 - Oustre, White Aller 3181 completes Bendigs, Samples PCB shallow Discuss deep well installation method. Jun need to telk where Brown, t HNU 4000 580 & both read Ocon While boring. Diese Odor noted Q NE 315B106. Score les Julie logs / handles samples Samola shallow Subsurface (Z-4) Swap out auger tlights between sangle types. 9/31/04 2-12391 × XEW PCB analysis. Bicary silts, gracely Sitted EUNE 3155123,15,30 1.8-20 695 1×402 QHNE 3188121- 16:00, 4. J-4.2 636 17402 PCB 16:18-Bey Found a drum with flurt North of Stat 31 in a basin, 230' QUNE 3155120:15:45 1.5-2/1695 - 1× toz PCB Q4NE3158124, 15:38, 3.5-4.1 051 1×400-RB cerbles Cetbies larger than 123 locates Lt browny site sitty saindy CAAUEL merst cphale. down hill - Thumping suggests solids with this layer (1"?) fluid BRUNDAIK brown silty gravelly sitting maint oder nerrel Brown, grandly, silty SAND; moist, incoulds lid. hust hale 22 up tron ground, 15 draw encountered up flood HNU PID: 310 for next to hole - nactualence drum on sittle flue paint in Colocated wil 55120 01/12/6 XIZIC

16821-3 Cobbles, 1800; OHNE 3155139; 14-16 695, 1×42 - 700 19:40, 04NE 3155 136; 1.3-1.5675, 1xBob - PCB 19:45, \$4 NE 31513 177 42-45, 1800 - PCD Brown sitty sandy GRAVEL, maist in 19130 Dinner 19705; 041UE3158133 3.5-40 1×8== PCB Bring sitty, save & GAUAUEL, in cololes, 17.55. OHNE 3155132 1.4-1.6 695 1x 402-PCB In cetoles 18:30; 04NE31 55 135 - 1,1 -1.2 645 -1 Ktez -1203 Mast. 1 M Oly anic Se Shallow of co-locuted 4/137 MS/MSD 1 1 Brun Silty Sandy Gille meist in circles Bren Sl silty Sandy GRAVEL, merst Brown, sandy, silty GRAUEL, maist Dart brown, susity, sent & CERAUEL, maist Deconberts 19:15 off 5190 Shallow of to located ve 133 8/31/04 4 Some paper weit メンび (6421-3 11730 OWNE135B126; 3.5-3.9651×405 PCB 117 DUNE1358125 3.8-40 695 1X 402 PCB Prop For Site 13 Co. lacated deep MCBr. 10:10/10:15/10:20 04NE 1358 124/224/324 2×402, 1×8,2 PCB w/ Q.AQC Mp. 11:50 OHNE 13 50127 3.5-3.8 695 18402 PCB 10,00 On site Brown, Sl. Slity, saidy GRAUEL, maist 8-30 Preshift - have ben conduct. Why: God Our cast, chilly E bicse to she - new som Grown, sl. silty, sandy GARAVEL; maist Contacted w/ 95/10 (Tured 114 loca 4ron -Sat on big rock 3 trives - monto 110) morse. - Colocand in sslot Colorated w/ 55 112 Growny Sl. 5, 1+8, Sandy ORAVER mans Browny 52 Silts sands GAUECI Prizzis y Vain. 5/1/04 ズメイ

52 16821-3 13:45 - On site, Site 13. Phate 13RZ: Site 13 to NE, Aidd on 12:30 Some adecon 12:35 Off sitz - 13:15 Reset fix hose routing on 12.25 (1 58228 " 1×802 QC" Placte 12RZi Same to N. 55 119/513 129 - pin Flags & same 12 Wr: Rain Ending 12:15 OUNE1350128 3.6-3.9 695 14402 uca tiens Grown, sl. slity, soudy GRAVEL All tor PCB 8082 raved to SSLOS viewing. maista Colocated ut SS105. location - hit concrete at dimensions wrong in plan! Same elevention 2× State Third to co-locate at SIDE 4011/24 1×Soz QC, mymo Dr. brewn Fibereus peut - near interface WI sundy grend to grundly SAND mix. (5515) Strong wy dissel ador. (Touch of gray closes Silts) Strong wy dissel ador. (Touch of gray closes Silts) 15- of ounder of soil usings 1x 40 2 ACB 14:35 OHNE1358131; 3-3.2' 695-1×402 PCB 14:18 OUNE1358130 3.3-3.5 695 -1 Ktoz RB 14:45 DE Cou boots shoul. collected from Euger flights, All Site 13, deep (25'+) 50 same les Brown grandly sandy SUG invist, in coubles 14:00 QUALE 133 3129 7 3.4-3.6 695 - 1×402 PCB 14:55 On Gite 7 - Land Fill - Ola Cotssiz 7 Bierun, S. S. Silty, Sandy GRAVEL, mois & co located up sslit. Gray sandy Grutulity to sitt Air manitering - HNU PID = 0. Offen WE sample pourt Co-located w/ 55/16 (-1259) lo Catilin To Siter. 4/1/04 インス

15:30 QANEO75BIDY 2.5-30 605, 12402-PCB 15,42 &4NE \$ 75 105 - 1.8-21 bys 14402-PCB 15/15 15.50 Drillers off site - recent to air for 15-20 15-10 04NEV75B102, 4.45658, 18462. PCD Redish brank, sitty sandy Gilitter, rait 15.25 QUNE 0755 103 4.4-1,8 695, 1×402-PCB Redish brown, sandy STUT - ingravell conter, mast Brein, siltz, sandy G-RAUEL ment Colocated ul \$755101. Lt. Brin, silts, 16531-2 Sandy GRAVEL; reist; soft, no debris Seine cotbles. ul traces of doons agains tr. cobles. Brown, Silty south Grandy SAMD; noist Site 6 well point re location. , 1 20285 4/1/04 1 St 1× loz PCB 1×402 - PCB メンメ 7-1283) 15:20; OUNE 0755108; 0.5-0.6 bys; 14402. 16:36,04NEØ755110; Ø.8-0.9 695, 1×402-PCB 6:25-04 NEOFSS109-0.7-0.8695,7K402 - PCB, X402-PUB Gray and reary brown PCB: " Lt. brown sandy SIUTOK. brown Sandy SILF in gravel (cobble matrix , maist 16,00; 04NE0755107; 67-09' 695, 16:45 , QUNE 07 53/11- 0.5-0.6 695, 1×402-RO Organizs, Mound above bages tow of fill 21080 rust & faper actis, Grey eltirium, sel sandy SILT, moist Tr. Brown sitty SAND, trioiganics, beat interface, must. At the of fill-Start PINEO755125 Location Brown silty SAND; mane; w/ bits of Grand Surface is rusty netal I debris End Former OUNCEFSULT location 711/04 120137 イマス

XXIV 16821-3 16821-3 カント 7/2/04 9/1/04 16:55 64NEØ7SSILZ, 0.6-0.8 695. WZ: Broken high ourcast; Zokk un 1XBoz-PCBs (MS/MSDifneeded) Lt. Erown from SE aremight, Mild E breeze 405 gravelly, sandy SILT, moist, it small wors, ournight 8:24-Bito Phone Cours w/ Johns 17:00 OASAC. Spielmour - BTEX, DRO, RRO No.1dect. for 26 MW3. GRO, PAH not 17:10 select new location for 06MW5doine - Call Shame in P.M. air hanner to 10' Drive point in a little -Julie Shap-Dall would like to deeper looks like good water get location I.D.S to lak for Their electricarie data system. 18:10: - Drive MWG (SARG) a few feet Provide poring / depty + co-located decper. Area water levely has into. for sample I.P.S - Shelley - Surveyor still heading this dropped. in last 10 days, way today. 18:45 Off site - Call Berry Air to check on 17,00 Dinner Shipment Fran Discours, get Fuel. - Lust cooler had a trip blank 06.8°C, 20-20130 Daly Temp of cooler=4.2° Temp blank? 8:40 Pre Shift Sater DrAlers to Cement well monuments Ben to Sites 3+6 wells Julie/Randy Sample hand My, QC review / table updates, rinsate.

in gray site - 16 - goes sitt up. 12.30 - 13:00 Lunch, try to call SCS 16 22(-) airfield - head space for burn aven 26 MWZ iocurren to install 4" casing to cilt. 14715 Dollars schere ul Randy @ 14:50: Builling @ 26 MUZ: Lecation NW of 26 MUZ has more Here Ben props to do Sugi Forman sampling - Ecoloment. The to call Shane @SUS on the beach Containment celle and tote, places it in ful Floyd - Eugenes son in law comes WX - charges to distates rain air filter cleaning soucht leaking by & recorts a 5gal can at (e) 14,000 × Ben contain It in 2 June lines XXXX 40/2/2 ズイン 16821-3 Photo (1 RZ; Core of frozen site u) 15:20: Call tat this service - Sunceson 15:50 - Back @ 26MWZ location - Ice 15:00 Call SGS - get Sciane Postan Sample 2658 103 016,00 - Frozen silt for He looked at 8260 choratores Horizantal - MWZ is Fars NW of MW7. calm ulgood visibility. They - BIEK nuntdetected, - Should be No GRO bused on rock 1 3 reach lenses, 19-21.5 bys - DRO/RRO- not detected + has checked in. WX: varing, but Chrometegram. No clear icz hire. (clear, frozen weter) (oursy up casing - Vo (in batch. has it also - was and hat sample a 19 6 Closs contamination - restand black PAH- has a hit of napthalenc sultate and iron in common levels Gransize 40/2164 (atterberg? 144 J 14 14 14 14 KUN 59

Mapr 16921-2 16821 2 オセン 61 9/2/04 9/2/04 1912 + Bento Site 6, Julie looks Drill docsn't handle maternal at Barn area - select Ecrecaing well, that air melts, silt plugs up casing preventing air release loca trous. hanner stops. Rendy - Starts daily, Main Air warms caring, causes it generator dies - workon - was to slop - stop drilling. vin al chote on - carboned up; AZLIZ Back - Ben & Julie. Jo (driller) is now putty sure Filt at bottom of 26MW3 was frozery 9/3/04 based on feel toplet spoon from 26 run 200 25 xi High 3000'+) broken averast 16:40 - Call John Spietman - Shut It. Ebreete, HOF. down drilling - not setup to Bils Preshite Indation trous satety scal a castry in frotan, racky ML type material. meeting. Ben Carducts, introduces - Discuss rinsate for Ectenan dordge (rake from GW analysis of destroyed Shelly to och encourse, procedures, Vrill crew to pull vig att 26MW2, wells) demober ben + Shelly to sites 346, - Did he deal w/ nat. afrenuation paraneters on hold? is - W Shave Julie to site 1. -2 coolers out to SGS . 915-1011 5 Rundyotti Call Jonspielman > Will try 16:45 - Berny air in W surveyor, to get a Lyndon Here on supplies. backhaurt. 17:30 - Group Cornenny, 18000 Dimer Call Bening Air > 2230 here u/ prie and bottle. - Ant

products 1x402 molt, 1x 802 Photo-last RI - Ben pulling upSD (My (to W.) - (Waded to sample (outrons)) Just stlow where creat becomes late. <u>б</u>2 Ben - Site Zelsed prep. 15700 On Site - Sugar Estenary in sand and and robic decomposition Eckmann dredge - in eddy / bactwire 15725 OUNEZASDIGK Dark brown to 12:30-1300 Cune 6 black sediment with rusty algae, 17,00 -Julit has 19 headspace from ted all of the stading Nove down Play (NME) + look ites abound air terminal tower White It location @ 2001 SCH South Sample glart, Donlier veeds to go. Julie - Sizel samptes Shally has paints for sites. 26 to lather 14 to shortine 1 3, 2' below water jurker 42/2/04 オウン dredged & sample d. 16321-3 Photo BenA27 - Dropping Ecknon decomposing vegetation, she silty, 7354 below water. 17:00 Same le 2950105- 2× Boz 1× Kozhan 16:20 - Berry Ar in winnyers aut. Vicedoe @ 50105. Photo Ben A 26425 - Scelment for dredsei was best. Gracely below - difficult Black with shing Hedes Fiterau Sciencel shots with doedge to down-Plan for 75 execpt at Silt, and decomposing veg. BY NE2950105 Location - Takes 76' Fren 2850 184 Lathe tyde carlow oder & sheen noted Kept 7 sample of Aberris ug betwee getting more seelinget. Corrove trocrocis vegetertion ouNEZESOIO4 eddy. (ice secur likely) 16 I from lettre to sample After several attempts, 25t sample sample of Aberous repetation 42/2/24 H2 LL NIN

7234 16821-3 ATX 10921-3 9/4/04 9/3/04 65 White High, broken clouds, sunny breaks Gusty wind & vain overnight. New JOF 18:15 DUNE 295DIDE Black ofte War decomposed ciganics, silt, trace sand 11' cut I from lathe Morning off - 10,00 breakfast 2×40=McOH, 2×802 (For Ms/MSD tried for an extra dredge to Shelly to beach sites @ 11.00 fill the Triplicate Volume -Julie updates QM/QL table 10:00 > 4 Location not successfull, - Just enough for extra Ms/MSD. ~ t'below water Randy -Ben - 11:00 -Ben to Sites 3+6-Pugelsample Julii & Randy - Sugi Sediment 14:307 18:30 - Demote Decon for dinnen 18:30 Ben back = 1875 - All Purped, - Juliz has packaged flugged Site I samples, Shelly is staying out Dinner - 18:457 19:30 at "beach" sites a little longer 19:30 + Zoioo - Rinsate sample -Ecteman dordge - used rinse bucket, to take advantage of clear viselility, cleaned of DI. Added to Zgallons Eriz helps surveyor. - No prepare for fork life on this plane P.I., submarged tagitated duedge .-Dippedial 250ml Pdy. Julie & Rendy 19.00 Dinner. 20-2100 Extra paper work, - survey last. 20:00 722,00 Rondy - Dailies - Surveg/Sample Loc. Table 23:00 - 06318 gast

12130 - Randy & Julie to SIAC !! 2072 - Cooling, winds out of E provensing. Light rain -9:40 Pre= shithe Safety unto Why Rain overright. Didleca overat 12891 Decan, Set up on neu (1-3. - Give some time - think scient le MW 10-1 - Produces well to Randy - camp tog. Julie - SAE & well prep. Shelly to workon Sugar Over points Matus good unice Ben to sample soft 6 Colorineter display tails. water quality fare networ Itach they new all while remeasuring - No treacus Man. No forcere lion heramout Sample OUNETIGUNOT - see lag Sample OUNEN Gulas see las 10/5/04 オモン overnighte. 10,000-Preshitte Safety Mig. Ben to Site Guelle - Finish Sandling - POC points - Finish Shelly - MOC points - Julie Runky - Soinplete (6821-3 16,00-> gguunt > 18,30 the Sunde crew Asuror converse When Similar to 915, gusts + rain 19.20 Dinner 20,30 22000 sample perching parts Montoring wells. Cacking precess Plane The Afrenoon 11-10-mill - Lots of work fring sample pack 3 15po complete Good water - Pailies to John. 401912 A CAR 40/5/04 Loot at woit, -**2** - **2** - **2**

-12897 Whigh ourcast, mild breeze Call John Soldwar Hope for wrap up this weekend Ock for Ben to Use surveyors GB - for Bkgrid, Gib Start / Satets 1949 Up date Same le Log - analysis 505 todas (vetals) -Ben- wrap up sta 6 well 500 Julie sleeping in alther Sec others notes for Vacking 20:30 \$ 22:30 - Juliz - Glui prze., Sample 88-MW5--Ben Look @ + prze For background, - Kandy - help gorn same (ing (23) - Shelly - Survey anothing area help Shelly, Treat Decon Veurlog 177141 LJ- 12831-2 re-collect. Other estimated PCB Locations last Bits To Me. constarts ble that date all be ator the same the Call 1abs Former ONEDFSSIZE will arc have preterred pre-marted, but enjoyday now that turys - John wints me to call 121 1 N W fust as she all samples on one side of to 3150202. Stop QUNE #755105, 106, 100-540 QUARTIES (20,121,221, 221, 122) - Change repeated name 3159201 (9/2) starting to was up. - missed location by 24 401Z 12 would - Toker would Jac

70 70 70 & Thraking about a DCG on Tics. 2000 Phone Con w/ John Spiclaran Fuiled to keep track of Norebook NJ& 2 samples of COC from Bathenny on 3RS, against seared paints, Randy checks pletted points by sitter, 9:25 Pre-Shitt Meeting a tew points - cleck. Beas date weights, coursility of Fart pictains Compar 5800 out of ElSE. noming, upper 50's F. Winds 0-10 back haul next Weddesday - 4/15 Masare lengthis at Forty Congression Vig, prekup. > For fitting in HERC/UC-6 Vots fraze inclus couler Whi High accest, rain in early Site 6 OYNEOGGWIOI/ZOI Shelly-pack for de nobe- check - No other apparent availability, - Lyndon Here scheduled for a Lookat Forth lift & compression 491812 YXK 16921-3 to ned they tocatoment system. Granty feed best un GAC. 2000- All returnto camp. 13.00 - Call Bering Air - Shelly minimal drawdown. near original level. - Allow water to drain back firstart 17:00 - 19:00 - 881416 -Odd fallure - pump stups 1/tec punes fine - lots of water out at water, yet water 13 11 mw - 3, 88mu 1, 88muz, - Need Julic & Randy to MOC wells. ----38 MW-4, 5,6 -all have obvious we diesel actor - setup decon system Call John S. - see pretrue 15130 - All in camp to ve-set Same gov. arcas west, Ben & Eric (Cook) to background torgood scrubbing, treat water tran 10mw-1 Planc in - I cooler but out up 40/8/64 AZK 7

16821-3 7.174 10821-7 NIV 73 9/9/04 9/8/04 Help Cook, since he helped make WX: Rain showers + intermittent such, Bito - Call John S. - hes on planz background works 22its + Paperno /t. 23:00 to John Lindstron- Chemist. Flackground collected. ("trates ?? SSMW-8 done - Nat. Atch. + BAtt. PECON- tinsate Photo BRZ Collecting rinsate Ray 16821-3 9/9/04 14ite Call back - John S. -Give dimensions of large equipment - Loading compossor in DC-6 w/ forth Whi thigh overcast, low clouds lift does not look good, or safe. around mountain. Light rain arrailet. 505 colon. - ICB sample run (of batch we cancelled) 9.30 Pre-shite. = 04NE1355120- 2+ ppm Ben to I more western backgeburd - John will check we Bering Air location wear beach. about using Casa to had out Julie - check Water container compressor. Maybe a flight tomore incratory prop for MWS @88. Ulsamples + empty dums also. Roundy - Longerer (099720 (11:50) - Lisa Grist concerned about getting Gew from wells 38mw749-12130 On-site 83 MW-3 explained that area regraded, - Randy to treat purge water 95 monument found - destroyed, from 10mw1, 11mw-3, 88mw1, 88mw2 Surveyor marted MW.7 location - Dug, used witching poils to through GAC - discharge to the AST trank farm prad. (also 8) mw 3/21 no avail. - 38MW-8 makes good water, - John will look & Hach directreus clear, slight dresel ador. pounder fillen anethod is For

RAIX (6821-3 XaX 16*921-3* 74 9/9/04 9/9/04 75 18:00 Photo FRZ - Water up to Single Ferreres iron - have treatment system in action had about higher results. near 88 mill-5, looking "John will have Shane Torightik SSE. (Return dine installed). look tor possible correct interence in boring samples. 14.30 - Develop 18MW-1 19:30 - Complete development -Move to Site 16 wells. very clear, high production. Only lil to 0.8' of writer. Grundfos needs about 0.8 of Lots of com oil on tuping water to submerge screen. and pump - last 6-7: Decon. pump & cable, cut off hose. Call John S. back 216:00 -Try to sample will to tuping & peristaltic. If no go, call in 20:00 Pickup generator, hose - offsite. a tribing order. 20:45 - Dinner. ben has 3 more backround. Move to i7 Mut. Good water, 21:30-22:30 - De breit, sample hand ling Nati atteni pavameters. 17:30 - Take Julie to camp to pack samples. Porte up supplies. Move to 18MW-1 to H purger . Start Water treatment -88 MW 4 though MW8 purge water

System to Panul, satur, start. Setup in 20 mull to perelog AN 13:00 - Cueck water treatment -12.00 - AE MOC - Moue treatment conferences on DC.C. Water still turbit out GAL. 13:30 back at 20 mw-1. go out Tuesdays laigh has to Print ductics Calibrate Oakton T-100 16821-3 Call John Spielman - Ouly aculatie there a mix of doill steel decoin & Wz: High broken clouds, culm, publica ul particulates, com eil 17mu-l Eurge water, turbed ity meter. 10-24 - Safety review Tits - Pre shift play pre-filter cleaning bucket Use a setting bucket A VOL 40/01/2 XIN (682(-3 15.30 - Clean aut sediment from dout decour / 17ment driven, marz 17ivo-Return to Camp. Check on Eric, pick 4 then easy to get soil that may have fallen in when monument destriged loop pulled att. Jalie & Bey stop by from background Sampling. Jalie helps wil (8MU-1 Sample Of NELSGWIGG Scalibrates 14.20; DTW broc = 20.30' equipment for sampling @ 18ther(treatment to Schull, set cy to them while lesting @ 88 mo-10 Some supplies. 17.30 - 18MW-1 Allow 29mu-1 Monument out PUC. 4 12 gallers freis Genutte -Bail of 15 only bailer - I's agarsine, be a good well. Place extra started to clear up. should 10/04 10xx - 88mu-10 えょうび

10:15 - Set up at 24 mu-1 2:30 Preshite. Meetly clear. Ben - iable leactage Background Julie/ Handy - MOC wills 20 mul symulp. 20-2-40 winds from UNE, 10 TO ZU 20,00-21:30 19.20 Off size, -Dinner Satarated 13 cair = 10,3 maples in the scower to mm. Whates seerse -13145 Complete Grund tes de cin -16521-3 ter camp eleve on altimeter toget Calibrate DO on USI using 32 Fund stors barring through 50 Complete treating purge water rinse. A \$1116 Label metting. - MAX 7/10/04 1233 REST Juliz ; taget congressor on Casa way out here tomorrow. Will tog 19:00 OR soze - dinner, 20:00 Call John S. - Tim Randy - Develop 22 MW-2 Ze must but 85mu-10 ware also) 19,00 Setup on 22 MU-2 to sample. for 2 background gravel samples Sample 22 MW-3 - Ben to quaries te jet parts, Julie sets up 38 mullo - Spart 11:45 WX - remains windy chilly - damage hese, return to camp config carters drum, fix, relead Delever 22MW-3 Good, clear water Cimplete sample @ 13:05 Carbon filter fitting - have to Treat 20 Mul, 88mer 10 water Now cuercast. 16:00 - 20 gullous - fretty clean well. AQ/N/2Ju all while fixing Slower gets really M-IN 20

16821-3 20:30 Ben & I dein respiraters, splach 21,00 - 23,00 Randy - ONAC county tenders. Lost contact - Johns Need to remore axel, wring harness ""Ar Cooler Cleaner (Nor Regulated) -Address = Slide (1, Louisiane, USA Procussed air cooler cleances. MANT - 1 gloves, Look at couldn't make out manufacturer plan, chare lost charge? - Tried again. Diesel Firel C.45 06834305 Nonylphenol Cits 25154523 9/11/04 メスン 16821-3 to 22 mars drop = Ecup @ 26 mul 9:20 Preshift (9:30 sarity) 14.30 On Site - Orry eguy. C Nound, snow on mountains, mid 305. WY: Busy murning: Rain showers, sunshine, 16 MW-2 V = 15, 57 Etec @ 11; 48. N16nur-1 X = 15- 44 trec & 11:24 Value, so water in trabing will drain back. Just get 250ml try Geo Squitt pump, but of course pump has no check take drum to Site 16 Complete at/al count flows (16.63) - Writer only enough to fill tubing to 23 below top. forig trating adapted to juter out, I is at brand bottom betare 1 2 K + Ø/121/6+ rell 15 000 H ZU

Take rest et gear to 26 MW-1 Finish treating 22 MW-3 water 14,00 - 6 carles out 12:25 - Camp. Call Benny Air w/w/x veport - Plane it in the air -carly! Not reads. 10 821-3 1400-14120 Lunch. Reset. Fuel (unning - getting the o cut in ling or hase anotica? 16,54 w/ Paristalni Turn in peristal the 3 (6 Mil-1 -get a tew MU cut, bubbles. ta diad they 16:52 - 1601 w -1 - x = 15.84' - fully count area ter Tim 16:00 - 26MW - 1 w/ Julizy Dev. 26-1 16:00 - Trat 22 mw 2 gurge water background for water holding + mes Pack Coolers fast, Just callist 15:50 I IM In. more Compressor to disassently 6/12/Qx1 ord 20 XXK 16531-3 17:11: 16 17 -3 x = 15. 13' (d. 63' Hzc) 16 mw-2: 15.75 \$7\$120 Call John S. . Site 16 not samp wable MS/MSD " Julie - Get dup d'Tre Fuel generater Finish treating 26 MW - 1 water (100 Gal), Buck to Concert - Finished Developing -19,00 - Julie to Site 13 RB replacement 75 to So gal. @ 802 / eca tran Cap Markings on monument by lang Still working on Compressor litting Bailed dry 7.00 - 161-12 - 2 - 15. 53 I'vy purger + unp again -water 7 2" accur tec in teding. Gravel sampling slows 40/21/1. 2 Arde N. 2. C

10,45-12,00 - Help take apart air comple-Stor - remare axel , wiring , bunger to 22.00-24:00 Sample les QC 12:24 - Call Bering air - David -requist Citst - probably 4 1.12 Tim Ene, Floyd- Camp takedown Julie + Rady - moc & S. 72 7 108 Wz: Mosely clear, 305 sucraighty TIT Casa Nu breeze-5tte. new on for late Tuesday. DC-6 16821-3 tor mid-late atternown being for flight in citst. Here Ben background Call John S. + at. on compression - coll Balk sameles 4/13/04 - JAR 52116 MAX 168213 METE 5 RZ ØUNE135B 135 (ocations OUNERSERS 14:25, 2,8-3d bys: At location marted for ZNECISSOR Brenn, grindly SiAND, tr. silt, in cables. and partially set concrete wester at 1.5-2.2' bgs - Top 1 is beach material (cables, gravely sing) 12:50 - 26 MW-3 Wh - see Jalas Notes 12:55 on site MOL Julie - Last Site 13 ne-sample, Location has concrete rubble, Photo 6 R2 - Mul-10 re-set. Use last, carthally hardened tog of concert to 12-set Bonuto Kundy picture containers & Site 6 (closest in flags) Wx - Rain Shours, optimy toward concelled samples DE CO. 1 E GUIDNEVE 7/13/44 MAX X XXX

16725 - CotsA from Berry Air 16:20 - Julie has all 20 are well's measured (6424-3 15:50 OHNE 8855102; C.6 tol.2 kgs Bulk sample of material new center of M.C.C. reaish every 5720 OHNE G855101 ; O.6 + day s 14 Vhoto 2 RZ 8855102 Jacation to S.E. VILTO 3 RZ SESSION Location to W, MO: -Screw - load compressor Balk sample at structural fill from beneath banding slat. off adjacent to layer ul debus off adjacent to a partial slab. 149's crossnu-8, 231'E + 88 MW-10 Brein, sanag Coubles, frietund; Load & of site - to camp silty, grinely sand to sandy britter ろうた 156' Net 88 nu-10, 145 wot 88 nu-1 LX5gal buckets 9/13/04 annies KLR 8-11591 19:45 Back in Cump 18, the Cet treatment systems, drums 17:30 - Wear to Site 7 for 3 fits circhts. A - send out dufter save sand, PVC will casing, empty Sample gear 20,45-21,45 - Minor packing fuel drums also. Measure Site 6 whiter levels Surface PCB samples Treat Site 6 purge water. Congrasser difficult to load, but Camp is dain to Kitchen trat Dinner 9/13/04 XXX

QUNE 93 WP\$6 3,65 6tor @ 10:56 11.10 - Pack in camp \$(NEQ3 WP 110 3 reasons \$ 2=0.08" 3,11 btoc 0:10:53 01 NE 03 WP102 2.28 672 C 10.50 When Bluestery N. winds, viewin showers, mid 405. 16821-3 Measure Site 3 all at ouce Wet const yesterday todays Wester Levels - 5ite 3 OHWE \$3 WN\$5 3.36 size @ 10:45 (145- Bend Julie en sample latels Manay - W/ P/4 - Takes 15 gol gas, 40 gal diesel to Eugene Toolies, Measurement 4.0.25 Measure 4 = 0.08' 5404002 Cl and the same of a same 42/4/64 2. 2× Jenet's year top drugers lett for Eugene & Flager, along up 6-12521-3 Eigene - Can Stap log & start Tent floars treits terigo Bering Air in a 19,700, Off is land (2 19:35 Normed 20,70 all desired - Out @ 19,30 Coders 31 > 38 supped us 2/14/04 401 race 89

,16821-3 90 RRH 16821-3 XZX 9/15/04 91 9123104 Emerald Alasky-Kieth stops by Transition day in Nous. 10:45 - Call Gary White & Cyndon to do a Chlor-N-Oil 1000 Cargo & Will the Here to Buckley on Air coder cleaner Stop in Name for fue (? + No, probably recovered from beach - DUCY 1000 after going to NE Cape. (but possible salt water influence) (11.48712712) 1115- John Spielman. - Get 7 coolers from Events, 6 to SGS, I to NCA. NCA cooler needs to be goened 14:45-Stwannex ul Ben Hearner -& re-iced. Empty un-analyzed sample jars into - Cooler 27 found-got to SGS drum we diesel spill sort, decon +development socieds. Mix thouroghis yesterday - samples over 8°C. 1760104 by rolling down Sample Loop Cucanst request 88GW (\$ 7 resulting wet soil (over-saturated) WQ - Rinsatt resample. 15.15,04NEIDWSCI 1×402-SUB260 15148 Call John So - Here in air. Buckhool. [UOC) 1× 802: DAO/RAO (AKIOZ(103), PCA (SW8082), RCRA Metals (Sw 6000/7000) latest eta N.E. Cape 730 #195 Some analysis at extraction time 15:30 - Drum closed, decan for SGS-might be disticult. NCA Cooler re-packed & shipped. shere a Discover that 5'415' samples from 19,00 - On Ground, NE Cape -20 MWI intact, game materpart visually -Vehales to load on Heve Compile for grainsize 14avEZOSBIOH - STEVE & ZM (12308/25) -out of Gas. Dill in air

152 153 instate Labs Bering Air SGS Environmental Services, Inc. Varig - Pilot Denny - Cargo - No problem running (907) 443 USE 5464 w(Satelitz 200W. Potter Dr. Anchorage, AK 99518 (443-5464) 562-2343 FAX: 561-5301 Shane Poston AK Air Janice Manz Cargo Service Ctr. QALab North Creek Analytroal Services 243-3322 1800-2A(aska 11729 North Creek Parkway N, Bothell, WA 98011-9200 Suite 400 Use Gold Streak - confimed 312 Copy - Origin Statton Phone: (425) 420-9200 Far (425) 420-9210 From air bill Lec Carfioli (Enily) Ground-Air Mike Priebe - Anchorage 563-9200 Fax 563-9210 Freg 122.7 Celli 317-3412 Shelly - Surveyor Williams Mammoth Consulting L.L.C. Lydon Air Cargo K Chairers 11001 Ridgevest Dr. Gary White - 249-0231 Auchorage, Att 99576 (907) 346-3767 Fax; 346-3767 Cell - 227-6516 Select Flight Ops. : 1-800-260-3386 +++ Charter 936

154 Contacts 155 U.S.A.C.E. P.M.: Carey Cossaboom 753-2689, Fax 753-5626 StW: D.O.M. - John Spielman Office: 561-2120, Fax: 561-4483 E.T.S. Lisa Geist Home: 248-148 Ru Cell: 350-0246 753-Julic Keener - Field Sampler Chemest : Julie Sharp - Dahl Office: 479-0600 Fax: 479-5691 753-5689 Fax 753-2636 Home: 479-8431 Cell; 350-5710 Bekn Heavner - Field Sampler Backupi Chris Floyd Home: 644-4955 753-2700 Field Team Leader: Randy Hessiong Home: 248-8923 TTT Enumental Pebbie Phone: 770-9041 Fax: 270-9046 Alasta Minerals NExploration Service Discovery Drilling Owner: Kyle Brown & Mark Tomy 2231 Cinnabar Loop, Auch. 99507 Office: 344-6431 Fax: 349-7021 Mike Smith - Dunce \$ Home; 346-2006? Offre: 522- 3366 Fax: 522-1940 Lead Driller: Jordan Wininger Tim's Celli (505) 690-9149 SSN: 403)-82-5317 Evic Schnidt. - Cook 23gr.

* [·		
4	CONTENTS	
		·. ·.
PAGE	REFERENCE	DATE
k		
		· .
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		·
1. pr		
	A Contraction of the second se	* - A
-		· · · · · · · ·
	₽ ²	
.L		J
н ⁶		•
Sec. 1		

Rite in the ALL-WEATHER WRITING PAPER ALL-WEATHER HORIZONTAL LINE BOOK Name JULIE KEENER SAANNON & WILSON, INC. Address 5430 FAIRBANKS ANCHORAGE AK 99518 Phone 907-561-2120 Project PHASE IN RI, NE CAPE ST. LAWRENCE ISLAND, AK This book is printed on "Rite in the Rain" All-Weather Writing Paper - A unique paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather. For best results, use a pencil or an all-weather pen.

Page Pattern		Cover Options	
Left Page	Right Page	Polydura Cover Fabrikoid	Cover
Lined	Lined	Item No. 390N Item No.	390NF

12.

in all sold and

PLUS I PAH SAMAE POR BRINE. 1/30 mapmos up ro ~ To"F Jun TE BOWNS FOR TENTS WITH BRILL RIG 13:30) with Collaria ACANE WININGER (DELET DRILLING) AT SITE ON EDING GRO/BREX, DRD/LED, 3 SAMPLES PER BORING ROD WAR PLAN. 2501 GORINGS (EVERY 217. TO 1517) FOR " WILSON) AND OLIC SCHMIDT (AMES). blocky to early, occasionian it. KANN. AIR CHARTOR, MET CREW, KANNDY HAD SHETY MEETING AND DEIGNTATION HESSONE AND BON HEAVINGL (SHANNON DRILLERS ARE INSTRUME STATES 14 TODAY 8/1904 NOOP, PARTLY ODY N WSCUSSED PLAN FOR TOMORROW. Ass Ref to gourd Rinspit AT INSTALLED LATRINE, UN PACKED GTEAR, EREPHEAST. 0900 PROPTO SAMPLE IAPLINED YESTERIAY AMERICANAN (APROX mention mis party cruby 50'S "F NECARE PHASE ICRI AUGUST 18, 2019 . MACA 85-03003 While telenar 8/18/04 おうちょうかい とうこう してきない 一部分 507 HID SETUR ON BORINGOB-2 AT South SIDE of Former Pum House, DRILLRIG 15 135 RETURN TO SITES WITH DAULRIG 1245 RETURN TO CAMP FOR LUNCH . WSER 1607, off tole AT 1630. DAMOS LETTYO GET SAAR ROTARY MUSCILE 53 wat some there through the AND PALLORS. CHECK our born to recommend IN BRACING TENTS . CLEAN AUGER FOR NEXT BORING 0381 SOIL (SIG) AT STIGHS. DONE DRIVING AT ENC. WATER IN GOLING AT GET. AND ROZEN SITE 7 (LANDFILL), SITE 6 (DRUM FIELD), SUPPACE. LEAVE GEAR AT SME 3. AND STE 3. GEN AND I TOOK ATT'S AND GRANK, LOSKEDAT DELL /DRIVÉ SPLIT SPOON OTO 8A BRS. 0.2 FT WAS B SANFLE ONLY (Park RE CONDRY) INTERNITENT STREAM AT SITE 3- PUMP FORENTIAN ANANTICAN SAMPLES AT 2-84BES AT SITE 3. MAY BE ABLE TO COLLEG WATER SAMPLE between AT BOTH LOUADONS. House Soil baindas ward as saving out rown FUELED A-WHEELOLS, WARDED GREAK Found LAST NEL FOINT REE ON GD. 8-18-04 04 CA15 030 to 3 TOG NE CAPE Zoo 4

when were sict samp, Monte 2020 LEAVE SIME S DINNER 120 COMPRESSER out. Move to BORING 03B1 1750 ON GOLING USB1. SON IS DEPOND famor this ben instruces 2 here formers Hybrocakter (W.Hc) soor AT SITE 3 BY HAND, DALLERS GET ANISH 03 B1, DUMPDECON WHER INTO BRUIN MONTS FOR DALL EQUIPMENT. ANR COMPRESSOR IS STUCK IN MUSKEL. DISCUSS DECON PROCEDURE AND REQUIRE. an osb1 CAD GOOR SAMPLES ETC. DRILL PIG TIRES SHINK IN SER PERT 45°F MOTH CLOUDY UNLOAD GOOR. MORE ICE on SAMPLES USING ALGORS (INSTERD OF AND BOTARY) 8/18/64 NE CARE 2004 DACA 85-03-0-003 106 ul TO 20 Fier Bis) subruit 2 Sambles 0930 1330 LUNCH. while Alling Day with Decar water 1400 AT SITE 6-DRYM FIELD WITH BEN, POR BORING FOR DRUKKS, GREV, BREX, Refunce France. WER INSTALLATION TOGETHER TRIPLICATE AND RINSTE SAMPLES HOLE PANDY, DRIVERS, PLAN TOUSE ATIC KETARY IN COSSIY DON MAY ALSO INSTALL WELL POINTS AT THIS SHE. CANBCARE HNU (1) Soz JAPS HAD PRODUCTIS WITH WARE PUMP USP, CLOWDY, BREEZY SCREEN SAMPLIES EVORY SFEET (DALL AT DELIM DATA ASIST - FIELD Personnel PRESONT. DISCUSS PLANTER PAH, Polos, METALS (4.2 W/MeDH, toz, SITE & - CARGO BEACH DRUM FIELD PLAN TO DRILL SIX BOCINES AT fuce Supplies Face Sandunk, Decon, PLAN TO ALSE DEVIC COLLEGE BUIL Duly 5/19/04 DACA85-030 003 754 Whe talk SAFETY MOETING. ALL SEVEN NEGARE ZOCY 16/18

1800 RAMPY RETURNED TO CAMP HO KILLERS DECONNING ATK ROTARY 1500 START DRILLING ON 0682. the sour of sour basence oubl 1830 ILLEAT SHE 6 535 BROK OUT of BOULDER AT 45 Ach, Butsankled Bornt. tor UNSMUR. All to 14 SFT (Sourcer) AT ~ 2. SET GGS. BROKEN Rock in EACH. MR. ROTARY AT 10 TO 11.5, RUL/ POOL RECOVERY IN HEAVING SANDS, A.H. STUCK. FINALLY ROD. LUMBO BULLETOF DECON WMER 6.5 F Gis But any RECORDED A on iskums on plan Rig. wind kenk ACOM 8 to 10. FT. TRY 2 SS Sandia Fr Bes EQUIPMENT IN ORUMS OF DEED WHER FINISH PERINC DOB2 MULLIES LOADING MUNE STOON. COLLENT SAMLE AS TRY TO COLLECT S.S. SAMPLES AT 5 AND RETARY CUTTINES AT TOP OF CASING AT ~ 2 FT BAS. ENCOUNTERED Pak 14 Stollar Bes FS: 0.2 pm COLLECT FS SAMPLE FROM AR 8-19-04 OACA 85-03-10-003 T.O.4 8-19-04 Julie Alera NE CARE 2004 1900 DINNAC 1845 Bar AND DRILLOG LATSITU to BEATSME? (LANSAIL) SAMULING SITE & TOMORPAN, BEN AND RANDY Juffrei AND NOAL Sulface Soils Lok. Selen Son samples. flan to contrive planne AT 8-19-24 DACA 85-03-10-003 TO.6 PREPARE SAMING COLLECTION NE CAPE. 2004

NE CAPE 2044 NE CAPE 2044 8 -20-04 DACA 85-03-003 TO.6 8/20/04 CACE 2044 8 -20-04 DACA 85-03-003 TO.6 8/20/04 CACE 2044 9		
BREPHANS US & PARTURDY. 930 PREPARE TO CONTINUE DRULING BORINES AT STRE 6. BEN ANDFANDY TO STAFT COLLECTING SDILL SANDLES AT LANDFILLS CALIFORM HIML, MEETING 1350 ANGOLED DOWN TO 15FT. AT 0 ANGOLE TO SECO. 1350 FS SAMPLE AT SFT. BES, GODD ANDERN UP HIVL, CE JERCO. 1350 FS SAMPLE AT SFT. BES, GODD ANDERN UP HIVL, CE JERCO. 1350 FS SAMPLE OLE B3 0.5 = 0.8 PPM ANDERN UP HIVL, CE JERCO. 1350 FS SAMPLE AT SFT. BES, GODD ANDERN UP HIVL, CE JERCO. 1350 TRYING TO ALEER SAL, GODD ANDERN AND ENTRE AT SFT. JOPT. ALLER IS MOVING ANGOL WING RUG TWICE 1550 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL DOWN TO 15FT. 1500 TRYING TO ALEER SAL D	18 NECOPE 2007	NE CAFE 2004
BREPHAST 65°F (ARTUNOY. 0930 PREPART 65°F (ARTUNOY. 0930 PREPART 50°F (ARTUNOY. 0050 STATE (0	8-20-04 DACA 85-031003 T.D.6	
930 ARGARG TO CONTINUE DRILLING BORNES AT STREE. BEN AND FAMPY TO START COLLECTING BEN AND FAMPY TO START COLLECTING BEN AND FAMPY AT LANDFILLS CALIFORMENTS AT K AT 0.5FT BGS. BOLK AT 0.5FT BGS. BROWN MOIST DILT, NO ODDC. USZ AR HAMMENT, INSIDER ALGER 0.5 to USZ STAFT DRILLING WAILDONG ADDEN ASTER HAMMENT, INSIDER ALGER 0.5 to USZ STAFT DRILLING WAILDONG ADDEN BROWN MOIST DILT, NO ODDC. USZ AR HAMMENT, INSIDER ALGER 0.5 to USZ STAFT DRILLING WITH AIR HAMMENT. PHENGLIGH THIS BROKEN POLL. TRY ARE HAMMENT, INSIDER ALGER BROKEN ROLES. WARMENT ALGER INGE ALGER 0.5 SO AGOUNT 2.5FT. AUGUSTING 6. GAMPING AND BROKEN ROLES. WARMENT ALGER 100 B3 0.5 SO SPOM ANDER OF DETONNING COLORS. ISS FS SAMPLET OLE B3 0.5 SO SPOM ANDER OF DISCONNING RIST, DIFT. AUGOR IS MOVING INTERANTING DOWN TO IST ALGER 15 MOVING INTERANTING ALGER ISS TRYING TO ALGER SALL DOWN TO IST ROM SET. JECHAO TOMMER (LA TWICE TO BET ALGER VERTICAL. ISS TAGE VERTICAL. ISS TAGE WERTIGEN. ISS AND ALGER SALL DOWN TO IST READ SET. JECHAO TOMMER (LA TWICE TO BET ALGER VERTICAL. ISS AND ALGER VERTICAL. ISS AND ALCON AND REALT TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND REAL TWICE TO BET ALGER VERTICAL. ISS AND ALCON AND ALL ALCON AND ALL ALL AND ALL AND ALL AND ALL AND ALL ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL	BRETKETST 65°F PARTLYCUY.	STUPPED BY SITE AND ASKED IF THEY
BORINES AT STREG. BEN AND FANDY TO START COLLECTING BOIL SAMPLES AT LANDFILLS CALIBRATE HINK, STRETH AT LANDFILLS CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE HINK, STRETH 1055 ANCFILE CALIBRATE ON STRESS. 1051 SAMPLE REM CUTTINGS AT ~0.567 BES. 1051 SAMPLE INSIDE ANGER 0.540 1052 START HAMMER, INSIDE ANGER 0.540 1052 START DELLING WITH AND HOURNEE 1052 START DELLING WITH AND HAMMER. 1052 FS SAMPLE OLD BOOM TO IST ANDER S SAMPLE OLD BO ON TO IST ANDER S SAMPLE AND AND FOR THE IST. SAMPLEAT STR. SCOD ANDER IS MOVING AND FADING IN BORING 1350 TRYING TO ALLEER STREW IN BORING 1350 TRYING TO ALLEER STREW IN BORING 1350 TRYING TO ALLEER STREW IN BORING 1350 TRYING TO ALLEER STREW IN TO IST AND TAMES VERTICAL. ISTS -TSY TO ALLEER DIST. MILE THE WAT ALL AT STREMENT TO IST AND TAMES VERTICAL. ISTS -TSY TO ALLEER TO STREW IN TO INTE TRAM. 2817. JECHAD TO MILE AT WICE TO SET ALLER VERTICAL. ISTS -TSY TO ALLEER DIST. AND ALLER 1350 TRYING TO ALLEER STREW IN TO IST AND TRANSPONDED TO ALLEER TO STREME TO ALLEER TO STREME TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER TO SET ALLER VERTICAL. ISTS -TSY TO ALLER T	0930 PREPARE TO CONTINUE DRULLING	COULD BUY ANY GAS. (TOLD THOM NO.)
TO START. COLLECTING SOLV SAMPLES AT LANDFILLS CALLEDAR HIVEL, MEETING 1055 ACRIVE AT SITE 6 1100 SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRULING ON DE DOBS 1100 SET UP, SET UP, DRUCE 1100 LEAVE SITE (D. 1100 LEAVE SITE (D.	BORINES OF STE 6. BEN AND FANDY	
AT LANDFILLS CAUGEAR HIVE, MEETING 1055 ACRIVE AT SITE 6 1100 SET UP, DRILLING ON 05 0003 1100 SET UP, DRILLING ON 0500 1100 SET UP, DRILLING ON 0000 1100 SET UP, DRILLING ON 0000 1	TO START. COLLECTING SOIL SAMPLES	RAMPY AND BENGANEOVER. WELL
1055 ARGAING AT SITE 6 1100 SET WP, DRULING ON 08 0003 1100 SET WP, DRULING SAT ~0.5F BES. 1100 SET WATER HAMMED INSIDE ALGER 0.5 to 1100 MOVE TO 06 BG. LINTON 1100 SET WELLING WATER TO BREAK WATER TO SET SATURES. 1100 MOVE TO 06 BG. HAMED OF THOUSANCE 1100 MOVE TO 106 BG. HAMED OF THOUSANCE 1100 MOVE	AT LANDFILLS CALIBRATE HNU, MEETING	DRIVE SS. AFTER LUNCH.
1100 SET UP, DRUWKON BOORS ROCHANDOR FOR LUNKH. ROKAT -0.5FT BGS. LARABBED FS 1107 SAMPLE REM CUTTINGS AT ~0.5FT BGS. 1107 MOVE TO DUE BG. 1108 MOVE TO DUE BG. 1109 MOVE TO DUE BG. 1100 MOVE TO DUE BG. 1100 MOVE TO DUE BG. 1100 MOVE TO DUE BG.	1050 ACRIVE AT SITE 6	1400 LEFT DRU RIG AND GOAR AT SITE.
POCK AT ~0.5 FT BGS, 14RABGED FS 1107 SAMPLE AR ~0.5 FT BGS. BROWN MOIST BILT, NO OTOR USE AR HAMMER. INSIDE ALGORIOS 50 ~3FT. AUGOR WOULD NOT ADVANCE THREWGH THIS BROKEN ROCK. TRY ARE HAMMER. TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE HAMMER. TO BROAKCH THIS ROKED ARE HAMMER. TO BROAKCH THIS ROKED ARE HAMMER. TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED ARE TO BROAKCH THIS ROKED TO BE TAKE TO THE ARE TO THE TO THE AR	1100 SET UP DRILLING ON 05 00B3	RETURN TO CAMP FOR LUNCH.
1107 SAMPLE REM CUTTINES AT ~0.5FT BES. BROWN MOIST BILT, IND ODDR USEAR HAMMER INDIDE ALGEROSTO 367. AUGER WOUDNOT ADVANCE THROUGH THIS BROKEN ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY ARE HELMINED TO BREAKED ROCK. TRY BROKEN ROCKS. WARM UP HNUL, CEZERO. 1155 FS SAMPLE OLO B3 0.5' = 0.8 PPM AREAMENT SS SAMPLEAT 3FT. BES, GOOD ACCOVERY. SAMPLEAT 3FT. BES, GOOD ACCOVERY. SAMPLEAT 3FT. BES, GOOD ACCOVERY. SAMPLEAT SFT. JOFT AUGER IS MOVING ANDRAWY IN BORING 1330 TRYING TO ALGER SAKE DOWN TO IGFT REM ~8FT. JOCHAD TOMINER IG TWICE TO GET AUGER VERTICAL. 1335-TRY TO ALGER 100 TO DET AUGER AND THE TRY TO ALGER 100 TO DET AUGER INTO AND THE TRY TO ALGER 100 TO DET AUGER VERTICAL. 1335-TRY TO ALGER	POCK AT ~0.5 FT BUS, IGRABBED FS	1450 BACKATSINEG. DRIVE 15 FT AND
BROWN MOIST BILT, NO ODOR USE AR HAMMER. INSIDE ALGER O.5 to "367. AUGER WOULD NOT BOUNDE PHROMER WOULD NOT BOUND NOT BOUNDE PHROMER WOULD NOT BOUND N	1107 SAMPLE FROM CUTTINES AT ~ 0.5 FT BES.	20 FT SAMPLES, WATER IN HOLE AT
USE AR HAMMER INSIDE ALGER 0.5 to ~ 3G. AUGER WOULD NOT ADVANCE PHROUGH THIS BROKEN ROLL. TRY ARE HAMMER TO BROADLUP ALLS ROKTO ABOUT 2.5G. AUGORING CHINDING ON BROKEN ROLLS. WARM UP HAVE, CEZERO. 1655 FS SAMPLE OLOBS 0.5' = 0.8 PPM AMEMAY SS SAMPLEAT 3FT. BGS, GOOD ACCOVERY SAMPLEAT 3FT. BGS, GOOD ACCOVERY SAMPLEAT SFT. 10FT AUGER IS MOVING LATORAUY IN BORING 1330 TRYING TO ALGER GALL DOWN TO INF ROM ~8FT. JOEHAD TOMING RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO AUGER 1.10 GET AUGER VERTICAL. 1335-TRY TO AUGER 1.10 GET AUGER VERTICAL. 1335-TRY TO AUGER 1.10 GET AUGER VERTICAL. 1335-TRY TO AUGER 1.10 GET AUGER VERTICAL. 1335-TRY TO AUGER 1.10 GET AUGER VERTICAL.		~ 3.5 FT BES (BLH = 21.5 FT BLS)
~ 367. AUGOR WOULD NOT ADVANCE THREWAGH THIS BLOKEN ROLK. TRY ATRIMATINED TO BROKEN ROLL. THIS ROKTO ABOUT 2.5F. AUGORING - GRINDING ON BROKEN ROLLS. WARM UP HAVE, CEZORO. 1155 FS SAMPLE OLO B.3 0.5'= 0.8 PPM ATTOMPT SS SAMPLEAT 3FT. BGS, GOOD ACTIVES SSAMPLEAT 3FT. BGS, GOOD ACTIVES SSAMPLEAT 3FT. BGS, GOOD ACTIVES DETONNING RODS. AUGOR IS MOUNT CATERALLY IN BORING 1330 TRYING TO AUGOR FACK DOWN TO IGF ROM ~8FT. JOEHAD TOMINE RIG TWICE TO GET AUGER VEFTILAL. 1335-TRY TO AUGOR		1 NON NOVE TO BLEBA. DECONAR HAMMER
ARE HELINIC TO BROKEN ROCK. TRY ARE HELINIC TO BROAK OF ROCK. TRY ARE HELINIC TO BROAK OF ROCK. TRY ARE HELINIC TO BROAK OF THIS ROCK TO ARE HELINIC TO ALCER CALL DOWN TO IOFT ROM OFT AUGER VORTICAL. 1335-TRY TO ALLEOR ALLEON OF THE TO ALLEOR TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ARE HELINIC TO ALLEON VORTICAL. 1335-TRY TO ALLEOR ARE HELINIC TO ALLEON TO LOFT TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ARE HELINIC TO ALLEON TO LOFT ALLEON TO ALLEON TO ALLEOR TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ARE HELINIC TO ALLEON TO LOFT TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ALLEON TO ALLEON TO LOFT TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ALLEON TO ALLEON TO ALLEOR ALLEON TO ALLEON TO LOFT TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ALLEON TO ALLEON TO ALLEOR ALLEON TO ALLEON TO LOFT TO GET ALLEER VORTICAL. 1335-TRY TO ALLEOR ALLEON TO ALLEON TO LOFT TO BE ALLEON TO ALLEON TO LOFT TO BE TALLEON TO ALLEON TO ALLEOR ALLEON TO ALLEON TO ALLEON ALLEON TO ALLEON ALLEON TO ALLEON TO ALLEON ALLEON TO ALLEON ALLEON TO ALLEON ALLEON TO ALLEON ALLEON TO ALLEON ALLEON TO ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON ALLEON AL	~ 3GT. ANGER WOULD NOT ADVANCE	1625 STAGE DRILLING WITH ATR HAMMER
ABBLE 2.5F. AUGERING GRINDING ON BROKEN ROUGS. WARM UP HAVY, CEZERO. 1155 FS SAMPLE OG B.3 0.5'= 0.8 PPM AMEMPT SS SAMPLE AT SFT. BGS, GOOD AMEMPT SS SAMPLEAT 3FT. BGS, GOOD ACCOVERY, SAMPLEAT SFT. 10FT AUGER IS MOVING CATERAULY IN BORING 1330 TRYING TO AUGER EACH DOWN TO IGF FROM ~8FT. JOEHAD TOMINE RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO AUGER AUGER 12.5FT. AUGER CALL	THROUGH THIS BROKEN ROCK. TRY	Rocks AT ~0,5FTBES. HAMMOR TO ~4FT
ABBLE 2.5F. AUGERING GRINDING ON BROKEN ROUGS. WARM UP HAVY, CEZERO. 1155 FS SAMPLE OG B.3 0.5'= 0.8 PPM AMEMPT SS SAMPLE AT SFT. BGS, GOOD AMEMPT SS SAMPLEAT 3FT. BGS, GOOD ACCOVERY, SAMPLEAT SFT. 10FT AUGER IS MOVING CATERAULY IN BORING 1330 TRYING TO AUGER EACH DOWN TO IGF FROM ~8FT. JOEHAD TOMINE RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO AUGER AUGER 12.5FT. AUGER CALL	ARHAMMER TO BREAKER THIS ROOKTO	PUT AUGOR IN BORING. AUGOR TO ~3.5FT.
BROKEN ROUCS. WARM UP HAVY, REZERO. 1155 FS SAMPLE OGB3 0.5'= 0.8 PPM AMEMPT SS SAMPLEAT 3FT. BES, GOOD ACCOVERY SAMPLEAT SFT. JOFT AUGER IS MOVINE LATERALLY IN BORING (915 LEAVE SITE (0. DINNER, LATER, SAMPLEA DINNER, LATER, SAMPLEA DINNER, LATER, SAMPLEA TO GET AUGER VERTICAL. B35-TRY TO AUGER (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		DRIVESS. AT 3.S.F. SAMPLE (PARTMAY
WARM UP HIVE, REZORO. 1155 FS SAMPLE OLOB 3 0.5'= 0.8 PPM AMOMPT SS SAMPLEAT 3FT. BES, GOOD ACCOVERY SAMPLEAT SFT. JOET AUGER IS MOVINE AT SFT. JOET ACCOVERY SAMPLEAT SFT. JOET ACCOVER STRANDARY SAMPLEAT SFT. JOET ACCOVER STRA		BE SLOUGH). AN EOR to 5FT (ALL SOK
1155 FS SAMPLE 06 B3 0.5'= 0.8 ppm AMEMPT SS SAMPLEAT 3FT. BES, GOOD ACTOVERY SAMPLEAT SFT. JOE ACTOVERY SAMPLEAT SFT. JEELATING TO KER ACTOVERY SAMPLEAT AT A ACTOVER		MAY BESLONGIT). SAMPLEAT IDFT, BEN
AMEMPT SS. SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT 3FT. BGS, GOOD RECOVERY SAMPLEAT SFT. IDFT AUGER IS MOVING ATTERNALY IN BORING IS TO GET AUGER VERTICAL. B3 5-TRY TO AUGER RECOVERY SAMPLEAT SFT. JOE RECOVERY SA		AND RANDY ONSITE 11.5 FT = B.O.H
ACCOVERY SAMPLEAT SFT, 10FT AUGER IS MOVING AMERANY IN BORING 1330 TRYING TO AUGER GACK DOWN TO IGF FROM ~8FT. JOEHAD TOMING RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO AUGER (). 1.1. MARCHAR		DRILLORS DECONNING RODS.
AUGER IS MOVING LATERALLY IN BORING 1915 LEAVE SITE CO. 1330 TRYING TO AUGER GACK DOWN TO IGF DINNER, LABOR AND PREP. SAMPLES. FROM ~8FT. JOEHAD TOMINE RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO AUGER OF AUGER OF TO AUGER	RECOVERY SAMPLEATSFT, 10FT,	PACKUPGEAR
1330 TRYING TO ALGER BACK DOWN TO IGHT DINNER, LABOR AND PREP, STRUPLES. FROM ~8FF. JEEHAD TOMINE RIG TWICE TO GET AUGER VERTICAL. 1335-TRY TO ALGER OF ALGER	AUGER IS MOVING AMERALY IN BORING	1915 LEAVE SITE 6.
TO GET AUGER VERTICAL. 1335-TRY TO ALGOR	1330 TRYING TO ALGER BACK DOWN TO LOFF	DANNER, LABEL AND PREV. STRUPLES.
TO GET AUGER VERTICAL. 1335-TRY TO AUGER		har
TISF. FLOR AND ZORHOR LOCALS	TO GET AUGER VERTICAL. 1335-TRY TO ALGOR	Ville the Tartot
	TDISFT. (FLOYPANDE CONTACT LOCALS	Aling Ing
Julie Reener 8-20-04	Julie Kleener 3-20-04	

130 over Michel TD 2 Ft. bave S.S. AT 2 Ft. 1205 on Borine ObBle 0930 los P CLOUNY. Shead mart 200 methnund 0 to 4Fr BKS 1020 AT SITE 6 WITH DALLERS, SETUP 10 Pouchedavery. Move tapen Ric About 2 FT Are been fusition bound. to VING SS. AT 4 MODER -LAMPY ONSITE, ARCHANNEL TO SIT. AT Smele. Driverstove Deconner Bat=11.5 F. SAMPLE AT LA JAPPARTS to BE Soil UNDER - SIN. SURARCE VEDETATION . THAT AUGOC IN TROUGHS AT CAPIP. SAFETYMEENING on Bachele de 85, USING AIC HAMMAG. most for Remanine Suc bolings FIT - ROOTS AND SHEAMILS STIL Sychast war sultane soul yours SS SHALLEE AT 3,5, AND/DF on silr. samples of U.SA Ano 10 or bas Not sampliers WHER AT 4.5 R MAY BE REPLATED \$21/64 DACA 85-03-D-005 T.04 whe ferrer 8/21/24 MECARE 2004 11:5 F ~ 1635 DRILLOS INSTALLING WELLPOINT NOAR a BI = NPS INSTALL WELLPOINT OG WPG 195 CONECT CIONIPMENT RINSANESANCHE 120 Central to came wint solu GLOW INSIDE AND OWNIDE OF SPUT SPOON (WITH SHOE AND LATCHER) OF NEDUNDA 201 For GRS/BTEX SAMPLES AND RINSME, ONE UNPRESERVED IN BATTLE BROKE IN TRANSIT. 185 1430 MOVE TO BORING CLUBI DINNER. FOL /Smake THIS ATTOCNOON DES/RES, PAHS, PCBS, RCKA METRIS START LABELINE SANFLES NET SAMPLED LASS Soir Strukes SAMPLED AT 5 AND LOFT BES SSA 54- Gaven Rul , 15 toE 130H-11.5FT. ARthanmar to \$35 Fr. PRUE 8/21/04 40 Nr2 Mart NECAY2 2004 DAGA 85-03-D-003 TO.6 CAMEIN

NE CAPE 2004	NECARE 2004
12 8/22/03 DACA 85-03-D-003 T.O.6	8/22/03 DACA 85-03-D-003-T.O.6
67CG05 0ACA 850575 005 10.6	
65° FOGEY, SMOKY	DEPTH = 6.12 FT BELOW TOL.
0930 DRILLERS ANISHING	1617 START PUMPING, WATER BROWN, SLISIUTY
DECONNING AUGERS AN GGETTING	Temp= 12°C. (00) = 0.6 ms/cm2, D0-12.4,
MATERIALS TOLE THER FOR MONTORINE	PH=6, ORP= 32. PURPED ~12 BEFORE
WER AT SITE 26 SAFETY MEETING.	WP DRY.
PREPARE COOLERS OF SOIL AND	1625 AT 03WRD3. TOC=2.93F AGS.
WATER SAMPLESAND COCS.	WATER AT 3.11 FT BELOW TOC,
AND SAMPLE WELL POINTS WITH PUMP.	WP DEPTH = 6.09 AT BELOW Tol,
AND SAMPLE WELL POINTS WITH, PUMP.	1633 START RUMPING. TEMP= 9.9°C
133 ATOWPOS. (INSTALLED BY BEN AND	0.4 Blogn s/cn2, Do=1.85 mg/, PH=5.6
RATION 8/20/04). TOP OF CASING =	0RP=Z1:8
2.62 Fr AGS. WATER 56"BGS.	1640 10.46°C, 0.413ms/cm, 5.54pt
Mar Volume ~ 0.05 GALLONS	33.3 ORP, DO=1.2 mg/k
1503 START FUMPINE, MEASURE FIELD	1642. WP DRY. WATERWAS SILTY, BROWN.
RARAMETERS WITH YSI AND TURBIDITY	1648 AT 63WPOS, WATER AT 3.04 FT BELOW
METOR: TEMP, COND, DO, PH, ORP.	104-1657 TO 1700 PURGED, WATERLESS
(SEE GW SAMPLING LOG).	SILTY STILL BROWN.
WP DRY AFTOR PUMPING 2/ l.	1700 AT 03WPOG. WATERAT 3.45- BELOW TOC.
1523 MOVE TO 03WPOLO, MEASUREDOPHINO	NOT SUFFICIENTLY RECHARGED TO PURGEYET.
WATER- 2.50' ABOVE T.O.C	PULLED OUT FIRST ATTEMPT AT 03WPob.
1540 START PURGINGI WATER TURBID GRay	1738 WATER AT 2.92 PT BGS, NO3WP06.
· · · · · · · · · · · · · · · · · · ·	1800 AT 03 WP 02, WATER AT 5.56F. BELOW
······································	1813, 03 WP 03. WATCH AT 3.33 FT. BELOW TOL.
	Julie Reener 8/22/04
HAS "BULLIT OIL" ODOR. PUMPED~IL FROM WP BEFORE GOING DRY. 1010 AT 03 WPZ. WATER AT 3.94 G BELOW TOL. TOL 3.6 G. AGS. WP Julie Revier 8/22/84	PURGE 1740-1756 1800 AT 03 WP 02, WATER AT 5.566.62 TOL. NOT RELITATGED ENOUGH 1813 03 WP 03. WATER AT 3.33 FT. BELOW 7 Julie Reener 8/22/04

NE CAPE 2004 NE CARE 2004 12 14 15 8/22/09 DACA95-03-D-003 T.O.K 8/23/04 USF ROGGY 1817 START PURGING 03WPG3 TOMP -9.74°C -> 10.64 0920 SAPETY MORTNG. PROPRE LUND-0.378 - 0.350 10/1857022 Soil BORINGS AT SITE LO Do = 5.7. -3.49 TO IGH BES SAMPLE AT SET INTERVALS PH = 5.67 -> 5.52 SAMPLE FOR GRO/BROXPROTRES ORP = 80: -776.0 (3 POR BORING) AND ISAMPLE POR 1823 END PUMPINIE > DRY. PUMPED BORING FOR TOL AND PAH. WILL <12. MED 1+402 W/ MECH AND 1× 8/02. 1840 LEAVE SITE 3. RETURNET CAMP RANDY CALIBRATED PID. PARERWORK, LUNCH. PREPARE SAMPLES FOR SHIPPING. 1240 AT SITE 10 - BURIED DRUMS. SETUP ON 10 BZ, RANDY ON SITE - KHR ATTEMPT 5.5. AT SURFACE. > PUOR RECOVERY. F.S. SAMPLE ANLY. DRIVE SPOON AT 4FT. SOIL APPEARS TO BE SLOWET + NOT SAVAED. SS. SAMPLES AT 5, 10, 11, 15 AT BESS. AT 11 FT BRS, ALYOST REFUSAL, BUT MATTERIAL IN SPOON APPEARS TO BE AND WEET SIGT PUSHED UPINSIDE SPOON- GROWNDWATER AT 11 FT. B65. 1425 MOVE TO BORING 10 BI. SAMPLE AT SEE 0 5 1915 G. BCS. SURFACE SAMPLEHAS. SUGHT MOTOROILODOR. GROWN WATCH AT PROVE 16.507. BCS. 8/23/04 Julie lenar

10 1620 1535 FINIST 10 (3), BUTH BORNICS This ATTERNOON BECAUSE OF FOG. BEGING AIR FUGHT DIDNOT OME AUGOR. TEST FS SAMPLES. PARACUOCIC to DAY DRILLER WITH AMRERONLY AT CAMP. DRILLERS DECONNING 8/23/04. LEANE SITE 10. DACA85-03-2003 T.O.6 NE CAPE 2009 1400-1500 LUNCH - GW AT 19FT. INSTALL 1100 SetuPort 18MWI. WE MEHAMMER 0930 SAROY MECTING. 1040 AT STER with RANDY ANDORILLERS. AND 25 G. BLS. Corcasing STUCK AT 25A F. REQUERED SUFFICIENT SAMPLE AT 5, 15 WER POINTS. SILTY GRAVERY (COMESE) SAND FUL MATERIAL 0830 BES. INFT JURGEN. (YEE BORING, MON Monnoline have At 18MW 1 AT ~26A Allard's Accently Planes Dideo in AREA to be Collegen AT ASOUT 2 10, MD Wall Lold. Begine and come to actual Amoult Samples AT 5, 19, 15, 20, 25 INSIDE STEL CASINE. SURACE Soil IS So'F THICK FOG. 20 PT BRSAND ANALY BOD FOR GROU Brex, DRS/RO, Toc, Ano C. B. Zu, M BORINGS/MWS AT MAN OFERTONS SANINE ATS PT. INTERVALS 8-24-04 PLEPARE TO SAMPLE / INSTALL 3 BON COLLECT NE WARD SAMPLES FROM S/24/04 MCARE 2004 DACA 85-03-D-003 tube-terre Tidite

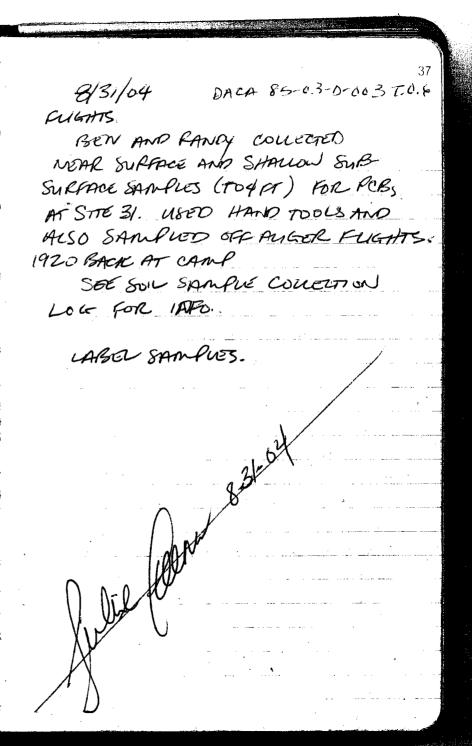
8 2000 what RANDY. SAMPLED. AT 10 AT -REALERAL DECIDE to MOVE DALL REGOVER A PEN PET. LEAVE with Druc Rice. CUTINGS APEALTO BE SIG UNDER THE WARSE GRAVEL AT 1820 MOVETOZOMWI LOCATION Surface. M SA - Pool REWERY, NOT 88 to AND LOCATE PCB SAMPLE ARONS Day like AT SITE. AND MONTORINE WELLS 88-5 AND SAN RE COOLERS. For this in Fred, los 8-24-04 DACA85-03-D-023 T.O.6 LEAVESTE. 2004 NE CARE 1530 NOVE OFF 20 MWI to Soil BORING 1230-1330 LLINCH . LoG'S) 29 M BES. (SEE Soil BORINE/MON. WELL 09to MR HAMMOR ATTOURT SAMPLES AT OBPTH. GWAR ~22.5 FRES. 1 wer Points INSTALL MONITORIANE WELL ZUMINI TO 0930 AT ZOMWI LOUMON DANLAG 0830 Shary Meeting. Mos For WELLS AT MAN ops complex (Zomwi Drucks Deconninic RODS, CASING. Ar 25 Ar. Dawerenthought PF Ar ithan 3.5, 10, 15, 20, mm 25 M. Poul RECOVER 20 Min 1 AGAMN : BACK AT SIME 88, MAND ORS. COMPLEX, TO the been MOVED Abour 59 to Attent AND MMWI). 60°F FORGI SAMPLINE/INSTALLINE TWO MONTOGING 1961. AR HAMMER TO 30 R. G.J. DIESPLADERAT 10 FT BLS. PID ROG Souths moderne wenterlar BEN CONTINUINE TO PURCE / Smalle 8-25-04 terre AACA 85-03-2003 7.0.6 2009 NE CAPE 40-52-34

20 1830 LOAVE SITE. consults sample FRom 21 ft. A BLS - ONLY CLUSTED GRANTE Kes, obvious the cont. IN Borank SETTLY AT SITE TOLD PANDY HE MORSuleo TAPAN IN BROATHNE ZUNE = 1 pm. DETENNED shot . Left Decon Shir Concernon Lot. To - 1900, CHUNND WARDLAT ADAM ON WORK AT VIR WHILE DRIVING TO LEFT. BUS Druve Stoon AT 21 AND 215 8-25-04 NE CAPE 2004 SAVEN MEETING: WOS DO ENISH SAVEN NEETING: WOS DO ENISH 1950 200 1200-1300 LUNCH SAMPLES, FINISHCOCS, PACK 3 CODES JAMMED BESTRE CASING IN MONUMENT - WILLETE In lanse to man, this unertain ~ 0, 2 FT. CALL IT "MW 88-A" FOR NOW. NO LOCK ON COVER LID, NO LOCK ON J PLUE, DEPTH TO Gray = (11.57, FT BELOW TOP OF CASING (TOC) FOUND MW IN 4-IN-STEEL (PIPE) ABOVERTD TO BE CHAPTED OUT OF MOUND THE well LAP IS MARKED "11-3 (7)" AND IS Topor No gasink ~ 2.7 Ft AGS DEATH At 2 FORMER TANKS (FUEL ASTS) AT SITE 88. Toc - o. for Bas. MONUMENT. IS NORTH EASTERN MOST WELL MW88-2. WAS UNDER FEW INCHES 8-26-04 OF SAND. CONSCETE ALONNO STEEL ulo ben DEPTH of were berow Toc = 23.45-4.00 FT = 19.45 GT 13 BL. APPACENT He constraint ATTON. ASSIST RANDY SAMPLING BORING 60°F WORR, BREEZ LOCATE MONITOLINE WELL DACA85-03-10-003 T.O.6 NECAR 2004 8 2 m 24 2

22 BROKEN LONCRETE AT BASE AND MON. FT. ABOVE TOP SEMON. SPACE BETWEEN STEEL COVER FOR PIPE (MAN,) AN GROUND, WELL CASING - MAY WED WRENCH TO OFFICE MANUMENT. WELL CAP MARKED "11-2 SECTION OF COLLUGATED METHURIE (TIPED) CASING AN (DE TURNED LABOLOO "10-4", CMP AND CONVERTE CARSING JACKED (OR MON. SUNKS 0.55 Southers we at Site 10. Top of NO CONSESS MON. WELL CAP STUCK ON IN SITURE 1445 JANKO/ MARCO. SOK GENNOD STEEL CAS NONUMENT 2A AGS. UNSTICK to SAMPLE WITH SUBMOXIBLE SFT OF WELL CASING IS ON GROUND AT Montument 15 AT 45° ANGLE TO GROUND LIKELY WILL HAVE TO GET WELL OAP Wen DEPTH bernd Tor = 20,2A NORTH WEST WELL AT SIME TO IS INSIDE Pund IMERUIAL IS EXIOSED. WELL OF SING BENT. WELL ~40 FT. SW OF "88-A". STEEL TO GW BELOW TOC = 13.88-4 = 9.884. 8/26/04 ulil flew 8-26 84 NE GAPE 2004 18 30 ROULAN TO CAMP. (it is to whe conclete of cover) 100 ~ 0.3 Fr 12.5, DTW = 19.64-4-15.646. F- 663, DTW = 15,18 A-4 = 11,18 A LOCATED MW 88-1. FLUS HIL OMNES OAP IS STACKON CASING MW88-3 Flust mount. Taro, 35 27/104-NE CARE 2004 DACA 85-03-2-005 7.0.6 23

12 4 FON VOIDS, LOSSER SUL BETWEEN ROCKS. 50° that arou os from 1225 Samlue 04NE 1355104 SAMLUNG GS CLEAR 1155 COLLERT SA SAMPLE 1155 COLLERT SA SAMPLE 1155 COLLERT SA SAMPLE 1155 COLLERT SA SAMPLE 155 COLLERT SA SAMPLE 1150 AT SINE 13 KOR PERSOL 1235 SAMPLE OPNELSSIOT PIECES FOR THE, WOOD AT ~ D. 9 AT BLS Danse Grand Sch clavary (K-C) Siry KANDY to INSTALL MONITOUNE SAMPLES AT SITE 13 WITH BON Palacualt. (RC) SIMY SAND (Fm) MED-DENSE AT 1.2 PT BES. DENSE, BROWN SLEARNAUY SILAY SAND (FM). SAND (F-M), SAMPLE SON ANACOUT PREPARE To colver PCB Soul well. COCS, ORGANIZE GRAR. APPACENT CONCLETE DEBRIS, FEW 40-128 AT 1.2 A BES. SOL IS MED-NECAR 2009 40-12.8 (z), (z), (z), (z), (z), 1500 CONINUE POR SAMPLING AT 1530 SAMPLE 04NE 13 55109 1300-1900 Lunch 1540 1545 SAMPLE OFNE ISSS III Julie June 82709 1255 SAMPLE 69NE13 SS 108. AT Sometic, BUT NO DEGRES OF SE KNOD SAND (Fm). Fer snow les baren AT 1.2PT BGS. SOL SAME AS PREV Pense BROWN SL. GRAVELY, SLUY about more DENSE than Prealious SIRE 13, TWO SAMPLE LOCATIONS CANEI3SSIST, BUT NO ROUTS BERNED SCATTERSO FINE ROUTS. THIS SUL 1.34 BES. SOL SAME AS SAWLE AT 19 P GCS. Join 15 MOD-SANPLE FORMS \$127/04 SAMPLE 04NE 1355/10 Necre 2004 OACA 85-03-10-00376 425

26 1605 SAMPLE 04NE 1355 113 AT 10 30 TRIPLICATE OTNE135534 1625 DUPLICATE OFNEISSS 214 SANGE SANDY (Km) GRAVEL (C.), MOIST 720 MONITORINE WELL MW 88-8 1555 SAMPLE 04NE13SS 112 AT 1:0 A GLS. DENSE GRIMN SIGY SIGY SMUDY (FM) GRAVEC (FC) (FC) SAND (FM) BROWN MISTST is another convert theodored ind 0200 monument LiD. No Lock on J- Puis, CASINE~ D.2 ST BES. DTW = IS KUSH MONNTED, CONSPECTE MONUMENT 1.1 FT ISGS, SOIL IS DENSE BROWN TRACE FINE ROOTS He oppe on Purg. Top of 2-in Puc AT 1.1 FT BGS, DENSE SILTY GRAVELY (Shann BILLY GHAVELLY (PC) SAM2 ((-12) MOIST, TRACK FINE (2003) AT 1.1 PT BUTS. SOIL IS MED - DONIE 8-27-04 2004 NE APE SANGLE OTNELSSS 114 MUN 88-10: MONUMENT GONE, GASING OREN to ANC. SURFREGENEL FEY IN SIDE. MW 88 -9; MUNMENT MERILEY, MELL NOT WASNOT ABLE TO LOUATE MW 88-7. and Pluce. No rock MW 88-4 Fustor, Toc 0.2 Pr Bar. MW 88-5 Rush MT. Tal 0,3 AT BES nu- 11.58-4-7.58 pr BES. Heven DTW = 1/15 4= 54154BCS HC 0000 J. Ruli . TOC ? 0.3 FT BGS. DTW = on flue Nolack townor Destroyed? 11.97-4-7.97 G BES. He GOAL NO.1 IT ABJE CONCLETE, MAY BEABLE on J-Punc To HAMMACIT DOWN. 15.92 - 9 = 11.92 FT. TOP of Mind New 88-6 Aus HMONNT. NOLOKON 8-27-04 8/20/24 Julie flere DACA 85-03-2-003 T.O.6 27


28 PAN. DID NOT ENCOUNTER GW YET. 1000 1230-1330 1010 0845 SHETY Mar. Golding PRINACICY Puck. solu borne Low APPONDEN with DEVER AR HAMMAR. MORNING. MAY BE A PLANE THIS Bar Loca /SAMPLES 22MU2 LABELING SAMPLES, TOT IN SAMPLES FAC ALIBRATE P.D. AT SITE 22 - WATER STOLAGE BURG 828-04 SAMPLE LOGS. AND DO FORMS RANDY WENT WITH BEN TO WERSEL KANDY Dunk ADMIN. TASKS THIS 22Mw2 PLILING. BEN LOCACTINE STORYING PLAN to ROUDS OVERSIGHT with the 50°F WINDY SATURDAY L'UNH. 2004 NE CAPE 1920 AT SITE 13 TO WATING PUB Off SAFERY MEETING WOLL AT SIDE 22 (BON) CANDYSMY (LOD. SAMULING. DUG HOLES FOR 13 PCBSMURDS, 22MWZ WAS SHANGED TO GARNE SHOMENT, LUCE, SELECT FOR Luniat 22 MWZ FRAN TO FINISH INSTRUMPTON OF NOTE: GORINE PRIME THE MORNING 22 Soll Sponhes. ANALYSIS, UNBEL, AND PACKSITE PACK COOLER'S For AFTERNOON CONPRETED AS MONITORING WELL 22.BI. OF 8-28-04 WITH THE INTENT TO INSTALL BORING DRILLED 8/28 PM WAS 40-29-04 SUF, G. RAIN SUNDAY Ul Acerca 829 4 2004 NE CARE BACA 85-03-2-043 7.0.6

မ္မ GHAINS OF CUSTONY LABEL 13 35 AND 1714W/ SAMPLES DCATION. WARK SITE The For wer 8-29-04 2004 NE CAPE BOGNAL PACKING OF SAMPLE COOLERS 1200 Lunch 0830 SHETY MOETING SOULT PUS SAMPLES. 04NE14304. HAND DUG SHALLOW HOLES FOR AT SITE 14-EMERGENCY POWER BUCK AND POB/AUELSAMPLE LOLAMONS. 10 Sol SAMARES. TO BE WWEARD. 12-15, MOB FOR POS 800- SAMPUNG PACK COULDES Blueps to Instru 26MWI (50') 8-30-04 OACA 85-03-12-003 7.0.6 ယ္

0820 SAFETY MEETING OHSAMPLE 31 BISL, IDINAL AD 1010 Sumlie 31 BISI PROVIN MOIST 0935 Sample 31 (BI SI - 59/631 SB101. 0955 PRIL RIK ON 31 BZ. (CUMMILS HAVE MORE COARSE GRAVEL THAN 3181.) 0910 SET UP ON PORTUG 31 BI GRANELLY (C) SAMAY (F-M) SILT JEL LOOSE 12" = 04NE 31 SB 103. JEL 312 SAMPLE 2-4 A. BIC × 8/1/10 (al (clas friers And 4-6 M BCS FOR DAS/LES. Cutnics found sing algues course AT white ALICE SINE. 1957 1×802+195 =04NE313B102. COLLEGE IX 802 (Ropais) + 1=5 SAMPLE (BEN DEVELOPINIE WELLPSINTS) plant su alway (1) SAMO (MUDIUN). A pt IN RECOVERY : MOIST LOUSE PREPARE TO SAMPLE AT WHITE ALLE THESDAY PROMESS. 4 toler afe = 9/1/16 DENE S.S. 2-4 Fr. B/C = 1313/7 8-364 55% 10 Cloupy. Zax NE CAFE for GRU BAR, BROARD, TX, PAH. 1955 RAMOY COLLEGED ONNE BES 105 AT 31 FT BES. O, 5 Ep & Headsne ce 112 25 to 2.8 fr BES. RAMPY COLLEURD 1130 09 NE 31 28 306 15 6A Robucine 1125 BUPLICATE OF 04 NE 31 SBELOW 1035 Daw RECON NEARBY PREUNS 8-2-04 BACA 85-03-12-00-3 T.O.F 1020 SAMFLE 3/8252 AT 4-6FT 12" HT RECORDENT 8" MOIST BLOWN MURERANE WENTHERED DIESER SDOR 10-6 BACK BROWN S. 44 GRAVELLY SAMP, MONST Rivers USING AUGOR ON THESE SAMPLE OF NE 31 SB 1040 1× mill, 1×802 GRAVERY (FC) S. ory SAND (FM) and 4" LT. GREY CRUSTED Faire. HEAD SPACE IN THE 3/SB/04 - 43 pm 10 31 BZ. SAMPLE LOCAMOCS. 1 SUBSUPPACE SAMPLE 04 NE 31 8B206 18 Meok, 18805 ST 24 NS 31 SB/BQ. ISHEOH, 1×802. * 802 JAR FROM GACH IMPECIAL

124 Course Res Strupte 04NE 3155 HAT ω 4 1400 0061 1245 Move to MEXT PIPEINE SILTY STMAY (C-M) GRAVEL (GC) SIDE OF WAC ANTENNA 3. GRAVEL. No open North. C. 4ppm= tem Soil SAMPLIES OF Soil 8N (NOT TONGTME) LAST PIPELINE SAMPLE LOCATION Maxy Pilenne sample warning, South MAGATS EXAMIN GRAVELY MEDIUM SAND NE 31 313 108 3.5 to 4 FT BRS South SIDE of MACANTONNAY. BES. BROWN SL. SILTY SAMOY SAMPLE LOCATION. RH COLLECTED 04NE 315B 107 Ar 3 to 3.5 Ar FUNCH AT 0.8 to 1.2 G BES. VERY & DENSE Space Piperne JAmfres. conjectint MUSST. EXTRA SUL FOR MS/MSD, BROKAT SITE 31 WITH DAV PHAN 42-15-8 tenie 83/04 2004 N.E. CARE 1500 OF ME 31 55 MT LIG AT 1.9 FT DARK 1515 SANGLE OF NE 31 SB HB AT 149504NE 31 SIS 113 Ar 3.7 to per Blas HURDANE BISISIILE AT 3.87040 ATBES Sisany GRAVEL (rc) 1435 DANE 31 SS 112 AT 12T BLY Mad Deconners Gir. 1410 DANE 31 SS HA 115 AT 1.9 to 2.1 4M. Table Elener 8304 BROWN SANDY GRAVELY SIT Die BROWN SUTY SAMPY GRAVER MUST TRACE ORG, WATT BROWN (DRICHTIN 24) SINY LOCATED PCB SANTLES. AUGOR BROWN MOIST SILTY SANDY (FMM) GRAVE SETUP ON ONE OF THE TWO AUGON 4 Fr BCS WHELT 8/31/64 . DAGA 85-03-12-003 Tale LII -C

2004 NE CAPE \$/31/04 1520 DulucAns 64NE 31 3BZ18 1525 QA REPLICATE DY ME 31 3B 318 (HOMOGENIZED IN PAN) 133 RANDY SAMPLED 64NE 31 SS 123 472' 1538 64NE 31 SB 124 AT 3.8 to 4.1 1534 SAMPLE 04 NE 31 SS 122 AT 1.2FT BESIN OK BROWN MUSISTSTIFF STAT PROM HAND-DUG HOLE BYNE31 1650 55 126 AT 1.5 FT. SLSILTY SAMO(M-C) POURLY GRADED, 1700 04NE 31 5B 127 AT 3.5 FT. MUIST SMAT, TRACE GRAVEL 1715 04NE 31 SS128 AT 1,867. SANDY MOST 1720 04 ME 31 SB129 AT 3.7 FT. GRANAUY SILT. 1725 Othe 3155130 AT 1.3.PT. BODDOD LOUSE M-CSAND, TR. ORG W/ STIRE SIG. SAMPLES 124 THROUGH 130 TO BE ANALY TED FOR DRO/RRO, SOME FOR TOC: THESE WORE WLEYDO OFF THE AUGOR Julie Bene 8-31.04

မ္လ မ္လ 1300 LAGEr SAMPLES 200 1000 ARGINE 3:12 13 (@ MAN CONPOUND) 0830 SAFETY MEETING ore Ancel Fuchts-88-7. MAY BE DERROYOD: NO SIGN WITH RANDY SEE SOIL SAMPLE USING HAMO TODUS AND ALGOR Sme 13- Bearly an Psince BUDE Soil samples at SITE 7. LANDAU of MONUMENT. TRED TO LOCATE NONTORING WOLL concernor Lot. Studies concered BON AND RANDY COLLECTED (CS Pack cooleds to a 1900. 91.04 MEDNESPAY 2004ME CAPE AS & FOCKY, SULLING BREEZE. COLLEGT SUL SAMPLES AT SITE 13 LANCH mois no same tol Pass AT 1150 COLLET RINSATE SAMPLE FROM 0845 SATETY MEETING DISCUSS OLD METHL, Lumber, lifes, in RES. ALEAS . DISSERVED SOME SUMPLED DEBLIS JUMPAR /MARSH AND SOME HALLOR MUD INSIDE. POSSIBLE BURIED TOORS VELETANION OR STAINING. AROA IS Some Stanow Deplessions with SPUT SPOON: 64NE 3/SQ201 WALK APPROX IN ANE PORINETEL OF SITE 1- BURNARON SE OF ANCETER. SC & ANGLORT JECHINAL BUSK KANDY. DID NOT OSSERVE ALEAS OF DUTRESSED AT SHE ! Fol Glas Brex, Des JRRO, innt. Ar SITE 11. supplied Scheduce. ANISH WRAPPING COOLERS 4-2-04 PREP to coller HEARDSPACE SAMPLES (LIGHT RANN) MOB. FOR PUSSIBLE EN SAMPLING 45°F (way 'ught winds. unch. 9-2-04 THURSDAY DACASSO 2003 hald teers 39

1950 1936 HELD SCICEENING AT SITE / 25' A AROA. MOSS/GRASS SPARSE IN SU STRE NUM ON ONE SIDE - 20 % they the 200 Suchtry Clayer Sir. the American Ranney Blought Soil NEAR NORTHERN EXTENT OF STUDY ACEN. SAMPLE (FROM SPLT SPOON) (SACK AT NORAHWOS, A SIDE OF GRAVEL Levis nasres. ferre flerer 9-2-09 Silvy mus likely NAM RAL FORME. 151-1 Launer ME of Fremer Lacminal, BORINE AR. DALL CROWN SILTY BICKANICS FROM 26MW2 AT 19 to 21.5 Ft PAD WITH CONCRETE SLANG. Law AREA 120 × 25 FT what metal, KLASTIC SENT TWO COOLERS TO SES ON ESI-2 ABOUT 75F7 3W JF 151-1 COLLOGY FSI-1 AT 0.3 AT BES IN SURVEY on ARCINO (SHELLEY) DINNAC FSY PHOTO I LOW AREA, FACINE SW. 9-2-04 2004 NECARE WILLI Aris 200 CHOTOL 151-2, MEINE CAMP. 2015 131-3 12 to use moist Atom 3 = B1-3 Lacation PACINE WEST our Lunder int A Blass BIZ IS SILTY ANGULARCARVEL NOT TO SCALE or convics that a cance sur les RECTURANT MOUNT AT NE COLVER (?) FRANCH TERMINIAL. ~ 100 TT SE OF IN AREA OF INSHED/HEAVED (?) C.SAT BLS FS 1-2. SEMESA. POS BURIED METHINALE ららっつや €-1-L' L' Sommon LON LON GAME DACA 85-03-0-023 UNDACTE SLAG ALLAN S Low Aleons Successives € 1. (1. (8 in Si ĩ 00

Ustest AS SAMPLES (LOUC) 2000 131-4 IN LOW GRASSY MCCA 42 15/-1 = 0.6 pp~ 15/-2 = 0.2 p 2045 [51-5 ~ 75G W & LATH From Ground nearby Simple AT 2.3 MARKED "SC-4 NORAH" ~ 200 :T WEST of TERMINAL, CONDUNT MORES FT IN WET PERT, ~ 152 FT. NORTH SERGAGE CALIBRATE HNU PID. SANSETTING 0.2. PERT, Suchny Sury. CHORD 4 = 151-4, FAUNG WEST. DAST of TERMINAL, ANNINLY SELECTED K1-5 = FS1:3 = 1.2 rx1:4 = 0 LO CATION 12/2 * 100 A PLUM Great, ~ 300 A. 9-2-64 FS1-4 AT 0.3 FT IN SATURATED 9-2-04 2004 NE CAPE John STRAING METHAL!? COR CIAL ENDTO BE FSI-7 LocATION (PNFUAG) 0930 PHOTO AT - FSI-Le LOCATION, FACING DEIVE WITT THETIC WORKAND ARE PACKING-UP THEIR EQUIPMENT. BENTO SHOW SHELLEY GRAVEL OF AZET 0820 SAFETY MEETING. DCILLES ACT WATH THE GRUNDES PUNC. THIS MATRINOW, WELL GET INFOON SAMPLING MANNE NE. ~ 75' FROM MESTRIP, DAMP, ON 3 THE PROJECT AREA. I WILL CONTINUE FS ~ 754 SE & BILL, FSI-7 AT 0.2 ABES AT SITE 1. 10 A BEN AND RANDY WILL COULEY IN SCIANELY (P)SILTY SAND (1-M) PS-le IN DALK BROWN PERF, THACE SILF HIGH MOMME OF ORGANIC SULL, WITH with ore (Rover HARES Soment samples asyn the Botuney. ME. 151-Le AREA is SW OF LAMP/TERMINAL, CRACKING ON SIDE, ACOST -HEAVED SUL? 9-3-04 ANDAY DARA & d3.12-03 [SI-7 PROP IS ANSTHOL LOW MOUND 55° CLONDY CALLY she teener 9309 20% 43

- South OF BITE. AT 0.2 FT 665, MOIST 952 PHONE (SI-8 LOCATION PACINEN. 1025 FS1-11 ~ 20FT E, OF NE WARROF MAE 1010 PHORE & FSI-10 LOCATION, FRANC 44 15 - 25 FT TO Sound. 1000 PHOTO XIN FSI-9 LOCATION, FAUNEN wood PLATBER (ASSOCIATED with MRSH4P?) 519 15 ~ 75' Sw of FS1-8, ON LOW MUMP. CATUR AND TERMINAL LOW MOUNDED ARDA GROWN SILTY PERT/ROOTS. SPT-MAY OUS erry (r) SANDY (m) altanics (Rusis)/ S of SE cound of GRAND PAD WITH 151-5 15 30 or 151-7~125 A, ~100 A MOUND WITH DENSE GRASS \$150-200 FT and the second second second second second second second second second second second second second second second SINY VEAT. PSI-8 AT 0.4FT BL-S IN MUST BROWN 100A AT 0.24 BUS IN MUIST BROWN SLARAN-AREA IN ARSTAR SWOF TERMINAL, ~ 75' NW OF FS1-10, 100'SW FS1-6 6-3-64 Cerci 2004 NE CAPE 9-3-04 1052 PHOTO HE- FSI-13 LOCATION, FACING 1032 PHOTO PO-FSI-11 FACING NORTH. 1107 PHONO 12th - PSI-14 PARINE NINE 124 Pitoro 10x - FS1-12, Acine North A BES MOIST BROWN SILTY VERT. FSI-14 1S ~ 75FT SINDERSI-13, MONG SU Som NE 151-13 IS & MOST CORMOR OF PEAT/slappics, SMALL PONDED ALEA IS WET BROWN PEAT. AREA IS FLAT NEMC Sulface ward. FS1-13 AT - U.S. BROWN SILTY PEAT. IN MOIST BROWNSL. GRANDLY (F) SILTY WIDE AROA OF AR STRIP. "75 F. SW OF FSI-11, PSI-12 AT AS 0.7 FT BES IN MET Laward Sw, DRY LOW ARCH 15 TO NW from surface water, off Se collar BOGNAR OF SITE I STUDY ARCA. FSI-14/N GI-12 15 SUGATINY EVENATED AREA 15 FM SITE / STUDY AREA. 140 AT. ACOM MESTER, 100 F. SW OF FS1-12 ON ELEVATED AREA FSI-11 IS ON LOW MOUND, AT D.2FT BES Julieteener 9.3 of 40.81 DACA15-031)-003 7.0.6

1135 PHONE JONE FSI-IT FACING NORTH 46 1126 Pitono 14th FS176 Lecanon DI GROWN PEAT. 118 PHONE IST FS1-15 LOAMON 140 Phone W- PS 1-18, FACINGNN W TOWARD RIVER. AT 0.5 FT RES, WET IT BES MOIST BROWN SIGY PORT ESE of FSI-14 IN FLAT AREA SLOPING River, on une with GRAVEL PAO For FT BES IN WET BROWN SILTY PEAT 148 Phone PARTY CLOUDY 131-18 ~200' NE or FS1-17, "30 F Alam PSHI on LOW MONNO, ~ 200 FTINE OF CAMP/ TERMINAL SAMPLE AT 0.5 FT. WET BROWN SILTY ROAT. FACING NINE, PSI-15 15 ~ 150 FT RVAR, ~150 FTSE OF F81-15. AT 0.5 Arink N. 151-16 15 -20 CF NW OF B1-16 Too F NW OF RIVER. AT 0.5 SI-12 IN COMPANY FUNT AREA 9-3-04 vue flerer 9-3-04 2004 NE CARE 86/ los - RANDY LA LIBRAMES HULL WET BREWN SILTY KEAT. TESTINE FS SAMPLES (SL. WARMED) (RUM RUAD FS1-19 AT 0.5 A RES At the off cher side of theaver PAD, ~100 FT. FRUM PAD, MOU FT. PS1-7 = 0,0 PS1-8 = 0,2 9-3 04 DACA 85-03-11-003 T.O.6 PS1-12 = 0.2 FS1-17= 0.4 FS1-R= 2.0 151-13= 0.3 151-10= 0.0 FS/-6=0,0 Ppm 181-9-0,1 151-16 -FS1-19= 0.2 - Gr3-64 F31-14= 0.0 15= 0.0 Methand?) sour

9-3.04 2004 NE CAPE 9-3-04 1415 COLLECT SAMPLE FACING, SW. 04NEOISSIOI AT 0.5FT BES AT PSI-1 LOCATION. SOILIS MOIST MODSOFF PEATY SILT. 1×402(MeOH), 1×802 JARS PHOTOLS OTNEGISSISI LOCATION (ATLATH) FACING SouTHMEST. NO OPOR. 1430 COLLECT SAMPLE 09MEDISS 102 AT 0.7 TO 0.9 GT BGS AT PSI-3 LOUTTON. SOIL SIDE 18 MOIST MEDIUM-STIFE PERTY SILF, TRACE F GRAVE. FEN SMALL PCS. LUMBER. toz (Meott), 802 1435 SAMPLE 64NE0155202 15 (BI-20) FAUNGNE. GED DUPLICATE OF OTNE OISS 102. 402 (MeOH), 802 1440 SAMPLE 64NEDISS 30215 QA REPLICATE OF DANE 6155102. 402 (MeOH), 27802 1948 (ALL BUS GROS 1BROY SAMPLES Hom. N PAW) ia PHOTO 19 = 0 ANE 0155 102 LOLATION 20 - Julie Elener 9-3-04 Julie Geener G-3-04

T.O.G DACA 85-03-1203 1505 PHOTO TO RANCY NEAR AREA OF DISTRISSED VELETATION, FACINEE PHON 7 FSI-20, FACING WEST. PHONO 232 P31-20, CLOSEUP. THAS AREA TWO AREAS OF BURNED (?) VEGETATION, ~10'DIAM AND 15x'30' BLACKENED VEL/SUIL ONLY AT SURF. FS1-20 AT EASTERN WENER OF STUDY ARZA; ~ 30 FT. FROM RIVER (SE F31-20 AT OtO 0.2 FT. BLACK (Supp) to DK BROWN WET SLISING OR PEAT. SDIL & FARRLY DRY AT SURFACE. PHOTO 21th THE SOIL ON END OF SHOVE PHOTO 240 BEN AND RANDY COLLECTING SEDIMENT SAMPLE FROM RIVER. 1555 TEST FS1-20= 1.7 ppm DRILLERS LEFT ON BERING AIR.

9-3-04 2004 NE CAPE 9-3-04 DACA 85-03-0-03 T.O.6 1645 COLLECT 04NE0155/03 1745 COULCE 64NEDISS104 AT PS1-20 LOCATION, 0.5 to 0.7 AT FJ1-12 LOCATION. 05 FFBES MOIST BROWN SL. SILTY PETT, FT BAS, WET SL SILTY DK BROWN 2×802, 1×402 (MeCH) MS/MSD-PEPT 802+402W/MeoH 1650 OTNEDISS203, DUPLICATE OF DANES, SSI03, 402 W/MecH, 802. 1655 64NEDISS 303, QA REPLICATE OF 54NED/SS/03, 2×802, 402 W/MeDH. ALL BUT GRO/BROX SAMPLE'S MORE HOMOGEN 1ZED IN PAN. WATER IN HOLE 0.5A BES, NO SHEEN. MORE: WILL NOT SUBMIT SAMPLES 04NE 01 55 202 AND 04NEDI 35302 FOR ANALYSIS. 1710 PHOTO 25 (LAST IN ROLL) - SAMPLE OFMEDISSISS LOCATION (AT LATH ON RIGHT) TAKEN ROM BRIDGE, FACINGE. 1735 PHOTOI (CAMERAZ) FROMEDGE DO OF GRAVE PAD AT CAMP, FAUNG SW, SHOVE AND PACKAT BI-12-Julie Gener G-3-54 · · · · · · · · Sat. i

1555 Coned SAMPLE OFNEZS SOLOT 1600 Dulucome othe 29 50 201 Kon Liver (SITE 29) WITH CANDY! 1605 QB FERLICITE 64NE 29 50 307 1000 BROAMFAST, BENTO PURGE WAS TO SAMPLE LOUTTON. BROWN / BLACK SURVEY LOLAMONT TASKES, WATASKES SILT /F SAMO WITH ~ 20% DECOMPRESING LAST Sediment SAM/LE, 1530 PANDY USING ECKIMM DREAGE Store, user from 041629 SD 1000 URATE STREAMY AND AT DROSITE BANK ACUM THEIR or GAMNICS, COJUCATED 4=2 + Theat AND Morenine off to come SEDIMENT SAMPLE DOONE LOCATED 6.5 FT FROM LATTE ATO 50°F GUSTY WINDS, CLOUDY Sthelie summer Theses 9.4-04 DACA 85-03.0.003 Shrety morende UPDANE SAMPLE SUMMARY Shaw to Survey Site 3, 6. theren NE CAPE 2004 494 Allouer Rinsme Sample Alon 1700 SAMPLE OFME 29 SD/09, 100 M. 1645 Coner 09NE2950 108, 51.5F oval productions weather Bucket SANJUES TODAY. 63FT FROM LATT ON THIS MATERIAL SANDIER (FM) THAN OTHOR OF NAN DEEDER : PONC DI WARRE NE STELL RIVER Lost SANTLE LOCATION 04NE295Q201 FROM LATTA ON BANK, (FURTHER OUT IN RUPR). ROM LATH. 2×802. 402+ Theat . SEDIMENT APPCUX. Jus A. DOWNSTROOM PROM Similar to Last Sample 9-4.04 DACA 2×802. FOR EARCH. 2ACA 85-03-D-003-7.0.6

0930 HERY MEETING <u>4</u>2 MV (U-1 Monument of MW 10-4. MOS.S. BR/850 NOT WORKING -CANNOT MEASURE 1230 Kallows IRON, AULAUNTY = 15 mg/L weres, beverof new meres measure turgion dispusy of that PHORD 3 computer bucking sample canellen is And Sandle with arendos. PLAN TO SAMPLE MONITORINE 3 Frow shared were racy star or When 2 EXPOSED SURGEN, JACKUD START SAMPLE OF NEIIGWIG A. PAN 53°F CLOUDY, CAN OVERVIENT 45-64 AT were 10-1 AT JONE 11. Puece utie terner 9504 SUL CAVING IN AT BASE OF DACA 85-03-D-003 T.O.6 2004 NE CAPE 1725 ANE 11 GW 102. SL. DIESEL COURIN 1018 COLLECT MERSURE FINAL WAREN-1900-0200 NOT LOLANE. 88-7 (min). Duk IN ACER (Jul Louro frow the went coll to mensure for another 1740 PHORA 4 MW 10-1 AND 10-4 AFOR SAMPLING. LABER SAMPUS, PALE LODUSC WARER SUPPLITY UPPAMETERS AT MW10-1 SHELLY MARKED APPROX LOCATION OF (WE GE AND SAMPLE MW 11-3 Not evener where in over to fue 40.5-04 MUTSURE WARE LEVEL , N MW 1/-3 DACA \$5031003 T.O. 6 55

1755 PHOTO S. MW 88-10, WITH SURRING MOINE 1745 AT MW 8-10. TOPOF CASING 56 1742 WELL DRY. SHUT OFF Pum. 1040 AT MW 88-1 WITH KANNOY PURGE 1500 SHAR & COCLARS (INCL. ITO NCA) ON BORING MR. 1030 Hal ben AND CAMPY PACK exposed/open. Monument cluster. Suil HERY HAS ENTERED PUT PULK MELLS. For SAMPLINE MONITORINE cooucks. Where Field PARAmeters, where Lt. RAM, J K on CASINE, REMOVED SURFOUNDING WITH GRUNDADS. START PUMPING 1715, 9-le of MONDAY 2009 NE CARE 50°F WINDY, CLOWDY, OCEASIONIAL Consvers. 1830 couver Sample of NESSGW 101 1820 Remannes of 88-9 G. WARER HAS RECHARGED IN NWBY 1. h-le-of 100m MW 88-1. DRO/ROS, GRO/BOX Cr. Mb. En. Hq. 12ACA 8503-10-003 T.O.6 57

1130 AF NU 88-2 with RANDY Purkins'E, LET REUTARDES. Able to Pump 1530 17MW-1: 544=9.59 FT BTOX. 13/0 <u>с</u>и Сл PHOS 7 MONLIMENT OF 88-2 - 1/2 GALLON BEFORE WELL DRY. MUNDED PHAR DRafkes, I METRIS, PAU, N.A. PARAMS 1542, 1555 Prim ~ 13 55 Emilar Run DRY STIMES MOBTO CONTINUE MW SAMPLINE Develop with GEDSQUIRT SUBA. CALIBRATE YSIFOR COND, 2PT. PH. Pullar Ann SAMPLE MUSS 2 PARTLY CHONDY LANN 500 - 60 7-AT MW88-3. PUMPED DRY WITHE SARETY MEETING 64NE 88(TH 102 For Color / BREX. 9-704 fulle NECAPE 2009 DRCA 85-03-0-063 T.C.6 9-7-04 DAZA 85-03-D-025 1615 Stimble 88 MW-3:04NE88GW103 1730 AT 22MW-3: GW AT 32. ENGLIENT TO DEVELOP THESE WELLS. USE CORD ON GEDSQUIRS "NOT LONG GRUNDEDS. FRGRO/Bret, DRO/RRO, 4IVETRIS PACK COOLOR OF WATER SAN PUES 224W2 DTW = 27.87 FT BTX Depart of were = 34 Defite of were = 34.57 Fr BTDC. 59

1130 1125 1135 220 AT MW 88 5. Pullate AND SAMPLE 60 1030 0930 ROD, 4 METHUS, N.A.P. marel Areas >> Carcons where this Wetthelay Preser ones MS/MSD FOR METRIS on MNERGGW104 SAMPLINE RANDY AND 1 to CONTINUE OT NE 88(CW 1057 FOR GRO JEAN BOY, DCS) Sylater, steen on whigh, HC 0002 TODAY MONINEL DEV. AND SAMPLING. 2.Pr. p.H. LANDY CALL BRAND TH ASIDITY BON TO STARY BACK-GROUND SHELLY MAY FINSH SULVEYING CAUBRANE YSI : CONDUCTIVITY AND At SITE YE, SETUP ON MW88-4 SAWLE SAME SECTION TENP LICANE DANE BEGW 304 Toulu and DANE 88 GW 204 6-8-04 J. N STRETY MEETING White fleren 9-804 4. RANI CLOUDY 1700 GREAM SITE 88. INTERNITIONT PAN. 153 SURVEYOR LEFT, SHPED 1 COCLER 2581 1720 1900 unecomples a bende me ANERGENIOG. HE CON 9-8-04 18 mm 1, GW AT 19.61 Fr Broc AT MW88-6. PURGE AND SAMPLE DACA 85-03-10-003.T.U.6

<u>წ</u> TOTAL DEPTH = 16; 61 FT. 0.84 WATER 1230 AT MW88-8. 12-01 FT. 1500 Conners Rinspite Acom Grundes MW 16-3 DTW= 15.81 Fr MW 16-2 Drw= 15-18 A BOC Torac Denth ~ 16:7 A. Broc Torm Dept - 16. 65p. 1.1 A when NET. MARCIN WELL. METRIS, PAH, N.A. PARAMETERS TOTAL DEPTH=18.6167. PURCE AND MED/RES MAZOL FOR GRO/BJTEX, BAULAD. SAMPLES SAMPLE OFNE 88GW107 AT 1330 Marz to Smalle Mus, Bon auerna WOUTY INTERNITIENT PANY , 50'S MW 16-1, DTW = 15,73A Bruc GOOT 2004 NECAPE HC ODE. GRO/BIEX, DRS/RED, 4 And Had 600 1745 AT CAMP. RANDY LEFT TO set lund AT 1317. Pukke Develop A merc. TOTAL DEPTH = 17.1 POET BACK VACK COULORS CORRECTED LANSELS COLLET SAMPLE OTHE88ENIDS 9-9-04 DACA85030-003 TO.C AT IT MW-1 DTW = 9. les FT წ

62 PHOTO 7 - 04NEBESS 107 PHOTO 8 - EAC BEN COLLEUN NE SAME BERCH AND UP SMALL PLUSE. SUPPLE WAR SOOMENT. SUL, AND CONTELLED ADDITIONAL BAREADONNO MOE WITH TUNOPA -1 to SAF HATER BKS, MOIST LOSSE GROWN S. SILTY Soil DENSITY SAMPLES, BEN REFORMED SAND (F-M) AND ORGANICS, LOAMY AT DRY STREPH CHANNEL NO FT LON NOWNTHINS IN AROA. Sound- PACING STOLEN SAL WRONE ATUS SE OF STUDY AREA, ALING (Selection) SANGIESS 108 REAL DRY CHANNEL MUS For BACKGO. SAMPLINE WITH PTY. CDY. Was U. SREEZE 64NERGESSION AF 0.2 to 0.3FF SAFETY MEETING 9-10-04 2007 NELASE 2,10-01 ~ 1800 ASSIST RANDY IN SAMPLINE 1835 Romain into weres. Front to Sthe MW 88-10. SHE WE WEND? DEVELOP VERMARKOST TUMORA 1440 phon of BEN COLLETING PARK COULDES TOMACROW & Somefue ZUMWI, BROWN SANNOS SILT TYPICAL OF NOR-Surface what simple shulles on sunopy. : 1MW 81 OPNE BUSIDIOS MOUTER WET DARK otnessesmon from smar STREAM INCISED IN TUNDEA. RAMAY DEVELOPER ZOMWI, MW88-13. 04NE18GW 104. 9-10-04 DACA 85-03 D-023

100 AT 22 MW2 28.1 A PAOC WATER. 6 1300 SAMPLE St 64 NE 88 CW /58 TALAT 13to AT 22 MW 3. Deveno WITH 1145 AT MW 88-12, RAMPY HAD DOVEL 1105 SAMPLE 1000 MOREATELY TURISIO -> NEARLY LLONG CARDAN Stan where impruy usey sign that shall the ERMINDIFUS, JUMP X ABOUT 55 CALLINS GRO/BARX, DRO/REN, 4mennes, N.A. 242 Dieverop why GEOSQUIRT. WATER MARAMETERS Collabor 1900 nedlales 4 manus, N.A.P. open by BANUNG and Carlons MANDE pumper and company HELPED RANDY WITH CARANILLAR KANAME EACK TO 72 MM 3. Develop ~ 80 GARLON SAFETY MEETING So FUNNAY, CUSY, FILCA 2009 NE CARE CANEZO EWIOT FOC 20 MW-1 PURENT AND ľ Cher Gr 1845 SAMPLE OTNEZZEW 115 For 1745 PARKE 22MW-2 Cousa 105 COLLET SAMPLE OFNELLEW 14 FOR GRO, DRO/PRO, N.A. PARMENES Carles no chind ERS, DRS/RRO, NA, PARMETERS SANPLE HANDLING (1-11-04. DACA85-03-0-00)

68

9-12-04 2004 NE CAPE 50'S PTLY CDY, OCCASIONAL SHOWERS 0630 STARF PALLINE WOULDES

6930 SHEETY MEETING

PACK COOLORS. TIM (AMEC) ARRIVOD ON BERING ANR, SHAPPED 6 COOLORS

LEMWI.

-1600 AT 260MW-1 Stuten DERAL-38'T DTW=36.24 FT - 1.26 FT WARDEN HUNDL. MERSURS WEN DERTH: 41.9 FT BAON → 5.16 FT OF WATER IN WELL, OR 0.8 GAMONS. SET GRUNDFOS PUMP NEAR BOTTOM OF WELL TO DEVELOP. PUMP 1643 TO 1725. WATER MODERATELY TURBID 18144. CUEARED W SUGHTLY, JURN UP PUMP SPED. PUMP TOTAL OF 123×55 FAMON DRUMS OF WATER FROM 26MW-1. WATER NOW NEARLY CLEAR.

Baralos ADA COLLECT SAMPLES: Julie Clen 91204 9-12-04 DACA 85-03-D-203 T.D.G 1805 04NE 26 GW 102 1810 04NE 26 GW 202, DuPUCATE 1815 04NE 26 GW 302, REPLICATE 1815 04NE 26 GW 302, REPLICATE. POR GRO/BTBX, DRO/RRO, PAH, ALOU MS/MSD FOR GRO/ BATEX ADRO/RRO, AND NATURAL AMENJATION PARAMETERS ON SAMPLE OF NE 26 GW 102.

1830 KINISH SAMPLINE.

MOVE to SITE 13 FOR PCB SOL SAMPLINE. NEAR SURVEYOR'S MARKED LOCATION OF PREVIOUS SAMPLE LOCATION "135'S 802".

1920 SAMPLIE <u>OFNE 13 SS 132</u> 1925 DUPLICATE <u>OFNE 13 SS 232</u> 1930 TRIPLICATE <u>OFNE 13 SS 232</u> AT 1.0 +01.1 PT BCS AT 5.1 FT ~NORTH PROM 1355 802 LOCATION: LODSON LODSE ROMMOED GRAVELY (C) SAMD (M). MOKST, & VER DENSE SILTY ADLALAR(F) GRAVEL, TRACE WILL PREMIER S-12-04

69

70 1940 1955 SAMPLE 04 NE 1355 134 AF AND REPUGATE SAMPLES ROM 10055551 KANDY WAS NOT ABLE TO GET 1.0 to 1.1 F GRS 7 Fr ~ W of 1355K 24MWI ARE NOT LOODED ore sample, therefore tourucant Son Res. Mars ROM SITE 16 MWS TO RURGE Suffcort Amoust of ward to 1.1 G BKS. 7FT ~ NW Acom Sample of NE1355133 AT 1.0 9-12-04 2004 Necre SANGLES INTO TOCUM. PACIL UP VSIMETOR, etc. -> PERC UNREDED LOMM- INTER WILL HAVE ANALY 200 Smill PACAMETERS, BURLICHTE AND TIM AND BRIC GREAKING DOWN CAMP. Pund to tourne unneeded which Phu and Imples Wheller 12 For GRS/ Brox, AT MONTORING NEW 26 MWI, WE 211 DIES AT SINE 13, SINE 7. to be themery And SAMPLES KON 26MUL INTO Dan 220 PACK IECSONAL GERC. To's, PARTY CUNDY. BENTO FINISH BACKGROUND STILLING FINSH COLLEATING PUS Soil 913-04 DACA 85.03-0-063 ble WELLV FOR FAN 41564

73 T. O.C. 9-13-04 2004 NE CAPE 9-13,04 DACA85-03-0-023 MEASURE FOR TREVATIONS IN LEUS AT SITE 7 WITH RANDYNO CONSTPCB SON SAMPLES well Defin where Buc 2 Lepters 1745 COLLET 04NE0785/13 3 Alo 84. 105 26 MW AT 0.8 to 0.9 FT BEZ MUIST 1410 72 MW3 " 3268 BROWN SL GROWERLY (F) SIGT, 1920 22MINZ 28.20 INSOMEON TRACE ORGANICS (ROOTS) AND 14 25 18 MW 19.85 PADLock SM. PCS. DEBRIS 1430 20 10.0' NNE of sunryed DINE \$755127 22.76 Masons with 20-55 TOLATONE 17.7' NE of OYNE \$755101 (surreducd) 16.28 8 SALANA 11.82 R PANA 3 17:55 Collect \$4NE\$755114; 0.7-0.9 695 2.80 Lt. brown, dense sandy, gravelly silt, 9.27 958 11 -1 ··· noist - angular grund. 26' SECF puntapts 101 (surveyed) 520 7.81 88MW2 15.5 E of surveyed \$INE\$755127 18' s. of \$4NEC\$15113. 1528 88MW4 7.71 537 88MWS 7.49 7 SHOON 1543 88MW6 18:49 Collect OUNE 0755115; 0.8'bgs 8.25) water 58MW8 1550 12.21 Lt. brown, dense sandy, gravelly Silt; 1555 16mwl 15.88 moist; angular gravel 1558 15.63 16MW2 13 SE of surveyed OINE0755127 15,97 1601 1emw3 9,81 18' E of Ø4NEØ755101 (surreged) 1605 ITMWI When fluich 91304

74 1825 OLEWP3 WATER AT 7.86 AT BITL 18 20 VENPES WATER & 103 FT PSTK 815 OFNEOWER WAREN AT 9.59 0181 RT STOC 11 NALTON 10.00 FT And TEAC DUNN in were former START. SAMPLE VALUNG 4.13-04 2004 NECAPE PACK EQUIPMENT/LEARC onberne AIR CHARTER (NAVAJO): TRUCK AT SITE FOR TRANSPORT LATOR 50"S iUNDY, OCCASIONAL RAIN, CLOUDY RAMPY, BENJ JULIE, BUS, TIM. YO 4-wheelars Nome. SAMILE PACKINE 4.14-04 DACA 8:-13-0 to 3 To.6 LOFT DRILL PLG AND PUKUL PALLETS ONTO be-le, INCL. 2 FINISH CAMP TEAC DOWN 75

76 (WAR SEVERAL OTHER CARE SWYTHE AND (WAR SEVERAL OTHER CODE) TO FLY Thy to GET ON ALASKA ATRUNES STANDEY. RANDY took BERINK AND BACK to pet NE CARE TO MEET HARL AND LOAD UP BRILL RIG USTO ANUTOLAGE Nome. 9-15-64 2007 NECHE 1130 - AL ANKLINGS TO FANGEAMES. Anut. ACRIVE ~ 0200. Allo of 2004 me after Ono & Mon Long & Jack Row Long & Jo. 6 Jos Day Do Jos Day

CONTENTS. PAGE REFERENCE DATE Energy Phone # : AK Are Fores rescue Coord. Ctr. 1-800- 420- 7230 or 1-907-428-7230 Bering Air: 1-907-443-5464 Nome hospital: 1-907-443-3311

Rite in the M ALL-WEATHER WRITING PAPER ALL-WEATHER HORIZONTAL LINE BOOK Name Ben Heamer Shannon & Wilson Inc. Address 5430 Fairbard, St. Anchorage, AK 99518 Phone (907) Project PLase IV RI, NE cape St. Lawrence Island Alc Job 32-1-16821-003

This book is printed on "Rite in the Rain" All-Weather Writing Paper - A unique paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather. For best results, use a pencil or an all-weather pen.

Page	Pattern	Cover Options						
Left Rage	Right Page	Polydura Cover	Fabrikoid Cover					
Lined	Lined	Item No. 390N	Item No. 390NF					

ſ						ninen															<u> (1995) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19</u>	an an an an an an an an an an an an an a
		- 																•				N
1928 - SA								-					Ì							* 	-	
a de la company			ļ			•																
										·-						ļ						
												. !										•
11 11			-							1												
							1					•	:									
1444 <u>477</u> 93			4	: .								i										
aine i ennederseter																	: : :		-			۰.
				2		-																
					i I I			1		-												
												L L			•	1						
							1					:	•							-		
		1				-		;	•			-				-		. : 	i		、	. ~.
		Ì		. *		:	-		! ; :			,					+ .			1		
					1	4		1					-		たちに					:	C1/3	
	1		1	:		\.	ES:		2			< *	N X	ŝŧ	オ	- le	-	۷ ۲	10	7	0	
								 3	40	ſ		12	-	3	0	1:		7	· · · · · · · · · · · · · · · · · · ·		-4	
			- - -				4		Nr V			PC	HUR	5	PHNE 24 101	formet :			17-5-5015-14 14-15-5015-14		\sim	
		-		1	•		in V		٩		i j			5	2			7			Sample	
	-						م م 2		5		{ \$	h x	- DRO/RRO	3	101	-			R		1	
	•						N N		•			S of	OR		1				Serter o			
							20		2	•	, . {	H	20	.	- N	•			5 C J	•	ЧY	•
							adda.		2		, <u> </u>	7 -	N	۲. ۲	, H				20		T	•
					1	•	4	1	•	3		AKI	11		44				C	1	٩	• •
				1	. 1			1						4 1		i	• •					
	· · · · · · · · · · · · · · · · · · ·						e f		ž			pr.	V		D,				ţ)	ž	
							UYNE2930 QQ replice of 29		WIELS ID ID ID ID LOS PLANTO		ſ	12 PCB 3x Voa Hd-Aklog 3x	Ro 2x11 PAH		242 de	•			trough) 	ØYNE 295w 2 01.	

20. 75 downstream - (N) of bridge. Lat 63° 19 35.65 N. Long: 168° 57' 56.3. W 8/12/04 1300 QYNE 29101 Surface . H. O. 25' downstream (N) from girport britze 2x 1 P. HCR DRO ARRO - Ixil PAH 2. KR PCB 3x Ver HCR. AK 101 3x VOA HCR BTEX -\$260 Dipped from Sugi river w/ job jær 1310 QUNE295W261 QC dup of 29 SW121 1320 QYNE29 SW 3 Q1 QA rep of 2956101

Stream running clear lots of algae on surfaces mats w/ some tron discoloration, Coul light mist. No sheen lodor noted. Places surveying stake on bank next to sampling location.

8/14/04 · 1700 <u>QUNEZGSWIOZ</u> Deep, swiftly flowing channel, vegithted gides, just below mixing zone of Sugi & Main Opse chainge basin

Lan: 63° 19'01.1" N Lon: 168° 57'33.7" ~

Weather: overcast rain a wind previous 24 H - water Flowing high

\$\$ TS # 8/15/04 12:00 1634 OHNE 07 SW 101 04NE295W103 Photo looking N from bunk of sampling Sugi R. ~300m Sugi inc spring sampled baggy downstream from like, just above los bridging chame! areas where sediment collected to- pipeline spill scapling Clear, Flowing H20 grass & algae growth windy foggy/overcast/ Sping at 63°18'58,8" N d-izzle weather 168° 57 12,3" W lat: 63° 18'50.8" N Waypoint ØØ4 1275:168° 56 27.15 W Weather: blue suche hole overhead Pics: Sampling site w (lake clouds up to ~1000, breezy, Sampling site up landfill Sampling location upstream of to drain basin very slight flow path from obvious landfill' however, ofther H, O may Flor from sheen observed when disturbed landfill to Sugi. There are other sediment. mounds that loopk like landfill mound

1,1: 63° 18' 59,7" N 10,1 168° 57' 10,7" W Wypt OOG Headspaces 5.3pp 48 ×2 Headspaces 5.3pp 1722 ON NEXTSD 303 QA Rep of 0750 103 1712 04 NE \$\$ 10 103 8-10" 865 1654 ØYNE \$ 50102 Saturated ground rocky under, lots of roote 6" 8,6,5 Hendspace: 4,2ppm lat: 63" 18' 59,3" N long: 168° 57' 11.5" W Shear & odos - not sure if ash, sheen upon digging, Enclador Waypoint Dos basyy or hint of Hick t 56 QC dyp of 5010540 61/16 1632 Poling around site 7 SS 125 126 still Chysed lots of benells among exposed 1620 replaced markes San WP 7-3 on Nside of Ser many burels, Machinery (inc engines), bettering household exposed plastic scatestile. Some sections covered? Observed landfill Hand dissing seems double but 4 may be in to tash. st s electrical trom yesterday's activities much more apparent- potros Sheen around ONNE of Swid

By Eugene Said previous company By Engene Said previous company permatents had day clown to where pipeline was said it was whether pipeline was said it was noted printed yellow. Mentioned diesel smell when pump house had been day around a fer 10 1800. Site 3. Cond 2 WP's Yeur yo, 6/18/04 14:09 Site 3 1442 pie of ice core of 63 B153 Pic of is setting up for bon's on 5 side of pile 2nd Pic (some as above) includes OINE03WP102 in background 127 04NE035802 |41: 63°19'40.5" N long: 168°55'44.5" N 64 NEO3 WP 06 15t: 63° 14' 31.7 = N 10m; 168° 55' 45.8" h Weypoint 34P05 147: 63° 17' 42.0" N 1013: 168° 55' 41.8" W Waypeint 3WP06 Waypoint 35802 OYNED3 WP05

12 3/19 1425 Mul to site 6, 3/20 10:40 Mol to site 6 day driller, decon equip inthe pil trailer (2 sile 7 en way Labelled DOB2 /lathe 好吗 06 32 GPS to- other boning pls: Lati 63º 19' 12.9' N Long: 168° 56' 22,4" W Pic of 06B2 looking NW (stein Pic of 06B2 looking SE- in bick) Waypoint 26B2 my ns in background 1500 went to site 3 to cap 06B3 well points, empty 03B353 head-space sample to boring area Lat: 63° 19'12.5" N Long 168° 56 24.2" W 1515 sheen (HC) observed where Wayaint 6B3 wheels day in near 23 06BY 035B03 Lat: 63° 19' 12.9" N Long' 168° 56' 25.4" W Waypoint 634 1530 back to site 6, Randy getting DTW for DINE ØGWPIO'S Lat: 63°19'13.6" 11:00 Randy 97 yo site Z Long: 168° 56' 26.0 11:52 Geter inspection questions. Ready Waypoint: \$6 WP103 -sample in fill /debis? - heavy equip over \$155127

4 #-11 Prof 125 D75512 5 Bt lat 63° 19' 07, 1" N long 16 8° 56' 32, 6" W way 7 55125 #12 Pic of debis Pile/"cut buil" me on top, locking NW # 13 Pic of heavy equip track #14 Randy gets pic S inc w/ (PS locking SE, mts in big'd At 10 Pic showing base tunda to top of slope w/me 6Psing 07 55 127 approx luntion let 63" 14 year? Let 63" 14 05, 1" N Long 1680 56" 3 1, 4" w Z1552 : + 122 Pic # 7 looking NW @ 350108 Kandy simplings Primp bldg area in back sources homes pic # 6 louking N@ 350108 down drainger primp bldg area in back drainger primp bldg area in 1604 Size 3 developing WP pic # BS looking NO 35D107 Pic # 9. 100king SWQ 35D 107 04 NE 03 50 108 14 63° 19 39, 5" N len 168° 55' 44.0" W PYNE03SD107 the drainess intris in buch lat 63° 19' 41,4" N long 168°55' 41,0" W wp: 350107 spidss dm 5

\$121 Wils @ Site 3, developing ත් 13:15 Drivting new WP 6/C Ø3 wr6 ,3 develop tonorrow 13:24 Prc #5 herey capuile scooped are ~ 25 NE of 03 wP6 stain at better has not recharging. Drive head muchand 11:27 DTW @ 03wp6 15 7.1-11:00 returned \$350108 & SSAUDZ st. Il not recharged. abardon? hendspace samples to collection mie day hat sky moust & deny but looks lite it will be and he po nt. He oder Gersenal duellinger 16:32 smole came in thick -to site 6 fer 6PS: 16:13 developing new WP-looks like the to realize NOTE HC ODOR in page 14:40 get sur, etc. Finished Installation of your withbucket 06 36 PLB1 Let 63° 19' 14,4' N Long 168° 56' 24,4" W Lat: 63°17' 14,0" N Lon, 168°56' 26.5" W Wypt: 6136 D635 Waypt: 6 B5 Lat: 630 19 13.6" Long 1680 56 26.8"

8 1754 Site 6- More 613 in Alter 9's development Measured DIW on wid (or in decided to set them deeper. 06 WF5 Lat - 63° 19'14.6"N WP: 6WP5 06 WP6 Lat: 63°17'13,8"N Long: 1680-56'27.0"W WP-6WP6 ZJM 90 WP 6WP7 Lon; 168° 56' 27,1" W DTW on WPS @ 10 8/22 14:44 - 21 - 214 +1.5 - 21 - 21 - 214 - 214 - 217 - 214 1747 × 542000 20253 00121 10 2.1/1500 353250 1.76625 05262 3.925 1 of 1.25" cours 0,064 とく 5958410 x,75 32500 5250 162500 5250 162500 984289 958559 5800.13 26 25 1766250 **.** , , , 21/195 47,1 ×3 (0.0043 S 39350 21400 15.70 15.70 5625 11 e 1 - 7 71,4 1251 ra herry アート 6

20 1857 OLWPERP DTW' 4.94 1623 UP3 1903 OLWPS DTW 7.06 1607 1853 Site 6 06 WP7 DT W: 8,13 Jotal depith? 9,76. 03 WP2 DTW: 3/1/ Casing - Ground 2,53 Cusing top to ground . 3.6' Total depth's 6.12 DTW: 3,94 5018 1530 @ sile & for well development start @ \$6 wPZ Smole clearing, an see mountaing 1854 1854 26MW3 1854 26MW3 1854 26MW3 125 (site 3 frished I will vol from each new U.P. Q. 6, will return rejected soil samples set params on his up here. 10 31 1032 Let: 630 18 43.7 N Let: 630 18 43.7 N WP 168 57 27.5 W WP 10 BI Lat 63 18' 44. 8"N Log' 1680 57 26.5" W WP5 26 MW3

4/24 10:21 Tocky's scala Develop Conge 3 WPs, at site 6 Sampling (2) sit 3. Foggy 14. breeze, cost (low 303?) Start 6 p6 wp 5, cost (low 303?) 22 11:47 Got 1 L unpreserved, por prop 1135 Got all 6 Voac! try 16. 6 DYNEDSWEDS sampling just set up still same weather. hope to get few vous fer new very low flow rate, sampling in surrened area (net point) DTW: 3, 13 Ely on even to have min babbles, so will let recharge ? so to next WP. 1234 start a little > \$ (1219 Finish vois- lots of trumble why setting bubbles out 1220 start IL 1230 Raish no ar ouched will try another 1157 \$7 WP 103 Feys lifted a bit but otherwise 12:04 start Voas DTW 3,10 Same weather 23

1211 1206 1206 24 2541 1771 2.6.71 1428 5 24.5 WP 2 WP 2 WP 2 NP 5 Finish start IL IL HCL done IL HCL done O vercast little warmer breezy DTW: 2,75 form on probe when brought up Start 1L little less done then I fall well HCL IL HCL 1732 1248 \$5.51 1604 5.40 6. 1535 4 25 WP05 Develop back at sire 6 Start vers well dy Start IL HEL done, to next up Mur development \$3WP2 DTW. 5.06 (1) Ţ 25

26 1824 Ø306 TTW: 2,81 Etide 17 1857 1847 \$ 3WP03 1905 1911 got up to the previous 14 1834 done start 16 1844 done - O3wt 06 samples have strong 145 color 1829 start IL (Enisting pathally filled one) done Stan IL HCL 10:25 done 10:27 add to previous & Cill 12 10:28 stop-not much 420 loft in well will just do fall 12 this p.M 55/32 1051 10:12 03-4P103 DTW: 3.13 1049 Stat 16 HCC 10:37 03 WP 65 DTW: 3.18 10:16 start IL HCL 10:00 show in small amount of AU yet received not scripted Hyo in bucket - from \$3\$5? 27

1224 Start 16 28 1754 Jone 12 1743 \$347 103 DTW: 3.04 1721 03 WP 05 DTW: 3, 15 13 12 Setting up to develop 2614W 3 w/Ready, using Grandfess. 1756 Sheen observed, apprently HC in \$3\$ \$3 partially Clied sample porced in purge H30 **م** Site 3 shelf lines are possible dainages, surface Hao mean up 103 not clearly to up 106 1.1.4 1.1.4 PISI Oces 1 ر. کرچ [[Xioz Xinpios 3 5 -1 45.35 29

30 8/26 15.35 \$3 WP> DIW 5:43 ' 1621 06 WP7 Dru 8,78' 6:18 Aburb DTW 6.70 1130 OHNE 1355 115 Setty loss sand, Observe moist stain at ~ 0.5 by Stop dugging to sample. 1420 DYNE 1355 105 doep hit relies concrete chunks ent 25' dynamics 274 \geq DCC. Marcate + 1 2 · · 2 -

1634 32 1605 1622 SZ Z 6440 OUNE 1355115 Sample Labor (ion O.65 bys Sample Labor (ion clearly stand are (stain not apparent on surface), sund, CYNEISSILZ ebyerr meist/stan sinite to 1355 115. Dig pust into w haider orea below 1355116 sempired 0,95 bys herdo: sell then 115 semp 1355 119 sampled 1,1/b, 1355 118 sampled 1 bys 1355117 sampled 1.15/25 R1.78 10:17 Q 5 intervals. Good weather warm surry cating the lout fruit oburs company in Long 168 2 43. 1" W from south Ly siden inside 5 . بس

4 4 15:03 DTW: 13,6'-4' Boyton of hole: 27,16-4' Messured to top of cesing 02:20 5/29 JUNZC VONIG Botton of hole: 43,6 -4' DTW: 33.36 - 4' soch water sampling everys max 30' with sample at bottom Nott atten Crun 1st sample Depettion size if possible. Sand: want well bottom @ 18.6 Jee had blown but the en yesterly. LTMWL setting up Goul: well set to 10' below 1630: More 615 ,-5036 Arra Cont 20 MWL Long 168° 57' 40,5 "N Long 168° 57' 40,5 "N WP: 20 MWI 22 MW3 168, 27, 40, 1, M 1000 168, 27, 40, 1, M WP 22 MW3 Lat 63° 18'42,7" ~ Long 168° 57' 38.4" ~ 12,81 2 N 8.6 6.6 19 31 1.6 33

36 2231 Lat 63° 18' 38,3" N Long 168° 57' 43,5" W WP 22B1 S MM Z 1 m M 8 Long 168° 57' 43,3" W Fr 63 18, 37,9 "N rest (3° 18, 114, 7", N ross (3° 18, 114, 7", N N N 13° 18, 114, 7", N Lat 63° 18'37,5" N Long 168° 57' 49.0" JMML Lat 63° 18' 43.5' N Lat 63° 18' 43.5' N MW 88-6 Lat 63°18'44.7'N Long 168 57'43.4"W MW 88-5 MW 68-8 10- 630-18, 43.9"N Lon, 168. 57, 40,7 "W Lon 168° 57' 43,6" ~

38 +0/30/0+ 6:55 17'04 Quine & to drive WP 2 deeper, so screen not about ACier Refere Menunent stickup: 3.57' Surfeed more water O3WP2 DTW: 4.13 Total well depth: 6.13 pumped day - very turby H30, no order noted, sharn -possibly from prefet Merunant sticky 2,20' 1419 pic-Randy #4 -ter from emberlanent below 04NE31 55 110 boot for sale 5/31/07 1052 DHNEZ 55 111 10 58 DY NE 31 55 114 50 5 pic #3; pic of the w/ shorels at \$2110 in backsround much less tubid. will attempt sample this 0:5WP2 DTW: 4.18 2,9' 6,5 39

1846 1112 40 ートトー 1757 OYNE31 SS 131 211 1365 portages into top of native soil, below size fill 11 03 WPOZ DTW: 4.55' pumped dry 04NE3/ 58134 04NE 31 55 110 1,65 B65. (FI) 2057 <u>O's POZ</u> 2100 Centinue 1st L 2100 Centinue 1st L 2106 Well dry - just at 1 L 9/1/04 9:27 O3WPCZ 9:37 DTW: 4,60' 9:35 well day - obtained =L 1458 pe Rendy 1 # 2 arrangement of 5 sampling locations around OINEOZSSI2Z

42 9/2/04 20 33 2 4 ⁰ 7 2. JM 50 LI01 SUB 1045 redeveloping Oburb 1027 well day : ~ 2 L 03 WP2 DTW 5.02 WP 6-3 Trui 7,66' 1132 well day ~ 264 Trui depth: 9,24' 1132 well day ~ 264 proved day 2045 1227 06WP5 gentral rust colored, not 12 1227 06WP5 DTW: 7,99 DTW: 7,99 12 24 212 proved day 1234 212 not sampled. DTW: 4.591 1104 03 UP2 DTW: 3.78 (1) beat to carp 16 5 1241 WP 6-3 . 7.73 1129 = V 9/3/04 year Ary crienting surveyor to Continue & HCL Cinish Well not dry, start another HCL Site Non at · Brindal warn suns clay infer what & rains 43

44 9/4/04 2: >> 03 WP2 DTW: 3.72 DTW: 3.72 9/5/04 2:27 Centinue & HCL 2:35 Finish 11 HCL 17:34 03 WP3 DT V: 3.94 2:37 Stert IL unproserved 1250 トトレ continue &L UP well dry at ~ 3 L 1510 1430 1241 1246 1327 Stat VODS TASI 1327 Stat VODS 13:14 7221 Site 6: 6 VOIT IL IL ILHEL IHEL 250 Start HCL 14 HCL Stat U.P. 250 - L Start U.P. IL UP 6 WP7 DTW: 9,50 Dupe time Z. JS = Srid 45

46 6 WP6 15:28 DTW: 9,76' 1573 1535 Start VoAs 1601 1552 start IL U.P. finish' well dry finish ILHCL 1654 Start VOAS 1700 Einish 1701 Start IL HCL 1707 dong 1649 WP6-3 DTW: 7,77 9171 オート 1607 6WPS DIW: 8,00' 8021 1629 1626 finish 12HCL 1612 Start VaAs 1620 finish start IL U.P. well dix Transfor ~ &L to HCL start (L UP Linish Start 250 ml Paly UP dore 47

45 00 1746 try for last & L: 1746 Done (Key!) 1743 0302 DTW 5,53 0471 1717 Start 1 LHCL 1723 Finish faish / L U.P 9/6 11.00 06 WP6 DTW: 9.73 11:05 start 1L HCL 11:13 Start 1L UP 11:13 Start 1L UP 11:22 finish 1134 start 250 mL UP poly 1136 Finish 11:02 stat 250 ml UP party 1136 Start 12 UP 1130 06 WPS DTW: 8,02 1145 centinue & HCL 1L 1148 well day. Total collected 1148 http://www.total.collected 49

6 50 9/7 1152 06 WRS DTW 8.02' 17:56 12:04 continue 126 HCC 20.51 finish Start IL UP Ginish So, 5 sets require: 10x1LUP Bucksond Sampling 10 x Gavel Sufre 407 Meon Sor DROPRO, GRO, TOL STAT Siz 10 x surfice Hyo: 2x1 Luz 2x1 LHCL DRO, RRG, GRO, FAH, BTEX 6x VOA 10 x Tundre Soils Yor Mech, Boz 620,220, DRO JOL grain Size bass 10 x sedinent . 402 MeOH Soz DRo, RRO, GRO, PAHBIEXTOC Scan size -----30 x Vod 15 x 402 pre-meghed 15 x MeOH 15 x grin size bys 10 × 1 L HLL 15 x 8 oz 9 min Size bys

52 Overcest mid 50's light wind from North, Goal Background Surface water, tundre suit Stockment from " grissy bant of large lake Area simke to Suzi basin 815 11:21 OHNE BG 55102 11:04 besin OHNERGSW102 6x HCL VOD 2x 16 HCL, 2x110P Picture Ben A 24 water body-10:54 @ Backsround SW 102 Lat: 63° 18'45,1"N Long: 169° 01'10,6" W WP BG102 tion higher ground new later Ren A 23 Eric @ location of 13655 102, Man ups are in far buckyours 201~57名 11:58 04NEB65W103, 50/03 5510 13:32 OYNERGSW104, SPION SSA Sampled on since Streen OYNE BUSDIOS Long 1690 18'46" N Long 169001 16.0" W WP B65D 102 Lot 63° 18' 49, 1"N Los 169° 01' 26.3" W WP B65W 13 Long 169° 63° 19'09.7" ~

22 17: 45 OYNE 1365W JOL Rap 17:34 OHNEB65~101, SD101 Lat 630 18:25.6, N Long 1680 57 36.4" W 17:39 OHNERGSUJOI dup After Soil remained 2.9 F1.3 5HQ1 Abere from small lake an should in chainge Set sine 04NE 136 55 101 JP: B65w11 Bulk density stuff: 5520 9855 SD 301 1/9 11:58 working on DUNE BGXX 105 - Drove to beach N of anstrop around W towards Eyrenes place (not gite 3) Sound area with crocked tundra & drainage no wight crocked tundra & drainage with crocked tundra & drainage in the clay first fines bolon Surface the second 20 12:13 OYNER65~ 105 7 5D 105 Mater Scople location ching Water Scople location ching from transles 5 of site, may be some hydroulic link to Site hard to guess, trash -5 compting location Evidence 12 620 activity in tradis a loon bottles - evident below plastic detersent & sada Lorg 169° 01' 33,1" N Lorg 169° 01' 58,4" W UP: B65~ 15 ទួ

weather 50°, cloudy / Rainy 1734 OYNEBGSW 106 large quickly floring stream Sampled from deeper pool in Shallon Scep. from drainage he of cite sunny internitient clouds, abserved SD 105 co-located from gray, brown salmon spanning sampled for middle of stream, sediment Silty seel w/organics in mid- channel, 17.45 OUNFBGSDIDG from E not submaged 1315 Set up balloon volumeter Let: 63°18'16.7" N at OYNEB655105 - dug though ~03 of moss to sell, Grassy, berry, typical unsaturated tundra, Long 168° 51' 35.0" ~ WP. BGSW16 1820 OYNEBGSS106 Squeezed H, O from so I ching balle balloon intlation; standing from sandy Floodpilain over Ho @ botton of hele after gown w/ tundra, Br. gravely removing Volumeter for SAND. Got Volume, but don'ty sampling. grain size beg, 427, 802, 13:37 Scaple OYNEB655105 14+ 63 20' 33.0"N 1019 169 02' 00.5" W Lat 63"18'15,8" N Long 168° 51' 38.8" W WP B65516 WP BGSSIDS 7374

58 P.c. Ben A # 22 1400 BB DYNEBGSS109 rocky area like site 6 Sumple location OYNEB655106 locking East river, OYNEB65W106 Lat 63 17 36.8" N site Ben in background Lung 168° 51' 42,7" W WP B6SS19 9/10 OYNER655107 13:12 Brown, gravelly, silty SAND EIn dige Valley E + grain size of site area like alog creak S of White Alice Pic BenA 21 Julie v/ read Sample in grassy sampled drainge in bland mossy area beside rocky dry rive Locm Lat 63"17'33,3 N 1444 <u>DYNEB6</u> SW107 Long 168°52'13.3" W from challow estary near catlet WP: B65517 of river, perhaps like Suki estary but much less organic as bottom 13:21 OUNEBESS 108 1453 DANEBG SDID7 new Sw 107, sendy sl, silly SAND on rocky river bettom adjacent to above ! Lat 63° 19'02,9" N gisin size obtained Long 165° 51'01,9" ~ WP B65W17

1610 60 10 01 153 OYNE B65510 Bit france & Bulk deasity abisined Errovelly Sand, brown on low-level gravelly tundes meteria Similar te saqi estarx Lat 63° 191 34,9 "N Long 168° 52' 209 "W NP 168° 52' 209 "W OHNE BGSD108 04NEB65w108 Lat 6 3° 19' 05,5" N Long 168° 51' 16,7" W WP B655 \$10 different over cutlet 16:50 OYNER6SD105 co-located for book next to above Dk. br. sandy silt, trace agains similar material to what seen sloughing on beach - near periodicat material like all over 16.4004NEB6SW109 Flowing stream to gressy tundy, a bit drive then midt sugi upstream for su 105. 1005 188°52'27.4" 5

9/11 13.53 Mubing for site 6 UP 7 Vois rede. 62 1452 Enis progras ~ 1 sx llen, begin VerAs 1505 Rg 1459 ytert Dup. 14:31 prying 06 WPZ 1520 to main ops 1703 1741 sample OYNERGSS 111 brun sandy grave I wheatbles 1736 failed-too rocky. No NCA Meot so no chape/rep today Just sample -apparent quary are on hillside Soft main ops complex. Sandy 'Gruel/ Cetibles / boulders, Originally talue slope. Dry in to grea w/ evidence of buildage activity 1717 hit large rock as attempting balk density try spein Let 63° 18' 19,3" N Lose 168° 57' 53.6" W WP 8655 51 Some organics at site for ß

Z1 31 64 1830 Sample OYNERGSS/12 Sandy Gule Frenn Formally graded Aurry Rill Scrut Celledid Sm. Sizi Sample Con DitNEB655/12 From querry area E of Main Ops complex soil Similar to Cill unatriala boun sandy sizuel arre rt 636 18:02,8" N 9/12 1757 Begin OYNE RG SD 110 17:12 at lucation for OYNERGENIK 9 sediment, New hillside NE of Singi Tale Cloudy could sempling Gum 5-55% take sing tundes mounds, similar to site 8. 18:05 close - brown lets of organics, root bell, much like site 8 1727 Begin OHNEBGSWILD 1748 dane Solimont verple. Lat 63° 18' 45,2"N Log 168° 55' 37,7" W WP 8,6 5~ 51 65

66 18:19 set up for ballan volumen 18:36 OYNERGSSIL out tundry berry las superied to grassy area. Dus through r a 3 organics to see 1 to sample Pt bry sandy silt veryincs used 2× Medit 1365553 11:10 1.1 gravel query arta sheve (E) of white alice bolow location of OUNEB65512 11:55 Finish - 4x852 1x Yoz Medit Sandy gravel - reminds one of Sandy area on W side wain 11:41 Sample OYNE BUSS 114 9/13 to attempt bulk density, DRC/RRC Dapetter MS/MR, i y motals Sampling in abuildersty excepted and - Cill source material C t V Long 165° 56' 59,9" W WP 865554 4469-5 Text on breachast 98-2 8661 SAU 67

8 12:35 at location W. (site 7. fin arxing dired & biler tales slope 1313 Sample OYNERG SS115 de brun o'sanice Ourland Lecting ever st location of BGSW110, persible that the for white cities site civil chain to the cities site civil absence telephone insulators wires here? Ne brun offenics Overhynesthe 10-3 16" 55 25 NP 16" 55 29 7"W 1420 1245 - ford sport among tales with some fires to sample! OUNERGSSILG brown, sardy Ganvel From, sendy since' - below talus slope, ~ il bes of true but ~ is bys of as heading back, gravel OHNEBG SS 117 Lit (3° 18' 41,6"N Up 168° 55' 44,3" W Le+630 18'427"N Long(680 55'25.7"W WP B65556 69

70 16:05 640 16:30 while doing bulk downy b+ wood, just collect grin size 5 @ location for pert superor sive 3 Mix or sandy silt, tendrational 00(Sample OUNE BGSS 118 Under sand leyer as Abundaned from size pest spharman mors soft high organics, net gravel. Sample Lat 63° 19149.8"N Lats 168053153"W Syloroy Note: All GPS Coordinates in field book used NADZZ Aleska Detum 118 located on point credulin ocean x 3' Abure sea level although there is drifting drittuss.

SIVUQAQ, INCORPORATED P.O. BOX 101 GAMBELL, ALASKA 99742-0101 (907) 985-5826 Voice (907) 985-5426

FAX COVER SHEET

RE: Review comments

TO: Mr. Carrey Cossaboom CEPOA-PM-C

COMPANY: USACE, Alaska District

FAX#: 907-753-5626

TELEPHONE#: 907-753-2689____

DATE: March 21, 2005

NUMBER OF PAGES: 2

NOTES: Enclosed, please find my review and comments on the Phase IV Remedial Investigation; Northeast Cape: St. Lawrence Island, Alaska. January 2005. REVIEW COMMENTS Phase IV Remedial Investigation Northeast Cape St. Lawrence Island, Alaska January 2005

> REVIEWER Morgan Apatiki RESIDENT Gambell, Alaska

- ITEM REF COMMENTS
- 1. Page i PARA 2 PARA 2 The overall Phase IV RI objectives to implement the field investigations and sample analysis program specified in this documents were definitely prominant and practicable, as further described in my previous review comments dated July 12, 2004.

The data gaps identified in previous investigations, Data Collections, still do not have the appropriate analytical protocol results.

PARA 3 The constituents of potential concern (COPC) still remains prominant contaminant level at Site 28 at which normally have not been proposed for remedial action.

General: The intense odor that applied as the inhalent volatile that was associated with the military contaminant debris in every area of the installation Sites are still in effect and that will continued to impact the environment and natural habitat of the land species and migrant marine mammals. Specifically, thepeople of the St. Larence Island.

DOCUMENT: Phase IV Remedial Investigation Report

REVIEWPROJECT: Northeast CapeCOMMENTSLOCATION: St. Lawrence Island, Alaska

DATE	: 03/10/05	REVIEWER: Lisa Geist	PHONE: (907) 753-574	2		
Item/	Page/Para	COM	IMENTS	REVIEW	S&W RESPONSE	USACE
Code.				CONFERENCE	3/30/05	RESPONSE

1.	Page i, Exec Summary	The Northeast Cape site operated from the 1950's to 1972. Lake Gogen, ford I The "unspecified data uses" include recommending site-specific cleanup goals, determine possible remedial alternatives and move forward with a Feasibility Study for the site.	Accepted. Change to match Section 2, which includes the proper dates. Unsure of comment. The term "unspecified data uses" is not in the Executive Summary. 2 nd sent., 2 nd para. should be "…investigations and refine estimates"	01/
2.	Page ii, Exec Summary	ARARs are typically identified, not developed. Add citation for state of Alaska cleanup criteria (18 AAC 75).	Accepted. Change "developing" to "identifying", and add citation.	OK-
3.	Table ES-2	Add complete citation for ADEC cleanup criteria to Key, e.g 18 AAC 75 (updated May 26, 2004), Under 40 Inch Zone, Migration to Groundwater. Consider adding column with actual cleanup level, for comparison.	Accept fleshing out citation. Discuss removing table from report. This table suggests a level of data interpretation that doesn't exist. Biogenics are not considered, and the depth intervals are misleading. How will data qualifiers be incorporated? etc.	Could
4.	Figure 2-3	Antenna pole line should not be same color as shoreline.	Accepted. We were having trouble making that line go away. It seems to be attached to the shoreline on the base map.	or
5.	Page 9, Line 4	Correct spelling of recorded	Accepted. Add "r"	014
6.	Page 16, Section 4.2	Clarify that some locID's include 2 different depths of sampling	Accepted. Only the background water and sediment share a LOCID. Depths are incorporated into the other LOC IDs. "Each Sample" in 2 nd para. is misleading. it should be "Sample locations were"	~ @
pul	Munis 19 1000	PPm (or contract is lo Toxic is a direction of the the the the the the the the the the	La Pols would need it for Pols would need it for Pols would had hed All Josephic would be defined when the defined	Casher Al

REVIEWPROJECT: Northeast CapeDOCUMENT: Phase IV Remedial Investigation ReportCOMMENTSLOCATION: St. Lawrence Island, Alaska

IF.

DATE	C: 03/10/05	REVIEWER: Lisa Geist PHONE: (907) 753-574	42		
Item/ Code.	Page/Para	COMMENTS	REVIEW CONFERENCE	S&W RESPONSE 3/30/05	USACE RESPONSE
7.	Page 24, Section 5.1.3.2	The text states that photographs were taken at each sample location. However, the Appendix only includes selected photographs to show general site conditions. Some all Deamed photos ~ 60 'Balleady scanned		Correct. Only select photos are incorporated in the report "photographs were taken at each sample location." could be eliminated to avoid confusion. Add reference Photograph 9. Discuss: Photo archiving.	
8.	Page 25, Section 5.1.3.4	2^{nd} paragraph – correct spelling:two sampling locations were adjacent to the former air terminal.		Accepted. Add "er"	JL
9.	Table 5-1b	Please provide an explanation for the high detection limits for arsenic.GRO detection of 2.05 mg/kg at 04NE01SS303 should not be bold.Many of the SVOC detection limits also much higher than the ADEC cleanup levels.		Hopefully the CQAR will prove some insight. Accepted. Likely due to biogenic interference – samples were mostly poorly decomposed peat. Also see Julie S-D comment 2a.	-
10.	Figure 5-1	Where are samples SS101 and SS102 (only 1 purple circle shown). Is the label indicating Camp Pad correctly placed?		Accepted. Add dot for SS102, move Camp Pad label to Camp Pad	OK
11.	Page 26, Section 5.2.1	Perhaps include an explanation for why deep subsurface samples were not gathered at this location – not scoped or because encountered ice at 5 feet.	li	Discuss. This sentence was intended to reinforce the fact that the geology is inferred. It may be best to delete the sentence. Section 5.2.3 discusses boring depths.	ves
12.	Page 29, Section 5.2.5	Were the sediment samples evaluated for biogenic influences?		Yes. See Table 5-2b. Make a separate paragraph for the sediment results and note the biogenic influence.	
13.	Table 5-2b	Why did benzene have such sigh PQLs?	1	Discussions of PQLs will be developed from the CQAR for the final report. Likely causes: matrix interference and dilution. See Julie S-D comment 2a.	- في السب

Toluene detection of 677 at 03SD108 should not be bolded.

Accepted - Data Stream cling-on

DOCUMENT: Phase IV Remedial Investigation Report

REVIEWPROJECT: Northeast CapeICOMMENTSLOCATION: St. Lawrence Island, Alaska

DATE	: 03/10/05	REVIEWER: Lisa Geist	PHONE: (907) 753-5742	2		
Item/	Page/Para	COMMEN	ITS	REVIEW	S&W RESPONSE	USACE
Code.				CONFERENCE	3/30/05	RESPONSE

			· · · · · · · · · · · · · · · · · · ·	
14.	Table 5-2d	Why no lab classification for biogenics on all groundwater samples? Why are the toluene detections highlighted?	One (03GW104) does have the assessment. We failed to request the library search on the COC for the other three samples. The laboratory did review the chromatograms, and found a biogenic pattern. This should be incorporated into tables and report. Data Stream (automated EDD to Excel translation) cling-on. Fix.	0Ľ
15.	Figure 5-3	Missing from my copy of the document, but found in another copy. According to the text, Boring 06B2 was placed as close as practicable to the western slope of a soil stockpile to characterize the northeastern portion of the site. However, the figure seems to indicate that 06B2 is at the eastern or south-eastern edge of the site. The figure does not show the estimated location of the aforementioned excavation and stockpile.	The text and figure are correct. The text could be expanded to describe the site better. The area of apparent site activities narrows to the southeast and becomes the access road. The 06B2 location is on the north side of the eastern part of the site, but is generally toward the southeast. Boring 06B3 characterizes the southeast extent of apparent site activities. As you know the base maps are odd mixes of approximate data and difficult to work with. We looked at adding the piles and correcting boundaries, but had difficulties with the base map. We don't have the budget to make each figure look like what we saw in the field.	n est part
16.	Page 35, Section 5.4.5	1^{st} paragraph is a bit hard to follow. Perhaps state the range of PCB detections which exceeded 1 ppm (2.18 – 50.8 mg/kg), instead of jumping from a 50 ppm value to a 0.998 value. For comparison, perhaps include the PCB values in the second paragraph as well.	Accepted. It looks like some editing lost bits and pieces and the 1 st . para. should be re-written.	1. K
17.	Figure 5-4	Include labels for other two historical samples SS125 and SS126. Yellow squares along landfill boundary do not represent historical samples and should be deleted.	Accepted. Add labels for <u>01NE</u> 07SS125, 126, and add 01NE to 07SS127 so it is apparent it is an historic sample. We will try to delete the yellow squares from the red boundary. The red boundary would not delete for Figure 5.3.	0V

REVIEWPROJECT: Northeast CapeDOCUMENT: Phase IV Remedial Investigation ReportCOMMENTSLOCATION: St. Lawrence Island, Alaska

DATE	C: 03/10/05	REVIEWER: Lisa Geist	PHONE: (907) 753-5742			
Item/	Page/Para	COMMENTS	5	REVIEW	S&W RESPONSE	USACE
Code.				CONFERENCE	3/30/05	RESPONSE

18.	Page 36, Section 5.5.3	Unclear word – "raveled".	See Item 24, Julie S-D comments.	ok
19.	Page 37, Section 5.5.5.3 and Figure 5-5	If Figure 5-5 does not accurately represent field conditions, provide a notation on the figure and/or draw in the newly estimated location of the drainage.	See 2 nd paragraph of Item 15 response above.	O'L
20.	Table 5.5b	Provide an explanation for the high benzene detection limits.	See Item 13 and Julie S-D Comments Item 2a.	
21.	Page 47	Provide an explanation for why boring 19B1 only advanced to 29.5 feet bgs – rocks, drill rig limits, no recovery, other?	Accepted. The Field Observations Section contains the explanation. Add reference to Section 5.9.4.4.	o k
22.	Page 47, 3 rd paragraph	Last sentence doesn't flow from previous text.	Accepted. Add "and one was damaged." to the second sentence. Replace last sentence with "The monument for MW88-10 was found to be damaged, but was repaired.	04K
23.	Page 48, Section 5.9.4.2	Monitoring well MW88-10 was redeveloped	Accepted. Add "88" to text.	0 LL-
24.	Page 48, Section 5.9.4.4	Previous monitoring wells were installed in 2002. My chemical database has ID's that shart with 02 NE	Accepted. Why are the IDs for the samples collected from the wells all $\underline{01}$ NE if they were collected in 2002?	good gueshan
25.	Page 52, Section 5.11.2	Elevated diesel was detected during groundwater sampling conducted in 2002 only MWS were delayed from 2001 PhyseTIT CT	As above	ste_
26.	Page 53	Delete duplicate word <i>collected</i> in 1 st paragraph. Correct syntax in 4 th para.	Accepted. Delete "Colleted". Correct paragraph (see Item 42, Julie S-D comments).	6K

	IEW 1MENTS	PROJECT: Northeast CapeDOCUMENLOCATION: St. Lawrence Island, Alaska	NT: Phase I	V Remedial Investigation Re	port
DATE	C: 03/10/05	REVIEWER: Lisa Geist PHONE: (907) 753-574	42	and a second second second second second second second second second second second second second second second	
Item/ Code.	Page/Para	COMMENTS	REVIEW CONFERENC	E S&W RESPONSE 3/30/05	USACE RESPONSE
27.	Page 52, Section 5.11.3	Add explanation that the wells were not sampled because collection of a representative or adequate groundwater sample was <i>not possible</i> .		Accepted. Add 4 th sentence "The insufficient water column precluded collecting samples that would be representative of the groundwater formation."	5K
28.	Page 55, Section 5.12.4.2	What about the water bearing zone at 28 feet? Previous page mentions two depths where water was encountered. Maybe durant whereas for all 5 amplitudes	rend.	Discuss. The question is not clear. If it is why the next soil sample was at 31 feet, rather than 28 feet, there are a number of reasons. As noted, we had to select intervals based more on drill action than 5-foot intervals to get sample recovery. The drilling was likely difficult because we started to suspect frozen ground at 30 feet. We had already sampled a water interface that could have been the static water level (you are not sure until the well sits for a while). It is difficult to tell if water blowing out the casing is from something shallower that has a good flow rate or a new water bearing zone.	
29.	Page 57, 1 st paragraph	Clarify that the deep well boring refers to near the Suqi River bridge.		Accepted. Add "The boring for the deep well near the Mid-Suqi Bridge (26MW2) was attempted"	
30.	Page 57	Are the subsections labeled with the correct MW identifiers? I think the reference to $deep \ 26MW3$ in subsection 5.13.4.2 is incorrect. Well 26MW3 appears to be a shallow test well that was completed to determine groundwater quality prior to attempting to drill the planned deeper well.		Accepted. Modify section 5.13.4.2 1 st sent. to: "Shallow groundwater monitoring well 26MW3 was drilled before the deep (26MW2) well"	6
31.	Page 58, Section 5.13.5	Should the corresponding data table 5-13b be qualified based on the text which stated the sample 26SB103 likely lost moisture while awaiting analysis?		Accepted. Improve material testing table format, add qualifiers.	3次
32.	Page 61	Please clarify that the sediment samples contained DRO at concentrations greater than the ADEC <i>soil</i> cleanup criterion.		Accepted. Add the word "soil". Also see July S-D comments Item 51.	54

REVIEWPROJECT: Northeast CapeDOCUMENT: Phase IV Remedial Investigation ReportCOMMENTSLOCATION: St. Lawrence Island, Alaska

DATE	E: 03/10/05	REVIEWER: Lisa Geist	PHONE: (907) 753-574	42		
Item/	Page/Para	COMMEN	TS	REVIEW	S&W RESPONSE	USACE
Code.				CONFERENCE	3/30/05	RESPONSE

33.	Table 5-14b	Provide an explanation for the high benzene detection limits.	Accepted. See Item 13 and Julie S-D comment Item 2a	O'L
34.	Page 62, Sec. 5.15 1 st Sent.	Note that the text on Page 62, Section 5.15 of the draft Phase IV Report states that 10 samples were analzed for fuel impacts and 29 were analyzed for PCBs. This contradicts Table 5-15b and the more detailed text in this section. The Summary of Soil Analytical Results table 5-15b for Site 31, lists 15 primary (17 total) samples analyzed for fuels, and 24 primary (26 total) for PCBs. I think the text on Page 62, Section 5.15 needs to be revised	Accepted. Correct to "Fifteen of the, and 24 were"	BK

6

malal to usace + AUEC COELT/EDDS have + hand coper have on of the day 5) level 1 dectronically delet references & port background don't reed work calibrations rean tour el elect 544) can send 12F level 1 before JARap added horit und chronicallogramue Č it was whole sile was leep in minuk STW has + have strags Mademan

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

May 4, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with our progress report describing activities conducted for the project referenced above. This delivery order was issued on March 31, 2004. Work performed during April 2004 consisted of the development of a Project Schedule and the draft Work Plans. The Project Schedule was submitted to the U.S. Army Corps of Engineers – Alaska District (USACE- Alaska District) on April 6, 2004. Based on my discussion with you on April 29, 2004, the draft Work Plans are delayed one week and are now scheduled to be delivered to USACE-Alaska District on May 7, 2004. A Revised Project Schedule is attached to this letter.

We appreciate this opportunity to be of service and trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

John Spielman, C.P.G. Principal Hydrogeologist

Enc: Revised Project Schedule

REVISED PROJECT SCHEDULE

Primary	Sub	S&W		3/2	3/29 to 4/2		4	/5 1	to 4/9		4/12 t	o 4/16	4/	19 to	4/23	4	/26 t	o 4/3	30	5/3	to 5	/7	5	5/31	to 6/-	4	6/7	to 6/	/11	6/1	14 to	6/18	6	/21 1	o 6/2	5	6/2	28 to	7/2	7	/5 to
Task	Task	Dash No.	Description Of Work	ΜТ	W 1	ΓF	М	Τ	ΥT	F	мтν	V T F	Μ	τw	Τŀ	M	ΤV	ΝT	FI	ΜТ	W	ΓF	М	T١	ΥT	F	ΜТ	W	ΤF	M '	ΤW	TI	M	ΤV	ΝT	FI	ΜТ	W	ΤF	² M	ΤW
0		-	Notice To proceed																																						
1			Preparation of Project Schedule																																						
			Project Schedule																																						
			Kickoff Meeting											-																	_										
2	-	-	Prepare Project Workplans																																			\square		\square	+
			Document review, WP outlines					20035																																	-
			General Work Plan							00000																															
			Sampling & Analysis Plan													8			*****																						
			Quality Assurance Project Plan													8					88888																				
			Waste Management Plan													8																									
			Site-Specific Health & Safety Plan													8			80000																						
			COE Review of Draft Plans																				45-	day	Revi	ew															
			Prepare Written Response to Comments																																						
			Meeting to Discuss Draft Planning Documents																																						
			Prepare Final Plans																																					States.	
			Monthly Progress Reports																																						

Primary	Sub	S&W		6/28	to 7/2	7	7/5 to	7/9	7/1	2 to 7	//16	7/19	9 to 7	/23	7/	/25 to	o 7/3	1		8/1	to 8/	7		8	/8 to	8/14			8/15	5 to 8	8/21		8/23	to 8/	/27	8/3	0 to 9/	/3	9/6
Task	Task	Dash No.	Description Of Work	ΜТ	WΤ	FΜ	ΤW	TF	ΜТ	w '	ΓF	ΜТ	w	ΤF	МΊ	C W	ΤF	S	S M	1 T '	wт	F	s s	S M	ΤV	VТ	FS	S I	ΜТ	w	ΤF	S I	ΜТ	w 1	ΓF	ΜТ	wτ	: F]	МΊ
3			Mobilization & Demobilization																																				
			Logistics (subcontractor coordination)									-																											
			Logistics (materials purchase, shipping)																																				
			Mobilization																																				
			Demobilization																																				
3	-	-	Field Work/Sampling																4																				-
1 1			Monthly Progress Reports																																				
			Estimated 25-28-day Field Effort																																				
			Progress Reports																																				_
4			Attend Fall RAB Meeting																																				
			Review and Summarize Data																																				
			Preparation of Materials																																				
			Travel to/from Meeting Location																																				
			Attend RAB Meeting/Discussions																				_																
						-	1					-						-	-	1				1											_				_

Primary	Sub	S&W		9/1	3 to 9/	17	9/20	to 9/2	4	9/2	7 to 1	0/1	10/	4 to	10/8	10	/11 t	o 10/1	15 1	0/25	to 10	/29	10/3	30 to	0 11/2	28	11/2	9 to 1	12/3	12	/6 to	12/10	12	/13 to	0 12/1	7 12	/20 te	0 12/2	24 1	2/27 t
Task	Task	Dash No.	Description Of Work	M	гwт	FN	1 T	wт	F	мт	r w	ΓF	МЛ	гw	ΤF	M	ΤV	NТ	FN	ΛT	WТ	F	М	τw	T	FN	ΛT	W 1	ΓF	М	т₩	т	M	Т₩	TF	M	ΤV	Τ	FN	1 T V
5			Preparation of Report																																	Τ				
			Monthly Progress Reports																																					
			Receive Analytical Reports																																					
			Preparation of Draft Report																																					
1			Consolidate field data, document outline																																					
			Introduction, Project Description, Background													8																								
			Field Activities Summaries						00000							*																								
			Laboratory Results													*																								
			Data Quality Assessment													ž																								
			Individual Site Summaries																-																				-	
			Regulatory Status								T					8																								
			Conclusions													×																								
			COE Review of Draft Report																4	5-Da	y Re	view	Per	iod ((10/1	5 fo	12/3	•												
			Prepare Written Response to Comments																			Π																		
			Comment Resolution Meeting / Minutes																														T				Т	o Be	Dete	ermin
			Prepare Final Report																																					

document submittal to S&W PM

document submittal to S&W Sr Review

document submittal to USACE

- 8

4

																S	HA	N.	NC	N	&	WI	LS	ON	۱, I	NC	2.	
		7/1				2 to								7/25 to 7/31 S M T W T F S								8/1 to 8/7						
1	W	T	F	М	T	W	T	F	Μ	T	W	Т	F	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
-	-	-		\vdash	-	-		-				-	-	-	-	-		-	-	-	-	-						
				t									-	-									-		2			
_	- 22-2	_		_	-														-									
	-	_		\vdash	-			-			-	-			-	-					-						-	
1	-																											
																-	9											
		-														-									_			
					8		-		\vdash	-				\vdash					\vdash		-	$\left \right $						
1		0					contra contra																					
T	9	/6	to	9/1	0	9	/13	to	9/1	7	9	/20	to	9/2	.4	9	/27	to	10,	/1	1	0/4	to	10/	8			
	M	T	W	Т	F	Μ	Т	W	Т	F	Μ	Т	W	Т	F	Μ	Т	W	Т	F	Μ	Т	W	Т	F		_	
	_					_				_				-				3							_			
	-	_											-	-			_	-	-						_		-	
t	-																											
I		3																										
t																												
I		_																										
ł	-	_						-		_							-						_		_		_	
ł	_	-	_			╞				_	_	_	-		_	_							_		_			
XXX									-	-				-	-	-		_					_	-	-		_	
00 XXXX 00	XX CHARK							-							-									-				
									t S																			
-								No	t S	che	du	led	At	TI	uis	lim	e							_		_	_	
_								_										. 1					_ 1					
						to W																1/2 T						
T		Ì	-		Ĺ					Î				1.1					111			Ĥ	Ì	1.1				
													-								_							
+	+	_	_							-		_					-			_	_		_	_			_	
+	1				-			-										-		-			-		-	-		
I														-														
								_					_															
+	+		-	6				_		-		-	_	_			-	-		_	_		-	-	-			
t	+												-					-										
t																												
-	_	_							_	-											_				_			
+	+	-	Η						-	-	_			-	-		-	-					+	-	-		-	
l	ter																											
		-							1			_															_	

SHANNON & WILSON, INC.

SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

٩Ľ.

F10 AK096963 _03.04_

File and return to me

June 4, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with our progress report describing activities conducted for the project referenced above. This progress report covers the period of May 4 to June 4, 2004. Work performed during this period consisted principally of completing the draft Work Plans. The draft Work Plans were delivered to you on May 7, 2004. Additional work performed during this period has consisted of contacts with subcontractors and a "Bear Watch" person in Savoonga. We have fielded some questions and comments regarding our draft Work Plans from Ms. Lisa Geist and Ms. Julie Sharp-Dahl.

We appreciate this opportunity to be of service and trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

olman

John Spielman, C.P.G. Principal Hydrogeologist

5430 FAIRBANKS STREET · SUITE 3 ANCHORAGE, ALASKA 99518 907-561-2120 FAX 907-561-4483 GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

August 27, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with a progress report of field activities. As referenced in a previous report, mobilization began on Monday August 9 with the delivery of camp materials, field supplies, and four persons to the site. A second Hercules aircraft trip, carrying the drill rig and additional equipment, was completed on August 16. Additional field crew members (environmental professional from Shannon & Wilson, and two driller's helpers) arrived at the site on August 17.

Surface water samples from Site 29-Suquitughniq River and Site 8-POL Spill Site were submitted to SGS on 8/16/04. A cooler of QA samples went on to North Creek Analytical in the same timeframe. Soil and sediment samples from Site 3-Fuel Line Corridor and Pumphouse and Site 6- Cargo Beach Drum Field were received by SGS on August 25. The shipment appears to also include a decontamination rinsate sample from the drilling at Site 6. A water sample from the shallow well at Site 26 was received by SGS on August 27. A water sample from Site 3 was also included in the shipment. The water sample from Site 26 will analyzed on a rush basis, so we can determine if the shallow aquifer is contaminated prior to drilling the deeper well.

Based on correspondence with Randy Hessong, field work is progressing smoothly. Subsurface conditions at Site 3 suggest that permafrost is present beneath the site at a depth of 5 to 6 feet, instead of bedrock. The shallow well (preceding the deep well) at site 26 encountered rock with sand and gravel from about 5 to 22 feet. The shallow aquifer at this location is highly A gray silt was encountered at 22 feet and is inferred to be the potential productive. aquitard/aquiclude. As indicated above, the well was set and samples are into the lab today. In general, drilling conditions have encountered lots of cobbles and boulders, somewhat as expected. The downhole hammer is able to advance the boring, but we are not getting sample recovery in some intervals. This is apparently due to coarse rock and cobbles with little finegrained matrix. Every now and again, some soil is blown from the hole with the rock chips. This is intermittent and at unknown intervals. A diverter can be used with the down-hole hammer that will allow for the collection of the material coming out of the hole. The sample may not be appropriate for volatile analysis due to the method of collection, but may provide acceptable measurements of DRO/RRO results. This method of sample recovery may be better than no recovery. We can discuss this further over the phone.

5430 FAIRBANKS STREET · SUITE 3 ANCHORAGE, ALASKA 99518 907·561·2120 FAX 907·561·4483

F10AK096903-03.09 - 000R - P.pdf

U.S. Army Engineer District, Alaska August 27, 2004 Page 2

We have not received Daily Field Reports since about August 16 and have reminded Randy to send them in with the sample coolers. These will be included in subsequent progress reports, when received. I trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

John Spielman, C.P.G. Delivery Order Manager

Encl: Copies of Daily Field Activity Reports (August 9 through 14, 2004)

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

September 3, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with a progress report of field activities. Field work has been proceeding. Analytical test results from the water sample from the shallow well for Site 26 were received and indicated no reported contamination. The deep well was initiated yesterday, at a location approximately 60 feet from the shallow well. The deep well encountered frozen silt with gravels at a depth of about 18 feet. The material is assumed to be similar to the silt encountered at the shallow well, but with the abundant water encountered in the shallow well, it was not apparent that the silt was frozen. The presence of frozen silt precluded the advancement of the deeper well. The degradation of permafrost around the borehole and seal would compromise the seal and separation of the shallow and potential deep aquifer. To this end, the drilling program is complete and the drillers are returning to Anchorage today.

Randy has indicated that two or three wells (2001 wells) at the Main Operations Complex (MOC) are not able to be sampled (uncertain at this time if they are damaged or not found). They will look for substitutes at Site 10/11. The water within the Suqui estuary is apparently fairly deep with no visible bars for easy sediment sampling. We sent an Eckman dredge (handheld sediment sampler, kind of a spring-loaded clam shell) and waders to the site to perform the sediment sampling in the Suqui estuary. Because we had anticipated collecting the sediment samples with disposable spoons, we will now use the Eckman dredge and require a decontamination rinsate sample. This rinsate sample will be substituted for one of the groundwater samples from the wells at the MOC which are not able to be sampled.

FIOAK 096903_03.04 -0004 - p. plf

5430 FAIRBANKS STREET · SUITE 3 ANCHORAGE, ALASKA 99518 907·561·2120 FAX 907·561·4483 U.S. Army Engineer District, Alaska September 3, 2004 Page 2

I have included a copy of the Daily Reports, which cover the period of August 16 through August 29, 2004. I trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

John Spielman, C.P.G. Delivery Order Manager

Encl: Copies of Daily Field Activity Reports (August 16 through 29, 2004)

SHANNON & WILSON, INC. DAILY FIELD ACTIVITY REPORT

Report No. _08_ Page 1

x Yes No

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska

Date: 8/16/04 Weather: Fairly calm overnight, light (5-10kt?) winds from SE. Overcast at 1500' rising to 2300' and slight breeze in afternoon.

Temperature: Upper 50s F

PERSONNEL ACTIVITY SUMMARY								
Personnel	Position	Hours	Miscellaneous					
Ben Heavner	Field Sampler	9.6	Sample packing, recon, water treatment					
Tim Dugenia	AMES Camp installer	Daily Rate	Off load plane, depart					
Jo Wininger	Lead driller	12	Travel and setup					
Eric Schmidt	AMES Chef	Daily Rate	Cooking, off loading					
Randy Hessong	Field Team Leader	10.1	Sample packing, camp work					

	FD	ELD ACTIVI	TY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
				Prep for cargo flight
	· .			Package samples
				Recon Cargo Beach Road

		PROJECT TOT	FAL SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Quality Samples	Total Samples
2 (sed)			4	3	9

REMARKS (Safety Issues, Areas of Concern/Quality Issues, Deviations Etc.)

C-130 with drill rig and driller arrives. 5 coolers of samples out with C-130

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	<u>_x</u> Yes <u>No</u>
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>x</u> No
Are there any USACE caused delays	Yes <u>x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>x</u> No

Are there any foreseeable or weather related delays?

Comments: Plane delays combined with equipment problems have slowed final camp setup, start of drilling.

Submitted By:

	and the second states and the second states	
mary 1-	A Construction of the second s	(Signature)
Randy Hessong	~	(Printed Name)
	Randy Hessong	Randy Hessong

Attached: ____ Field Notebook

____ Chain-of-Custody Forms

SHANNON & WILSON, INC. DAILY FIELD ACTIVITY REPORT

Report No. _09_ Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, AlaskaDate: 8/17/04Weather: Overcast, 1500' to 1800' ceiling, light SE wind, misty rain in afternoon.Temperature: Upper 50s to 60 F

PERSONNEL ACTIVITY SUMMARY								
Personnel	Position	Hours	Miscellaneous					
Julie Keener	Senior Field Sampler	8	Travel, camp setup					
Ben Heavner	Field Sampler	9.5	Camp latrine, tent anchors					
Joe Wininger	Lead driller	9.5	Camp latrine, tent anchors					
Cole Wininger		8	Travel, camp setup					
Frank Wininger		8	Travel, camp setup					
Eric Schmidt	AMES Chef	Daily Rate	Cooking, off loading					
Randy Hessong	Field Team Leader	9.5	Carbon filter install, latrine tent, prep for drilling					

FIELD ACTIVITY SUMMARY									
Activity	Total Depth	No. Samples	COC No.	Miscellaneous					
Latrine hole	5'	0		Frozen ground at 2.5'					
3 Tent anchors	9'	0		Drive in 2x4 after rotary					

		PROJECT TOT	FAL SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Quality Samples	Total Samples
2 (sed)			4	3	9

REMARKS (Safety Issues, Areas of Concern/Quality Issues, Deviations Etc.) Camp indoctrination safety meeting, Health and safety plan review. Bering Air Navaho in with Julie, Cole, Frank, project plans, perishable food, and parts.

Instructions given by the USACE to S&W: ____ Verbal _X_ Written

Received copy of E-mail verifying modification to contract with North Creek Analytical to incorporate scope modification, and that no field selected MS/MSD samples need to be submitted to North Creek. E-mail included QA Lab sample count table.

Work Progress:

Are there any contractor caused delays	<u>_x</u> Yes <u>No</u>
or potential finding of fact (i.e. excessive contam. or change in site conditions)	<u>Yes x</u> No
Are there any USACE caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any foreseeable or weather related delays?	Yes <u></u> No

Comments: Plane delays combined with equipment problems have slowed final camp setup, start of drilling.

Submitted By:

ece (Signature) **Randy Hessong** (Printed Name)

Attached: ____ Field Notebook

Chain-of-Custody Forms

Report No. _10___ Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska Date: 8/18/04 Weather: Mostly Clear, mild E. wind. 10 to 15 kt. wind overnight. Temperature: Upper 50s to lower 60s F

\$

PERSONNEL ACTIVITY SUMMARY						
Personnel	Position	Hours	Miscellaneous			
Julie Keener	Senior Field Sampler	10.8	Borings at Site 6			
Ben Heavner	Field Sampler	10.8	Borings at Site 6			
Joe Wininger	Lead driller	10.8	Borings at Site 6			
Cole Wininger		10.8	Borings at Site 6			
Frank Wininger		10.8	Borings at Site 6			
Eric Schmidt	AMES Chef	Daily Rate	Cooking			
Randy Hessong	Field Team Leader	10.8	Borings at Site 6			

	FI	ELD ACTIV	ITY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
Soil boring 03B2	8'	2	NE06	Permafrost encountered
Soil boring 03B1	6'	2	NE06	Permafrost encountered
Soil boring 03B3	7'	2	NE06	Permafrost encountered

		PROJECT TO	FAL SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Quality Samples	Total Samples
2 (sed)	6		4	3	15

REMARKS (Safety Issues, Areas of Concern/Quality Issues, Deviations Etc.)

Completed driving tent anchors.

Must remind drill crew to use safety glasses, gloves, hearing protection.

Three shallow bore holes were advanced at Site 3 rather than 2 deeper borings due to the presence of hard, nearly pure water ice, which would inhibit vertical migration. Used available footage to investigate vertical extent where petroleum odor was noted near the surface. Ice-rich soil samples were collected, which may affect analytical results.

Corn oil used in air system for lubrication. Pam spray used to lubricate threads.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any USACE caused delays	Yes <u>x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>x</u> No
Are there any foreseeable or weather related delays?	Yes <u>_x</u> No

Comments: Slow start because of hand fueling.

Submitted By: 7440 16 Randy Hessong

(Signature) ng (Printed Name)

Attached: Field Notebook

Chain-of-Custody Forms

Report No. _11___ Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska Date: 8/19/04 Weather: Mostly Clear, mild E. wind. 10 to 15 kt. wind overnight. Temperature: Upper 50s to lower 60s F

PERSONNEL ACTIVITY SUMMARY						
Personnel	Position	Hours	Miscellaneous			
Julie Keener	Senior Field Sampler	12.5	Borings at Site 6			
Ben Heavner	Field Sampler	10.3	Borings at Site 6			
Joe Wininger	Lead driller	10.2	Borings at Site 6			
Cole Wininger		10.2	Borings at Site 6			
Frank Wininger		10.2	Borings at Site 6			
Eric Schmidt	AMES Chef	Daily Rate	Cooking			
Randy Hessong	Field Team Leader	12.5	Borings at Site 6			

Activity	Fl Total	ELD ACTIV No.	TTY SUMMA COC No.	RY Miscellaneous
,	Depth	Samples		
Soil boring 06B2	8'	2	NE07	Poor recoveries, moving sand

		PROJECT TOT	FAL SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Quality Samples	Total Samples
2 (sed)	8		4	3	17

REMARKS (Safety Issues, Areas of Concern/Quality Issues, Deviations Etc.)

Cobbles, not bed rock, is present at 5 to 6 feet below ground surface.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	<u> Yes Y</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yesx No

 Are there any USACE caused delays
 _____Yes _x No

 or potential finding of fact (i.e. excessive contam. or change in site conditions)
 ____Yes _x No

Are there any foreseeable or weather related delays?

Comments: Slow drilling with boulders and pseudo-heaving sand.

Submitted By:	Whit the	 (Signature)
	Randy Hessong	(Printed Name)

Attached: ____ Field Notebook ____ Chain-of-Custody Forms _Yes x No

Report No. _12___ Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, AlaskaDate: 8/20/04Weather: Hazy, mostly sunny, mild breeze variable but primarily from west.Temperature: 50s F

	PERSONNEL AC	TIVITY SUMM	ARY		
Personnel	Position	Hours	Miscellaneous		
Julie Keener	Senior Field Sampler	12.5	Borings at Site 6		
Ben Heavner	Field Sampler	Field Sampler12.5Site 3 well develop, sSite 6		12.5	Site 3 well develop, sediment, Site 6
Joe Wininger	Lead driller	9.8	Borings at Site 6		
Cole Wininger		9.8	Borings at Site 6		
Frank Wininger		9.8	Borings at Site 6		
Eric Schmidt	AMES Chef	Daily Rate	Cooking		
Randy Hessong	Field Team Leader	12.5	Site 3 well develop, sediment, Site 6		

an an an an an an an an an an an an an a	FI	ELD ACTIV	ITY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
Soil boring 06B3	20'	2	NE07	Auger/downhole hammer
Soil boring 06B4	11.5'	2	NE07	Auger/downhole hammer

		PROJECT TOT	TAL SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Quality Samples	Total Samples
2 (sed)	12		4	3	21

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

Sample 02NE07SS127 appears to have been disturbed last year. Location is on soil covering debris. Sample 02NE07SS125 is located within the fill slope of debris and soil. Leave phone message with Carey Cossaboom to start decision process for Site 7.

One boring to 20 feet at Site 6 found no aquaclude or other formation change. Groundwater is at roughly 5'bgs, and the aquifer is quite permeable and cobbly. No strong reason for drilling beyond 10 feet bgs has been noted.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any USACE caused delays	Yes <u>x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>x</u> No
Are there any foreseeable or weather related delays?	Yes <u>_x</u> No

Comments: Slow, cobbly drilling. Site 7 sample locations not as presented.

Submitted By:

(Signature) **Randy Hessong** (Printed Name)

Attached:

Chain-of-Custody Forms

Field Notebook

Report No. 13 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska

Date: 8/21/04 Weather: Hazy, mostly sunny in morning, smoky fog descending in afternoon and staying, mild breeze primarily from east. Temperature: 50s F

PERSONNEL ACTIVITY SUMMARY							
Personnel	Position	Hours	Miscellaneous				
Julie Keener	Senior Field Sampler	12.2	Borings at Site 6				
Ben Heavner	Field Sampler	10.5	Sites 3 & 6 well points				
Joe Wininger	Lead driller	10.5	Borings at Site 6				
Cole Wininger		10.5	Borings at Site 6				
Frank Wininger		10.5	Borings at Site 6				
Eric Schmidt	AMES Chef	Daily Rate	Cooking				
Randy Hessong	Field Team Leader	11.7	Site 6 borings				

FIELD ACTIVITY SUMMARY					
Activity	Total Depth	No. Samples	COC No.	Miscellaneous	
Well Point 03WP06	7.5'	0		Replacement for 8/18 "03 WP06"	
Soil boring 06B5	11.5'	2	NE07	Several feet into groundwater	
Soil boring 06B6	11.5'	2	NE07	Several feet into groundwater	
Soil boring 06B1	11.5'	2	NE07	Several feet into groundwater	
Well point 06WP5	8.5'	0		Driven w/ drill rig air hammer	
Well point 06WP6	9.5'	0		Driven w/ drill rig air hammer	
Well point 06WP7	9'	0		Driven w/ drill rig air hammer	

PROJECT SAMPLE SUMMARY						
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples	
	20		3	2	25	

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

3 borings, 3 well points installed at Site 6.

Sample count in Project Sample Summary, above, modified to represent only PROJECT samples.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any USACE caused delays	Yes <u>x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>x</u> No
Are there any foreseeable or weather related delays?	Yes_x No

Are there any foreseeable or weather related delays?

Comments:

Submitted By:

(Signature) (Printed Name) **Randy Hessong**

Attached: _____ Field Notebook

____ Chain-of-Custody Forms

Report No. _14___ Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, AlaskaDate: 8/22/04Weather: Misty, smoky haze, clear above, mild breeze from east, increasing.Temperature: 60s F

PERSONNEL ACTIVITY SUMMARY							
Personnel	Position	Hours	Miscellaneous				
Julie Keener	Senior Field Sampler	10	Site 3 well points				
Ben Heavner	Field Sampler	10	Site 3 well points				
Joe Wininger	Lead driller	10	Site 26 shallow well				
Cole Wininger		10	Site 26 shallow well				
Frank Wininger		10	Decon drill auger, rod				
Eric Schmidt	AMES Chef	Daily Rate	Cooking				
Randy Hessong	Field Team Leader	10	Site 26 shallow well				

FIELD ACTIVITY SUMMARY					
Activity	Total Depth	No. Samples	COC No.	Miscellaneous	
Well point 03WP102				Develop	
Well point 03WP103				Develop	
Well point 03WP104	и 			Screen gone, riser on ground	
Well point 03WP05				Develop	
Well point 03WP06				Develop	
Monitoring Well 26MW3	25			Install	

PROJECT SAMPLE SUMMARY						
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples	
	20		3	2	25	

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.) Gray silt encountered at 22.5'bgs in 26MW3. Rocky formation above silt has high yield.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays
or potential finding of fact (i.e. excessive contam. or change in site conditions)Yes \underline{x} NoAre there any USACE caused delaysYes \underline{x} No

or potential finding of fact (i.e. excessive contam. or change in site conditions) $_$ Yes \underline{x} No

Are there any foreseeable or weather related delays?

__Yes <u>x</u> No

Comments: Well point development and sampling slow. Well points in peaty tundra mat above permafrost. 03WP06 may be close enough to beach not to have permafrost.

Submitted	By:
-----------	-----

Randy Hessong (Printed Name)

Attached: ____ Field Notebook

Chain-of-Custody Forms

Report No. 15 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska Weather: Clear, but smoky. Mild E. breeze, Date: 8/23/04 Temperature: 60s F

PERSONNEL ACTIVITY SUMMARY						
Personnel	Position	Hours	Miscellaneous			
Julie Keener	Senior Field Sampler	12	Site 10 borings			
Ben Heavner	Field Sampler	9.8	Sites 3&6 well points			
Joe Wininger	Lead driller	9.8	Site 10 borings			
Cole Wininger		9.8	Site 10 borings			
Frank Wininger		9.8	Site 10 borings			
Eric Schmidt	AMES Chef	Daily Rate	Cooking			
Randy Hessong	Field Team Leader	12	Sample packing, boring setup			

FIELD ACTIVITY SUMMARY					
Activity	Total Depth	No. Samples	COC No.	Miscellaneous	
Well point 03WP102	*			Develop	
Well point 03WP103				Develop	
Well point 03WP05				Develop	
Well point 03WP06				Develop	
Soil boring 10B1	15	3	NE9		
Soil boring 10B2	15	3	NE9		

PROJECT SAMPLE SUMMARY						
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples	
÷.	26		3	2	31	

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any USACE caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No

Are there any foreseeable or weather related delays?

___Yes x No

Comments: Bering Air delayed flying during several hours of acceptable weather today. Fog moved in to NE Cape shortly after they committed to fly.

Submitted 1	By:
-------------	-----

ty Henry (Signature) **Randy Hessong** (Printed Name)

Attached: Field Notebook

____ Chain-of-Custody Forms

R

Report No. 16 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska

Date: 8/24/04 Weather: Low fog, less than 1/4 mi. visibility, mild N breeze in AM. Fog lifting mid day, clear in evening. Temperature: 50s F.

	PERSONNEL AC	TIVITY SUMM	ARY	
Personnel	Position	Hours	Miscellaneous	
Julie Keener	Senior Field Sampler	10.4	MOC wells 18MW1, 20MW1	
Ben Heavner	Field Sampler	10.4	Sites 3&6 well points	
Joe Wininger	Lead driller	10.4	MOC wells 18MW1, 20MW1	
Cole Wininger		10.4	MOC wells 18MW1, 20MW1	
Frank Wininger		10.4	MOC wells 18MW1, 20MW1	
Eric Schmidt	AMES Chef	Daily Rate	Cooking	
Randy Hessong	Field Team Leader	11	MOC Well, boring & PCB location identification.	

	FI	ELD ACTIV	ITY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
Well point 03WP102				Sampling (6 VOAs took all day)
Well point 03WP103		1	NE10	Sampling (partial)
Well point 03WP5		1	NE10	Sampling
Well point 03WP6		54	NE11	Sampling (partial)
MOC 18MW1		3	NE9	
MOC 20MW1		0		

		PROJECT SAM	PLE SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
	29	2	3	2	36

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.) Coolers 6, 7, 8 out on Bering Air.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any USACE caused delays	Yes <u>_x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No
Are there any foreseeable or weather related delays?	Yes <u>x</u> No

Comments: List of drilling remaining prepared for Wininger's reference. Most recent removal action work has graded over and/or altered several sites, and damaged or destroyed several wells. Site 22 has been completely altered, and the perimeter road re-routed. Physical evidence of Pad 13-2 and associated sampling gone.

Submitted By:	may the	(Signature)
and a second second second second second second second second second second second second second second second	Randy Hessong	 (Printed Name)

Attached: Field Notebook

____ Chain-of-Custody Forms

Report No. 17 Page 1

__Yes x No

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, AlaskaDate: 8/25/04Weather: Foggy, smoky odor, NE breeze. Clearing with beautiful afternoonTemperature: mid 50s to 60s F

PERSONNEL ACTIVITY SUMMARY					
Personnel	Position	Hours	Miscellaneous		
Julie Keener	Senior Field Sampler	12.2	MOC well 20MW1, boring 19B1		
Ben Heavner	Field Sampler	14.6	Site 26 monitoring well, Sites 3&6 well points		
Joe Wininger	Lead driller	10	MOC well 20MW1, boring 19B1		
Cole Wininger	3	10	MOC well 20MW1, boring 19B1		
Frank Wininger		10	MOC well 20MW1, boring 19B1		
Eric Schmidt	AMES Chef	Daily Rate	Cooking		
Randy Hessong	Field Team Leader	14.6	Site 26 well, MOC boring & PCB location identification.		

	FI	ELD ACTIV	ITY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
Well point 03WP102				Sampling (partial)
Well point 03WP103		1	NE10	Sample completed
Well point 03WP6		1	NE11	Sample completed
MOC 20MW1		3	NE9	
Monitoring well 26MW3		1	NE11	3-day Rush

		PROJECT SAM	PLE SUMMARY	7	
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
	32	5	3	2	42

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

Phone conversation with John Spielman. Discuss status/progress, needs, potential problems that may need direction.

Instructions given by the USACE to S&W: _____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	<u>Yes x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yesx No

 Are there any USACE caused delays
 ____Yes _x No

 or potential finding of fact (i.e. excessive contam. or change in site conditions)
 ___Yes _x No

Are there any foreseeable or weather related delays?

Comments:

Feren (Signature) Submitted By: 1 (Printed Name) Randy Hessong

Attached: ____ Field Notebook ____ Chain-of-Custody Forms

Report No. 18 Page 1

___Yes <u>_x</u> No

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska

Date: 8/26/04 Weather: Gusty to 15 kt. out of E overnight, high 40's F. Fog on mountain, clear overhead.

Temperature: 50s F

	PERSONNEL AC	TIVITY SUMM	ARY
Personnel	Position	Hours	Miscellaneous
Julie Keener	Senior Field Sampler	13	Sample prep., find old wells
Ben Heavner	Field Sampler	13	Treat decon water, Site 3&6 wells
Joe Wininger	Lead driller	9.6	Borings 19B1, 13B1
Cole Wininger		9.6	Borings 19B1, 13B1
Frank Wininger		9.6	Borings 19B1, 13B1
Eric Schmidt	AMES Chef	Daily Rate	Cooking
Randy Hessong	Field Team Leader	13	Sample prep, Borings 19B1, 13B1

FIELD ACTIVITY SUMMARY					
Miscellaneous					
(partial)					
5					

		PROJECT SAM	PLE SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
	36	5	3	2	46

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

3 coolers of samples out on Bering Air, including 3-day rush for 26MW3. Chest waders in with Eckmann dredge to assist in sampling Suqi. estuary (freshwater lake). Wells 88-MW9 and 88-MW10 missing/damaged.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays	Yes <u>x</u> No
or potential finding of fact (i.e. excessive contam. or change in site conditions)	Yes <u>_x</u> No

 Are there any USACE caused delays
 ____Yes _x No

 or potential finding of fact (i.e. excessive contam. or change in site conditions)
 ___Yes _x No

Are there any foreseeable or weather related delays?

Comments:

Submitted By:	mar 74-	0.022	(Signature)
Submitted By.	Randy Hessong		(Printed Name)

Attached: ____ Field Notebook

Chain-of-Custody Forms

Report No. 19 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, AlaskaDate: 8/27/04Weather: Gusty to 15 kt. out of E overnight, high 40's F. Fog on mountain, clearoverhead.

Temperature: 50s F

	PERSONNEL AC	TIVITY SUMM	ARY
Personnel	Position	Hours	Miscellaneous
Julie Keener	Senior Field Sampler	9.7	Site 13 PCB sampling, measure old wells
Ben Heavner	Field Sampler	9	Site 13 PCB sampling
Joe Wininger	Lead driller	9.2	Well 22MW3
Cole Wininger		9.2	Well 22MW3
Frank Wininger		9.2	Well 22MW3
Eric Schmidt	AMES Chef	Daily Rate	Cooking
Randy Hessong	Field Team Leader	10.7	Well 22MW3

FIELD ACTIVITY SUMMARY					
Activity	Total Depth	No. Samples	COC No.	Miscellaneous	
Monitoring well 22MW3	40.5	5	NE12	In frozen ground	
Site 13 PCB sampling	1 to 1.5'	15	NE13	Pick and shovel in rocky ground	

		PROJECT SAM	PLE SUMMARY	7	
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
15	41	5	3	2	66

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

Precise location of 98NEC13SS802 and Pad 13-2 not clear. 15 near-surface PCB samples dug show different types/eras of fill.

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

Are there any contractor caused delays or potential finding of fact (i.e. excessive contam. or change in site conditions) ____Yes _x No

Are there any USACE caused delays or potential finding of fact (i.e. excessive contam. or change in site conditions) ____Yes _x No

Are there any foreseeable or weather related delays?

___Yes x No

Comments:

Lescer (Signature) Submitted By: Randy (Printed Name) Hessong

Attached: ____ Field Notebook ____ Chain-of-Custody Forms

Report No. 20 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska Date: 8/28/04 Weather: Chilly overnight, ground fog, winds to 10kt from WSW. Warming, 800' overcast, continued breezy in afternoon. Temperature: high 40's to mid 50s F

	PERSONNEL AC	TIVITY SUMM	ARY	
Personnel	Position	Hours	Miscellaneous	
Julie Keener	Senior Field Sampler	9.7	22MW2 oversight, sample labeling	
Ben Heavner	Field Sampler	9	Site 22 drilling	
Joe Wininger	Lead driller	9.2	Well 22MW	
Cole Wininger		9.2	Well 22MW	
Frank Wininger		9.2	Well 22MW	
Eric Schmidt	AMES Chef	Daily Rate	Cooking	
Randy Hessong	Field Team Leader	10.7	Camp and document admin,	

FIELD ACTIVITY SUMMARY					
Activity	TotalNo.DepthSamples		COC No.	Miscellaneous	
Monitoring well 22MW2	42	5	NE	Location was 22B1	
Boring 22B1	27	3	NE	Location was 22MW2 – Hit rock	

		PROJECT SAM	PLE SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
15	49	5	3	2	74

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.)

What is now called 22B1 was to be 22MW2. A rock was encountered that was drilled into for 9 feet. Drilling shifted to the original boring location, and encountered moist to wet soil at 22 feet, as expected, so a well was installed in the 38 foot hole. A glacial erratic boulder is a possible explanation. Frozen ground was suspected at 30 feet and confirmed at 35 feet in new 22MW2

Instructions given by the USACE to S&W: ____ Verbal ____ Written

Work Progress:

 Are there any contractor caused delays or potential finding of fact (i.e. excessive contam. or change in site conditions)
 __Yes _x No

 Are there any USACE caused delays or potential finding of fact (i.e. excessive contam. or change in site conditions)
 __Yes _x No

 Yes _x No
 __Yes _x No

Are there any foreseeable or weather related delays?

Comments:

Submitted By:		<u>(Signature)</u>
-	Randy Hessong	(Printed Name)

Attached: ____ Field Notebook

Chain-of-Custody Forms

___Yes x No

Report No. 21 Page 1

Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska

Date: 8/29/04 Weather: Light rain in early AM, overcast with 800-1,000' ceiling, light WSW wind. Temperature: 50s F

	PERSONNEL AC	TIVITY SUMM	IARY
Personnel	Position	Hours	Miscellaneous
Julie Keener	Senior Field Sampler	10	Sample labeling, logging, COCs, Site 13 PCB sampling
Ben Heavner	Field Sampler	9.3	Wells 22MW2, 17MW1
Joe Wininger	Lead driller	8.9	Wells 22MW2, 17MW1
Cole Wininger		8.9	Wells 22MW2, 17MW1
Frank Wininger		8.9	Wells 22MW2, 17MW1
Eric Schmidt	AMES Chef	Daily Rate	Cooking
Randy Hessong	Field Team Leader	10	Camp and document admin, Site 13 PCB sampling

	FD	ELD ACTIVI	TY SUMMA	RY
Activity	Total Depth	No. Samples	COC No.	Miscellaneous
Monitoring well 22MW2				Install well in hole drilled yesterday
Monitoring well 17MW1	21.5	3		Good water below 10 ft.
Pad 13-2 PCB sampling	1 to 3	4		Hand dug

		PROJECT SAM	PLE SUMMARY		
Surface Soil Samples	Subsurface Samples	Groundwater Samples	Surface Water Samples	Sediment Samples	Total Samples
19	52	5	3	4	83

REMARKS (Safety Issues, Areas of Concern/Quality issues, Deviations Etc.) Surface soil and sediment numbers in table above adjusted after re-count.

Instructions given by the USACE to S&W: Verbal Written

Work Progress:

Are there any contractor caused delays or potential finding of fact (i.e. excessive contam. or change in site conditions) $\underline{Yes \underline{x} No}$

Are there any USACE caused delays $\underline{Yes x No}$ or potential finding of fact (i.e. excessive contam. or change in site conditions) $\underline{Yes x No}$

Are there any foreseeable or weather related delays?

_Yes x No

Comments:

Submitted By:

ed By:	and the second second second second second second second second second second second second second second second	<u> </u>
	Randy Hessong	(Printed Name)

Attached: ____ Field Notebook ____ Chain-of-Custody Forms SEP-07-2004 TUE 02:02 PM SHANNON AND WILSON INC FAX NO. 5614483

5430 FAIRBANKS STREET, SUITE 3 ANCHORAGE, ALASKA 99518-1263

907-561-2120 Fax 907-561-4483

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

SEATTLE · RICHLAND · FAIRBANKS · ANCHORAGE · ST. LOUIS · BOSTON

FAX TRANSMISSION

Attn	Carey Cossaboom	Fax	753-5626
Company	USACE	Phone	753-2689
Location	- 1 The Min /4 N Thin / 10 P P TO THE CONTRACT	Date	Sept. 7, 2004
From	John Spielman	Time	
Subject	NE Cape Update	ан (уу уна на алеман I н.	1

TOTAL NUMBER OF PAGES (including cover sheet) __6____

MESSAGE: Carey, following is a summary I received from Randy. This will give you a summary of the work completed. In general, Work has been completed at Sites 1, 3, 6, 7, 8, 10, 11, 13, 14, 29, and 31. Based upon my interpretation of this summary and discussions with Randy, they have "Background" sampling to perform, and groundwater sampling at Site 26, Main Operations Complex, and Site 16. Hope this helps.

FIDAK 096903 $- 0003 - P_{1} p_{2}$ The original of this fax will X will not be mailed.					• • • • • • • • • • • • • • • • • • •	
	/ ISH - ··		·			•
			NY 114 114 114 114 114 114 114 114 114 11			
					FI	AK 096903
						Good ?
					_	0003 - P.1
The original of this fax willX will not be mailed.					*	-
The original of this fax willX will not be mailed.						
The original of this fax willX will not be mailed.						
The original of this fax willX will not be mailed.						
with not be maned.	[[ho articl	val a Cillia Corr		v		
	The origin		Will	A	_ will not be m	allen.

02/06 SHANNON & WILSON, INC.

Ρ.

Site and Task	Survey Location ID	Associated Analytical Sample ID	Depth	Sample Date	Notes & Remaining Items
SITE 1 - BURN SITE SE OF AIRSTRIP					
	04NE01SS101	04NE0155101	0.5	9/3	
	04NE01SS101	04NE01SS101	0.7	9/3	Location of burn area no
Nuar surface soils in area of distressed		04NE0155102 04NE0155103, 203,	0.7	813	apparent
vogetation	04NE018S103	303	0.5	9/3	2
	04NE01SS104	04NE01\$5101	0.5	9/3	
TE 3 - FUEL LINE CORRIDOR AND					
	0/11/00/1/01/00				
Sample 3 existing well points	01NE03WP102	04NE03GW101		8/24	WP104 non-existent WP 102 sample collecte
	01NE03WP103	04N["03GW102			over several days
Collect Lurface water samples from	04NE03SD107	04NE03510107	0.8	8/20	
intermittent stream	04NE03SD108				Stream not flowing.
	· · ·	04NE03SD108	0,8	8/20	Collected sediment
Install 2 additional well points - sample	03WP5	04NE03OW101		8/24	WP5 uphill WP6 near
····	03WP6	Q4NE03GW103		8/24	beach,
·	03B1	04NI203SB103 04NE03SB104	2-4 2-6	8/18	
Drill 2 sul borings, screen every 2 ft., select 3		04NE03SB101	2-0	0/10	Drilled 3 into permafros
samplos per boring for analysis	0382	04NE03SB102	6-8	8/18	(about 6 ft)
		04NE03SB105	1-3		
	03B3	04NE03SB106	3-5	8/18	
ITE 6 - CARGO BEACH ROAD DRUM FIELD					
Sample existing well point	01NE06WP103	04NF,06GW104		9/5	
Contribut containing form point	06WP5	04NE06GW103		9/5	
	06WP6	04NE06GW103		9/5	
Install 3 additional well points, sample		04NE06CW101,201,		310	<i></i>
	06WP7	301		9/5	, , ., . <u></u>
	06B1	04NE0658111	6.5-7.5		
16 - 18		04NC 0650112	10-11.5	8/21	
	06B2	O4NE065B101 04NE065B102	10-11.5 14.5-16	8/19	
		04NF0658103	3-4.5	0110	
	06B3	04NE06SB104	5-6.5	8/20	
Drill 6 soil borings, screen every 5 ft., select 2 samples per boring for analysis		04NE06SB105	3.5-5		
A set of the set of th	06B4	04NE-06\$3106	10-11.5	8/20	
•	0005	04NE06SB107, 207, 307	5-6.5		
	0685	04NE06SB100	10-11.5	8/21	
	DERE	04NE06SB109	2-3.5		
	D6B6	04NE0650110	6.5-8	8/21	
TE 7 - CARGO BEACH ROAD LANDFILL				1	
			1.1		
	04NE075S101	04NE0/55101 04NE07SB102, 202,	4-4.5		
		302		9/1	andet
	04NE0755103	04NE07SS103	1.4-1.8		
		04NE0758104	2.8-3	9/1	auger
Collect 10 surface soil samples for PCB	04NE07SS105	04NE075\$105	1.8-2.1	9/1	auger
analysis. Co-locate 2 shallow subsurface samplet (2-4 (L) with surface samples adjacent	04NE07SS106	04NE07SS105	1.1-1.2	9/1	
to 01NE07SS127	041120100101	04NE07SS107	0.7-0.9	9/1	
	04NE07SS108	04NE07S8108	0.5-0.6	9/1	
	04NE07\$\$109	04NE07SS109	Q.7-0.B	9/1	
	04NE07SS110	04NE0755110	0.8-0.9	9/1	
	04NE0755111	04NE07SS111	0.5-0.6	9/1	
	04NE07SS112	04NE075S112	0.6-0.8	9/1	

TABLE F3 - Sample and Survey Locations

32-I-16824-002, Phase IV RJ, Northeast Cape, St. Lawrence Island, Alaska

03/06 Ρ.

SHANNON & WILSON, INC.

Site and Task	Survey Location ID	Associated Analytical Sample ID	Depth	Sample Date	Notes & Remaining Items
SITE 8 - POL SPILL SITE			Depui	00	remaining terna
Collect 1 surface water sample from the drainage area of pipeline break, look for sheen	04NE08SW101	04NE08SW101		8/15	
Collect 2 sediment samples from wetlands area	04NE08SD102 04NE08SD103	04NE08SD102 04NE08SD103		8/15 8/15	
SITE 10 - BURIED DRUMS Drill 2 soil borings to 16 ft. Screen and sample at 5 ft.intervals, Analyze highest screening depth for PAH, TOC	1081 1082	04NE10SB104 04NE10SB105 04NE10SB106 04NE10SB100 04NE10SB101 04NE10SB102	5-6.5 10-11.5 15-16.5 5-8.5 10-11.5	B/23	
		04NE10SB103	15-16.5	8/23	
SITE 11 - FUEL STORAGE TANKS Sample 2 of 4 existing wells (MW 10-1, 10-4, 11-2, 11-3)	MW 10-1 MW 11-3	04NE11GW101 04NE11GW102			
SITE 13 - ELECTRICAL POWER BUILDING				1	Hand dig shallow, aug deep with drill rig
,	Q4NE13S\$105	04NE13SS105 04NE13SB128, 228. 328	1.5 3.6-3.9	8/27 9/1	
	04NE1368106	04NE13SS100 04NE13SS107	1.2	8/27	
	04NE13SS107	04NE13SB124, 224, 324	1.2 3.5-4	8/27 9/1	
	04NE13\$\$108	04N01355108	1.3	8/27	
Collect 10 camples (1 foot) and 5 co-located	04NE1355109	04NE1355109	1.4	8/27	
(3(t) samples at west transformer pad (13-1) of Bldg 110	04NE13SS110	04NE13SS110 04NE13SB125	1.2 3.8-4	8/27 9/1	
	04NE1355111	04NE13SS111	1.1	8/27	
	04NE13SS112	04NE13\$\$112 04NE13\$8127	1.1 3.5-3.8	8/27 9/1	
	04NE1355113	04NE13SS113 04NE13SB125	1.1 2.5-2.8	8/27 9/1	~
	04NE13SS114	04NE1355114, 214, 314	1	8/27	
Collect 3 surface soil samples west of	04NE13SS120	04NE13SS120	1.2-1.3	8/29	22.5
transformer #13-2 of Bidg 110 ~ 5-7 ft from 00NE13S\$802, Collect 1 subsurface sample	04NE13SS121	04NE13SS121, 221, 321	1-1.3	8/29	,
(3 It) from the ~ location of 98NE13SS802	04NE138S122	04NE13SS122	1.3-1.4	8/29	
	04NE13SS123	04NE13SS123	3-3.2	B/29	Hand
×	04NE135S115	04NE13SS115 04NE13SB131	0.65 3-3.2	8/27 9/1	
Collect 5 surface samples (0-2 or 1-3 ft) and 3 co-located subsurface samples (2-4 or 3-5	04NE13SS116	04NE1355116 04NE1358130	0.95 3.3-3.5	B/27 9/1	
ft.)north of Bldy 110, out 10-15 ft from	04NE13S5117	04NE13SS117	1.15	8/27	<i>k</i>
GGNE1338108 and BGNE1388107.	04NE13S5118	04NE13SS118 04NE13SS119	1 1.1	B/27 B/27	
	04NE13SS119	04NE13SB129	3.4-3.6	9/1	

9/5/2004

32-1-16824-002, Phase IV RI, Northeast Cape, St. Lawrence Island, Alaska

20[5

SHANNON & WILSON, INC.

Site and Task	Survey Location	Associated Analytical Sample ID	Depth	Sample Date	Notes & Remaining Items
MAIN OPERATIONS COMPLEX	17MW1	04NE17SB101 04NE17SB102 04NE17SB103	6-7.5 10-11.5 20-21.5	8/29	
Install 3 GW monitoring wolls (avg depth 30 ft), collect soil samples from near surface, mid-depth, and GW interface based on PID. Sample 3 new GW monitoring wells	18MW1	04NE185B101 04NE185B102 04NE185B103	5-6,5 15-16.5 25-26.5	8/24	
	20MW1	04NE205B101 04NE206B102 04NE205B103	3-4.5 10-11.5 20-21.5	8/25	
Sample 10 existing GW monitoring wells (MW 88-1 through MW 88-10)	MW 88-1 MW 88-2 MW 88-3 MW 88-4 MW 88-5 MW 88-6 MW 88-8	и т не н <i>и и и и и</i> ни те најну ни е (Wells MW 88-7, and 86 9 not found, appear to have been graded over, Well 88 MW-10 PVC intact, monument and plug gone.
Drill 2 soil burings to bedrock, screen at 5 ft, intervals. Select 2 samples per boring to represent subsurface soil types	13B1	04NE1350101 04NE1350102, 202, 302 04NE1350303 04NE1350104	5-6.5 15-18 18-19.5 40-41.5	8/26 8/26 8/26 8/26	Grainsize only
	1961	04NE19SB101 04NE19SB102 04NE19SB103	5-6.5 12-13.5 17.5-19	8/25 8/25 8/25	Missing 2 grainsize due poor recoverios
Collect 1 bulk soil sample to represent the structural fill of the complex area			3		The area is complex, w different materials
SITE 14 - EMERGENCY POWER/ OPERATIONS BUILDING Collect 2 surface (0-2 ft) and 2 co-located (2- 4 ft) subsurface samples approximately 10 ft SE and 10 it SW of 01NE14SS102	04NE14SS101 04NE14SS102	04NE:1455101 04NE1455104, 204, 304 04NF:1455102 04NE1458103	1.4-1.6 2.0-2.2 1.6 2.0-2,2	8/30 8/30	Hand dug
SITE 16 - PAINT AND DOPE STORAGE BLDG. Sample 3 existing wells (MW 18-1, -2, -3), select 1 PAH. Assess the biogenic influence on DRO/RRO results	MW 16-1 MW 16-2 MW 16-3				Partly jacked
SITE 22 - WATER STORAGE BUILDING Install 1 GW monitoring well adjacent to former water well PW-2, screen soil every 5 ft., select 5 samples between surface and groundwater for analysis, one cample for BTEX, PAH, TOC	22MW2	04NE22SB109 04NE22SB110 04NE22SB111 04NE22SB112, 212, 312 04NE22SB113 GW	6-7.5 13-14.5 17-18.5 22-26 31-32.5	8/28 8/28 8/28 8/28 8/28 8/28	Planned location encountered a large ro became 22B1, New location is near planned 22B1

TABLE F3 - Sample and Survey Locations

J

SHANNON & WILSON, INC.

TABLE F3 - Sample and Survey Location	TABLE	F3 - Sam	ple and Survey	Locations
--	-------	----------	----------------	-----------

Sile and Tosk	Survey Location	Associated Analytical Sample ID	Depth	Sample Date	Notes & Remaining Items
AND LAND IN THE MERICAN PLANT IN COMPANY AND AND AND AND AND AND AND AND AND AND		04NE22SB101	5.5-7	8/27	
Install 1 GW monitoring well upgradient of		04NE22SB102	12.5-14	8/27	
PW-2, screen soll every 5 ft., select 5 samples		04NE22SB103	17-18.5	8/27	Planned location moved
between surface and groundwater for analysis,	22MW3	04NE22SB104	27-28.5	8/27	N to be out of re-routed road location
one sample for BYEX, PAH, TOC		04NE22SB105, 205,	21-20.0	0/21	road location
		305	38-39.5	8/27	
Sample GW in two new wells		GW			
		04NE22SB100	6-7.5	8/28	
Drill 1 boring due east of former UST, screen	2281	04NE22SB107	12.5-14	8/28	Originally intended to b
and sample soil at 5 ft. intervals to 20 ft.		04NE22SB108	17-18	8/28	22MW2
SITE 26 - FORMER CONSTRUCTION CAMP	<i>K</i>)				
Install 1 CW monitoring well near former					
location of FW-4, sample	26MW1				8/30
1 GW monitoring well in water table aquifer,					Shallow well only.
sample. Prop for woll in deeper aquifer.	26MW3	04NE26GW101		8/24	Permafrost encountered.
SITE 29 - SURITUGHNEQ RIVER & ESTUARY	14				
		04NE29SW101, 201,			
Sample river water up-, mid-, and down	04NE295W101	301		8/12	At bridge
gradiont	04NE29SW102	04NE29SW102		8/14	Below drainage basin
2	04NE29SW103	04NE295W103		B/15	Upper reach
WWW /	04NE29SD104	04NE29SD104	1	9/3	Within . L. and B.J
	04NE29SD105	04NE29SD105		9/3	
	04NE29SD106	04NE29SD106		9/3	
Collect 6 codument samples from depositional		04NE29SD107, 207,	3-4.5 feet below	0.0	Sampled with Eckman Dredge while wading.
areas of calculy	04NE29SD107	307	water surface	9/4	Dredge while wading.
	04NE29SD108	04NE20SD108		9/4	
	04NE29SD109	04NE29SD109		9/4	
ITE S1 - WHITE ALICE SITE	·				
6/2		04NE31-SS131	2-2.1		
93	04NE31SS131	04NE31SB134	2.9-3	8/31	
		04NE31SS132	1.4-1.6		
Collect 6 surface and 2 co-located subsurface	04NE31SS132	04NE31SB133	3.5-4	8/31	
(2-4 (t.) soil camples downgradient of seplic	04NE31SS135	04NE31SS135	1.1-1.2	8/31	Single shallow samples by hand, co-located wit
tank outfall and 01NE31S5123	04NE31SS136	04NE3155136	1.3-1.5		drill auger.
Y		04NE-3158137	4.2-4.5	8/31	ditti bağaı,
	04NE31SS138	D4NE31SS138	1+	8/31	
	04NE31SS139	04NE31SS139	1.4-1.6	8/31	
4/2	04NE31SS111	04NE3155111	1.2	8/31	
Collect 4 surface and 2 co-located (2-4 ft.)	04NE31SS112	04NE31SS112	1,8-2	en lett de	Single shallow sample
subsurface coll samples downgradient of		04NE31SB113	3.7-4	8/31	by hand, co-located with
D1NE31SS124	04NE31SS114	04NE31S5114	0,9	8/31	drill auger.
	04NE31SS115	04NE31SS115 04NE31SB116	1. 9 -2 3.8-4.1	8/31	
			1.9	0.01	
6/3	04NE31S\$117	04NE31SS117 04NE31SB118, 218,	4	6	
		318		8/31	1
Collect 6 surface and 3 co-located subsurface	D4NE315S119	04NE31SS119	0.8-2	B/31	
(2.4 ft) soil samples around eastern portion of		04NE31SS120	1.9-2.1		
former PCB sampling grid at the M.E.C. Billy	04NE31SS120	04NE31SB121	4-4.2	8/31	Single shallow sample
1001.	04NE315S122	04NE31SS122	1.2	8/31	by hand, co-located will drill auger.
		0-1NE3188123	2		
	04NE315S123	04NE31SB124	3.8-4.1	8/31	
	04NE31SS125	04NE31SS125	1.2	8/31	1

V

SHANNON & WILSON, INC.

Site and Task	Survey Location	Associated Analytical Sample ID	Depth	Sample Date	Notes & Remaining Items
Collect 1 surface (0-2 ft) soil sample 20 ft 1 downgradient of 01NE31SS119/120	3155110	3155110	1.65	8/31	Hand
Drill 1 boring adjacent to former tank berm. Sample at 2-4 and 4-6 ft	31B1	04NE31SB101 04NE31SB102	2.0-4	8/31	(,,,)
Drill 1 Louing ~10 it SE of 01NE31\$\$113/114, sample at 2-4 and 4-6 it	3162	04NE31\$B103 04NE31\$B104, 204, 304	2.0-4 4.0-6	8/31	
Collect 3 surface and 2 co-located subsurface	04NE31SS126	04NE31SS126 , 04NE31SB127	1.5-2 3.5-3.8	8/31	Single shallow samples
soil samples in radius of 10-15 ft from $\frac{3}{2}$	04NE31SS128	04NE31SS128 04NE31SB129	1.8-2 3.7-3.8	8/31	by hand, co-located with drill auger.
<u> </u>	04NE31SS130	04NE3155130	1.3	8/31	
Collect 5 subsurface soil samples from locations clong former buried tank pipelines at	04NE31SB105 04NE31SB106	04NF31SB105 04NF31SB106, 206, 306	2.7-3,1 2.5-2.8	8/31 8/31	
Sile 31, locations based on 2003 removal	04NE31SB107	04NE3158107	3-3.5	8/31	Drill auger
action compling	04NE31SB108	04NE31SB108	3,5-4	8/31	*
/3	04NE31SB109	04NE31SB109	3.5-4	8/31	
BACKGROUND					
Collect 10 tundra surface soil samples					
Collect 10 gravel surface soil samples Collect 10 sadiment samples from background locations					×.
Assess the biogonic influence on DRO/RRO Collect 10 surface water samples from background locations		×.			

TABLE F3 - Sample and Survey Locations

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

September 13, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with a progress report of field activities. Field work has been proceeding at a steady pace. A few minor issues have cropped up. On September 8, the Project Laboratory, SGS, notified us that the VOA vials for Sample 04NE06GW101 and 04NE06GW201 (duplicate) froze and broke in their refrigerator. This was a QA/QC sample set, so North Creek Analytical was notified and the volatile analyses (BTEX and GRO) were canceled. The field crew will recollect the volatile samples. One sample (SGS Work Order #1045711) was labeled incorrectly (04NE31SQ201 instead of 04NE31SQ202). This was corrected. Sample 04NE03GW104 was erroneously submitted to SGS for PCB analysis instead of PAHs. This was also corrected. Additionally, samples collected from the vicinity of former Sample 98NE13SS802 were subsequently canceled at the laboratory because later survey data showed the samples to not have been located as close to Sample 98NE13SS802 as desired. This sample set will be recollected.

As discussed with you this morning, the wells at Site 16 (three) have been observed to contain less than 1 foot of water. Purging of these wells has not been possible with pumps (well dries up before water can be pumped to the surface). Bailing has resulted in little recovery and turbid water. We understand that a sample from these wells should not be collected unless the well can be purged and a non-turbid sample obtained.

We are making preparations to demobilize from the site this week and hope to be off of the island by Wednesday. I have included a copy of the Daily Reports, which cover the period of August 30 through September 5, 2004.

F10 AK 096903 _ 03,04 - 0005 - p. p1f

5430 FAIRBANKS STREET SUITE 3 ANCHORAGE, ALASKA 99518 907 561 2120 FAX 907 561 4483 U.S. Army Engineer District, Alaska September 13, 2004 Page 2

I trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

SHANNON & WILSON, INC.

Sincerely,

SHANNON & WILSON, INC.

un John Spielman, C.P.G.

Delivery Order Manager

Encl: Copies of Daily Field Activity Reports (August 30 through September 5, 2004)

SEATTLE RICHLAND PORTLAND FAIRBANKS ANCHORAGE DENVER SAINT LOUIS WASILLA

Demob Sept. 14,2004

October 5, 2004

U.S. Army Engineer District, Alaska P.O. Box 6898 Elmendorf AFB, Alaska 99506-6898

Attn: Mr. Carey Cossaboom

RE: PROGRESS REPORT - PHASE IV REMEDIAL INVESTIGATION, NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA, HTRW CONTRACT DACA85-03-D-0003, DELIVERY ORDER #0006

Shannon & Wilson is pleased to provide you with a progress report for the project referenced above. As mentioned in the previous progress report (September 13, 2004), the field crew and equipment were demobilized from the site on September 14 and 15, 2004. Over the last two weeks, we have been unpacking equipment, submitting samples for physical testing (moisture content, grain size, etc), coordinating with the project laboratory, and preparing a Site Observations and Variance Report. A copy of the variance report is included as an attachment to this letter. In addition, I have attached a copy of the Daily Field Reports for the period of September 5, 2004 through September 14, 2004.

Analytical test results are coming in and we hope to have all of the results within the next couple of weeks. I trust this information is sufficient for your needs at this time. If you have questions or comments, please contact Matt Hemry or the undersigned at (907) 561-2120.

Sincerely,

SHANNON & WILSON, INC.

John Spielman, C.P.G. Delivery Order Manager

Encl: Site Observations and Variance Report Copies of Daily Field Activity Reports (September 5 through 14, 2004)

5430 FAIRBANKS STREET · SUITE 3 ANCHORAGE, ALASKA 99518 907·561·2120 FAX 907·561·4483 32-2-16821

FIELD OBSERVATIONS AND VARIANCE REPORT REMEDIAL INVESTIGATION (PHASE IV) NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

OCTOBER 2004

TABLE OF CONTENTS

1.0	AIRST	RIP AND SUQITUGHNEQ RIVER AREAS1	
		Site 1 – Burn Site SE of Airstrip1	
	1.2	Site 29 - Suqitughneq River and Estuary1	
2.0		O BEACH ROAD AREA	
	2.1	Site 3 – Fuel Line Corridor and Pumphouse2	
		2.1.1 Borings	
		2.1.2 Well Points	
	2	2.1.3 Intermittent Stream	
		Site 6 – Cargo Beach Drum Field	
	2.3	Site 7 – Cargo Beach Road Landfill4	
		Site 8 – POL Spill Site5	
3.0		COMPLEX AREA5	
		Sites 10 and 11 – Buried Drums and Fuel Storage Tanks5	
		Site 13 – Electrical Power Building	
		Site 88 - Main Operations Complex	
		3.3.1 Existing Monitoring Wells	
		3.3.2 Soil Borings	
		3.3.3 Bulk Soil Samples7	
		Site 16 – Paint and Dope Storage Building8	
		Site 22 – Water Storage Building8	
		3.5.1 Geography and Geology	
		3.5.2 Boring 22MW1 / Monitoring Well 22MW29	ł.
4.0		5 – FORMER CONSTRUCTION CAMP9	
		Monitoring Well 26MW-19	
		Monitoring Well 26MW210	
5.0		I – WHITE ALICE SITE11	
6.0		GROUND SAMPLES11	
		Background Soil Samples11	
		Background Sediment Samples12	
7.0	DRILLI	NG-RELATED DATA12	

FIELD OBSERVATIONS AND VARIANCE REPORT REMEDIAL INVESTIGATION (PHASE IV) NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

This report presents field observations that suggest physical differences in the project area from those presented in the scope of work (SOW) and variations in execution of the work plan.

1.0 AIRSTRIP AND SUQITUGHNEQ RIVER AREAS

1.1 Site 1 – Burn Site SE of Airstrip

The SOW states "The area where Site 1 was presumed to be located is mostly bedrock outcrop. No samples have been collected based on the lack of evidence of contamination."

The area around the airstrip is depositional, with permafrost within a few feet of ground surface. Our latrine was placed on fill, and encountered frozen ground before reaching the elevation of the surrounding tundra. No bedrock outcrops were observed in the vicinity of the airstrip. The airstrip appears to have been constructed by plowing back the active layer of peaty soil to frozen ground, then placing cobbly fill. The windrows of peaty soil are visible as mounds around the airstrip, and the areas between the mounds and the airstrip have become ponds. The removal of the insulative vegetation mat and organic soil has caused differential permafrost melting. The airport terminal area shows the greatest degree of disturbance (grading, debris, etc.), presumably because initial construction and investigation/demolition activities were staged from this location.

We also did not find evidence of a burn pit or fire training area. Eugene Toolie is a local resident since before the presence of the military. He was an equipment operator and plowed the runway for the Air Force. He could not think of any fire-related activities performed around the airstrip, except for recent contractors burning trash.

1.2 Site 29 – Suqitughneq River and Estuary

The SOW states "This estuary, however, is periodically blocked off from the Bering Sea due to a gravel berm that develops at the outlet." "Collect 6 surface sediment samples from depositional areas within the Suqitughneq River estuary."

During Shannon & Wilson's field effort the estuary was a fresh water lake, and shoreline processes were maintaining a coarse sand berm, keeping the water elevation above high tide. No significant tidal influence was noted. From our discussions with Eugene Toolie, the estuary is

cut off from the sea more often than not. The vegetation and shape of the shoreline support that statement.

Depositional areas of sediment were not observed near the surface of the water. Along much of the shoreline, the water level was at the level of the surrounding surface tundra, and a submerged vertical drop of two to three feet was present. Where the water was not as deep, the lake bed consisted of boulders and coarse sand and gravel, likely due to ice scouring when the body of water is frozen. Depositional sediment was found to be three or more feet below the water surface. Because a small boat was not available, sediment samples were collected by wearing chest waders and using a stick to probe for depositional areas. An Eckman dredge was dropped on the upcurrent side of the sampler to bring sediment to the surface. The contents of the dredge was released into a new disposable aluminum pan for sampling. Aquatic vegetation was often present, and could foul the closure of the dredge.

2.0 CARGO BEACH ROAD AREA

2.1 Site 3 – Fuel Line Corridor and Pumphouse

2.1.1 Borings

The SOW states "Conduct 2 soil borings to delineate the depth of the fuel source area within and beneath the gravel pad to bedrock. The gravel pad is approximately 5 feet thick. Assume the soil boring extends an additional 10 feet to bedrock."

A large portion of the gravel pad had been excavated and placed in a pile, presumable by the contractor removing the pipeline. The excavation exposed the underlying dark peat, leading to melting of the frozen ground, and forming a pond with areas of petroleum sheen and biogenic sheen. The gravel pile and excavation restricted drill rig access. The boring locations were placed as close to the locations indicated in the SOW as possible, leading to stuck equipment in the softened ground.

The gravel pad was less than two feet thick at the boring locations and frozen ground was encountered between 3 and 4 feet below ground surface (bgs). In Boring 03B2, ¼" to 1/2" lenses of clear ice were present (in silt) between 4 and 8 feet bgs. Solid ice with traces of silt was encountered at 5 to 6 feet bgs in Boring 03B1. The borings were stopped at 6 to 8 ft bgs because the long-term permafrost precludes vertical migration, and further disturbance can lead to rapid melting. Two soil samples were collected from each boring. Strong petroleum odors were not encountered in 03B1 or 03B2. Since up to 30 feet of drilling and 6 samples were planned, a third boring was advanced. A strong weathered diesel odor was noted where the drill rig's rear tire sank accessing 03B1. Boring 03B3 was advanced near the tire rut, and encountered nearly pure ice at about 5 feet bgs.

2.1.2 Well Points

The SOW states "Sample the 3 existing well pointsThe well points installed in 2001 encountered refusal (e.g. bedrock or permafrost) and were installed between 3 and 6 feet below ground surface."

The riser pipe and location stake for Well point 01NE03WP104 were found laying on the ground surface, but the screened section was not found. It is likely that the well point was frost-jacked out of the ground and someone took the stainless steel screen for another use. No sample was collected.

The borings confirmed the presence of permafrost, and the springy nature of the soil encountered at 3 feet bgs (refusal) while driving 03WP05 suggested frozen peat. The top of the screened section of 01NE03WP102 was exposed at ground surface. The point had likely been frost-jacked. After finding that the well point did not produce sufficient groundwater to sample, it was driven down to hard ground (presumably permafrost). Well points 102, 103, and 05 are all in the active layer of wet tundra vegetation and peat.

While looking for a suitable location to install 03WP06, a shallow excavation at the boundary between the beach and tundra was observed. The excavation appeared to have been created by a loader in the last year or two. Sandy soil in the bottom of the excavation was stained and had a weathered diesel odor. The first location for 03WP06 did not produce sufficient groundwater to sample, so the well point was removed. At the new location, 03WP06 was driven to a depth of 7.5 ft bgs without encountering frozen ground. Well point 03WP06 is located near the beach, an estimated 25 feet from the stained excavation.

2.1.3 Intermittent Stream

The "intermittent stream" appears to be a series of linked low spots in the tundra rather than an active channel. The stream "bed" consists of dense grassy vegetation with deep roots in saturated peat. Mineral soils were not encountered within 1 foot of the surface. The topography and vegetation are similar to that at Well Points 103 and 05. Surface water was not flowing, so sediment samples were collected. According to Eugene Toolie, the location for the upgradient sample marked in the SOW is in the trench created when the construction contractor for the NE Cape facility plowed the vegetation off to create a "permafrost road." The road was used to access the talus quarry so construction of a gravel road could begin. Water from this trench does not flow past Site 3, but turns to flow to the beach further east. The sample location selected to represent the upgradient surface drainage was a little upgradient of the former 03WP104.

2.2 Site 6 – Cargo Beach Drum Field

The SOW suggests that the drum field is a constructed gravel pad. Observations suggest that the native materials were graded to level the site. An excavation and stockpile were present

between the site and the road, likely created by the contractor that drained the fuel pipeline, since the pipeline was visible in the excavation. The stockpile restricted drill rig access to the eastern portion of the site. Boring 06B2 was placed as close as practicable to the western slope of the stockpile.

The 2001/2002 RI report states "Two test pits were excavated to bedrock within the stained soil area at Site 6 to evaluate the depth of contamination in the soil (Figure 2-3).... One soil sample was collected from the soil/bedrock interface at the bottom each test pit.... DRO concentrations were 2,000 mg/kg at 5.3 feet bgs in Test Pit 6-1 and 3,000 mg/kg at 5 feet bgs in Test Pit 6-2...." Based on our borings and observations, bedrock is at a depth greater than 21.5 feet bgs in the vicinity of Site 6. Based on the log of 1950 Boring DH-53, and the fact that glacial till was not encountered at 20 feet bgs (in our boring 06B3), bedrock may be over 40 feet bgs (near sea level). Water was encountered between 4 and 8 feet bgs in all 6 borings, and frozen ground was suspected at 12 to 15 feet bgs, but not confirmed due to the difficult drilling. Because determining depth and extent of contamination was our objective, and deeper drilling may have spread contamination, the final four borings were completed to 11.5 feet bgs, well into the groundwater, but above suspected frozen ground.

Site 6 is located on the trailing edge of a glacial drumlin, and contains the large particles (cobbles and boulders in this case) often associated with lodgement till. The rocky ground allows less vegetation growth, and conducts heat better than vegetation and peat, creating a deep active layer. This active layer is subject to the forces of frost patterning, resulting in areas of uplifted fines and areas of rock. The central/west central area of soil staining is in an area with fines, while only rocks are present just to the south and west of the site. This suggests that smaller particles with adhered contaminants may tend to be lifted toward the surface. The first location for Well Point 06WP7 was in an area of fines, and yielded insufficient groundwater. The final location is at the boundary between fines and rock, and has excellent yield. Frost jacking of all the well points is likely.

2.3 Site 7 – Cargo Beach Road Landfill

The landfill appears to have been created by dumping debris off the sides of the drumlin discussed above. The debris appear to have been covered by frequent grading of soil from the top of the drumlin. Debris are visible around the perimeter of the drumlin, except where the road crosses.

The stake marking the location of sample 01NE07SS127 was not found. The area had been re-graded in the last year or two based on the heavy equipment tracks and lack of vegetation. Sample locations were selected based on the relationship between physical features and the sample location shown on the site plan. Unfortunately there are scaling discrepancies

and inaccuracies on the site plans from the various years of work at the site. The surveyed location of 01NESS127 was found to be about 30 feet northeast of the estimated location. The samples intended to be east and south of Sample 01NESS127 now represent the west/southwest area. Analysis of the three original samples to the north and west (04NE07SS105-107) was cancelled, and three new samples (04NE07SS113-115) were collected to represent the north and east areas.

2.4 <u>Site 8 – POL Spill Site</u>

A stringy (possibly petroleum) sheen was released from the sediment in the upwelling of water adjacent to the Suqitughneq River where Sample 04NE08SW101 was collected.

3.0 MAIN COMPLEX AREA

3.1 Sites 10 and 11 – Buried Drums and Fuel Storage Tanks

The modified SOW included sampling two of the four existing monitoring wells. Wells MW 10-1 and MW 11-3 were sampled. MW 10-1 had some frost damage. The PVC casing extended a few inches above the 4-inch-diameter stick-up monument, and the concrete holding the monument was broken up, leaving a void at ground surface. MW 11-3 was intact. Monitoring Well MW 10-4 was frost-jacked to the point the well screen was exposed above ground. Well MW 11-2 had been broken off near ground surface.

Crushed (presumably empty) rusting drums were observed in the fill slope at Site 10, but none were encountered in the borings.

3.2 <u>Site 13 – Electrical Power Building</u>

Some of the difficulties selecting sample locations were similar to those experienced at Site 7. Physical features shown on the plans didn't necessarily line up with the surveyed sample locations. Four soil samples were collected based on an estimated sample location, which was later found to be 24 feet from its surveyed location. Analysis of the original four samples (04NE13SS120-123) was cancelled, and replacement samples (04NE13SS132-134 and SB135) were collected. Sample 04NE13SS120 had already been analyzed at the time the error was discovered.

The southwest corner of the west transformer pad was partially exposed in the rocks from the recent fill, allowing measurements to be made to select locations for the ten west transformer near-surface samples. Chunks of concrete and re-bar were often encountered when digging to collect the near-surface samples. Co-located subsurface soil samples were collected using the drill rig to bring up soil on the auger flights. The rocky nature of the surface soil made it difficult to keep a hole open or drive a splitspoon without the support of more auger or a deeper hole. By

Field Observations and Variance Report

October 2004 Page A-5 32-1-16821-005 watching the auger as it pushed rocks aside, a sample representative of the desired depth interval could be selected.

3.3 Site 88 - Main Operations Complex

3.3.1 Existing Monitoring Wells

The modified SOW called for sampling the ten monitoring wells installed in 2001. The central portion of the main complex was re-graded in 2003, and some well monuments were covered with soil. The steel monuments for wells MW 88-9 and MW 88-10 were found crushed and torn out of the concrete. The concrete around MW 88-8 had been cracked by heavy equipment, and the steel monument was partially lifted out of the concrete. The monument was driven back down, nearly flush with the ground surface. The MW 88-8 PVC casing and expansion plug were intact.

A portion of the concrete for the MW 88-10 monument remained in its original location, and the PVC casing was found buried, but intact. The expansion plug was in the crushed steel monument, undamaged. MW 88-10 was redeveloped using a bailer. The outside of the bailer was wiped off between immersions to help remove soil from the sidewalls of the casing, and 4.5 gallons of water with a diesel odor were purged in an effort to remove soil particles from the bottom of the well. A new steel monument was set in concrete over the casing using a leftover bag of concrete mix. The turbidity in MW 88-10 decreased with a nominal amount of purging, and sample collection proceeded.

Bits of the concrete from the MW 88-9 monument were found scattered near the regraded surface. Hand digging in likely spots, including the location identified by the surveyor, did not reveal the PVC casing or expansion plug for MW 88-9. Evidence of Monitoring Well MW 88-7 was not found. Witching rods were used to identify several possible locations, and the surveyor marked a location based on previous data. Hand digging in the hard, rocky soil to depths of 1 foot bgs at four possible locations did not reveal MW 88-7.

3.3.2 Soil Borings

The SOW states "Complete 2 soil borings to determine the maximum depth of fuel contamination above bedrock. Assume an average depth of 40 feet....Collect 8 laboratory samples....Collect 4 sieve samples (2 per boring) from representative soil types (SP, SM) underlying the Main Complex."

The soil underlying the main complex was observed to be a complex mix of glacial and fluvial deposits. The main complex is located in the zone where a glacier would transition from a steep valley glacier to a piedmont glacier. The deposited material contains a large percentage

of cobbles and boulders, and poorly graded sand (SP) and silty sand (SM) are some of the soil types found in the spaces between the cobbles. The majority of the subsurface materials encountered were thought to be from moraines and melt-out rubble due to the low percentages of silt commonly associated with till. Poor soil recovery, and fractured cobbles in the split spoon, were the norm. The analytical sample depths were often determined by where adequate recovery was achieved. Seven analytical samples were collected from the two borings.

The location of Boring 19B1 was particularly rocky. No soil was recovered below 19 feet bgs. Drilling was stopped at 29.5 feet due to the lack of sample recovery and to avoid carrying the obvious petroleum impacts observed at 12 to 19 feet further downward. Bedrock was suspected at 29 feet bgs, but after more experience drilling in the area, the material was likely frozen sandy cobbles beyond 21 feet bgs.

Boring 13B1 is located at a lower elevation than 19B1. Drill action in 13B1 suggested frozen ground around 23 feet, where contaminant levels reduced significantly (based on field screening). Boring 13B1 was extended to 41.5 feet bgs, and glacial till (anaerobic silt in gravels and cobbles) was suspected at 38 feet (no recovery) and observed at 40 feet bgs. The drillers expressed concern about carrying the obvious impacts encountered above 20 feet bgs downward, and did not want to drill beyond 25 feet bgs.

There was seldom enough volume to collect analytical samples and grainsize samples from the split spoons advanced at the main complex. Analytical samples were given priority, and after the first boring (19B1), the source of subsurface grainsize samples was expanded to include any of the new wells in the area. Three grainsize samples were recovered: one each from Boring 13B1, Well 20MW1, and Well 22MW3.

3.3.3 Bulk Soil Samples

Field Observations and Variance Report

The SOW states "Collect 1 bulk soil sample from the overlying gravel fill comprising the Main Operations Complex pad, analyze for grain size and moisture content."

As noted above, the area had been re-graded. The Main Operations Complex soil is a complex mix of old fill, native soil, debris from building demolition, and new fill from the talus slope quarry. A single, monolithic pad with a consistent soil type was not observed.

The Building 19 concrete pad is set on fill at the north end, and it was possible to move a piece of concrete from the corner of the pad to access the fill beneath. Sample 04NE88SS101 consisted of sand and coarse gravel in angular cobbles, and was collected from this location. During our explorations, fill with a much higher silt content was also encountered beneath the obviously re-graded soil and debris. Sample 04NE88SS102 was collected and submitted for analysis to represent this material. A third type of soil was also noted that may have been

military-era fill. This material consisted of rounded to sub-rounded gravelly sand that was thought to have come from the beach. The aggregate in the old concrete appeared to be the same material. Because this material was not encountered in the subsurface while drilling, a sample was not collected.

3.4 <u>Site 16 – Paint and Dope Storage Building</u>

The three existing monitoring wells at Site 16 were observed to contain between 0.8 and 1.1 feet of water on September 9, 2004. The volume of water in the wells was found to be approximately the same as the volume of the tubing available to pump the wells. Pumped water would either reach the top of the casing or release a few milliliters of water before the well went dry. Bailing resulted in little recovery and turbid water. John Spielman discussed this issue with Carey Cossaboom and decided that samples from these wells should not be collected unless the wells could be purged and non-turbid samples obtained. Water levels were observed to drop during our field effort.

3.5 Site 22 – Water Storage Building

3.5.1 Geography and Geology

The southern leg of the main complex perimeter road has been relocated to loop around the south side of Site 22. The proposed location for Monitoring Well 22MW3 is in the center of the active travel-way. The 22MW3 location was shifted north-northeast toward the former water supply well PW-1. The ground elevation at 22MW3 is a few feet lower than the ground elevation at former PW-1.

The SOW states that "Well #1 encountered overburden to a depth of 39 feet and bedrock granite or granodiorite below this depth. The aquifers are fracture zones in bedrock at depths of 51 to 56 feet and 62 to 65 feet. No visible frozen formations were reported during the drilling. Water in limited amounts occurred in the overburden at a depth of 30.5 feet." These observations from a 1963 USAED report provide some insight into the difficulty of characterizing the subsurface at the former installation.

Overburden was observed for the full 42 foot depth while drilling 22MW3 in 2004. The drilling was through cobbly ground. Sample intervals were selected based on drill action, and soil recoveries in 2-inch split spoon samplers were better than average for the main complex. A zone of limited water was encountered between 22 and 23.5 feet bgs. Drill action suggested frozen ground around 27 to 28 feet bgs. Recovering a sample of coarse granular material from frozen ground without the sample thawing was difficult due to the heat generated from drilling and the relatively low moisture content. The 33 to 34.5 foot interval recovered a few inches of ground rock, rock slough, and a fractured rock. At about 38 feet bgs, drill action suggested that a larger rock was just passed. A split spoon was driven and recovered from 38 to 39.5 feet as

Field Observations and Variance Report

quickly as possible. Frozen, silty, sandy gravel, with parts of a fractured cobble, were recovered. The material transformed (melted) from dry-looking, stiff, and somewhat flakey to wet and runny shortly after the split spoon was opened. The drill bit was advanced to 40.5 feet to remove disturbance from the previous sample, and a split spoon was driven to 42 feet. The split spoon was again recovered quickly, pulling 10 feet of casing at a time, and frozen granular soil was confirmed.

The gray silt typical of till beneath an active glacier was not encountered at depth in 22MW3, suggesting that the boring had not fully penetrated the moraine, and that bedrock is considerably deeper than 40 feet. Glacial till was encountered at 40 feet bgs in Boring 13B1, which has a surface elevation roughly 25 feet lower than 22MW3. We suspect that frozen granitic cobbles and boulders have been interpreted as bedrock in the past. This stuff is difficult to drill!

3.5.2 Boring 22MW1 / Monitoring Well 22MW2

The location selected for 22MW2 was particularly rocky. The location is more east than north of former PW-2 due to the presence of partially buried concrete and rebar. The drillers commented that the ground felt frozen at 15 feet bgs. A split spoon was driven to refusal from 17 to 18 feet. An adequate amount of soil was recovered for an analytical sample. The drill cuttings blowing out of the casing were freshly fractured rock chips from 18 to 27 feet bgs, and drill action suggested rock. A split spoon was driven at 25 feet to determine if the material was frozen soil. Only rock chips (slough) with a coating of corn oil (hammer lubricant) were recovered. The location was abandoned, and drilling moved to the proposed location of Boring 22B1, 20 to 25 feet away.

The drilling was easier and sample recovery better at the 22B1 location. Petroleumstained soil was encountered at roughly 6 to 8 feet bgs. A minor water bearing zone was encountered around 22 to 23 feet bgs, and split spoons were driven from 22 to 23.5 and 23.5 to 25 feet bgs. The two split spoons were combined in order to have adequate soil volume for a QC/QA replicate sample. Because the boring was advancing well and the location is within 25 feet of the proposed 22MW2 location, the boring was completed as a monitoring well and renamed 22MW2. Frozen ground was suspected at 30 feet bgs and confirmed at 35 feet bgs. The original 22MW2 location was re-named 22B1.

4.0 <u>SITE 26 – FORMER CONSTRUCTION CAMP</u>

4.1 Monitoring Well 26MW-1

The proposed location of Monitoring Well 26MW1 was located just off an old embankment, and the nearest flat location for the drill rig had three partially full supersacks on it.

A location with good drill rig access was selected to the southwest, closer to former PW-4. Drill action and cuttings suggested groundwater, sand, and then frozen ground at 35 to 36 feet bgs and rocks from 37.5 to 42 feet. Bedrock is not suspected because similar drill action and cuttings were encountered between 22 and 28 feet. Based on the difference in surface elevations between PW-4 and 26MW1, the new well was probably completed in the same water bearing zone as the former well.

4.2 Monitoring Well 26MW2

The SOW states "To determine if shallow groundwater located in the overburden has connectivity to the fractured bedrock aquifer presumed beneath the site, one deep groundwater monitoring well shall be installed downgradient of the most contaminated zone."

This well was not completed. Pieces of clear water ice were observed coming up the casing with the cuttings at 18 to 19 feet bgs, and a split spoon was driven to 21.5 feet. The split spoon contained solidly frozen, gray clayey silt with lenses of gravel/fractured rock. The silt began to flow from the split spoon as it thawed. The resources and technology were not available (we are unaware of a well researched and established procedure) to seal a conductor casing in heterogeneous frozen material without the risk of thawing the soil. The boring was backfilled with cuttings. A sample of the frozen silt from 20 feet bgs was collected and submitted for grainsize and moisture content analysis and optional tests for liquid and plastic limits. The clay content of the sample from the hydrometer portion of the grainsize analysis may give some insight into whether the material was deposited through water or from a grounded glacier. The moisture content compared to the plastic limit may suggest whether the frozen silt would be stable if thawed in-situ.

Monitoring Well 26MW3 was installed in the watertable aquifer and tested for petroleum constituents before attempting to install the deeper well. The area selected for these wells is a relatively dry rise west of the road to the main complex, and south of the upper Suqitughneq River bridge. The ground surface here had evidence of frost patterning similar to the vicinity of Site 6. The subsurface material at 26MW3 was sandy gravel in cobbles with an iron-brown color and very few fines. Gray silt suggesting glacial till was encountered at 22 feet bgs and the drill action suggested hard material. The hammer would get choked off because air couldn't exit through the sticky silt. In retrospect the unusual drill action occurred because the silt was frozen and was thawing in the casing. The deep well location (26MW2) was selected 78 feet from the shallow well to avoid problems with compressed air short-circuiting to the shallow well. At the deep well location the soil had more silt and gravel, with fewer cobbles. At 10 feet bgs, the silt in the coarse soil become gray. The deep well location was apparently the up-welling portion of a frost pattern cell.

5.0 <u>SITE 31 – WHITE ALICE SITE</u>

The surface of the While Alice site had been recently re-graded, removing the markings of previous sampling locations. The scales and orientations of the various features on the site figure were often inconsistent with features in the field. Witching rods were used to determine the boundaries of former excavations and piping, and spray paint marks remaining on the main building slab were used to estimate the boundaries of the PCB sampling grid. The location of the former septic tank outfall on the figure deviated from the physical and geophysical observations the most. Surface samples with co-located subsurface samples were all collected from the flights of the drill rig augers using the technique described for Site 13 above.

6.0 BACKGROUND SAMPLES

The objective of collecting background samples with "similar characteristics to siteimpacted areas at Northeast Cape, but be located within a reasonable distance from the site" was difficult to achieve. There is no other area of massive deposition from a steep valley glacier within a reasonable distance of the site. Gravel surface soil similar to the site was particularly difficult to find, and three "background" samples were collected from the gravel quarries used to construct the site.

6.1 Background Soil Samples

Although 20 background soil samples were scoped, only eighteen samples were collected. Of the 18 samples, 9 could be considered "gravelly" and 4 were primarily organic peat. Bulk density tests were difficult to complete because many of the gravel areas contained fractured cobbles that would puncture the balloon of a volumeter or preclude driving a cylinder. Other soil sample locations would fill with water and/or flow. Seven successful bulk density measurements were made.

Because measuring the grainsize of material that is primarily peat has no recognized method or application for our objectives, the 4 peaty samples were submitted for analysis of organic content by ignition furnace. Three background soil samples appeared to contain mineral soil with over 10% fines, and were submitted for grainsize analysis with hydrometer testing of the fines. Thirteen background soil samples have been submitted for sieve analysis. A grainsize portion was not collected from one background soil sample location because there was not enough soil left between the rocks after collecting the analytical sample to be representative of the analytical sample.

October 2004 Page A-11 32-1-16821-005

6.2 Background Sediment Samples

Granular sediments and sediments that were exposed due to low water levels were also difficult to find. The majority of sediment samples are highly organic, and were collected through a water column. The soft organic sediments are similar to those found in the Suqitughneq River and Estuary. No bulk density tests of sediment were successfully completed. Due to a misunderstanding after discussing how a meaningful bulk density sample could be achieved, only two grainsize samples were collected from background sediment locations. One of these samples is primarily peat and an organic content test by ignition furnace was requested. The other sample was submitted for full grainsize analysis.

7.0 DRILLING-RELATED DATA

The use of an air-rotary type drilling system to handle the rocky ground necessitated the use of a lubricant in the compressed air to keep the down-hole hammer functioning. This lubricant may be forced into the pores of the soil beyond the borehole when drilling. The lubricant used was Mazola corn oil. Split spoon samplers often had a thin film of oil after sampling. In order to see if the drill steel above the split spoon may impact a soil sample collected through water, one equipment blank sample included the drill rod connector that had had an oily coating on the interior surfaces. To evaluate the contribution of corn oil to analytical chromatograms, a sample of Mazola corn oil was submitted to SGS Environmental Services for fingerprinting.

DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

July 6, 2005

Programs and Project Management Division Civil Works Management Branch

«Title» «FirstName» «LastName» «JobTitle» «Company» «Address1» «City», «State» «PostalCode»

Dear «Title» «LastName»:

Enclosed is a copy of the *Final* Phase IV Remedial Investigation (RI) report, Northeast Cape, St. Lawrence Island, Alaska, dated June 2005. The U.S. Army Corps of Engineers (USACE) contracted with Shannon & Wilson, Inc., to perform this environmental investigation work during the summer of 2004.

Please remove the *Draft* Report with the same title dated January 2005 from your holdings, and replace that with this copy.

If you would like an electronic copy of the RI Report text only, I have that available in a 481 KB WORD file that I can email to you upon request.

This report has also been furnished to the following individuals and organizations:

- Mr. Jeff Brownlee, Alaska Department of Environmental Conservation
- Ms. Vi Waghiyi, SLI Coordinator, Alaska Community Action on Toxics
- Dr. Ron Scrudato, State University of New York,
- Mr. Jerald Reichlin, Attorney, Fortier and Mikko Anchorage Information Repository, ARLIS Gambell Information Repository, Sivuqaq Lodge Nome Information Repository, UAF Northwest Campus Savoonga Information Repository, Savoonga City Hall
- Mr. Morris Toolie, Jr., President, Savoonga Native Corporation
- Mr. Merle Apassingok, President, Sivuqaq, Inc.

If you have any questions, please contact me at (907) 753-2689, or by e-mail at carey.c.cossaboom@poa02.usace.army.mil.

Sincerely,

Carey Cossaboom Project Manager

Enclosure

F10AK096903_08.01_0008.p.pdf

G:\PM-P\FUDS Program\Carey\Gambell\transmittal letter_Phase IV RI_final.doc

Merge with G:\PM-P\FUDS Program\Carey\NE Cape\merge files data sources\NEC VIP Limited data source Jun05

LastName Brownlee	JobTitle Project Manager	Company Alaska Department of Environmental Conservation	Address1 555 Cordova St., 2 nd floor	City Anchorage	State AK	PostalCode 99501	FirstName Jeff	Title Mr.
Apassingok	President	Sivuqaq, Inc.	P.O. Box 101	Gambell	AK	99742	Merle	Mr.
Toolie, Jr.	President	Savoonga Native Corporation	P.O. Box 160	Savoonga	AK	99769	Morris	Mr.
Scrudato		SUNY at Oswego	54 Sunset Bluff	Oswego	NY	13126	Ronald	Dr.
Waghiyi	Project Coordinator	Alaska Community Action on Toxics	505 W. Northern Lights Blvd., #205	Anchorage	AK	99503	Viola	Ms.
Reichlin	Attorney	Fortier and Mikko	101 W. Benson Blvd, Suite 304	Anchorage	AK	99503	Jerald	Mr.
	Gambell Information Repository	Sivuqaq Corporation Building	P.O. Box 101	Gambell	AK	99742		
Smith, Director	St. Lawrence Island FUDS Information Repository	UAF Northwest Campus	Pouch 400	Nome	AK	99762	Gary	Mr.
Lawrence Island FUDS	Anchorage Information Repository	Alaska Resource Library and Information Services (ARLIS)	Suite 111, Library Building 3211 Providence Drive	Anchorage	AK	99508		St.
, 	Savoonga Information Repository	City Hall	P.O. Box 40	Savoonga	Alaska	99769		

•

DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

May 12, 2004

Programs and Project Management Division Civil Works Management Branch

«Title» «FirstName» «LastName» «JobTitle» «Company» «Address1» «City», «State» «PostalCode»

Dear «Title» «LastName»:

Enclosed for your review is a copy of the *Draft* Northeast Cape Phase IV Remedial Investigation Work Plan which describes the planned sampling and monitoring well installation activities scheduled for this summer. The U.S. Army Corps of Engineers (USACE) contracted with Shannon & Wilson, Inc. to conduct this work. Field work is anticipated to start in late July and last 3 or 4 weeks.

The Corps is seeking comments on this draft work plan within thirty (30) days of receipt of this document. Therefore, the comment deadline will be **June 16, 2004**. To assist us in answering your comments and keeping track of responses, I ask those of you with computers and e-mail to use the comment templates in Microsoft WORD that we have used in the past. If you do not have an electronic copy of that template, please contact me and I will e-mail it to you.

This letter has also been furnished to the following individuals and organizations:

- Mr. Jeff Brownlee, Alaska Department of Environmental Conservation
- Ms. June Martin, SLI Coordinator, Alaska Community Action on Toxics

Dr. Ron Scrudato, State University of New York, TAPP Grant Mr. Jerald Reichlin, Attorney, Fortier and Mikko Anchorage Information Repository, ARLIS Gambell Information Repository, Sivuqaq Lodge Nome Information Repository, National Park Service Savoonga Information Repository, Savoonga IRA Building Honorable Fritz Waghiyi, President, Native Village of Savoonga Honorable Edmond Apassingok, President, Native Village of Gambell

Mr. Morris Toolie, Jr., President, Savoonga Native Corporation

Mr. Job Koonooka, President, Sivuqaq, Inc. Honorable Jesse Gologergen, Mayor, Village of Savoonga Honorable Jason Nowpakahok, Mayor, Village of Gambell

If you have any questions, please contact me at (907) 753-2689, or by e-mail at carey.c.cossaboom@poa02.usace.army.mil.

Sincerely,

Carey Cossaboom Project Manager

Enclosure

G:\PM-P\FUDS Program\Carey\Gambell\transmittal letter_NEC draft workplan.doc

Merge with G:\PM-P\FUDS Program\Carey\NE Cape\merge files data sources\SLI data source May04

LastName Brownlee	JobTitle Project Manager	Company Alaska Department of Environmental	Address1 555 Cordova St., 2 nd	City Anchorage	State AK	PostalCode 99501	FirstName Jeff	Title Mr.
Waghiyi	President	Conservation Native Village of Savoonga	floor P.O. Box 120	Savoonga	AK	99769	Fritz	Honorable
Apassingok	President	Native Village of Gambell	P.O. Box 89	Gambell	AK	99742	Edmond	Honorable
Gologergen	Mayor	Village of Savoonga	P.O. Box 120	Savoonga	AK	99769	Jesse	Honorable
Nowpakahok	Mayor	Village of Gambell	P.O. Box 189	Gambell	AK	99742	Jason	Honorable
Toolie, Jr.	President	Savoonga Native Corporation	P.O. Box 160	Savoonga	AK	99769	Morris	Mr.
Koonooka	President	Sivuqaq, Inc.	P.O. Box 101	Gambell	AK	99742	Job	Mr.
Scrudato		SUNY at Oswego	54 Sunset Bluff	Oswego	NY	13126	Ronald	Dr.
Martin	Project Coordinator	Alaska Community Action on Toxics	505 W. Northern Lights Blvd., #205	Anchorage	AK	99503	June	Ms.
Reichlin	Attorney	Fortier and Mikko	101 W. Benson Blvd, Suite 304	Anchorage	AK	99503	Jerald	Mr.
	Gambell Information Repository	Sivuqaq Corporation Building	P.O. Box 101	Gambell	AK	99742		
Bennet	St. Lawrence Island FUDS Information Repository	National Parks Service	179 Front St, Suite 121	Nome	AK	99762	Brad	Mr.
Lawrence Island FUDS	Anchorage Information Repository	Alaska Resource Library and Information Services (ARLIS)	3150 C Street, Suite 100	Anchorage	AK	99503		St.
	Savoonga Information Repository	ÌRA Building	P.O. Box 120	Savoonga	Alaska	99769		

.

DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

May 12, 2004

Programs and Project Management Division Civil Works Management Branch

«Title» «FirstName» «LastName» «Company» «Address1» «City», «State» «PostalCode»

Dear «Title» «LastName»:

A copy of the *Draft* Northeast Cape Phase IV Remedial Investigation Work Plan was recently sent to your local Information Repository. This document describes the planned sampling and monitoring well installation activities scheduled for this summer at Northeast Cape. The U.S. Army Corps of Engineers (USACE) contracted with Shannon & Wilson, Inc. to conduct this work. The field work is anticipated to start in late July and last 3 or 4 weeks.

The Corps is seeking comments on this report within thirty (30) days of receipt of this letter. Therefore, the comment deadline will be **June 16, 2004**. To assist us in answering your comments and keeping track of responses, I ask those of you with computers and e-mail to use the comment templates in Microsoft WORD that we have used in the past. If you do not have an electronic copy of that template, please contact me and I will e-mail it to you.

This letter has been furnished to the following RAB Members:

Mr. Alex Akeya Ms. Peggy Akeya Mr. Leonard Apangalook, Sr. Mr. Paul Apangalook Mr. Melvin Apassingok Mr. Merle Apassingok Mr. Jerome Apatiki Ms. Lucy Apatiki Mr. Jeff Brownlee Mr. Jesse Gologergan Ms. Linda Gologergan Ms. Jeanette Iya Ms. C. Jane Kava

Mr. Christopher Koonooka Mr. Job Koonooka Mr. Merlin Koonooka Ms. June Martin Ms. Pam Miller Mr. George Noongwook Mr. Conrad Oozeva Mr. Jerry Reichlin Mr. Paul Rookok, Sr. Mr. Morris Toolie, Jr. Ms. Viola Waghiyi Mr. Kevin Zweifel

Please mail your comments to me at: Carey Cossaboom, Project Manager, CEPOA-PM-C, Post Office Box 6898, Elmendorf AFB, Alaska 99506-6898. Alternatively, you may e-mail your comments to me at: carey.c.cossaboom@poa02.usace.army.mil

Call me at (907) 753-2689, or e-mail me, if you have any questions.

Sincerely,

M Carey Cossaboom Project Manager

G:\PM-P\FUDS Program\Carey\Gambell\RAB transmittal letter NEC draft workplan.doc Merge with G:\PM-P\FUDS Program\Carey\NE Cape\RAB only data source May04

Title Mr.	FirstName Alex	LastName Akeya	Company	Address1 P.O. Box 108	City Savoonga	State AK	Comments	PostalCode 99769
Ms.	Peggy	Akeya		P.O. Box 192	Savoonga	AK		99769
Mr.	Leonard	Apangalook, Sr.		P.O. Box 93	Gambell	AK		99742
Mr.	Paul	Apangalook		General Delivery	Gambell	AK	Confirm mailing address	99742
Mr.	Melvin	Apassingok		P.O. Box 91	Gambell	AK		99742
Mr. Mr.	Merle Jerome	Apassingok Apatiki		P.O. Box 12	Gambell	AK		99742
Ms.	Lucy	Apatiki		P.O. Box 138	Gambell	AK	ACAT	99742
Mr.	Jeff	Brownlee	Alaska Department of Environmental Conservation	555 Cordova St., 2 nd floor	Anchorage	AK	ADEC	99501
Mr.	Jesse	Gologergan		P.O. Box 105	Savoonga	AK	Confirm mailing address	99769
Ms.	Linda	Gologergan		P.O. Box 1688	Nome	AK		99762
Ms.	Jeanette	Iya	Savoonga IRA Building	P.O. Box 120	Savoonga	AK		99769
Ms.	C. Jane	Kava	2 0110119	P.O. Box 154	Savoonga	AK	ACAT and Mayor of Savoonga	99769
Mr.	Christopher	Koonooka		P.O. Box 123	Gambell	AK	5	99742
Mr.	Job	Koonooka		P.O. Box 123	Gambell	AK		99742
Mr.	Merlin	Koonooka		P.O. Box 67	Gambell	AK		99742
Ms.	June	Martin	Alaska Community Action on Toxics	505 W. Northern Lights Blvd. #205	Anchorage	AK		99503
Ms.	Pam	Miller	Alaska Community Action on Toxics	505 W. Northern Lights Blvd. #205	Anchorage	AK		99503
Mr.	George	Noongwook		P.O. Box 81	Savoonga	AK		99769
Mr.	Conrad	Oozeva		P.O. Box 9	Gambell	AK		99742

Title Mr.	FirstName Jerry	LastName Reichlin	Company Fortier & Mikko, P.C.	Address1 2550 Denali Street, Ste. 1500	City Anchorage	State AK	Comments	PostalCode 99503
Mr.	Paul	Rookok, Sr.		P.O. Box 135	Savoonga	AK		99769
Mr.	Morris	Toolie, Jr.		P.O. Box 157	Savoonga	AK		99769
Ms.	Viola	Waghiyi	Alaska Community Action on Toxics	505 W. Northern Lights Blvd. #205	Anchorage	AK		99503
Mr.	Kevin	Zweifel	Norton Sound Health Corporation	P.O. Box 966	Nome	AK		99762