#### Final Phase II Remedial Investigation Report Addendum 1999 Fieldwork Northeast Cape, Alaska

Contract No. DACA85-93-D-0011 Delivery Order No. 0017 and Contract No. DACA85-98-D-0007 Delivery Order No. 5

June 2000

Prepared for:

Department of the Army United States Army Engineer District, Alaska Corps of Engineers P.O. Box 898 Anchorage, Alaska 99506-0898

Prepared by:

Montgomery Watson 4100 Spenard Road Anchorage, Alaska 99517

# TABLE OF CONTENTS

| ACRONYM   | IS AND ABBREVIATIONS                                                        | IV   |
|-----------|-----------------------------------------------------------------------------|------|
| EXECUTIV  | E SUMMARY                                                                   | 1    |
| 1. INTRO  | DUCTION                                                                     | 1-1  |
| 1.1 Proj  | ECT OBJECTIVES AND ACTIVITIES                                               | 1-2  |
| 1.2 Proj  | ect Background                                                              | 1-2  |
| 1.2.1     | Location                                                                    | 1-3  |
| 1.2.2     | Site Description                                                            | 1-3  |
| 1.2.3     | History                                                                     | 1-3  |
| 1.2.4     | Previous Investigations and Actions                                         |      |
| 1.3 Regu  | ULATORY SETTING                                                             |      |
| 1.3.1     | Authority for Cleanup                                                       | 1-8  |
| 1.3.2     | Proposed Cleanup and Disposal Criteria                                      | 1-9  |
| 1.4 Site  | CHARACTERISTICS                                                             | 1-18 |
| 1.4.1     | Climate                                                                     | 1-18 |
| 1.4.2     | Topography                                                                  | 1-18 |
| 1.4.3     | Geology                                                                     | 1-18 |
| 1.4.4     | Hydrogeology                                                                | 1-18 |
| 1.4.5     | Hydrology                                                                   | 1-19 |
| 1.4.6     | Demography and Land Use                                                     |      |
| 1.4.7     | Ecology, Wildlife, and Endangered Species                                   | 1-19 |
| 1.4.7     | '.1 Vegetation                                                              | 1-19 |
| 1.4.7     | 2.2 Birds                                                                   | 1-19 |
| 1.4.7     | 7.3 Mammals                                                                 | 1-19 |
| 1.4.7     |                                                                             |      |
| 1.4.7     | .5 Threatened and Endangered Species                                        | 1-20 |
| 1.4.8     | Archaeological, Historical, and Cultural Resources                          | 1-20 |
| 2. INVEST | TIGATION APPROACH AND PROCEDURES                                            | 2-1  |
| 2.1 1999  | Field Activities in 1999                                                    | 2-1  |
| 2.1.1     | Sediment Sampling at Cargo Beach Road Landfill - Site 7                     | 2-4  |
| 2.1.2     | Soil Sampling at Gasoline Tank Area - Site 12                               |      |
| 2.1.3     | Sludge Sampling at Wastewater Treatment Facility - Site 21                  | 2-4  |
| 2.1.4     | Building Materials Sampling - Sites 13, 17, and 18                          |      |
| 2.1.5     | Paint Sampling at Aboveground Storage Tanks                                 |      |
| 2.1.6     | Background Soil and Sediment Sampling - Site 30                             |      |
| 2.1.7     | Test Pits at Buried Drum Field - Site 10                                    |      |
| 2.1.8     | Chemical Neutralization at Building 101 - Site 18                           | 2-6  |
| 2.1.9     | Utilidor Survey                                                             |      |
| 2.1.10    | Biological Sampling at Drainage Basin, Suqitughneq River, and Control Strea |      |
| ~         | Sites 28, 29 and 30                                                         |      |
| 2.1.1     |                                                                             |      |
| 2.1.1     |                                                                             |      |
| 2.1       | 1.10.2.1 Macroinvertebrates                                                 | 2-8  |

٦

| 2.1.10.2.2 Fish                                                        | 2-8      |
|------------------------------------------------------------------------|----------|
| 2.1.10.3 Fish Tissue Toxicity                                          | 2-8      |
| 2.1.10.4 Habitat Assessment                                            | 2-9      |
| 2.1.11 Site Surveying                                                  | 2-9      |
| 2.1.12 Historical Architectural Recordation                            | 2-9      |
| 2.2 SAMPLE COLLECTION                                                  | 2-10     |
| 2.2.1 Surface and Subsurface Soil Sampling                             | 2-10     |
| 2.2.2 Sludge Sampling                                                  |          |
| 2.2.3 Paint Sampling                                                   | 2-11     |
| 2.2.4 Building Materials Sampling                                      | 2-11     |
| 2.2.5 Biological Sampling                                              | 2-11     |
| 2.2.5.1 Sediment Toxicity Sampling                                     | 2-12     |
| 2.2.5.2 Community Assessments                                          | 2-12     |
| 2.2.5.2.1 Macroinvertebrates                                           | 2-12     |
| 2.2.5.2.2 Fish                                                         | 2-12     |
| 2.2.5.3 Fish Tissue Toxicity Sampling                                  | 2-13     |
| 2.2.5.4 Habitat Assessment                                             |          |
| 3. INVESTIGATION RESULTS AND DISCUSSION                                | 3_1      |
| 3.1 SEDIMENT SAMPLING AT CARGO BEACH ROAD LANDFILL - SITE 7            |          |
| 3.2 SOIL SAMPLING AT GASOLINE TANK AREA - SITE 12                      |          |
| 3.3 SLUDGE SAMPLING AT WASTEWATER TREATMENT FACILITY - SITE 21         |          |
| 3.4 BUILDING MATERIALS SAMPLING - SITES 13, 17 AND 18                  |          |
| 3.5 PAINT SAMPLING AT ABOVEGROUND STORAGE TANKS                        |          |
| 3.6 BACKGROUND SOIL AND SEDIMENT SAMPLING - SITE 30                    |          |
| 3.7 TEST PITS AT BURIED DRUM FIELD - SITE 10                           |          |
| 3.8 CHEMICAL NEUTRALIZATION AT BUILDING 101 - SITE 18                  |          |
| 3.9 UTILIDOR SURVEY                                                    |          |
| 3.10 BIOLOGICAL SAMPLING AT DRAINAGE BASIN, SUQITUGHNEQ RIVER, AND CON |          |
| Stream - Sites 28, 29, and 30                                          |          |
| 3.10.1 Sediment Toxicity                                               |          |
| 3.10.2 Community Assessments                                           |          |
| 3.10.2.1 Macroinvertebrates                                            |          |
| 3.10.2.2 Fish                                                          | 3-8      |
| 3.10.3 Fish Tissue Toxicity                                            | 3-8      |
| 3.10.4 Habitat Assessment                                              | 3-9      |
| 4. CONCLUSIONS AND RECOMMENDATIONS                                     | 4-1      |
| 4.1 BACKGROUND SOIL AND SEDIMENT - SITE 30                             |          |
| 4.2 BIOLOGICAL ASSESSMENT AT DRAINAGE BASIN, SUQITUGHNEQ RIVER, AND C  |          |
| STREAM - SITES 28, 29 AND 30                                           |          |
| 5. REFERENCES                                                          |          |
|                                                                        | ·····J-1 |

~

## LIST OF TABLES

| ES-1 | Summary of 1999 Phase II RI Activities                                  |      |
|------|-------------------------------------------------------------------------|------|
| ES-2 | Summary of 1999 Phase II Work and Results                               |      |
| 1-1  | Northeast Cape Site Designations and Descriptions                       |      |
| 1-2  | Proposed Soil Cleanup Criteria, ADEC Method 1                           |      |
| 1-3  | Proposed Soil Cleanup Criteria, ADEC Method 2                           |      |
| 1-4  | Site-Specific Soil Cleanup Criteria                                     |      |
| 1-5  | Disposal Requirements for PCB-Contaminated Building Debris              |      |
| 1-6  | Proposed Groundwater and Surface Water Cleanup Criteria                 | 1-15 |
| 2-1  | Summary of 1999 Phase II RI Activities                                  |      |
| 2-2  | 1999 Phase II RI Primary Sample Summary                                 |      |
| 2-3  | Building Materials Proportions Summary                                  |      |
| 3-1  | Comparison of Results From Sites 7 and 30 (Background)                  |      |
| 3-2  | Results for Building Composite Samples                                  |      |
| 3-3  | Sediment Toxicity Results                                               |      |
| 3-4  | Fish Tissue Toxicity Sampling Results Exceeding Method Reporting Limits |      |
| 3-5  | Habitat Assessment Scores.                                              |      |
| 3-6  | Results for Sites 7, 12, and 30                                         |      |
| 3-7  | Results for Site 21                                                     |      |
| 3-8  | Lead Results for Painted ASTs                                           |      |
| 4-1  | Summary Of 1999 Phase II RI Work and Results                            |      |

## LIST OF FIGURES

| 1-1  | Vicinity Map                            | 1-4  |
|------|-----------------------------------------|------|
| 1-2  | Location Map                            |      |
| 1-3  | Installation and Site Location Map      |      |
| 3-1  | Site 7 – Cargo Beach Road Landfill      |      |
| 3-2  | Site 12 – Gasoline Tank Area            | 3-14 |
| 3-3  | Site 21 – Wastewater Treatment Facility | 3-15 |
| 3-4  | Buildings 101, 107, and 110             | 3-16 |
| 3-5  | AST Locations (Sites 2-6)               | 3-17 |
| 3-6  | AST Locations (Sites 10-27)             |      |
| 3-7  | Site 30 – Background                    |      |
| 3-8  | Site 10 – Buried Drum Field             |      |
| 3-9  | Utilidor System                         | 3-21 |
| 3-10 | Biological Sampling Sites               |      |

## **APPENDICES**

- Appendix B Laboratory Results
- Appendix C Data Quality Assessment
- Appendix D Biological Sampling Results
- Appendix E Site Survey and Control Report
- Appendix F Field Notes
- Appendix G Field Forms
- Appendix H Chemical Data Quality Review

# ACRONYMS AND ABBREVIATIONS

| <sup>°</sup> F  | degrees Fahrenheit                                                  |
|-----------------|---------------------------------------------------------------------|
| μg/L            | micrograms per liter                                                |
| AAC             | Alaska Administrative Code                                          |
| AC&W            | Aircraft Control and Warning                                        |
| ADEC            | Alaska Department of Environmental Conservation                     |
| Alaska District | United States Army Engineer District, Alaska                        |
| ANCSA           | Alaska Native Claims Settlement Act                                 |
| ARAR            | applicable or relevant and appropriate requirements                 |
| ASCI            | Alaska Stream Condition Index                                       |
| AST             | aboveground storage tank                                            |
| BD/DR           | building demolition and debris removal                              |
| bgs             | below ground surface                                                |
| BTEX            | benzene, toluene, ethylbenzene, and xylenes                         |
| CDAP            | Chemical Data Acquisition Plan                                      |
| CDQR            | Chemical Data Quality Review                                        |
| CERCLA          | Comprehensive Environmental Response Compensation and Liability Act |
| DERP            | Defense Environmental Restoration Program                           |
| DOD             | United States Department of Defense                                 |
| DRO             | diesel range organics                                               |
| DS-2            | Decontamination Agent No. 2                                         |
| E&E             | Ecology and Environment, Inc.                                       |
| ENRI            | Environment and Natural Resources Institute                         |
| EPA             | United States Environmental Protection Agency                       |
| ES              | Executive Summary                                                   |
| FUDS            | Formerly Used Defense Sites                                         |
| GPS             | geographical positioning system                                     |
| GRO             | gasoline range organics                                             |
| LBP             | lead-based paint                                                    |
| MDL             | method detection limit                                              |
| mg/Kg           | milligrams per kilogram                                             |
| mg/L            | milligrams per liter                                                |
| MRL             | method reporting limit                                              |
| msl             | mean sea level                                                      |
| MW              | Montgomery Watson                                                   |
| NA              | not applicable or not analyzed                                      |
| Navy            | United States Department of the Navy                                |
| ND              | not detected                                                        |

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

| NES    | Northwest EnviroService, Inc.                   |
|--------|-------------------------------------------------|
| NHPA   | National Historic Preservation Act of 1966      |
| OSHA   | Office of Occupational Safety and Health        |
| PACM   | presumed asbestos-containing materials          |
| PAH    | polynuclear aromatic hydrocarbons               |
| PCB    | polychlorinated biphenyls                       |
| pН     | hydrogen ion activity                           |
| PL     | public law                                      |
| POL    | petroleum, oil, and lubricants                  |
| PPE    | personal protective equipment                   |
| QA     | quality assurance                               |
| QC     | quality control                                 |
| RCRA   | Resource Conservation and Recovery Act          |
| RI     | Remedial Investigation                          |
| RRO    | residual range organics                         |
| SARA   | Superfund Amendments and Reauthorization Act    |
| SHPO   | State Historic Preservation Office              |
| STB    | super tropical bleach                           |
| SVOC   | semivolatile organic compounds                  |
| TAL    | target analyte list                             |
| TCLP   | toxicity characteristic leachate procedure      |
| TOC    | total organic carbon                            |
| TRPH   | total recoverable petroleum hydrocarbons        |
| TSCA   | Toxic Substance Control Act                     |
| TU     | toxicity unit                                   |
| URS    | URS Corporation                                 |
| USAED  | United States Army Engineer District, Alaska    |
| USAEHA | United States Army Environmental Hygiene Agency |
| UST    | underground storage tank                        |
| VOC    | volatile organic compound                       |

The U.S. Air Force operated a military installation at Northeast Cape from 1952 to 1972. The Northeast Cape installation is located on St. Lawrence Island in the Bering Sea, approximately 135 air miles southwest of Nome, Alaska. This report presents the results of environmental work conducted at Northeast Cape in 1999, and is a supplement to the Phase II Remedial Investigation (RI) performed by Montgomery Watson at the Northeast Cape installation during 1996 and 1998. This work was performed as part of the U.S. Army Engineer District, Alaska (Alaska District) Defense Environmental Restoration Program (DERP) (Contract No. DACA85-98-D-0011, Delivery Order No. 0005, Modification No. 3).

The 1999 Phase II RI resolved data gaps remaining from the Phase II RI work performed during 1996 and 1998. Table ES-1 itemizes tasks completed during the 1999 Phase II RI. Table ES-2 summarizes data gaps, work performed, and conclusions drawn from the data collected.

All data gaps were resolved, with the exception of background diesel range organic (DRO) aliphatic and aromatic fractions and background DRO reproducibility. These unresolved issues do not affect Phase II cleanup recommendations. Additional sampling to resolve these issues does not appear to be warranted.

#### TABLE ES-1 Summary of 1999 Phase II RI Activities

|         |                                             | 1999 Phase II RI Activities |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
|---------|---------------------------------------------|-----------------------------|-------------------|-----------------|--------------------|--------------------------------|---------------------|------------------------------|--------------------|-----------------|----------------------------------|
|         | Description                                 | Soil Sampling               | Sediment Sampling | Sludge Sampling | AST Paint Sampling | Building Materials<br>Sampling | Biological Sampling | Buried Drum<br>Investigation | SHPO Documentation | Utilidor Survey | Neutralize Chemical<br>Residuals |
| Site 1  | Burn Site Southeast of Landing Strip        |                             |                   |                 |                    | 1                              | _                   |                              |                    |                 | 1                                |
| Site 2  | Airport Terminal and Landing Strip          |                             |                   | -               | X                  |                                |                     |                              | Х                  |                 | [                                |
| Site 3  | Fuel Line Corridor and Pumphouse            |                             |                   |                 | X                  | ÌÌ                             |                     |                              | Х                  |                 | -                                |
| Site 4  | Subsistence Fishing and Hunting Camp        |                             |                   |                 | X                  |                                |                     |                              | X                  |                 |                                  |
| Site 5  | Cargo Beach                                 |                             |                   |                 | 1                  | ľ                              |                     |                              |                    |                 | 1                                |
| Site 6  | Cargo Beach Road Drum Field                 |                             |                   |                 | <br>               |                                | _                   |                              | _                  |                 | 1                                |
| Site 7  | Cargo Beach Road Landfill                   |                             | X                 |                 |                    |                                |                     |                              |                    | 1               | 1                                |
| Site 8  | POL Spill Site                              | Ī                           |                   |                 |                    |                                |                     |                              |                    |                 | 1                                |
| Site 9  | Housing and Operations Landfill             |                             |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 10 | Buried Drum Field                           |                             |                   |                 |                    |                                |                     | X                            |                    | }               |                                  |
| Site 11 | Fuel Storage Tank Area                      |                             |                   |                 | X                  | 1                              |                     |                              | Х                  |                 |                                  |
|         | Gasoline Tank Area                          | X                           |                   |                 | X                  |                                |                     |                              | Х                  |                 |                                  |
| Site 13 | Heat and Electrical Power Building          |                             |                   |                 | X                  | X                              |                     |                              | Х                  | X               |                                  |
| Site 14 | Emergency Power/Operations Building         |                             |                   |                 | X                  |                                |                     |                              | Х                  | X               |                                  |
| Site 15 | Buried Fuel Line Spill Area                 |                             |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 16 | Paint and Dope Storage Building             |                             |                   |                 | X                  |                                |                     |                              | Х                  |                 |                                  |
| Site 17 | General Supply Warehouse and Mess Hall      |                             |                   |                 |                    | x                              |                     |                              | х                  | х               |                                  |
|         | Warehouse                                   |                             |                   |                 |                    | ^                              |                     |                              | ^                  | ^               |                                  |
| Site 18 | Housing Facilities and Squad Headquarters   |                             |                   |                 | X                  | X                              |                     |                              | X                  | X               | X                                |
| Site 19 | Auto Maintenance and Storage Facilities     |                             |                   |                 | X                  |                                |                     |                              | Χ                  | X               |                                  |
| Site 20 | Air Force Aircraft Control Warning Building |                             |                   |                 |                    |                                |                     |                              | X                  | X               |                                  |
| Site 21 | Wastewater Treatment Facility               |                             |                   | X               |                    |                                |                     |                              | X                  | X               |                                  |
| Site 22 | Water Wells and Water Supply Building       |                             |                   |                 | X                  |                                |                     |                              | X                  |                 |                                  |
| Site 23 | Power and Communication Line Corridors      |                             |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 24 | Receiver Building Area                      | _                           |                   |                 |                    |                                |                     |                              | X                  |                 |                                  |
|         | Direction Finder Area                       | _                           |                   | <u> </u>        |                    |                                |                     |                              |                    |                 |                                  |
| Site 26 | Former Construction Camp Area               | <u> </u>                    |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 27 | Diesel Fuel Pump Island                     |                             |                   |                 |                    |                                |                     |                              | X                  |                 |                                  |
|         | Drainage Basin Area                         |                             |                   |                 |                    |                                | X                   |                              |                    |                 |                                  |
| Site 29 | Suqitughneq River                           |                             |                   |                 |                    |                                | X                   |                              |                    |                 |                                  |
| Site 30 | Background Areas                            | X                           | X                 |                 |                    |                                | Х                   |                              |                    |                 |                                  |

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL DPage ES-2 June, 2000

| Site Description                         | Site             | Data Gap                                                                                                  | Work Performed                                                                                   | Result                                                                  | Data Gap<br>Resolved | Conclusion                                                                                        |
|------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|
| Cargo Beach Road<br>Landfill             | 7                | Are fuel-related compounds<br>present above benchmark<br>screening criteria?                              | Sediment sample<br>(including QC and QA<br>samples) collected and                                | DRO and RRO<br>concentrations below<br>regulatory limits.               | Yes                  | Fuel contamination not indicated in sediments at this site.                                       |
|                                          |                  | Can previous high TRPH<br>and low DRO results be<br>confirmed?                                            | analyzed for DRO and<br>RRO using most current<br>ADEC methods.                                  | High RRO and low DRO concentrations detected.                           | Yes                  | High TRPH probably due to<br>high background organic<br>content.                                  |
| Gasoline Tank<br>Area                    | 12               | Are fuel constituents present in soil at this site?                                                       | Surface soil samples<br>collected and analyzed<br>for GRO, DRO, RRO,<br>BTEX.                    | No contaminants<br>present above<br>regulatory limits.                  | Yes                  | No fuel contamination indicated in soil at this site.                                             |
| Wastewater<br>Treatment Facility         | 21               | Is the sludge in the tanks a hazardous waste?                                                             | Sample collected and<br>analyzed for PCBs and<br>TCLP metals,<br>pesticides, VOCs, and<br>SVOCs. | PCB concentrations<br>above ADEC and<br>federal criteria.               | Yes                  | Sludge must be disposed at a PCB waste permitted facility.                                        |
| Buildings<br>Scheduled for<br>Demolition | 13,<br>17,<br>18 | How will potential presence<br>of PCBs in paint affect<br>building demolition debris<br>disposal options? | Building material<br>composite samples<br>collected and analyzed<br>for PCBs.                    | PCB concentration<br>below 18 AAC 60<br>solid waste disposal<br>limits. | Yes                  | Building debris can be<br>disposed in a permitted solid<br>waste landfill.                        |
| Painted ASTs                             | Mult<br>-iple    | Are ASTs painted with<br>lead-based paint, posing a<br>potential risk to site<br>workers?                 | Paint samples collected<br>from painted ASTs and<br>analyzed for lead.                           | Lead present in all paint samples.                                      | Yes                  | Abatement and/or PPE<br>recommended to protect site<br>workers during tank<br>demolition.         |
| Background Areas                         | 30               | Why are TRPH and DRO<br>concentrations so high in<br>background soil samples?                             | Soil and sediment<br>samples collected and<br>analyzed for GRO,                                  | TOC, DRO, and RRO<br>consistently high in<br>tundra areas.              | Yes                  | Background tundra areas have<br>biogenic DRO and RRO above<br>ADEC benchmark criteria.            |
|                                          |                  | Can high TRPH with low<br>DRO concentrations in soil<br>samples be explained?                             | DRO, RRO, TOC, and TAL metals.                                                                   | Chromatograms<br>indicate biogenic<br>source.                           | Yes                  | High levels of biogenic<br>organics are likely source of<br>high TRPH results in tundra<br>areas. |
|                                          |                  | Do DRO aliphatic and<br>aromatic fractions sum to<br>total DRO concentration?                             | Background samples<br>were not analyzed for<br>DRO aliphatic and<br>aromatic fractions.          | No data obtained to resolve this data gap.                              | No                   | Should evaluate whether the value of this data warrants the effort necessary to obtain it.        |

Table ES-2Summary Of 1999 Phase II RI Work and Results

.

۰.

| Site Description                                | Site          | Data Gap                                                                    | Work Performed                                                                                                        | Result                                                                                                                                        | Data Gap<br>Resolved | Conclusion                                                                                                                      |
|-------------------------------------------------|---------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Background Areas<br>(continued)                 |               | Are DRO results<br>reproducible?                                            | Current and previous<br>analytical results<br>compared.                                                               | Analytes and<br>analytical methods<br>not consistent over<br>the study period;<br>DRO results vary<br>depending on<br>location and soil type. | No                   | Comparison of DRO data<br>obtained using different<br>analytical methods not<br>recommended.                                    |
| Buried Drum Field                               | 10            | Is POL product present in<br>buried drums and causing<br>soil staining?     | Test pits excavated,<br>drums exposed and<br>examined.                                                                | No leaking drums<br>were found. One<br>intact drum full of<br>POL product was<br>uncovered.                                                   | Yes                  | Previous surface spills are likely source of soil staining.                                                                     |
| Housing Facilities<br>and Squad<br>Headquarters | 18            | Do STB and DS-2 chemical residuals remain in the former storage area?       | Sodium bicarbonate and<br>sodium bisulfate slurries<br>applied to former<br>storage area.                             | Residuals neutralized by slurry.                                                                                                              | Yes                  | Materials not expected to exhibit hazardous waste characteristics.                                                              |
| Main Operations<br>Complex                      | Mult<br>-iple | Can the utilidor piping be<br>accessed during BD/DR<br>activities?          | Visual survey conducted throughout the utilidor system.                                                               | Piping accessibility determined.                                                                                                              | Yes                  | Pipes expected to be easily<br>accessible during BD/DR<br>activities, especially once<br>aboveground structures are<br>removed. |
|                                                 |               | Does piping insulation consist of PACM?                                     | Piping insulation<br>inspected during utilidor<br>survey.                                                             | Pipe insulation includes PACM.                                                                                                                | Yes                  | Pipe insulation will require handling as PACM.                                                                                  |
|                                                 |               | Do the utilidors provide<br>contaminant migration<br>pathways?              | Contaminant migration<br>potential evaluated<br>during utilidor survey.                                               | Utilidors upgradient<br>of spill sites; no<br>contaminant<br>migration observed.                                                              | Yes                  | Utilidors not believed to be<br>contaminant migration<br>pathways.                                                              |
| Drainage Basin<br>Area, Suqitughneq<br>River    | 28,<br>29     | Has fuel contamination<br>impacted the ecological<br>health of these areas? | Biological sampling<br>performed including<br>sediment toxicity, fish<br>tissue toxicity, and<br>habitat assessments. | Toxicity and<br>bioavailability of<br>contaminants verified<br>in sediment samples;<br>PAHs and PCBs<br>detected in fish<br>tissues.          | Yes                  | Contamination has adversely<br>impacted the ecology<br>downstream of the fuel spill<br>site.                                    |

.

•

| Site Description           | Site          | Data Gap | Work Performed                                                           | Result                                              | Data Gap | Conclusion |
|----------------------------|---------------|----------|--------------------------------------------------------------------------|-----------------------------------------------------|----------|------------|
|                            |               |          |                                                                          |                                                     | Resolved |            |
| Sample Locations           | Mult<br>-iple | NA       | Sampling and test pit locations surveyed.                                | Sampling and test pit locations accurately located. | NA       | NA         |
| Installation<br>Structures | Mult<br>-iple | NA       | Qualified Historical<br>Architect documented<br>installation structures. | SHPO requirements were met.                         | NA       | NA         |

- ADEC Alaska Department of Environmental Conservation
- AST aboveground storage tank
- BD/DR building demolition and debris removal
- BTEX benzene, toluene, ethylbenzene, and xylenes
- DRO diesel range organic
- DS-2 decontamination agent 2
- GRO gasoline range organic
- NA not applicable
- PACM presumed asbestos-containing materials
- PAH polynuclear aromatic hydrocarbons
- PCB polychlorinated biphenyl
- POL petroleum, oil, and lubricant
- PPE personal protective equipment
- QA quality assurance
- QC quality control
- RRO residual range organic
- SHPO State Historical Preservation Office
- STB super tropical bleach
- SVOC semivolatile organic compound
- TAL target analyte list
- TCLP toxicity characteristic leaching procedure
- TOC total organic content
- TRPH total recoverable petroleum hydrocarbons
- VOC volatile organic compound

## 1. INTRODUCTION

The Alaska District retained Montgomery Watson to perform additional Phase II RI work at Northeast Cape, St. Lawrence Island, Alaska. These activities were authorized under Contract No. DACA85-93-D-0011, Delivery Order No. 0005, Modification No. 3.

The 1999 Phase II RI was conducted according to the guidelines of the United States Department of Defense (DOD) DERP for Formerly Used Defense Sites (FUDS). This document provides current information on the environmental status of selected areas of the former military installation at Northeast Cape and supplements the Phase II RI report (MW, 1999). Comprehensive background information and site data collected in previous investigations can be found in the Phase I RI report (MW, 1995) and the Phase II RI report (MW, 1999).

This report consists of five sections and seven appendices, as described below:

Section 1 (Introduction) provides project objectives, site background and characteristics, and regulatory setting.

Section 2 (Investigation Approach and Procedures) describes data collection rationale and investigation methods.

Section 3 (Investigation Results and Discussion) presents and interprets data collected during the investigation.

Section 4 (Conclusions and Recommendations) includes a summary of investigation results and site-specific remediation recommendations.

Section 5 (References) lists the documents cited in this report.

- Appendix A contains photographs of field conditions.
- Appendix B provides complete laboratory results.

Appendix C includes the data quality assessment for the project.

Appendix D contains biological sampling results for the project.

Appendix E contains the site survey results and control report.

Appendix F contains field notes.

Appendix G contains field forms.

Appendix H contains the chemical data quality review.

#### 1.1 PROJECT OBJECTIVES AND ACTIVITIES

The goal of the 1999 Phase II RI was to supplement the Phase II RI (MW, 1999) by collecting the additional data necessary to evaluate the extent of contamination at specific sites and to make remedial action decisions. To resolve the data gaps remaining from the previous Phase II RI work, the following project objectives and field activities were identified:

- 1. Perform sampling to refine site characterization and to confirm the presence or absence of specific contaminants as follows:
  - Collect a sediment sample at Site 7 to correlate sample results seen in the Phase I RI.
  - Collect soil samples at Site 12 to evaluate for presence or absence of petroleum hydrocarbon contamination.
  - Collect sludge samples from the septic tanks at Site 21 for disposal recommendations.
  - Collect building material samples at three buildings in the main complex area to evaluate presence of polychlorinated biphenyls (PCB) in the painted surfaces.
  - Collect paint chip samples from aboveground storage tanks (AST) throughout the installation to determine the presence/absence of lead-based paint (LBP).
  - Collect additional background soil samples to assist in determining cleanup requirements at contaminated sites.
- 2. Excavate test holes at Site 10 to evaluate whether buried drums with product have caused the staining observed in previous investigations.
- 3. Neutralize potential residuals of super tropical bleach (STB) and Decontamination Solution No. 2 (DS-2) in Building 101 to eliminate possible hazardous waste characteristics.
- 4. Perform a visual survey of the utilidors in the main complex area to evaluate accessibility for piping and asbestos removal and to evaluate the magnitude of contaminant migration potential posed by the utilidors.
- 5. Gather biological information about the drainage basin, including an assessment of sediment toxicity, fish and macroinvertebrate communities, fish tissue toxicity, and habitat quality in the Suqitughneq River and a control stream, for use in assessing environmental impacts and remedial alternatives in the drainage basin area.
- 6. Document installation structures in accordance with State Historic Preservation Office (SHPO) requirements.

#### 1.2 PROJECT BACKGROUND

The following subsections briefly summarize the facilities, history, and previous environmental investigations associated with the Northeast Cape installation.

### 1.2.1 Location

The Northeast Cape installation is located on St. Lawrence Island in the Bering Sea, near territorial waters of Russia, approximately 135 air miles southwest of Nome, Alaska (Figure 1-1). The installation encompasses approximately 4 square miles and extends from the base of the Kinipaghulghat Mountains, which bound the southern portion of the site, to the Bering Sea (Figure 1-2).

#### 1.2.2 Site Description

The installation is divided into 30 distinct sites, which are shown in Figure 1-3 and listed in Table 1-1. The installation consists of a Main Complex Area, radar antennas, an airport runway and terminal building area, a bulk fuel receiving and storage area, direction finder and receiver buildings, and a White Alice site. A subsistence hunting and fish camp is located near the former bulk fuel receiving and storage area, which is located near the beach. During previous remedial investigations, approximately 25 structures in various states of decline were observed throughout the site. Buildings and other structures were constructed on pads made of gravel obtained from a local borrow pit. The surrounding terrain consists of tundra and shallow ponds overlying permafrost.

#### 1.2.3 History

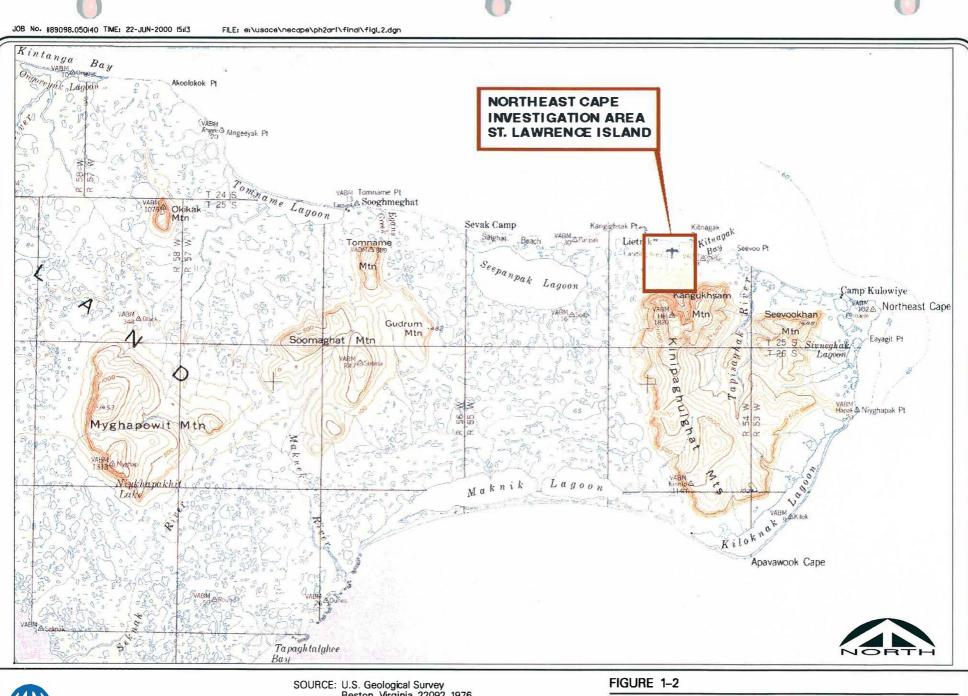
Northeast Cape was acquired by the U.S. Air Force in January 1952. Throughout its existence, the Northeast Cape installation served as a surveillance station providing radar coverage for the Alaskan Air Command and the North American Air Defense Command. In June 1969, the radar operations ceased and most military personnel were demobilized from the site. Most of the facilities were left intact with minimal removal of equipment due to the high cost of transport from the site. The White Alice station, constructed in 1954, remained in operation with minimal military staff until 1972.

In 1972, all lands were withdrawn from the military for classification under the Alaska Native Claims Settlement Act (ANCSA) of 1971, which entitled local community village corporations to select and receive tracts of federal land. In June 1979, unsurveyed lands of St. Lawrence Island were conveyed to Sivuqaq, Inc., and Savoonga Native Corporation. Excepted from transfer were surveyed land, easements, and land use permits effective prior to conveyance.

In 1982, the White Alice operations area was transferred to the U.S. Department of the Navy (Navy). Transfer of cleanup responsibility for the White Alice site from the Navy to the Alaska District was recently completed.. Cleanup issues related to White Alice will be addressed in future investigations.





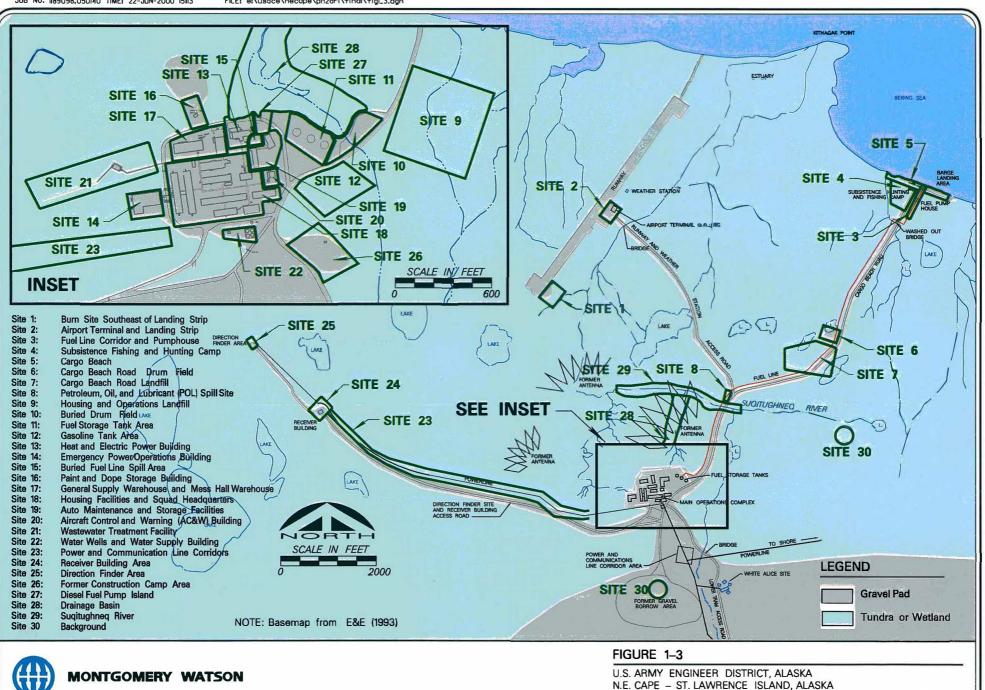

Anchorage, Alaska

SOURCE: U.S. Department of the Interior Geological Survey Reston, Virginia 22092 State of Alaska Map E Compiled from USGS 1:250,000–scale topographic map and other official sources Compiled in 1973, Revised in 1987 Scale 1:2,500,000 Contour Interval 1000'

#### FIGURE 1-1

U.S. ARMY ENGINEER DISTRICT, ALASKA N.E. CAPE – ST. LAWRENCE ISLAND, ALASKA

VICINITY MAP NORTHEAST CAPE




MONTGOMERY WATSON Anchorage, Alaska SOURCE: U.S. Geological Survey Reston, Virginia 22092, 1976 St. Lawrence, Alaska N6252 – W16830 /60x210 Surveyed 1948, Compiled 1957 Minor Revisions 1974 Scale 1:250,000, Contour Interval =100 Ft., Varies

U.S. ARMY ENGINEER DISTRICT, ALASKA N.E. CAPE – ST. LAWRENCE ISLAND, ALASKA

LOCATION MAP NORTHEAST CAPE INVESTIGATION AREA





Anchorage, Alaska

INSTALLATION AND SITE LOCATION MAP

| Cite Number | Description                                          |
|-------------|------------------------------------------------------|
| Site Number | Description Burn Site Southeast of the Landing Strip |
| 1 2         | Airport Terminal and Landing Strip                   |
|             | Fuel Line Corridor and Pumphouse                     |
| 3           | · ·                                                  |
| 4           | Subsistence Hunting and Fishing Camp                 |
| 5           | Cargo Beach                                          |
| 6           | Cargo Beach Road Drumfield                           |
| 7           | Cargo Beach Road Landfill                            |
| 8           | Petroleum, Oil and Lubricants (POL) Spill Site       |
| 9           | Housing and Operations Landfill                      |
| 10          | Buried Drum Field                                    |
| 11          | Fuel Storage Tank Area                               |
| 12          | Gasoline Tank Area                                   |
| 13          | Heat and Electrical Power Building                   |
| 14          | Emergency Power/Operations Building                  |
| 15          | Buried Fuel Line Spill Area                          |
| 16          | Paint and Dope Storage Building                      |
| 17          | General Supply Warehouse and Mess Hall Warehouse     |
| 18          | Housing Facilities and Squad Headquarters            |
| 19          | Auto Maintenance and Storage Facilities              |
| 20          | Aircraft Control and Warning (AC&W) Building         |
| 21          | Wastewater Treatment Facility                        |
| 22          | Water Wells and Water Supply Building                |
| 23          | Power and Communication Line Corridors               |
| 24          | Receiver Building Area                               |
| 25          | Direction Finder Area                                |
| 26          | Former Construction Camp Area                        |
| 27          | Diesel Fuel Pump Island                              |
| 28          | Drainage Basin                                       |
| 29          | Suqitughneq River                                    |
| 30          | Background Sampling Areas                            |

 Table 1-1
 Northeast Cape Site Designations and Descriptions

### 1.2.4 Previous Investigations and Actions

Details of previous investigations and actions can be found in the following documents:

- Defense Environmental Restoration Account, City of Gambell and Northeast Cape, St. Lawrence Island, Alaska, Volume II, Final Environmental Assessment. URS Corporation. August 1985.
- Site Inventory, Northeast Cape, St. Lawrence Island, Alaska. Ecology and Environment (E&E). December 1992.
- Chemical Data Acquisition Plan, Site Inventory Update, Northeast Cape, St. Lawrence Island, Alaska. E&E. February 1993.
- Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. January 1995.
- HTW Removal at Northeast Cape, St. Lawrence, Alaska. Northwest EnviroService, Inc. (NES). June. 1995.
- Building Demolition and Debris Removal Technical Memorandum, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. January 10, 1995.
- Remedial Action Alternatives Technical Memorandum, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. November 1995.
- Engineering Evaluation/Cost Analysis, Northeast Cape, Alaska. Montgomery Watson. April 1996.
- Draft Phase II Remedial Investigation/Feasibility Study, Northeast Cape, Alaska. Montgomery Watson. December 6, 1996.
- St. Lawrence Island Investigation HTW Activities Summary. Montgomery Watson. September 18, 1997.
- Letter report to Alaska District summarizing wire removal. Montgomery Watson. October 10, 1997.
- Final Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. August 1999.

#### 1.3 REGULATORY SETTING

Authority for cleanup of contaminated sites and regulations and standards applicable to the Northeast Cape Phase II RI are described in this section.

#### 1.3.1 Authority for Cleanup

This work is being performed under the DERP-FUDS program. Authority for DERP-FUDS is derived from the following legislation:

- The Comprehensive Environmental Restoration Compensation, and Liability Act of 1980 (CERCLA), Public Law (PL) 96-510, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, PL-99-499 (codified as 42 USC 9601-9675)
- Environmental Restoration Program, 10 USC 2701-2707

This 1999 Phase II RI for Northeast Cape follows the CERCLA process. In accordance with CERCLA, the Alaska State Oil and Other Hazardous Substance Pollution Control Regulations (18 AAC 75) that govern the cleanup of contaminated sites in Alaska were identified as Applicable Relevant and Appropriate Requirements (ARAR) for Northeast Cape.

### 1.3.2 Proposed Cleanup and Disposal Criteria

Alaska Department of Environmental Conservation (ADEC) Methods 1, 2, and 3 are used as soil cleanup criteria in this document. A detailed explanation of these methods, and the rationale used to propose cleanup levels within the framework of these methods, is provided in the Phase II RI final report (MW, 1999). For sites where contaminant levels fall below ADEC matrix levels, Method 1 criteria are used to support a recommendation for no further action (Table 1-2). For sites where petroleum levels exceed ADEC matrix levels, Method 2 criteria are used (Table 1-3). If Method 2 criteria are exceeded, site-specific information is used to develop cleanup criteria in accordance with Method 3 procedures, and these site-specific criteria are used to assess the need for cleanup.

In addition, the following regulations and standards apply:

- The 18 AAC 75 regulations refer to site-specific soil cleanup levels for PCBs and lead. Cleanup levels for PCBs in sludge are determined on a case-by-case basis following submittal of a permit application to EPA. The site-specific soil cleanup levels for PCBs were used as screening criteria for sludge during this RI. Site-specific levels for PCBs and lead were proposed and discussed in the Phase II RI final report (MW, 1999) and are summarized in Table 1-4.
- Sediment cleanup standards in 18 AAC 75.345(d) state: "Toxic substances in sediment may not cause, and may not be reasonably expected to cause, a toxic or other deleterious effect on aquatic life, except as authorized under 18 AAC 70".
- Building demolition debris must meet both Toxic Substances Control Act (TSCA) and State of Alaska standards for disposal. TSCA standards are described in 40 CFR 761. The State of Alaska soil standards described in the Solid Waste Management Regulations (18 AAC 60) are used to determine disposal options for building demolition debris (Alaska District, 1998). PCB action levels and disposal requirements for PCBcontaminated paint and building materials are presented in Table 1-5.
- Groundwater cleanup criteria are identified in 18 AAC 75.345, Table C, and are shown in Table 1-6 of this report. At this time, ADEC considers groundwater at Northeast Cape to be a potential drinking water source.
- Surface water cleanup criteria in 18 AAC 75.345(a) and (f) defer to 18 AAC 70 and are shown in Table 1-6 of this report.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

#### Table 1-2 Proposed Soil Cleanup Criteria, ADEC Method 1

· -

|      |                                        |                              |                                        | Points  | Sites<br>9-22, 27, 28, 29 |                    | tes<br>23-26   |
|------|----------------------------------------|------------------------------|----------------------------------------|---------|---------------------------|--------------------|----------------|
| 1.   | Depth to Subsurface Wa                 | ter                          |                                        |         | , , ,                     | ,                  |                |
|      | <5 feet                                |                              |                                        | (10)    |                           |                    |                |
|      | 5 - 15 feet                            |                              |                                        | (8)     | 8                         |                    | 8              |
|      | 15 - 25 feet                           |                              |                                        | (6)     |                           |                    |                |
|      | 25 - 50 feet                           |                              |                                        | (4)     |                           |                    |                |
|      | >50 feet                               |                              |                                        | (1)     |                           |                    |                |
| 2.   | Mean Annual Precipitati                | ion                          |                                        |         |                           |                    |                |
|      | >40 inches                             |                              |                                        | (10)    |                           |                    |                |
|      | 25 - 40 inches                         |                              |                                        | (5)     |                           | ā                  |                |
|      | 15 - 25 inches                         |                              |                                        | (3)     | 3                         | -                  | 3              |
|      | <15 inches                             |                              |                                        | (1)     |                           |                    |                |
| 3.   | Soil Type                              |                              |                                        |         |                           |                    |                |
|      | clean, coarse-graine                   | d soils                      |                                        | (10)    |                           |                    |                |
|      | coarse-grained soils                   |                              |                                        | (8)     | 8                         |                    | 8              |
|      | fine-grained soils (lo                 |                              |                                        | (3)     |                           |                    |                |
|      | fine-grained soils (hi                 |                              |                                        | (1)     |                           |                    |                |
| 4.   | Potential Receptors                    | ign of guine cut bont)       |                                        | (-)     |                           |                    |                |
|      | -                                      | 000 feet, or private well(s) |                                        |         |                           |                    |                |
|      | within 500 feet                        | soo reed of private well(5)  |                                        | (15)    | 15                        |                    |                |
|      | municipal/private w                    | ell within 1/2 mile          |                                        | (12)    |                           |                    |                |
|      | municipal/private w                    |                              |                                        | (12)    |                           |                    |                |
|      | no known well withi                    |                              |                                        | (6)     |                           |                    |                |
|      | no known well withi                    |                              |                                        | (4)     |                           |                    | 1              |
|      | non-potable ground                     |                              |                                        | (1)     |                           |                    | •              |
| 5.   | Volume of Contaminated                 |                              |                                        | (1)     |                           |                    |                |
| 5.   | >500 cubic yards                       | 1 3011                       |                                        | (10)    | 10                        |                    |                |
|      | •                                      |                              |                                        | (8)     |                           |                    |                |
|      | 100 • 500 cubic yard                   |                              |                                        |         |                           |                    |                |
|      | 25 - 100 cubic yards                   |                              |                                        | (5)     |                           |                    | 2              |
|      | >De Minimis - 25 cu<br>De Minimis      | DIC Yards                    | (2)<br>(0)                             |         |                           |                    | 2              |
|      | De Winnins                             |                              |                                        | (0)     |                           |                    |                |
|      |                                        |                              | Matrix Score                           |         | 44                        |                    | 5              |
|      |                                        | <u>Cleanup</u> Level E       | Estimate in mg/Kg                      | Lim     | iting Cleanup Level       | (from Method 2) in | mg/Kg          |
|      |                                        | Diesel-Range                 | Gasoline-Range                         |         |                           |                    |                |
|      |                                        | Petroleum                    | Petroleum                              |         |                           |                    |                |
|      | Matrix Score                           | Hydrocarbons (DRO)           | Hydrocarbons (GRO)                     | Benzene | Toluene                   | Ethylbenzene       | <u>Xylenes</u> |
|      |                                        |                              |                                        |         |                           |                    |                |
|      | >40 Level A                            | 100                          | 50                                     | 0.02    | 5                         | 6                  | 78             |
|      | 27-40 Level B                          | 200                          | 100                                    | 0.02    | 5                         | 6                  | 78             |
|      | 21-26 Level C                          | 1,000                        | 500                                    | 0.02    | 5<br>5                    | 6                  | 78             |
|      | <20 Level D<br>Residual Range Organics | 2,000<br>(RRO) = 2.000 mg/Kg | 1,000                                  | 0.02    | 2                         | 6                  | 78             |
|      |                                        |                              |                                        |         |                           |                    |                |
|      |                                        |                              |                                        |         | Sites<br>9-22, 27, 28, 29 | Sit<br>1-8, 2      | es<br>23-26    |
|      |                                        |                              | Matrix Score                           |         | 44                        | ,                  | 5              |
|      |                                        |                              | Matrix Level                           |         | <u> </u>                  |                    | <u> </u>       |
|      |                                        | ADEC Site Cleanun            | Level Estimate (mg/Kg)                 | RRO     | 2,000                     | 2,0                |                |
|      |                                        | p                            | ······································ | DRO     | 100                       |                    | 00             |
|      |                                        |                              |                                        | GRO     | 50                        |                    | <u>)0</u>      |
|      |                                        |                              | R                                      | enzene  | 0.02                      | <u> </u>           |                |
|      |                                        |                              |                                        | oluene  | 5                         |                    | 5              |
|      |                                        |                              | Ethylb                                 |         | <u> </u>                  |                    | <u>,</u>       |
|      |                                        |                              |                                        | ylenes  | 78                        | 7                  |                |
|      |                                        |                              | 2                                      | s renes | /0                        | /                  | <u> </u>       |
| Sour | ce: 18 AAC 75 (ADEC, 1999              | )                            |                                        |         |                           |                    |                |
|      | •                                      |                              |                                        |         |                           |                    |                |

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Page 1-10 June, 2000

•

|                           |            | Under 40 In | ches Rainfall p | er Year        |
|---------------------------|------------|-------------|-----------------|----------------|
|                           |            |             | Migration to    |                |
| Constituent               | Inhalation | Ingestion   | Groundwater     | Limiting Level |
|                           | mg/Kg      | mg/Kg       | mg/Kg           | mg/Kg          |
| 1,1,1-Trichloroethane     | 460        |             | 1.0             | 1.0            |
| 1,1,2,2-Tetrachloroethane | 5.4        | 42          | 0.017           | 0.017          |
| 1,1,2-Trichloroethane     | 10         | 150         | 0.017           | 0.017          |
| 1,1-Dichloroethane        | 890        | 10000       | 12              | 12             |
| 1,1-Dichloroethene        | 0.9        | 14          | 0.03            | 0.03           |
| 1,2,4-Trichlorobenzene    | 570        | 1000        | 2               | 2              |
| 1,2-Dichlorobenzene       | 110        | 9100        | 7               | 7              |
| 1,2-Dichloroethane        | 5          | 91          | 0.015           | 0.015          |
| 1,2-Dichloropropane       | 17         | 120         | 0.017           | 0.017          |
| 1,3-Dichloropropene       | 1.5        | 30          | 0.02            | 0.02           |
| 1,4-Dichlorobenzene       | 8000       | 350         | 0.8             | 0.8            |
| 2,4,5-Trichlorophenol     |            | 10000       | 90              | 90             |
| 2,4,6-Trichlorophenol     | 1500       | 750         | 0.6             | 0.6            |
| 2,4-Dichlorophenol        |            | 300         | 0.45            | 0.45           |
| 2,4-Dimethylphenol        | 1          | 2000        | 4               | 4              |
| 2,4-Dinitrophenol         | ĺ          | 200         | 0.2             | 0.2            |
| 2,4-Dinitrotoluene        |            | 12          | 0.005           | 0.005          |
| 2,6-Dinitrotoluene        |            | 12          | 0.0044          | 0.0044         |
| 2-Chlorophenol            |            | 510         | 1.4             | 1.4            |
| 2-Methylphenol (o-Cresol) |            | 5100        | 7               | 7              |
| 3,3'-Dichlorobenzidine    |            | 18          | 0.02            | 0.02           |
| 4,4'-DDD                  |            | 35          | 47              | 35             |
| 4,4'-DDE                  |            | 24          | 150             | 24             |
| 4,4'-DDT                  | 5300       | 24          | 88              | 24             |
| 4-Chloroaniline           |            | 410         | 0.5             | 0.5            |
| Acenaphthene              |            | 6100        | 210             | 210            |
| Acetone                   |            | 10000       | 10              | 10             |
| Aldrin                    | 24         | 0.5         | 1.6             | 0.5            |
| Anthracene                |            | 30000       | 4300            | 4300           |
| Antimony                  |            | 41          | 3.6             | 3.6            |
| Arsenic                   |            | 5.5         | 2               | 2              |
| Barium                    |            | 7100        | 1100            | 1100           |
| Benzene                   | 9          | 290         | 0.02            | 0.02           |
| Benzo(a)anthracene        |            | 11          | 6               | 6              |
| Benzo(a)pyrene            |            | 1           | 3               | 1              |
| Benzo(b)fluoranthene      |            | 11          | 20              | 11             |
| Benzo(k)fluoranthene      |            | 110         | 200             | 110            |
| Benzoic acid              |            | 410000      | 390             | 390            |
| Benzyl butyl phthalate    |            | 20000       | 5600            | 5600           |
| Beryllium                 |            | 1.9         | 42              | 1.9            |
| Bromodichloromethane      |            | 130         | 0.35            | 0.35           |
| Bromoform                 | 500        | 1050        | 0.38            | 0.38           |
| Butanol                   |            | 10000       | 10              | 10             |
| Cadmium                   |            | 100         | 5               | 5              |
| Carbazole                 |            | 420         | 2               | 2              |
| Carbon disulfide          | 453        | 10000       | 17              | 17             |
| Carbon tetrachloride      | 3.4        | 64          | 0.03            | 0.03           |

## Table 1-3 Proposed Soil Cleanup Criteria, ADEC Method 2

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Dage 1-11 June, 2000

|                                   |            | Under 40 In  | ches Rainfall p | er Year        |
|-----------------------------------|------------|--------------|-----------------|----------------|
|                                   |            |              | Migration to    |                |
| Constituent                       | Inhalation | Ingestion    | Groundwater     | Limiting Level |
|                                   | mg/Kg      | mg/Kg        | mg/Kg           | mg/Kg          |
| Chlordane                         | 140        | 6            | 3               | 3              |
| Chlorobenzene                     | 140        | 2000         | 0.6             | 0.6            |
| 1                                 | 3.4        | 1000         | 0.34            | 0.34           |
| Chloroform<br>Chromium            | 3.4        | 510          | 26              | 26             |
| Chromium +3                       |            | 100000       | 1000000         | 100000         |
|                                   |            | 510          | 26              | 26             |
| Chromium, Hexavalent              |            | 1100         | 620             | 620            |
| Chrysene                          |            | 2000         | 27              | 27             |
| Cyanide<br>Dia butul abthalata    |            | 10000        | 1700            | 1700           |
| Di-n-butyl phthalate              |            | 2000         | 810000          | 2000           |
| Di-n-octyl phthalate              |            | 2000         | 6               | 1              |
| Dibenzo(a,h)anthracene            |            | 100          | 0.2             | 0.2            |
| Dibromochloromethane              | 8          |              | 0.2             | 0.2            |
| Dieldrin                          | 8          | 0.5<br>81000 | 190             | 190            |
| Diethyl phthalate                 |            |              |                 | 1400           |
| Dimethyl phthalate                |            | 1000000      | 1400            | 7              |
| Endosulfan                        |            | 610          | 7               | 0.3            |
| Endrin                            |            | 30           | 0.3             | 0.3<br>5.5     |
| Ethylbenzene                      | 89         | 10000        | 5.5             |                |
| Fluoranthene                      |            | 4100         | 2100            | 2100           |
| Fluorene                          |            | 4100         | 270             | 270            |
| Heptachlor                        | 0.8        | 2            | 8               | 0.8            |
| Heptachlor epoxide                | 33         | 0.9          | 0.2             | 0.2            |
| Hexachlorobenzene                 | 7          | 5            | 0.73            | 0.73           |
| Hexachlorobutadiene               | 55         | 20           | 8               | 8              |
| Hexachlorocyclopentadiene         | 7          | 710          | 130             | 7              |
| Hexachloroethane                  | 390        | 101          | 1.6             | 1.6            |
| Indeno(1,2,3-cd)pyrene            |            | 11           | 54              | 11             |
| Isophorone                        | 10         | 8700         | 3               | 3              |
| Mercury                           | 18         | 510          | 1.4             | 1.4<br>52      |
| Methoxychlor                      |            | 510          | 52              |                |
| Methyl bromide                    | 14         | 140<br>1100  | 0.16            | 0.16<br>0.015  |
| Methylene chloride<br>Naphthalene | 180        | 4100         | 0.015<br>43     | 43             |
|                                   |            |              | 43<br>87        | 43<br>87       |
| Nickel<br>Nitrobenzene            | 90         | 2000<br>51   | 0.06            | 0.06           |
|                                   | 90         | 35           | 0.06            | 0.08           |
| Pentachlorophenol<br>Phenol       |            | 60800        | 67              | 67             |
| Pyrene                            |            | 3000         | 1500            | 1500           |
| Selenium                          |            | 510          | 3.5             | 3.5            |
| Silver                            |            | 510          | 21              | 21             |
| Styrene                           | 280        | 20300        | 1.3             | 1.3            |
| Tetrachloroethene                 | 80         | 160          | 0.03            | 0.03           |
| Toluene                           | 180        | 20300        | 5.4             | 5.4            |
| Toxaphene                         | 620        | 20300        | 5.4<br>10       | 5.4<br>8       |
| Tribromomethane                   | 620<br>500 | o<br>1050    | 0.38            | o<br>0.38      |
| Trichloroethene                   | 43         | 750          | 0.027           | 0.38           |
|                                   | 40         | 730          | 0.027           | 0.027          |

Table 1-3 (Continued)Proposed Soil Cleanup Criteria, ADEC Method 2

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL DPage 1-12 June, 2000

|                             |            | Under 40 In | ches Rainfall pe | er Year        |
|-----------------------------|------------|-------------|------------------|----------------|
|                             |            |             | Migration to     |                |
| Constituent                 | Inhalation | Ingestion   | Groundwater      | Limiting Level |
|                             | mg/Kg      | mg/Kġ       | mg/Kg            | mg/Kg          |
| Vanadium                    |            | 710         | 3400             | 710            |
| Vinyl acetate               | 1500       | 101000      | 100              | 100            |
| Vinyl chloride              | 0.5        | 4           | 0.009            | 0.009          |
| Xylenes                     | 81         | 203000      | 78               | 78             |
| Zinc                        |            | 30000       | 9100             | 9100           |
| alpha-BHC                   | 5.5        | 1.3         | 0.0026           | 0.0026         |
| beta-BHC                    | 43         | 4.6         | 0.009            | 0.009          |
| bis-(2-Chloroethyl)ether    | 3          | 8           | 0.002            | 0.002          |
| bis-(2-ethylhexyl)phthalate |            | 590         | 1200             | 590            |
| cis-1,2-Dichloroethene      |            | 1000        | 0.2              | 0.2            |
| gamma-BHC (Lindane)         |            | 6.4         | 0.003            | 0.003          |
| n-Nitrosodi-n-propylamine   |            | 1.2         | 0.00036          | 0.00036        |
| n-Nitrosodiphenylamine      |            | 1700        | 3.4              | 3.4            |
| trans-1,2-Dichloroethene    |            | 2000        | 0.4              | 0.4            |
| Diesel Range Organics       | 12500      | 10250       | 250              | 250            |
| Gasoline Range Organics     | 1400       | 1400        | 300              | 300            |
| Residual Range Organics     | 22000      | 10000       | 11000            | 10000          |

#### TABLE 1-3 (Continued) **Proposed Soil Cleanup Criteria, ADEC Method 2**

Source: 18 AAC 75 (ADEC, 1999)

#### Site-Specific Soil Cleanup Criteria Table 1-4

| Constituent                             | Residential<br>mg/Kg | Commercial/Industrial<br>mg/Kg |
|-----------------------------------------|----------------------|--------------------------------|
| Lead <sup>1</sup>                       | 400                  | 1,000                          |
| PCB (ADEC surface soil) <sup>1</sup>    | 1                    | 10                             |
| PCB (ADEC subsurface soil) <sup>1</sup> | 10                   | 25                             |
| PCB (Federal) <sup>2</sup>              |                      | 25                             |

ADEC – Alaska Department of Environmental Conservation

PCB – polychlorinated biphenyl <sup>1</sup>ADEC, 1999 <sup>2</sup>40 CFR 761.61, self-implementing disposal, low occupancy (EPA, 1998)

| Table 1-5 | Disposal Requirements for PCB-Contaminated Building Debris |
|-----------|------------------------------------------------------------|
|-----------|------------------------------------------------------------|

| Regulations/<br>Guidance | Waste Stream                                                                                                                                                               | PCB<br>Concentration | Disposal Requirements                                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 761               | PCB Bulk Product<br>Waste (e.g., non-liquid<br>building demolition<br>debris)                                                                                              | < 50 mg/Kg           | Disposal in a permitted non-hazardous<br>waste landfill, with initial notification stating<br>PCB bulk product waste < 50 mg/Kg PCB.<br>Landfill may refuse to accept the waste.         |
|                          |                                                                                                                                                                            | ≥ 50 mg/Kg           | Disposal in a permitted non-hazardous<br>waste landfill, with notification on each<br>shipment stating PCB bulk product waste ≥<br>50 mg/Kg. Landfill may refuse to accept<br>the waste. |
| 18 AAC 60,<br>USAED 1998 | Building debris,<br>including painted                                                                                                                                      | ≤ 10 mg/Kg           | Disposal in a permitted non-hazardous waste landfill or monofill.                                                                                                                        |
|                          | surfaces, composited<br>for analysis in<br>accordance with<br>USAEHA Sampling<br>Protocol, Building<br>Demolition Debris and<br>Buildings Painted with<br>Lead Based Paint | > 10 mg/Kg           | Disposal in a lined, permitted non-<br>hazardous or hazardous waste landfill.<br>Waiver required for disposal in an unlined<br>permitted landfill if accepted by the landfill.           |

ADEC – Alaska Department of Environmental Conservation PCB – polychlorinated biphenyl USAED – United States Army Engineer District, Alaska USAEHA - United States Army Environmental Hygiene Agency

| Constituent               | Reg Limit | Units  |
|---------------------------|-----------|--------|
| 1,1,1,2-Tetrachloroethane | 0.004     | mg/L   |
| 1,1,1-Trichloroethane     | 0.2       | mg/L   |
| 1,1,2-Trichloroethane     | 0.005     | mg/L   |
| 1,1-Dichloroethane        | 3.65      | mg/L   |
| 1,1-Dichloroethene        | 0.007     | mg/L   |
| 1,2,4-Trichlorobenzene    | 0.07      | · mg/L |
| 1,2-Dichlorobenzene       | 0.6       | mg/L   |
| 1,2-Dichloroethane        | 0.005     | mg/L   |
| 1,2-Dichloropropane       | 0.005     | mg/L   |
| 1,3-Dichloropropene       | 0.005     | mg/L   |
| 1,4-Dichlorobenzene       | 0.075     | mg/L   |
| 2,4,5-Trichlorophenol     | 3.65      | mg/L   |
| 2,4,6-Trichlorophenol     | 0.077     | mg/L   |
| 2,4-Dichlorophenol        | 0.1       | mg/L   |
| 2,4-Dimethylphenol        | 0.7       | mg/L   |
| 2,4-Dinitrophenol         | 0.07      | mg/L   |
| 2,4-Dinitrotoluene        | 0.00125   | mg/L   |
| 2,6-Dinitrotoluene        | 0.00125   | mg/L   |
| 2-Chlorophenol            | 0.2       | mg/L   |
| 2-Methylphenol (o-Cresol) | 1.8       | mg/L   |
| 3,3'-Dichlorobenzidine    | 0.002     | mg/L   |
| 4,4'-DDD                  | 0.0036    | mg/L   |
| 4,4'-DDE                  | 0.0025    | mg/L   |
| 4,4'-DDT                  | 0.0025    | mg/L   |
| 4-Chloroaniline           | 0.15      | mg/L   |
| Acenaphthene              | 2.2       | mg/L   |
| Acetone                   | 3.65      | mg/L   |
| Aldrin                    | 0.00005   | mg/L   |
| Anthracene                | 11.0      | mg/L   |
| Antimony                  | 0.006     | mg/L   |
| Arsenic                   | 0.05      | mg/L   |
| Barium                    | 2         | mg/L   |
| Benzene                   | 0.005     | mg/L   |
| Benzo(a)anthracene        | 0.001     | mg/L   |
| Benzo(a)pyrene            | 0.0002    | mg/L   |
| Benzo(b)fluoranthene      | 0.001     | mg/L   |
| Benzo(k)fluoranthene      | 0.01      | mg/L   |
| Benzoic acid              | 146.0     | mg/L   |
| Benzyl butyl phthalate    | 7.3       | mg/L   |
| Beryllium                 | 0.004     | mg/L   |
| Bromodichloromethane      | 0.1       | mg/L   |
| Bromoform                 | 0.1       | mg/L   |
| Butanol                   | 3.65      | mg/L   |
| Cadmium                   | 0.005     | mg/L   |

 Table 1-6
 Proposed Groundwater and Surface Water Cleanup Criteria

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Dage 1-15 June, 2000 - -

.

| Constituent                      | Reg Limit | Units |
|----------------------------------|-----------|-------|
| Carbazole                        | 0.04      | mg/L  |
| Carbon disulfide                 | 3.65      | mg/L  |
| Carbon tetrachloride             | 0.005     | mg/L  |
| Chlordane                        | 0.002     | mg/L  |
| Chlorobenzene                    | 0.1       | mg/L  |
| Chloroform                       | 0.1       | mg/L  |
| Chromium                         | 0.1       | mg/L  |
| Chromium +3                      | 36.5      | mg/L  |
| Chromium, Hexavalent             | 0.1       | mg/L  |
| Chrysene                         | 0.1       | mg/L  |
| Copper                           | 1.3       | mg/L  |
| Cyanide                          | 0.2       | mg/L  |
| Di-n-butyl phthalate             | 3.65      | mg/L  |
| Di-n-octyl phthalate             | 0.7       | mg/L  |
| Dibenzo(a,h)anthracene           | 0.0001    | mg/L  |
| Dibromochloromethane             | 0.06      | mg/L  |
| Dieldrin                         | 0.00005   | mg/L  |
| Diesel Range Organics            | 1.5       | mg/L  |
| Diethyl phthalate                | 29.0      | mg/L  |
| Dioxin                           | 0.0000003 | mg/L  |
| Endosulfan                       | 0.2       | mg/L  |
| Endrin                           | 0.002     | mg/L  |
| Ethylbenzene                     | 0.7       | mg/L  |
| Fluoranthene                     | 1.46      | mg/L  |
| Fluorene                         | 1.46      | mg/L  |
| Gasoline Range Organics          | 1.3       | mg/L  |
| Heptachlor                       | 0.0004    | mg/L  |
| ,<br>Heptachlor epoxide          | 0.0002    | mg/L  |
| Hexachlorobenzene                | 0.001     | mg/L  |
| Hexachlorobutadiene              | 0.01      | mg/L  |
| Hexachlorocyclopentadiene        | 0.05      | mg/L  |
| Hexachloroethane                 | 0.06      | mg/L  |
| Indeno(1,2,3-cd)pyrene           | 0.001     | mg/L  |
| Isophorone                       | 0.9       | mg/L  |
| Lead                             | 0.015     | mg/L  |
| Mercury                          | 0.002     | mg/L  |
| Methoxychlor                     | 0.04      | mg/L  |
| Methyl bromide                   | 0.05      | mg/L  |
| Methylene chloride               | 0.005     | mg/L  |
| Naphthalene                      | 1.46      | mg/L  |
| Nickel                           | 0.1       | mg/L  |
| Nitrobenzene                     | 0.018     | mg/L  |
| Pentachlorophenol                | 0.001     | mg/L  |
| Phenol                           | 22.0      | mg/L  |
| Polychlorinated biphenyls (PCBs) | 0.0005    | mg/L  |
| Pyrene                           | 1.1       | mg/L  |

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL DPage 1-16 June, 2000

.

| Constituent                 | Reg Limit | Units |
|-----------------------------|-----------|-------|
| Residual Range Organics     | 1.1       | mg/L  |
| Selenium                    | 0.05      | mg/L  |
| Silver                      | 0.18      | mg/L  |
| Styrene                     | 0.1       | mg/L  |
| Tetrachloroethene           | 0.005     | mg/L  |
| Thallium                    | 0.002     | mg/L  |
| Toluene                     | 1.0       | mg/L  |
| Toxaphene                   | 0.003     | mg/L  |
| Trichloroethene             | 0.005     | mg/L  |
| Vanadium                    | 0.26      | mg/L  |
| Vinyl acetate               | 36.5      | mg/L  |
| Vinyl chloride              | 0.002     | mg/L  |
| Xylenes                     | 10.0      | mg/L  |
| Zinc                        | 11.0      | mg/L  |
| alpha-BHC                   | 0.0001    | mg/L  |
| beta-BHC                    | 0.00047   | mg/L  |
| bis-(2-Chloroethyl)ether    | 0.00077   | mg/L  |
| bis-(2-ethylhexyl)phthalate | 0.006     | mg/L  |
| cis-1,2-Dichloroethene      | 0.07      | mg/L  |
| gamma-BHC (Lindane)         | 0.0002    | mg/L  |
| n-Nitrosodi-n-propylamine   | 0.0001    | mg/L  |
| n-Nitrosodiphenylamine      | 0.17      | mg/L  |
| trans-1,2-Dichloroethene    | 0.1       | mg/L  |

Source: 18 AAC 70 (ADEC, 1999)

### 1.4 SITE CHARACTERISTICS

Site characteristics, including climate, topography, geology, hydrogeology, hydrology, demography, land use, ecology, and cultural resources, are discussed in detail in the Phase II RI final report (MW, 1999). St. Lawrence Island and Northeast Cape site characteristics are summarized below.

#### 1.4.1 Climate

St. Lawrence Island has a cool, moist, subarctic maritime climate. Precipitation occurs approximately 300 days per year as light rain, mist or snow. Annual precipitation is about 16 inches per year. Summer temperatures average between 48° Fahrenheit (F) and 34° F, with a record high of 65°F. Winter temperatures range from  $-2^{\circ}F$  to  $10^{\circ}F$ , with an extreme low of  $-30^{\circ}F$  (URS, 1985). Freeze-up normally occurs in October or November, and breakup normally occurs in June.

#### 1.4.2 Topography

The installation acreage consists mainly of flat coastal plains grading into rolling tundra towards the base of the Kinipaghulghat Mountains south of the site. The majority of the former installation acreage is at an elevation of 20 to 80 feet above mean sea level (msl).

#### 1.4.3 Geology

St. Lawrence Island consists of isolated bedrock highlands surrounded by unconsolidated surficial deposits overlying a relatively shallow erosional bedrock surface. Immediately south of the site, the Suqitughneq River has created an erosional valley and alluvial fan of unconsolidated sediments. The primary areas of this investigation are located on this alluvial fan.

The unconsolidated alluvial materials exhibit a soil profile characterized by silts near the surface, overlying more sand-dominated soils at depth. The silt may contain varying quantities of clay/sand/gravel, and may vary from zero to ten feet in thickness. The sand at depth contains varying degrees of silt/gravel/cobbles and may vary from 2 feet to greater than 20 feet in thickness. The depth to bedrock at the site is unknown.

#### 1.4.4 Hydrogeology

Because of the relatively remote and undeveloped nature of St. Lawrence Island, there is little data on the regional groundwater regime. The primary potential aquifer at the Northeast Cape site is unconsolidated alluvial material, which may be affected by permafrost and frozen soils. The deeper unconsolidated deposits at the site are probably permanently frozen, and the shallow soils examined during previous investigations represent an active layer where soils are thawed only during portions of the year. Based on the topography and geology of the site, the regional groundwater flow direction is expected to be from the mountainous recharge area south of the site, flowing north and eventually discharging to the Bering Sea.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

#### 1.4.5 Hydrology

Other than the Bering Sea north of the Northeast Cape facility, surface water in the vicinity of the study area consists of small streams, small- to moderate-sized lakes, and marshy areas. Surface water generally flows from the highland area south of the site in a northward direction. Small surface water bodies are common throughout the area. The most significant stream located in the area under investigation is the Suqitughneq River, which receives drainage from the area east of the Cargo Beach Road, Main Operations Complex, and the White Alice Site. The Suqitughneq River (Site 29) is significant because it is the drainage point for the Housing and Operations Landfill (Site 9), Sites 11 through 22, and the Main Operations Complex (Site 27). Drainage from the Main Operations Complex flows across a shallow wetlands area, designated the Drainage Basin (Site 28), prior to joining the Suqitughneq River.

#### 1.4.6 Demography and Land Use

There are currently no permanent residents at the Northeast Cape installation. A small subsistence hunting and fishing village (Site 4) is located at the installation, inhabited primarily in the summer by residents of Savoonga, a village approximately 60 miles northwest of Northeast Cape.

#### 1.4.7 Ecology, Wildlife, and Endangered Species

The Northeast Cape area supports habitat for a variety of seabirds, waterfowl, and mammals that either breed in, or migrate through, the area. The ocean surrounding the Northeast Cape area is used for subsistence hunting of walruses, seals, sea birds, and polar bears.

#### 1.4.7.1 Vegetation

Vegetation in the Northeast Cape area is classified as alpine tundra, with many low-lying areas with lakes, bogs, and poorly drained soils. In these areas, vegetation is typically classified as wet tundra (URS, 1985).

#### 1.4.7.2 Birds

The only breeding seabird colony known to exist at the Northeast Cape installation consists of 60 glaucous gulls on Seevookhan Mountain. Several other species of birds have been sighted in the vicinity of the Northeast Cape site; however, the areas around Northeast Cape have a very low habitat value, with relatively few birds, and the diversity of species appears low (URS, 1985).

#### 1.4.7.3 Mammals

Large mammals are generally not abundant on St. Lawrence Island; however, polar bears can be present year round, especially when the ice pack is near shore. Grizzly bears have been reported on the island but are rarely seen. A dwindling population of several hundred reindeer is present, along with several species of foxes and small rodents. Marine mammals are present in the

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000 June, 2000

vicinity of Northeast Cape as seasonal migrants in the offshore and near-shore marine waters and in association with the advancing and retreating pack ice.

#### 1.4.7.4 Fish

There are 10 primary species of fish that reside in the streams and tundra ponds of St. Lawrence Island. These include blackfish, nine-spined stickleback, grayling, Arctic char, and whitefish. Five of the six species of Pacific salmon occur around the island. According to Savoonga inhabitants, the Suqitughneq River once supported large fish populations (including sockeye and silver salmon). Reportedly, the fish population was reduced by a large diesel oil spill emanating from the Fuel Storage Tank Area (Site 11), which entered one of the stream's tributaries. However, the findings of the fish community survey, discussed in Section 3.10.2.2 of this report, indicate that the Suqitughneq River now supports viable populations of Dolly Varden char, Alaska blackfish, and ninespine stickleback, at a minimum.

#### 1.4.7.5 Threatened and Endangered Species

Endangered or threatened species of animals on St. Lawrence Island include the Spectacled eider (threatened), the Steller's eider (threatened), the Steller's sea lion (endangered) and the short-tailed albatross (candidate) (USFW, 1998). The prevalence of these species with respect to the Northeast Cape site is unknown. Polar bears are not an endangered or threatened species; however, they are protected under the Marine Mammal Protection Act. Vegetative species on St. Lawrence Island that have been proposed as threatened are the perennial plants *Rumex krausei* and *Primula tschuktschorum*.

#### 1.4.8 Archaeological, Historical, and Cultural Resources

The Northeast Cape installation has the potential for significant archaeological, historical, and cultural resources. The National Historic Preservation Act of 1966 (NHPA), administered in Alaska by the SHPO, requires that every federal agency take into account how each of its undertakings could affect historic properties. A historic property is defined as any property listed in, or eligible for, the National Register of Historic Places. The Northeast Cape site has not been placed on the National Register; however, it is eligible for consideration. Additionally, the White Alice site adjacent to the Northeast Cape site has been placed on the National Register.

# 2. INVESTIGATION APPROACH AND PROCEDURES

This section describes the 1999 Phase II RI field activities, including methods and protocols employed to quantify and characterize the extent of contamination. The data collected will be used to:

- Refine the understanding of the nature and extent of contamination, including contaminant migration pathways
- Assess the impact of contamination on human health and the environment
- Identify cleanup objectives and criteria, including alternative cleanup levels
- Identify remediation methods for sites requiring cleanup

#### 2.1 1999 FIELD ACTIVITIES IN 1999

The 1999 field activities were conducted July 30 through August 5, 1999. Table 2-1 summarizes field activities performed during the 1999 Phase II RI. Table 2-2 summarizes the analyses performed and laboratory methods used for the primary samples collected in 1999.

## Table 2-1 Summary of 1999 Phase II RI Activities

|         |                                                                      |               |                   | 19              | 99 Pi              | nase II                        | RI A                | ctiviti                      | es                 |                 |                                  |
|---------|----------------------------------------------------------------------|---------------|-------------------|-----------------|--------------------|--------------------------------|---------------------|------------------------------|--------------------|-----------------|----------------------------------|
|         | Description                                                          | Soil Sampling | Sediment Sampling | Sludge Sampling | AST Paint Sampling | Building Materials<br>Sampling | Biological Sampling | Buried Drum<br>Investigation | SHPO Documentation | Utilidor Survey | Neutralize Chemical<br>Residuals |
| Site 1  | Burn Site Southeast of Landing Strip                                 | ĺ             | Ì                 | 1 m mm          |                    |                                |                     |                              |                    |                 |                                  |
| Site 2  | Airport Terminal and Landing Strip                                   |               |                   |                 | X                  |                                |                     |                              | X                  |                 |                                  |
| Site 3  | Fuel Line Corridor and Pumphouse                                     |               |                   |                 | X                  |                                |                     |                              | X                  |                 | 1                                |
| Site 4  | Subsistence Fishing and Hunting Camp                                 |               | _                 |                 | X                  | 1 - 1                          |                     |                              | X                  |                 |                                  |
| Site 5  | Cargo Beach                                                          |               |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 6  | Cargo Beach Road Drum Field                                          |               |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 7  | Cargo Beach Road Landfill                                            | Í             | Х                 |                 |                    |                                |                     |                              |                    | _               |                                  |
| Site 8  | POL Spill Site                                                       | 1             |                   |                 |                    |                                |                     |                              |                    |                 | 1                                |
| Site 9  | Housing and Operations Landfill                                      |               |                   |                 |                    |                                |                     |                              | 1                  |                 | 1                                |
| Site 10 | Buried Drum Field                                                    |               |                   |                 |                    |                                |                     | X                            |                    |                 |                                  |
| Site 11 | Fuel Storage Tank Area                                               |               |                   |                 | Х                  |                                |                     |                              | X                  |                 |                                  |
| Site 12 | Gasoline Tank Area                                                   | X             |                   |                 | X                  |                                |                     |                              | Χ                  | ŕ               |                                  |
| Site 13 | Heat and Electrical Power Building                                   |               |                   |                 | Х                  | X                              |                     |                              | Х                  | Х               |                                  |
| Site 14 | Emergency Power/Operations Building                                  |               |                   | [               | Х                  |                                |                     |                              | X                  | · X             |                                  |
| Site 15 | Buried Fuel Line Spill Area                                          |               |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 16 | Paint and Dope Storage Building                                      |               |                   |                 | Х                  |                                |                     |                              | X                  |                 |                                  |
| Site 17 | General Supply Warehouse and Mess Hall<br>Warehouse                  |               |                   |                 |                    | x                              |                     |                              | X                  | X               |                                  |
| Site 18 | Housing Facilities and Squad Headquarters                            |               |                   |                 | Х                  | X                              |                     |                              | X                  | X               | X                                |
|         | Auto Maintenance and Storage Facilities                              |               |                   |                 | Х                  |                                |                     |                              | X                  | X               |                                  |
|         | Air Force Aircraft Control Warning Building                          |               |                   |                 |                    |                                |                     |                              | X                  | Х               |                                  |
|         | Wastewater Treatment Facility                                        |               |                   | X               |                    |                                |                     |                              | X                  | X               |                                  |
|         | Water Wells and Water Supply Building                                |               |                   |                 | Х                  |                                |                     | 1                            | X                  |                 |                                  |
| Site 23 | Power and Communication Line Corridors                               |               |                   |                 |                    | 11                             |                     |                              |                    |                 |                                  |
| Site 24 | Receiver Building Area                                               |               |                   |                 |                    |                                |                     |                              | Χ                  |                 |                                  |
| Site 25 | Direction Finder Area                                                |               |                   | i i             |                    |                                |                     |                              |                    |                 |                                  |
| Site 26 | Former Construction Camp Area                                        |               |                   |                 |                    |                                |                     |                              |                    |                 |                                  |
| Site 27 | Diesel Fuel Pump Island                                              |               |                   |                 |                    |                                |                     |                              | X                  |                 |                                  |
| Site 28 | Drainage Basin Area                                                  |               |                   |                 |                    |                                | Х                   |                              |                    |                 |                                  |
| Site 29 | Suqitughneq River                                                    |               |                   |                 |                    |                                | X                   |                              |                    |                 |                                  |
| Site 30 | Background Areas                                                     | X             | X                 |                 |                    |                                | Х                   |                              |                    |                 |                                  |
| AS      | ST – aboveground storage tank<br>DL – petroleum, oil, and lubricants | RI<br>SHPO    | — F               |                 |                    | estigation<br>Preserva         | )                   | Office                       |                    |                 | I                                |

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

•

| Site                                      | 7                            | 12                    | 13           | 17           | 18           | 21           | Many | 30          |
|-------------------------------------------|------------------------------|-----------------------|--------------|--------------|--------------|--------------|------|-------------|
| Matrix/Analysis                           | Cargo Beach<br>Road Landfill | Gasoline<br>Tank Area | Building 110 | Building 107 | Building 101 | Septic Tanks | ASTs | Backgro und |
| Sediment                                  |                              | •                     |              |              |              |              |      |             |
| DRO/RRO AK102/103                         | 1                            |                       |              |              |              |              |      | 1           |
| GRO AK101                                 |                              |                       |              |              |              |              |      | 1           |
| BTEX SW8021B                              |                              |                       |              |              |              |              |      | 1           |
| TOC SW9060M                               |                              |                       |              |              |              |              |      | 1           |
| TAL Metals <sup>1</sup> SW1311/6010B/7000 |                              |                       |              |              |              |              |      | 1           |
| Soil                                      | _                            |                       | _            |              |              |              |      |             |
| DRO/RRO AK102/103                         |                              | 5                     |              |              |              |              |      | 2           |
| GRO AK101                                 |                              | 5                     |              |              |              |              |      | 2           |
| BTEX SW8021B                              |                              | 5                     |              |              |              |              |      | 2           |
| TOC SW9060M                               |                              |                       |              |              |              |              |      | 2           |
| TAL Metals SW1311/6010B/7000              |                              |                       |              |              |              |              |      | 2           |
| Sludge                                    |                              |                       | •            |              |              |              |      |             |
| TCLP Metals SW1311/6010B/7000             |                              |                       |              |              |              | 1            |      |             |
| TCLP Pesticides SW1311/8081               |                              |                       |              |              |              | 1            |      |             |
| TCLP VOCs SW1311/8270C                    |                              |                       |              |              |              | 1            |      |             |
| TCLP SVOCs SW1311/8270C                   |                              |                       |              |              |              | 1            |      |             |
| PCBs SW8082                               |                              |                       |              |              |              | 1            |      |             |
| Building Materials                        |                              |                       |              |              |              |              |      |             |
| PCBs SW8082                               |                              |                       | 1            | 1            | 1            |              |      |             |
| TCLP PCBs SW1311/8082                     |                              |                       | 1            | 1            | 1            |              |      |             |
| Paint                                     |                              |                       |              | -            | -            |              |      |             |
| Pb SW7421                                 |                              |                       |              |              |              |              | 24   |             |

#### Table 2-2 1999 Phase II RI Primary Sample Summary

diesel range organic
gasoline range organic
lead DRO

GRO

Pb

PD - lead PCB - polychlorinated biphenyl RRO - residual range organic SVOC - semivolatile organic compound TAL - target analyte list TCLP - toxicity characteristic leaching procedure TOC - total organic content VOC - volatile organic compound

VOC - volatile organic compound

TAL: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, thallium, vanadium, zinc

The following sections briefly describe the activities performed at each site, including the rationale for data collection. Photographs of field conditions and activities are provided in Appendix A. Site maps, including analytical results from current and previous investigations, are presented in Section 3. The analytical data produced by the project and quality assurance (QA) laboratories are summarized in Section 3 and provided in their entirety in Appendix B.

#### 2.1.1 Sediment Sampling at Cargo Beach Road Landfill - Site 7

This site includes the solid waste disposal area in use from 1965 until 1974. Previous investigations found concentrations of DRO and total recoverable petroleum hydrocarbons (TRPH) above benchmark screening criteria in soil around the perimeter of the refuse mass and in the sediment of both ponds at the site.

In 1999, a sediment sample was collected near former sediment sample SD 103, previously found to have high TRPH and relatively low DRO concentrations (15,000 and 815 mg/Kg, respectively) (MW, 1999). This sample was analyzed for DRO and residual range organics (RRO) to help correlate previous anomalous results.

#### 2.1.2 Soil Sampling at Gasoline Tank Area - Site 12

Site 12 is adjacent to the Main Operations Complex. This site contains a fuel pump and two ASTs, which formerly contained leaded gasoline; tank sizes are 15,000 and 30,000 gallons. Potential sources of contamination include the two ASTs and fuel dispenser pump; however, no evidence of discharge was observed during previous investigations (E&E, 1993; MW, 1999).

During the 1999 Phase II RI, five soil samples were collected and analyzed for DRO, RRO, GRO, and benzene, toluene, ethylbenzene, and xylenes (BTEX) to assess whether soils in the vicinity of the tanks have been contaminated by fuel spills. The samples included four surface soil samples taken at the bottom edge of the embankment supporting the ASTs, downgradient of the ASTs. One subsurface soil sample was collected at 2 feet below ground surface under the fuel dispenser.

#### 2.1.3 Sludge Sampling at Wastewater Treatment Facility - Site 21

Site 21 consists of the wastewater treatment system which served the Housing and Operations Complex. This facility is located east of the perimeter road and includes two side-by-side concrete septic settling tanks (AST 21-1 and AST 21-2), that are approximately 15 feet wide by 50 feet long and 8 feet deep. In 1998, the tanks were approximately 50% full of septage, estimated to be 45,000 gallons in each tank. These settling tanks discharge to a third tank (AST 21-3), perpendicular to ASTs 21-1 and 21-2. Effluent from AST 21-3 was discharged via an 8-inch insulated cast iron pipe to a wetland area approximately 450 feet to the east.

In 1999, Montgomery Watson collected representative sludge samples to determine if the contents will require disposal as hazardous waste. The sludge was sampled for toxic characteristics leachate procedure (TCLP) Resource Conservation and Recovery Act (RCRA)

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

metals, TCLP pesticides, TCLP volatile organic compounds (VOC), TCLP semivolatile organic compounds (SVOC), and PCBs.

#### 2.1.4 Building Materials Sampling - Sites 13, 17, and 18

Based on the sampling of building materials at other, similar DOD sites in Alaska, there is a potential that the paint applied to buildings at Northeast Cape could contain PCBs. Presence of PCBs may impact disposal options.

In 1999, Montgomery Watson sampled three representative buildings in accordance with procedures described in the U.S. Army Environmental Hygiene Agency (USAEHA) Sampling Protocol, Building Demolition Debris and Buildings Painted with Lead-Based Paint. Sampled buildings included Building 101 (Housing Facilities and Squad Headquarters), Building 107 (Mess Hall Warehouse), and Building 110 (Power Plant). One composite sample was collected for each selected structure and included approximate proportions of all materials constituting the structure. The samples were analyzed for PCBs and TCLP PCBs. No QA or quality control (QC) samples were collected.

#### 2.1.5 Paint Sampling at Aboveground Storage Tanks

Based on inventories performed during prior investigations, there are 27 ASTs at Northeast Cape. The septic tanks at the Wastewater Treatment Facility (Site 21), AST 21-1, AST 21-2, and AST 21-3 are constructed of concrete and have not been painted. The remaining 24 tanks are constructed of steel and are presumed to have been painted. It is probable that the tanks were painted with LBP. To determine proper tank disposal and to protect site workers from LBP dust, painted tanks may require abatement or special handling during demolition and disposal.

During the 1999 Phase II RI, Montgomery Watson collected a paint sample from each AST that was visibly coated with paint to determine the presence of LBP. No QA or QC samples were collected. The percentage of surface area covered with paint and the condition of the paint was also noted and recorded.

#### 2.1.6 Background Soil and Sediment Sampling - Site 30

TRPH, RRO, DRO, metals, and VOCs have been detected in background soil and sediment samples from previous investigations (MW, 1999). Levels of TRPH and DRO were unexpectedly high in some background samples and exceeded regulatory criteria proposed for the site. In many areas, TRPH levels in soil exceeded DRO levels, sometimes by an order of magnitude. Additionally, the aromatic and aliphatic fractions of DRO did not sum to the total DRO found using laboratory method AK 102. DRO levels in background soil samples did not appear to be reproducible.

Montgomery Watson collected three additional background samples in 1999 to help explain these phenomena and to assist in determining cleanup requirements. Background samples consisted of one sediment sample and two surface soil samples. The samples were analyzed for DRO, RRO, GRO, total organic carbon (TOC), and TAL metals.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Page 2-5 June, 2000

The sediment sample and one of the soil samples were collected from an area approximately <sup>1</sup>/<sub>4</sub> mile east of Cargo Beach Road. The sediment sample was collected in a lake and the soil sample was collected from tundra area near the lakeshore. This area was selected as a background sampling location based on its distance from areas of known contamination and facility activities, and its physical similarity to other tundra and surface water areas at the site. The remaining soil sample was collected from an area at the toe of the mountain, near the gravel pit. This gravel pit provided the fill used to construct the gravel pads throughout the installation, and the soil sample collected from this location represents background conditions for the pads.

### 2.1.7 Test Pits at Buried Drum Field - Site 10

This area was used as a drum storage area for a variety of POL types (Toolie, 1996). A longtime resident reported that he remembered numerous 5-gallon buckets of 90-weight lubrication oil and 10 to 20 drums (contents unknown) being buried there (Toolie, 2000). A large stained area is visible towards the northwest corner of the burial plateau along with numerous smaller stained areas on the surface of the site. Visible staining is also present along the northwest face of the site.

A potential source of environmental contamination at this site is the buried drums (MW, 1999). During previous investigations, surface and subsurface soils, surface water, and sediment from within and surrounding the landfill were sampled and analyzed for TRPH, DRO, gasoline range organics (GRO), PCBs, SVOCs, pesticides, and priority pollutant metals. Soil analytical results exceeded the Soil Cleanup Standards for TRPH and DRO. Surface water collected from a downgradient location that receives runoff from several sites, including Site 10, exceeded the criteria for DRO, PCB, and lead (total and dissolved).

In 1999, Montgomery Watson hand-excavated three test pits at Site 10 to evaluate if the stained soil was caused by leaking buried drums, and to evaluate if drums containing product are buried at this site. Laborers provided by the Savoonga Native Corporation assisted Montgomery Watson. A metal detector was used to determine the best locations for the test pits. No samples were collected.

#### 2.1.8 Chemical Neutralization at Building 101 - Site 18

Building 101 (Housing Facilities and Squad Headquarters), on the western side of Site 18, contained several containers of STB and DS-2. STB is a white powder consisting of a mixture of calcium oxychloride and calcium oxide. DS-2 is a light amber solution consisting of 70% diethylenetriamine, 28% ethylene glycol monomethyl ether, and 2% sodium hydroxide. These chemicals were stored at the facility for use in decontaminating materials in the event of enemy use of chemical weapons. These chemicals were standard issue for most military units during the era that this facility was active. In September 1998, Montgomery Watson containerized, overpacked and transported the wastes offsite for disposal.

During the 1999 Phase II RI, Montgomery Watson examined the flooring area where STB and DS-2 were stored and neutralized the chemical residuals that may have remained on the floor

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Page 2-6 June, 2000

where these containers were found. STB is classified as an oxidizer and about 6 pounds of sodium bicarbonate with water was used to reduce reactivity and neutralize any STB residual. DS-2 is an alkali and is classified as a corrosive due to its high pH. A slurry consisting of 2 liters of sodium bisulfate and water was used to lower the pH and neutralize any DS-2 residual.

#### 2.1.9 Utilidor Survey

There are several utilidors containing piping with asbestos insulation in the area of the Main Operations Complex. During the 1999 Phase II RI, Montgomery Watson visually surveyed and photographed the utilidors to assess access to piping. This information was used to determine access requirements for removal of the piping and insulation. The field team also evaluated the affects the utilidors may pose on contaminant migration in this area by considering such factors as proximity and relationship (upgradient or downgradient) to known contaminated areas and presence of standing or flowing water in the utilidors. No samples were collected.

#### 2.1.10 Biological Sampling at Drainage Basin, Suqitughneq River, and Control Stream - Sites 28, 29 and 30

The Drainage Basin Area lies between and north of Site 11 (Fuel Storage Tank Area) and Site 27 (Diesel Fuel Pump Island). Diesel releases from Tank 2 at Site 11 and from the diesel fuel pump island at Site 27 have impacted a common drainage basin that flows to the Suqitughneq River (MW, 1999). Surface soil and surface water/sediment samples collected from the Drainage Basin during previous investigations indicated elevated levels of diesel in the Drainage Basin and Suqitughneq River. PCBs were also detected in the Drainage Basin.

In 1999, a biological assessment was conducted within the Drainage Basin by the Environment and Natural Resources Institute (ENRI) in cooperation with Montgomery Watson. The assessment concentrated on evaluating 1) sediment toxicity, 2) impairment to macroinvertebrate and fish communities, 3) accumulation of toxins in fish tissues, and 4) habitat quality. Separate reports from ENRI and Alaska District are included in Appendices D and E, respectively.

A reference site (control stream) was established at the Quangeghsaq River because its physical stream characteristics are similar to the Drainage Basin and Suqitughneq River, but the Quangeghsaq River is removed from the impacted watershed. The sampling locations are shown on Figure 3-10 and are described as follows:

- Suqitughneq River, potentially stressed location: 50 m below to 200 m above runway bridge (slsuq01)
- Spill Tributary, potentially stressed location: 200 m reach from large pool below spill to confluence with Suqitughneq River (slurc01)
- Suqitughneq River, upstream control: upstream of confluence with receptor creek, 100 m above to 200 m below access road culvert (slsuq02)
- Suqitughneq River Tributary, downstream control: 100 m reach in headwaters of small tributary (slsut01)

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

• Quangeghsaq River, control stream: 200 m just upstream of highest storm tide (slqan01)

#### 2.1.10.1 Sediment Toxicity

The Microtox® bacterial bioassay was used in the site assessment to evaluate the presence, bioavailability, and degree of toxicity within the stream sediment. Because Montgomery Watson identified specific toxins in 1996, chemical analyses were not conducted (MW, 1999). In 1999, Microtox® samples were collected at four sites along the impacted stream. Microtox® testing was also completed at the reference site in order to document baseline conditions and verify that the diesel spill is the source of toxicity in the study stream.

#### 2.1.10.2 Community Assessments

Macroinvertebrate and fish population assessments conducted during the 1999 Phase II RI are discussed in this section.

#### 2.1.10.2.1 Macroinvertebrates

Results of a macroinvertebrate assessment conducted in 1996 were inconclusive (MW, 1996b). Difficulties in interpreting information from the assessment may have been related to inappropriate macroinvertebrate sampling methods and potentially impacted conditions at the reference site.

In 1999, benthic macroinvertebrates were collected systematically from all available in-stream habitats. The collected material was composited, preserved in the field, and returned to the laboratory for processing and insect identification.

#### 2.1.10.2.2 Fish

Based on observations from past investigations and anecdotal information from local seasonal residents and site visitors, the Suqitughneq River was generally not believed to support a viable fish community. The drainage was reportedly used for subsistence fishing in the past, but recent subsistence fishing has not taken place due to low fish populations (Toolie, 1999).

During the 1999 biological assessment, fish were collected using minnow traps, electrofishing techniques, and angling. The fish were sorted by species, measured, photographed, counted, and visually inspected for deformities and disease. Fish tissue samples were submitted for laboratory analysis to determine tissue toxicity.

#### 2.1.10.3 Fish Tissue Toxicity

Analyses of water and sediment conducted by Montgomery Watson (1996b) suggested that the diesel spilled at the site in 1969 released toxic chemicals to Suqitughneq River within the Drainage Basin. In addition, the spill may have mobilized PCB contaminants from another source. These compounds have been shown to cause lesions, tumors, and reproductive dysfunction in fish (Crawford et al., 1993), potentially affecting survival and reproduction of the

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

fish community. Previous surveys did not investigate fish population in the impacted stream; therefore, the effects of the spill on the fish community were not evaluated.

During the 1999 Phase II RI, an inventory/assessment of the fish community was conducted. Because naturally occurring lipids can interfere with petroleum/diesel analysis, tissues were analyzed for polynuclear aromatic hydrocarbons (PAH). The toxicity, mutagenic effects, and bioavailability of PAHs vary with molecular weight. Therefore, a PAH scan was conducted on each tissue sample in order to determine the biological and ecological risks. Fish tissues were also analyzed for the presence of PCBs, which can cause reproductive dysfunction in fish and, because fish cannot break them down, are available to higher trophic levels.

In addition to fish tissue, mollusks for tissue analysis were to be collected in the estuarine areas at the outflow of the Suqitughneq River. Site investigations revealed that mollusks did not inhabit these areas; therefore, mollusks were not collected for analysis.

#### 2.1.10.4 Habitat Assessment

The 1999 Phase II RI habitat assessment was conducted using the Alaska Stream Condition Index (ASCI), which is a multihabitat bioassessment method developed specifically for Alaska streams by ENRI with the support of ADEC and the United States Environmental Protection Agency (EPA) (Major and Barbour, 1997). The ASCI method involves visually assessing habitat quality and rating each macroinvertebrate site in order to evaluate stream condition and to assist with interpretation of biological data (Major and Barbour, 1998).

#### 2.1.11 Site Surveying

The surveying work for the 1999 Phase II RI was conducted at Northeast Cape on August 4, 1999. The purpose of the survey was to accurately locate soil, water, and biological sampling sites and report these locations on the same coordinate system as previous surveys conducted by Lounsbury and Associates during the Phase I RI in 1994.

The 1999 survey work was conducted by Mullikin Surveys (Donald E. Mullikin, P.L.S.) of Homer, Alaska. Trimble 4700 geographic positioning system (GPS) survey units were used in static mode. Geographic position on St. Lawrence Island was established by simultaneous observations with NGS continuous operating reference stations at Kenai, Cold Bay, and Central, Alaska. Elevations for new 1999 points were generated using the 1996 geoid undulation model. Surveying results from the 1999 Phase II RI are provided in Appendix E.

#### 2.1.12 Historical Architectural Recordation

Montgomery Watson, through a subcontractor, performed a historic architectural recordation at Northeast Cape, St. Lawrence Island, Alaska in accordance with SHPO requirements. The subcontractor was Krochina Architects, based in Anchorage, Alaska, and the qualified Historic Architect was Mr. Patrick Krochina. The fieldwork consisted of taking 35-mm black and white photographs and preparing Architectural Recordation Forms for each building at the Housing and Operations Area of the Northeast Cape site.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

The historical architectural recordation report was submitted under a separate cover.

# 2.2 SAMPLE COLLECTION

Field work included surface soil, subsurface soil, sediment, sludge, paint, building materials, and biological sampling. All samples were collected in accordance with protocols in the following documents:

- Final Work Plan Addendum, 1999 Phase II RI, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. July 1999.
- Final Work Plan 1998-1999 Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. August 24, 1998.
- Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Montgomery Watson. January 1995.
- Chemical Data Acquisition Plan, Site Inventory Update, Northeast Cape, St. Lawrence Island, Alaska. E&E. February 1993.

#### 2.2.1 Surface and Subsurface Soil Sampling

Soil and sediment sampling were performed according to the standard methodology detailed in the Chemical Data Acquisition Plan (CDAP) (E&E, 1993). However, as documented during the Phase I field work, a Microtip IS-3000 photoionization detector was used instead of an HNu to detect organic vapors. Surface soil samples were collected using disposable spoons, and subsurface samples were collected using a hand auger.

Samples for different analytes from a single sampling location were collected in the following order:

- 1. BTEX/GRO
- 2. DRO, PAHs, and/or other chemical analytes
- 3. Physical parameters

For BTEX and GRO analyses, 50 grams of sample material were placed in the sample jar, and 25 milliliters of methanol were added. Standard procedure is to use a one-to-one ratio of sample material and methanol, but a two-to-one ratio was used during this project to lower the method detection limit to a level below the site cleanup limit.

### 2.2.2 Sludge Sampling

Sludge sampling was attempted at the access portals at the influent ends of ASTs 21-1 and 21-2; however, only water was recovered during these attempts. A sludge sample was recovered at the access portal for AST 21-3 using a sludge sampler. Several scoops of sludge were collected and composited in a tub prior to being placed in sample containers.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

# 2.2.3 Paint Sampling

The exterior paint coatings on 24 ASTs were sampled for LPB. Paint sampling was performed according to the standard methodology detailed in the CDAP (E&E, 1993). Procedures provided in 5.3.1 of Appendix 5 of the Lead-Based Paint Interim Guidelines (HUD, 1990) were followed for the collection of paint samples.

# 2.2.4 Building Materials Sampling

Three buildings were sampled using procedures in conformance with the USAEHA Sampling Protocol, Building Demolition Debris and Buildings Painted with Lead-Based Paint. Building materials from the structures were analyzed for PCBs and TCLP PCBs.

One composite sample was collected for each selected structure. Individual component samples were collected using a portable drill, saw, hammer, and chisel. During the Phase I RI, proportions of structure materials were determined by measuring volumes of each building's various materials (e.g., wood, tile, siding, insulation). Once the volumes of all materials constituting each structure were inventoried, the percentages of individual materials constituting the whole structure were established. Each composite sample included approximate representative proportions of all structural materials. Materials proportions for the buildings sampled during the 1999 Phase II RI are shown in Table 2-3.

|             |              |                                    |                  |            |                | Buildi  | n <u>g</u> Ma  | terials   | Propo      | rtions            |               |              |         |
|-------------|--------------|------------------------------------|------------------|------------|----------------|---------|----------------|-----------|------------|-------------------|---------------|--------------|---------|
| Site<br>No. | Bldg.<br>No. | Building Name                      | Wood Structure % | Corkwall % | Cement Board % | Metal % | Painted Area % | Roofing % | Roof tar % | Wall insulation % | PACM siding % | Vinyl PACM % | Total % |
| 13          | 110          | Heat and Electrical<br>Power Bldg. | 60.5             |            | 10             | 1       | 1              | 25        | 1          |                   | 1.5           |              | 100     |
| 17          | 107          | Mess Hall<br>Warehouse             | 39               | 1          | 3              | 0.3     | 1              | 44        | 1          | 10                | 0.7           |              | 100     |
| 18          | 101          | Dormitory West                     | 39.5             |            | 18             | 0.5     | 1              | 19        | 1          |                   | 20            | 1            | 100     |

 Table 2-3
 Building Materials Proportions Summary

PACM - presumed asbestos-containing material

# 2.2.5 Biological Sampling

The following is a brief summary of the biological sampling procedures used during the 1999 Phase II RI. The full reports submitted by ENRI and Alaska District are included in Appendices D and E.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

#### 2.2.5.1 Sediment Toxicity Sampling

Sediment toxicity was measured using the Microtox® bacterial bioassay. Sediment samples were collected from designated sites and tested with the Microtox® solid phase bioassay to determine potential toxicity. Three replicate samples were tested from each sampling site. Samples were kept on ice until analyzed. Analysis was performed within 48 hours of collection using the Microtox® bacterial bioassay solid phase test protocol and the Microbics Model 500 analyzer. The solid-phase test measures light output after a 20-minute exposure of the bacteria to the sediment.

To interpret results accurately, study stream sediment samples must have the same particle-size distribution as control stream samples. Because grain size composition differs between sites, Suqitughneq River samples could only be compared to control stream samples with identical sediment composition (Benton et al., 1995; Ringwood et al., 1997). Separate sediment samples were collected for sediment grain size characterization at each of the Microtox sampling locations, so toxicity results could be interpreted accurately.

#### 2.2.5.2 Community Assessments

Community assessments included evaluating macroinvertebrate and fish populations, as described below.

#### 2.2.5.2.1 Macroinvertebrates

Benthic macroinvertebrates were collected systematically from all available in-stream habitats by kicking the substrate or jabbing with a D-frame dip net. A total of twenty kicks or jabs were taken from all major productive habitat types in each reach.

The collected material was composited, preserved in the field in 95% alcohol, and returned to the laboratory for processing and insect identification. In the laboratory, the samples were processed to a 300-organism sub-sample (+ 20%) using a Caton sub-sampler (Caton, 1991). The remaining sample was then quickly examined for large and/or rare organisms not collected in the sub-sample. Collected organisms were identified to genus level (Clifford, 1991, Stewart and Stark, 1993, Merritt and Cummins, 1996, and Wiggins, 1996). Annelids were identified to class. *Chironomidae*, *Simullidae*, and *Ceratopogonidae* were identified to family. Functional feeding group designations were assigned according to Merritt and Cummins (1996) or Pennak (1989). Once samples were processed, the insects were preserved in 70% ethanol.

#### 2.2.5.2.2 Fish

Fish were collected from the stream areas noted in Section 2.1.10 for fish population assessment and tissue analysis. ENRI personnel collected and sorted the fish. Fish were collected using an electrofishing unit, seines, dipnets, and sports tackle. The Alaska District obtained necessary permits and operated the electrofishing unit. Fish were sorted by species, measured, photographed, counted, and visually inspected for deformities and disease. Several of each species were preserved as reference species to ensure correct identification. The entire sample

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL DPage 2-12 June, 2000

from each site (typically several fish) was wrapped in aluminum foil and placed in a Ziploc<sup>™</sup> bag. All samples were kept on ice in clean coolers for shipment from Nome to Anchorage.

#### 2.2.5.3 Fish Tissue Toxicity Sampling

Fish were collected from the study stream areas as detailed above. Fish tissue samples were also collected from the control stream in order to verify the spill as the source of any bioaccumulated toxins at the study stream.

#### 2.2.5.4 Habitat Assessment

The 1999 Phase II RI habitat assessment was conducted using the ASCI, an intensive, multihabitat bioassessment method developed specifically for Alaskan streams with the support of the ADEC and the EPA (Major and Barbour, 1997). Ten parameters were evaluated as "Excellent", "Good," "Fair," or "Poor" and assigned point values. Field parameters (water temperature, dissolved oxygen, conductivity, and pH) were also collected at each site and assigned point values.

# 3. INVESTIGATION RESULTS AND DISCUSSION

This section presents investigative and analytical results of the 1999 Phase II RI. Full-page tables and figures are presented at the end of this Section. Complete laboratory results and data quality assessments are provided in Appendices B and C, respectively. Biological sampling results are provided in Appendix D. A Chemical Data Quality Review (CDQR) is presented in Appendix H (ETHIX, 2000). No data quality deficiencies were found during preparation of the CDQR. All data generated during this project should be considered usable as reported.

### 3.1 SEDIMENT SAMPLING AT CARGO BEACH ROAD LANDFILL - SITE 7

Sediment in a pond near the drums was sampled and analyzed for DRO and RRO. One primary sample (99NEC07SD901), one duplicate (QC) sample, and one triplicate (QA) sample were collected. Analytical results are summarized in Table 3-6 and compared with the cleanup criteria. Sample locations are shown on Figure 3-1.

DRO concentrations in the 1999 primary and duplicate samples (380 and 340 mg/Kg, respectively) were below both the background sediment sample DRO concentration (580 mg/Kg) and the maximum allowable concentration for soil using Method 1 (500 mg/Kg). RRO concentrations in the 1999 primary and duplicate samples (3,900 and 3,600 mg/Kg, respectively) exceeded the background concentration and the maximum allowable limit for soil using Method 1 (2,000 mg/Kg); however, these RRO concentrations were well below the allowable limiting level using Method 2 (10,000 mg/Kg).

Sample SD901 was collected near the same location where sample SD103 was collected in 1994. These sample results are compared in Table 3-1. Also listed are the results of the background sediment sample collected in 1999 (SD903).

| Sample No. (note)       | DRO (mg/Kg) | RRO (mg/Kg)  | TRPH (mg/Kg) |
|-------------------------|-------------|--------------|--------------|
| SD901 (1999)            | 380         | 3,900        | not analyzed |
| SD103 (1994)            | 815         | not analyzed | 15,600       |
| SD903 (1999 background) | 580         | 3,200        | not analyzed |

Table 3-1Comparison of Results From Sites 7 and 30 (Background)

DRO - diesel range organics

RRO - residual range organics

TRPH - total recoverable petroleum hydrocarbon

Several observations and inferences can be drawn from this data:

- The DRO/RRO results for SD901 and the background sample (SD903) are similar, suggesting that the hydrocarbons detected in SD901 represent background conditions and not contamination.
- Although sample SD901 was collected from approximately the same location as sample SD103, the samples were collected 5 years apart, so some variation in results would be expected due to altered conditions (e.g., natural attenuation of any contaminants).

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

The analytical method used to detect DRO in 1999 (Method AK102) was different than the method used in 1994 (Method 8100M). The two methods are not directly comparable and differ in several ways. The most significant distinction is that Method AK102 corresponds to an n-alkane range of  $C_{10}$  to  $C_{25}$  and Method 8100M corresponds to a range of  $C_{10}$  to  $C_{28}$ . Therefore, for the same sample, DRO measured by Method AK102 could be less than that measured by Method 8100M.

- The analytical parameter RRO (Method AK103), measured in 1999, is significantly different than TRPH (Method 418.1), measured in 1994. The two methods are not directly comparable and differ in several ways. The most significant distinction is that Method AK103 corresponds to an n-alkane range of  $C_{25}$  to  $C_{36}$ , whereas Method 418.1 corresponds to a range of  $C_1$  and above (i.e., Method 418.1 measures all hydrocarbons contained in the sample).
- Method AK103 will screen out some naturally occurring organics, whereas Method 418.1 (without a silica gel cleanup) does not screen out any organics. A silica gel cleanup was not used in 1994 (MW, 1999).
- Samples SD901 and SD103 were collected from a stagnant tundra pond, where relatively high levels of naturally occurring hydrocarbons would be expected.

Relatively high concentrations of TRPH compared to DRO concentrations were observed in several samples collected in 1994. Based on the DRO/RRO data collected in 1998-9, it was concluded that there is a significant amount of naturally occurring organic compounds associated with the samples collected. Much of the TRPH detected in the 1994 samples was likely caused by naturally occurring organic compounds.

#### 3.2 SOIL SAMPLING AT GASOLINE TANK AREA - SITE 12

Five primary soil samples, one QC sample, and one QA sample were collected and analyzed for DRO, RRO, GRO, and BTEX. Analytical results are presented in Table 3-6 and compared with the cleanup criteria. Sample locations are shown on Figure 3-2.

With the exception one DRO result (sample 12SB901), all analyte concentrations were below Method 1 cleanup levels. The DRO concentration for sample 12SB901 (140 mg/Kg), collected at 2 feet below ground surface (bgs) at the fuel dispenser, exceeded the Method 1 level (100 mg/Kg), but was less than Method 2 cleanup level (250 mg/Kg).

The data suggest that no significant spills or leaks occurred near the tanks at Site 12 and that any release(s) from the fuel dispenser was minor. Consequently, no remediation work is indicated for Site 12.

#### 3.3 SLUDGE SAMPLING AT WASTEWATER TREATMENT FACILITY - SITE 21

One sludge sample was collected and analyzed for TCLP metals, TCLP pesticides, TCLP VOCs, TCLP SVOCs, and total PCBs. Analytical results are presented in Table 3-7 and compared with the regulatory criteria. The sample location is shown on Figure 3-3.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

Two PCBs were detected in the sample,  $\operatorname{Aroclor^{TM}}$  1254 and  $\operatorname{Aroclor^{TM}}$  1260. Both PCBs were present in concentrations exceeding ADEC and federal regulatory limits. Only two analytes from the TCLP analyses, barium and cresols (methyl phenols), were present in the sample above detection limits. Concentrations of both analytes were well below RCRA criteria limits.

Due to its PCB content, the sludge must be removed from the site and shipped to a permitted disposal facility.

#### 3.4 BUILDING MATERIALS SAMPLING - SITES 13, 17 AND 18

One composite sample of building materials was collected and analyzed for PCBs and leachable PCBs at each of the following buildings:

- Building 110, Heat and Electrical Power Building (Site 13);
- Building 107, Mess Hall Warehouse (Site 17); and
- Building 101, Dormitory West Building (Site 18).

Analytical results are presented in Table 3-2 and on Figure 3-4 with the building locations.

|         |                                      | Bldg. #         | 110<br>13BD901 | 107     | 101     | 18 AAC 60 Limit for<br>Disposal in            |
|---------|--------------------------------------|-----------------|----------------|---------|---------|-----------------------------------------------|
| Method  | Analyte                              | 99NEC:<br>Units | 1360901        | 17BD901 | 18BD901 | Permitted Non-<br>Hazardous Waste<br>Landfill |
| SW8082  | PCB-1016 (Aroclor™ 1016)             | mg/Kg           | ND             | ND      | ND      | ≤ 10                                          |
|         | PCB-1221 (Aroclor™ 1221)             | mg/Kg           | ND             | ND      | ND      | ≤ 10                                          |
|         | PCB-1232 (Aroclor™ 1232)             | mg/Kg           | ND             | ND      | ND      | ≤ 10                                          |
|         | PCB-1242 (Aroclor™ 1242)             | mg/Kg           | ND             | ND      | ND      | ≤ 10                                          |
|         | PCB-1248 (Aroclor™ 1248)             | mg/Kg           | ND             | 0.11    | 0.16    | ≤ 10                                          |
|         | PCB-1254 (Aroclor™ 1254)             | mg/Kg           | ND             | ND      | ND      | ≤ 10                                          |
|         | PCB-1260 (Aroclor™ 1260)             | mg/Kg           | 0.28           | 2.6     | 1.6     | ≤ 10                                          |
|         | Total PCBs                           | mg/Kg           | 0.28           | 2.7     | 1.8     | ≤ 10                                          |
| SW1311/ | PCB-1016 (Aroclor <sup>™</sup> 1016) | μg/L            | ND             | ND      | ND      |                                               |
| 8082    | PCB-1221 (Aroclor™ 1221)             | μg/L            | ND             | ND      | ND      |                                               |
|         | PCB-1232 (Aroclor <sup>™</sup> 1232) | μg/L            | ND             | ND      | ND      |                                               |
|         | PCB-1242 (Aroclor <sup>™</sup> 1242) | μg/L            | ND             | ND      | ND      |                                               |
|         | PCB-1248 (Aroclor™ 1248)             | μg/L            | ND             | ND      | ND      |                                               |
|         | PCB-1254 (Aroclor™ 1254)             | μg/L            | ND             | ND      | ND      |                                               |
|         | PCB-1260 (Aroclor™ 1260)             | μg/L            | ND             | 1.5     | ND      |                                               |
|         | Total PCBs                           | μg/L            | ND             | 1.5     | ND      |                                               |

 Table 3-2
 Results for Building Composite Samples

ND - not detected

PCB - polychlorinated biphenyl

Low levels of PCBs were found in all three composite samples, ranging from 0.28 to 2.7 mg/Kg. These levels are well below the State of Alaska's regulatory limit (10 mg/Kg) for disposal in a

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Page 3-3 June, 2000 permitted non-hazardous waste landfill. One of the three samples showed a detectable concentration of leachable PCBs when leached by TCLP (1.5  $\mu$ g/L). The TCLP data were qualified because the holding time was exceeded for extraction of these samples (the holding time is 21 days and the samples were extracted on the 24<sup>th</sup> day); however, the data are considered usable because the method holding time was only slightly exceeded (3 days) and PCBs are inherently stable, especially when contained in paint that is over 30 years old.

EPA regulates PCB bulk product wastes (e.g., PCB paint, PCB insulation, etc.) that is 50 mg/Kg PCB in the original item (e.g., paint, waterproofing) at the time of disposal. This is not based on a composite building sample. Historically, PCBs have been detected in a number of building materials including certain paint formulations, coatings for ceiling tiles, roofing, and siding materials, adhesives, waterproofing compounds, and any number of other chemical uses such as additives and plasticizers.

The three buildings sampled were chosen to represent all the buildings at Northeast Cape with respect to the composition of potential PCB-containing building materials. Based on the analytical results obtained, debris resulting from the Northeast Cape building demolition may be disposed in a state-permitted solid waste landfill provided the landfill is notified in advance that the debris contains PCB bulk product waste that leaches less than 10  $\mu$ g/L PCB.

#### 3.5 PAINT SAMPLING AT ABOVEGROUND STORAGE TANKS

Paint samples were collected from 22 steel ASTs and analyzed for lead. Another two ASTs were inspected, but no samples were collected because not enough paint was present to yield the necessary sample quantity. Table 3-8 shows an inventory of ASTs sampled for LBP, including associated analytical results. Tank locations and lead concentrations are shown on Figures 3-5 and 3-6.

All but two of the 22 ASTs sampled had LBP coatings, with concentrations ranging from 99 to 140,000 mg/Kg. These lead concentrations indicate that lead in airborne dust generated during cutting of the tanks could exceed Occupational Safety and Health Administration (OSHA) standards of 50  $\mu$ g/M<sup>3</sup> for worker exposure (29 CFR 1926.62). State of Alaska construction codes limit airborne lead dust exposure to 30  $\mu$ g/M<sup>3</sup> (AK.05.265). Air monitoring during BD/DR work is recommended.

#### 3.6 BACKGROUND SOIL AND SEDIMENT SAMPLING - SITE 30

Two background surface soil samples and one background sediment sample were collected and analyzed for DRO, RRO, GRO, BTEX, TOC, and TAL metals. Sample locations are shown on Figure 3-7. Analytical results are provided in Table 3-6.

Results from the tundra soil sample and the sediment sample, collected from a lake in a wet tundra area, show much higher DRO and RRO concentrations when compared to results from the soil sample collected from the gravel borrow area. This is not surprising given that TOC results were also much higher for the tundra-area soil and sediment samples. These results may explain the high TRPH and relatively low DRO concentrations found in background and other samples collected in previous studies. TRPH measures all hydrocarbons, including those that are

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

naturally occurring. As evidenced by soil and sediment samples collected in tundra areas, background concentrations of some organic compounds are higher than ADEC cleanup criteria. This is supported by interpretation of the sample chromatograms, which indicate that the predominant organic pattern in the samples is biogenic, not fuel-related.

Very low organic and TOC concentrations in the background gravel sample indicate that high TRPH and low DRO concentrations found during previous studies in samples collected from gravel pad areas may not be attributable to naturally-occurring organic material. If more detailed information is required for remediation decisions, gravel pad sites showing high TRPH and low DRO concentrations may warrant further sampling and analysis for GRO, DRO, RRO, and TOC.

#### 3.7 TEST PITS AT BURIED DRUM FIELD - SITE 10

Three test pits were hand-excavated within the fill material at Site 10 (Figure 3-8). Test pit locations were selected using information from a previous geophysical survey (MW, 1995) and after scanning the area with a metal locator. Fill material soils consisted of crushed and broken cobbles with boulders (some boulders weighed in excess of 200 lbs.).

Two test pits (TP1 and TP3) were located on the upper bank of the fill, above an area with high DRO contamination found in previous samples. Miscellaneous metal debris was found in TP1 and TP3, but no drums were observed. Heavy surface soil staining was evident at TP3 and staining increased with depth of excavation.

The largest test pit (TP2) measured 45 feet by 6 feet and was located in the center of the fill area. Crushed empty drums were found in the eastern end of this test pit, but no evidence of any residual products was observed. In the middle area and western end of TP2, numerous crushed drums and old timbers were uncovered. Other crushed or dented drums were observed under this debris layer. One drum full of liquid was exposed in TP2. The field crew made a small hole in this drum and extracted a pale amber-colored low viscosity product with a faint POL odor. The hole was sealed and the drum was left in place. No evidence of leaking product was observed in TP2. Excavation beneath the top debris layer was not attempted due to safety concerns about the full drum, other rusted debris, and weak timbers collapsing. It is recommended that all debris be removed from TP2 and disposed as necessary.

### 3.8 CHEMICAL NEUTRALIZATION AT BUILDING 101 - SITE 18

The area in Building 101 (Figure 3-4) where STB and DS-2 were formerly stored was examined. The floor was covered with 2-4 inches of water. Sodium bisulfate and sodium bicarbonate were applied to the appropriate areas on the floor to neutralize any chemical residuals where chemicals were previously stored. A slight fizzing sound was noted during slurry application; however, no other evidence of chemical reactions was observed.

#### 3.9 UTILIDOR SURVEY

Where accessible without danger to the field team, utilidors were surveyed for ease of access and the presence of pipes and insulation, and evaluated for potential as contaminant migration pathways. Utilidor access areas are shown on Figure 3-9.

Most utilidors were located beneath arctic walkways that connected the Main Operations Complex buildings. These utilidors were accessed from outside the arctic walkways by removing tile or wood siding. The utilidor trenches were typically open 2 to 4 feet bgs and the pipes were located from 2 feet bgs to approximately 1 foot above grade. Utilidors away from the buildings were accessed via plywood or steel hatches on concrete vaults. Due to confined space restrictions, field workers did not enter these vaults.

Utilidors in the central and eastern portions of the utilidor system contained five pipes, described below:

- One 8-inch diameter fiberglass-wrapped pipe
- One 12-inch diameter fiberglass-wrapped pipe
- One 8-inch diameter pipe with <sup>1</sup>/<sub>2</sub>-inch thick PACM wrap
- One 8-inch diameter steel pipe with no insulation
- One 12-inch pipe with 2-inch thick unknown insulation (possibly polystyrene)

Most utilidors in the western portion of the utilidor system contained pipes with no insulation. One exception, the utilidor connecting the Emergency Power and Operation Building (Site 14) to Building 101 West (western edge of Site 18), contained four pipes with the following characteristics:

- One 2-inch diameter pipe with 1-inch thick gray PACM wrap
- One 8-inch diameter steel pipe with no insulation
- One 8-inch diameter pipe with 2-inch thick pink PACM wrap
- One 12-inch diameter pipe with 2-inch thick polystyrene wrap

Based on field observations, utilidor pipes wrapped in PACM would be easily accessible following removal of aboveground structures during BD/DR operations. Access to PACM-wrapped pipes in concrete vaults and building basements may be difficult due to structural instability and flooding problems.

Because the utilidor system is located upgradient of known fuel spill sites at Northeast Cape, the utilidors are not likely contaminant migration pathways for these contaminants.

#### 3.10 BIOLOGICAL SAMPLING AT DRAINAGE BASIN, SUQITUGHNEQ RIVER, AND CONTROL STREAM - SITES 28, 29, AND 30

The following is a brief summary of the biological sampling results from the 1999 Phase II RI. Results presented in this section are meant to serve as an overview of the biological sampling work conducted. Detailed explanations of sampling and analysis methodology and more thorough discussions of results and conclusions are provided in the reports produced by ENRI and the Alaska District. Biological sampling sites are shown on Figure 3-10. Full reports submitted by ENRI and Alaska District are included in Appendix D.

#### 3.10.1 Sediment Toxicity

Sediment toxicity was measured using the Microtox® bacterial bioassay to determine if the stream ecosystem has been impacted by site contaminants. Sediment toxicity results are shown in Table 3-3.

| Reach                                                                                                                           | Location    | TU    |
|---------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| Quangeghsaq River, control stream: 200 m just upstream of highest storm tide                                                    | Downstream  | 65.9  |
| Quangeghsaq River, control stream: 200 m just upstream of highest storm tide                                                    | Upstream    | 34.9  |
| Suqitughneq River Tributary, downstream control: 100 m reach in headwaters of small tributary                                   | Mid-channel | 202.1 |
| Suqitughneq River, upstream control: upstream of confluence with receptor creek, 100 m above to 200 m below access road culvert | Right Bank  | 72.5  |
| Suqitughneq River, potentially stressed location: 50 m below to 200 m above runway bridge                                       | Left Bank   | 174.1 |
| Suqitughneq River, potentially stressed location: 50 m below to 200 m above runway bridge                                       | Right Bank  | 423.6 |
| Spill tributary, potentially stressed location: 200 m reach from large pool below spill to confluence with Suqitughneq River    | Upstream    | 213.3 |
| Spill tributary, potentially stressed location: 200 m reach from large pool below spill to confluence with Suqitughneq River    | Downstream  | 846.0 |

TU - toxicity unit

Toxicity unit (TU) values were significantly higher for samples from stressed sites than for control samples with similar substrate characteristics. These results indicate that the stream environment has been impacted by contamination, probably from the 1969 diesel fuel spill.

#### 3.10.2 Community Assessments

Community assessments included evaluation of macroinvertebrate and fish populations in the affected reaches. Results of these assessments are presented below.

#### 3.10.2.1 Macroinvertebrates

Assessment of the macroinvertebrate community consisted of sampling at the study reaches within the Suqitughneq River drainage and control stream. Results indicated macroinvertebrate community impairment below the spill area and at the spill tributary. The site below the spill area was characterized by lower total taxa richness than the control stream. At the spill tributary, density was an order of magnitude lower than at any other site.

#### 3.10.2.2 Fish

Dolly Varden char, Alaska blackfish, ninespine stickleback, and fourhorn sculpin were captured in the Suqitughneq River during the 1999 survey. Dolly Varden and blackfish were captured throughout the drainage, while stickleback and a single marine sculpin were captured only at the furthest downstream reach near the intertidal lagoon. Blackfish were the only species captured in the spill tributary.

In addition to minnow trapping and electroshocking, angling was attempted at the mouths of the Suqitughneq and Tapisaghak Rivers to compare fish communities. The Tapisaghak River is approximately 3 miles east of the Northeast Cape site. One adult Dolly Varden was captured at the mouth of the Suqitughneq River, and several adult Dolly Varden and two pink salmon were captured in the Tapisaghak River (control stream).

#### 3.10.3 Fish Tissue Toxicity

Fish tissue samples were collected and analyzed for the presence of PAHs and PCBs. Results for PAHs and PCBs detected in fish tissue samples are shown in Table 3-4. Complete fish tissue sampling results are presented in Appendix D.

Fish tissue was tested for 18 PAHs; 5 were present in the blackfish samples collected at the spill tributary (slurc01). PAHs were not detected in tissue samples from any other site. The PCB Aroclor<sup>™</sup> 1260 was present in tissue samples of Dolly Varden char collected from the downstream stressed site (slsuq01) and the upstream control site (slsuq02). Aroclor<sup>™</sup> 1260 was also present in blackfish from the spill tributary (slurc01). PCBs were not detected in tissue samples from any other site.

Based on EPA (1999) guidelines, concentrations of PCBs in Dolly Varden and blackfish throughout the Suqitughneq River drainage were within the "no consumption recommended" risk category.

|                         | Fish Species / Sample Collection Sites |                                |                               |  |  |  |  |  |  |
|-------------------------|----------------------------------------|--------------------------------|-------------------------------|--|--|--|--|--|--|
| Analytes                | Dolly Varden Char<br>(slsuq01)         | Dolly Varden Char<br>(slsuq02) | Alaska Blackfish<br>(slurc01) |  |  |  |  |  |  |
| PAHs (μg/Kg)            |                                        |                                |                               |  |  |  |  |  |  |
| 2-Methylnaphthalene     |                                        |                                | 71                            |  |  |  |  |  |  |
| Ácenaphthene            |                                        |                                | 7                             |  |  |  |  |  |  |
| Fluorene                |                                        |                                | 11                            |  |  |  |  |  |  |
| Naphthalene             |                                        |                                | 16                            |  |  |  |  |  |  |
| Phenanthrene            |                                        |                                | 9                             |  |  |  |  |  |  |
| PCBs (µg/Kg) wet weight |                                        |                                |                               |  |  |  |  |  |  |
| Aroclor™ 1260           | 140                                    | 160                            | 100                           |  |  |  |  |  |  |

| Table 3-4 | Fish Tissue Toxicity Sam | pling Results Exceeding | g Method Reporting Limits |
|-----------|--------------------------|-------------------------|---------------------------|
|           |                          |                         |                           |

PAH - polynuclear aromatic hydrocarbon

PCB - polychlorinated biphenyl

#### 3.10.4 Habitat Assessment

The 1999 Phase II RI habitat assessment was conducted using the ASCI method. Ten parameters, as described in the ENRI report (Appendix D of this document), were evaluated as "Excellent", "Good", "Fair" or "Poor." Point values were assigned based on these evaluations. Physical habitat measurements and field parameters (water temperature, dissolved oxygen, conductivity, and pH) were also collected at each site and assigned point values for the habitat assessment score.

Physical habitat quality was similar between control and stressed sites as reflected in the habitat assessment scores provided in Table 3-5.

| Reach                                                                                                                                     | Habitat Score |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Suqitughneq River, potentially stressed location: 50 m below to 200 m above runway bridge (slsuq01)                                       | 170           |
| Spill Tributary, potentially stressed location: 200 m reach from large pool below spill to confluence with Suqitughneq River (slurc01)    | 172           |
| Suqitughneq River, upstream control: upstream of confluence with receptor creek, 100 m above to 200 m below access road culvert (slsuq02) | 176           |
| Suqitughneq River Tributary, downstream control: 100 m reach in headwaters of small tributary (slsut01)                                   | 172           |
| Quangeghsaq River, control stream: 200 m just upstream of highest storm tide (slqan01)                                                    | 164           |

Table 3-5Habitat Assessment Scores

These scores indicate optimal habitat conditions for macroinvertebrate communities with potential to support similar diversity and abundance. Despite similar physical habitat quality and availability, biological communities in the contaminant-impacted areas are less abundant and diverse than surrounding habitat should support.

# TABLE 3-6RESULTS FOR SITES 7, 12, AND 30

|         |              | Location: | Sit      | ie 7                 |                    |              | Site                     | e 12         |              |              | Site 30 (                  | Background Lo | cations)               | ADEC Regulatory Criteri |            | Critoria |
|---------|--------------|-----------|----------|----------------------|--------------------|--------------|--------------------------|--------------|--------------|--------------|----------------------------|---------------|------------------------|-------------------------|------------|----------|
|         |              | 99NEC:    | 07SD901  | 07SD902              | 12SB901            | 12SS902      | 12SS906                  | 12SS903      | 12SS904      | 12SS905      | 30SS901                    | 30SS902       | 30SD903                | ADEC                    | Regulatory | Criteria |
|         |              |           | Sediment | Sediment<br>(901 QC) | Subsurface<br>Soil | Surface Soil | Surface Soil<br>(902 QC) | Surface Soil | Surface Soil | Surface Soil | Background<br>Surface Soil | Surface Soil  | Background<br>Sediment | Method<br>1             | 1          | Method 2 |
| Method  | Analyte      | Units:    |          |                      |                    |              | , <i>,</i>               |              |              |              | (Gravel)                   | (Tundra)      | _                      | Site 7                  | Site 12    | Limiting |
| AK101   | GRO          | mg/Kg     |          |                      | 22                 | ND           | ND                       | ND           | 11           | ND           | ND                         | ND            | ND                     | 500                     | 50         | 300      |
| AK102   | DRO          | mg/Kg     | 380      | 340                  | 140                | 42           | 46                       | 68           | 59           | 29           | ND                         | 430           | 580                    | 1000                    | 100        | 250      |
| AK103   | RRO          | mg/Kg     | 3900     | 3600                 | 230                | 560          | 390                      | 620          | 470          | 290          | 59                         | 2300          | 3200                   | 2000                    | 2000       | 10000    |
| SW8021F | Benzene      | mg/Kg     |          |                      | ND                 | ND           | ND                       | ND           | ND           | ND           | ND                         | ND            | ND                     | _                       |            | 0.02     |
|         | Ethylbenzene | mg/Kg     |          |                      | 0.11               | ND           | ND                       | ND           | ND           | ND           | ND                         | ND            | ND                     | _                       |            | 5.5      |
|         | Toluene      | mg/Kg     |          |                      | ND                 | ND           | ND                       | 0.031        | ND           | ND           | ND                         | 0.12          | 0.89                   |                         |            | 5.4      |
|         | Xylenes      | mg/Kg     |          |                      | 0.16               | ND           | ND                       | ND           | 0.035        | ND           | ND                         | ND            | ND                     | _                       |            | 78       |
| SW9060  | TOC          | Percent   |          |                      |                    |              |                          |              |              |              | 0.26                       | 36            | 25                     | _                       |            |          |
| SW6010  | Antimony     | mg/Kg     |          |                      |                    |              |                          |              |              |              | ND                         | ND            | ND                     | _                       |            | 3.6      |
|         | Barium       | mg/Kg     |          |                      |                    |              |                          |              |              |              | 65                         | 46            | 49                     | _                       |            | 1100     |
|         | Beryllium    | mg/Kg     |          |                      |                    |              |                          |              |              |              | 0.79                       | ND            | ND                     |                         | -          | 1.9      |
|         | Cadmium      | mg/Kg     |          |                      |                    |              |                          |              |              |              | 0.31                       | ND            | ND                     |                         |            | 5        |
|         | Calcium      | mg/Kg     |          |                      |                    |              |                          |              |              |              | 3200                       | 2200          | 1700                   |                         |            |          |
|         | Chromium     | mg/Kg     |          |                      |                    |              |                          |              |              |              | 49                         | 5.2           | 6.9                    |                         |            | 26       |
|         | Cobalt       | mg/Kg     |          |                      |                    |              |                          |              |              |              | 8.6                        | ND            | ND                     |                         |            |          |
|         | Copper       | mg/Kg     |          |                      |                    |              |                          |              |              |              | 31                         | 4.3           | 4.4                    |                         |            |          |
|         | Iron         | mg/Kg     |          |                      |                    |              |                          |              |              |              | 21000                      | 8800          | 7900                   |                         |            |          |
|         | Magnesium    | mg/Kg     |          |                      |                    |              |                          |              |              |              | 6700                       | 1100          | 1100                   |                         |            |          |
|         | Manganese    | mg/Kg     |          |                      |                    |              |                          |              |              |              | 290                        | 22            | 43                     |                         |            |          |
|         | Nickel       | mg/Kg     |          |                      |                    |              |                          |              |              |              | 24                         | 3.8           | 4.3                    | _                       |            | 87       |
|         | Potassium    | mg/Kg     |          |                      |                    |              |                          |              |              |              | 2100                       | 470           | 270                    |                         |            |          |
|         | Silver       | mg/Kg     |          |                      |                    |              |                          |              |              |              | ND                         | ND            | ND                     |                         |            | 21       |
|         | Vanadium     | mg/Kg     |          |                      |                    |              |                          |              |              |              | 28                         | 8.3           | 10                     |                         |            | 710      |
|         | Zinc         | mg/Kg     |          |                      |                    |              |                          |              |              |              | 77                         | 12            | 15                     |                         |            | 9100     |
| SW7060  | Arsenic      | mg/Kg     |          | -#- Fui              |                    |              |                          |              |              |              | 3.6                        | ND            | ND                     |                         |            | 2        |
| SW7421  | Lead         | mg/Kg     |          |                      |                    |              |                          |              |              |              | 25                         | 4.8           | 4                      |                         |            | 400      |
| SW7471  | Mercury      | mg/Kg     |          |                      |                    |              |                          |              |              |              | ND                         | ND            | ND                     |                         |            | 1.4      |
| SW7740  | Selenium     | mg/Kg     |          |                      |                    |              |                          |              |              |              | ND                         | ND            | ND                     |                         |            | 3.5      |
| SW7841  | Thallium     | mg/Kg     |          |                      |                    |              |                          |              |              |              | ND                         | ND            | ND                     |                         |            |          |

ADEC-Alaska Department of Environmental ConservationDRO-diesel range organicsGRO-gasoline range organicsND-not detectedQC-quality controlRRO-residual range organicsTOC-total organic content

,

.

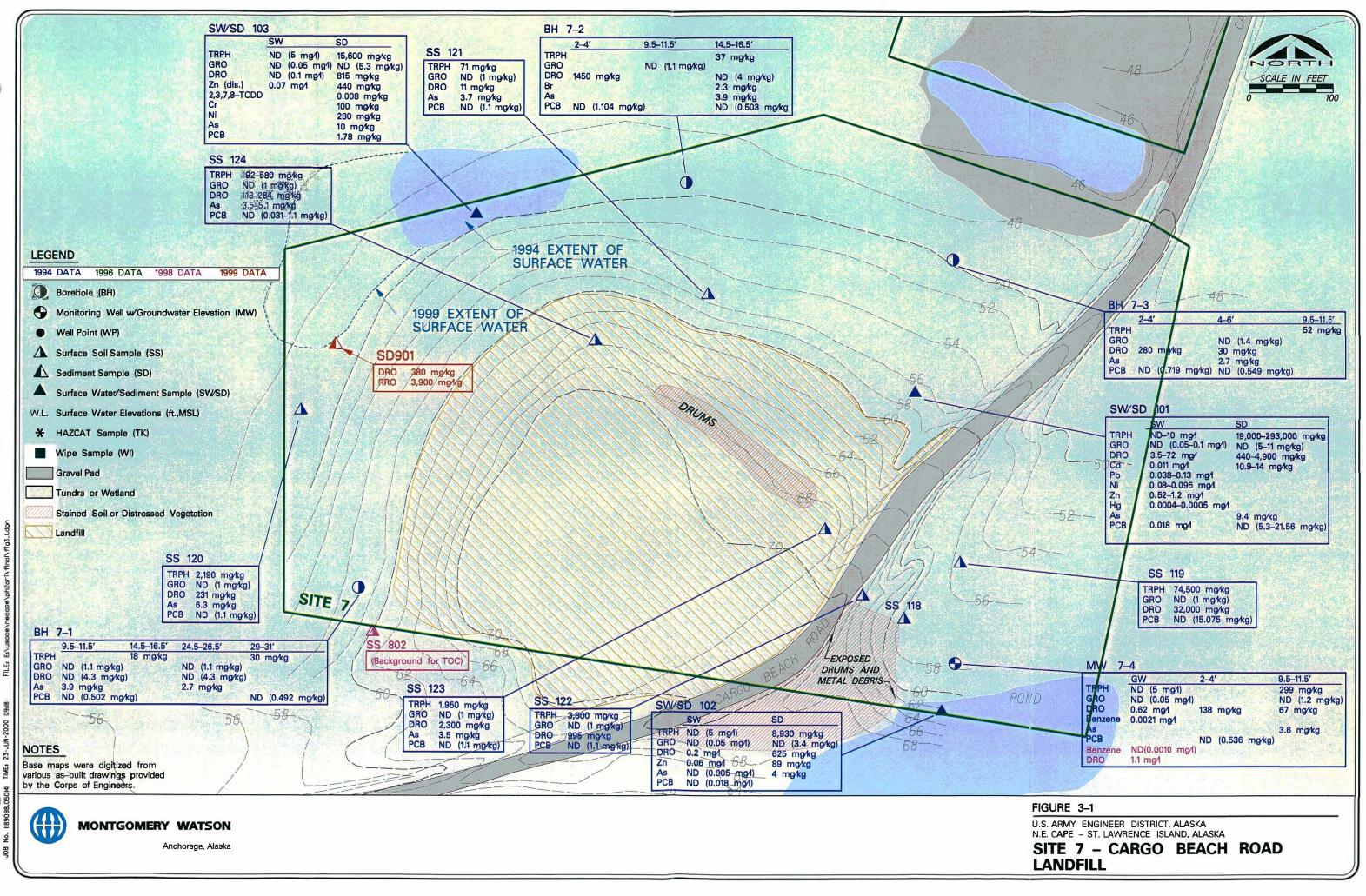
۰.

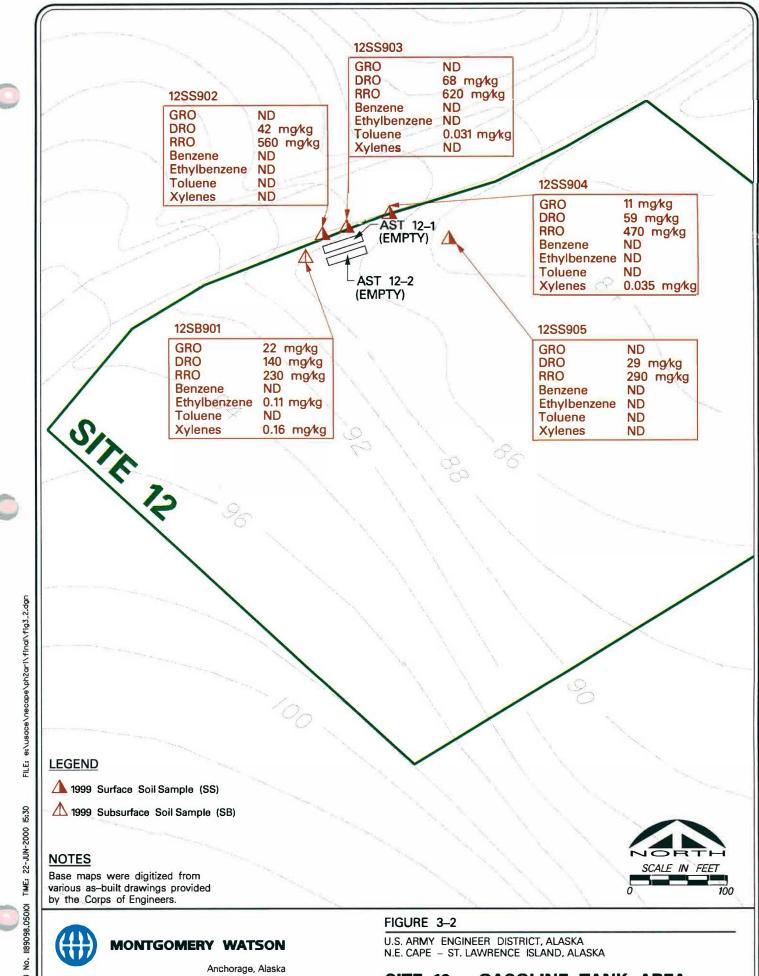
1999 Phase II Remedial Investigation, Northeast Cape, Alaska - FINAL

| alyte         B-1016 (Aroclor™ 1016)         B-1221 (Aroclor™ 1221)         B-1232 (Aroclor™ 1232)         B-1242 (Aroclor™ 1242)         B-1242 (Aroclor™ 1242)         B-1248 (Aroclor™ 1248)         B-1254 (Aroclor™ 1254)         B-1260 (Aroclor™ 1260)         tal PCB         senic         rium         dmium         romium         ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99NEC:<br>Matrix<br>Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                 | 21SD901<br>Sediment<br>(Sewage<br>Sludge)<br>ND<br>ND<br>ND<br>ND<br>S2<br>70<br>122<br>ND                                                                                                                                                                                                           | Co-Disposal of<br>MS with Sewage<br>Sludge <sup>2.</sup>                                                                                                                                                                                                                                                                                                                                              | RCRA Toxicity<br>Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-1016 (Aroclor <sup>™</sup> 1016)<br>B-1221 (Aroclor <sup>™</sup> 1221)<br>B-1232 (Aroclor <sup>™</sup> 1232)<br>B-1242 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1248)<br>B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>Senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                              | (Sewage<br>Sludge)<br>ND<br>ND<br>ND<br>ND<br>ND<br>52<br>70<br>122                                                                                                                                                                                                                                  | MS with Sewage                                                                                                                                                                                                                                                                                                                                                                                        | RCRA Toxicity<br>Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1016 (Aroclor <sup>™</sup> 1016)<br>B-1221 (Aroclor <sup>™</sup> 1221)<br>B-1232 (Aroclor <sup>™</sup> 1232)<br>B-1242 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1248)<br>B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>Senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                       | Sludge)           ND           ND           ND           ND           ND           State           70           122                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       | Characteristic'                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1016 (Aroclor <sup>™</sup> 1016)<br>B-1221 (Aroclor <sup>™</sup> 1221)<br>B-1232 (Aroclor <sup>™</sup> 1232)<br>B-1242 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1248)<br>B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>Senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>52<br>70<br>122                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1221 (Aroclor <sup>™</sup> 1221)<br>B-1232 (Aroclor <sup>™</sup> 1232)<br>B-1242 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1248)<br>B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                | ND<br>ND<br>ND<br>52<br>70<br>122                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1232 (Aroclor <sup>™</sup> 1232)<br>B-1242 (Aroclor <sup>™</sup> 1242)<br>B-1248 (Aroclor <sup>™</sup> 1242)<br>B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                         | ND<br>ND<br>52<br>70<br>122                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2B-1242 (Aroclor™ 1242)<br>2B-1248 (Aroclor™ 1248)<br>2B-1254 (Aroclor™ 1254)<br>2B-1260 (Aroclor™ 1260)<br>2B-1260 (Aroclor™ 1260)<br>2B-1260 (Aroclor™ 1260)<br>2B-1260 (Aroclor™ 1260)<br>2B-1254 (Aroclor™ 1260)<br>2B-1260 (Aroclor™ 12 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                                  | ND<br>ND<br>52<br>70<br>122                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1248 (Aroclor™ 1248)<br>B-1254 (Aroclor™ 1254)<br>B-1260 (Aroclor™ 1260)<br>tal PCB<br>Senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L<br>mg/L                                                                                                                                                                                   | ND<br>52<br>70<br>122                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1254 (Aroclor <sup>™</sup> 1254)<br>B-1260 (Aroclor <sup>™</sup> 1260)<br>tal PCB<br>senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                                           | 52<br>70<br>122                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B-1260 (Aroclor™ 1260)<br>tal PCB<br>senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg<br>mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                                                    | <b>70</b><br>122                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tal PCB<br>senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/Kg<br>mg/L<br>mg/L                                                                                                                                                                                                             | 122                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| senic<br>rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L<br>mg/L                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rium<br>dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dmium<br>romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   | 0.83                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| romium<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| li cui y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | ne -                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| drin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| thoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| xaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| rbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| loroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      | <br>                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ntachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rachloroethene<br>chloroethene<br>yl chloride<br>Dichlorobenzene<br>5-Trichlorophenol<br>6-Trichlorophenol<br>Dinitrotoluene<br>sols (Methyl Phenols)<br>kachlorobenzene<br>kachloroethane<br>obenzene<br>tachlorophenol<br>idine | rachloroethene mg/L<br>shloroethene mg/L<br>yl chloride mg/L<br>Dichlorobenzene mg/L<br>5-Trichlorophenol mg/L<br>6-Trichlorophenol mg/L<br>binitrotoluene mg/L<br>sols (Methyl Phenols) mg/L<br>kachlorobenzene mg/L<br>kachlorobutadiene mg/L<br>kachloroethane mg/L<br>obenzene mg/L<br>dine mg/L | rachloroethenemg/LNDchloroethenemg/LNDchloroethenemg/LNDyl chloridemg/LNDDichlorobenzenemg/LND5-Trichlorophenolmg/LND6-Trichlorophenolmg/LNDDinitrotoluenemg/LNDsols (Methyl Phenols)mg/L0.026kachlorobenzenemg/LNDkachlorobutadienemg/LNDobenzenemg/LNDitachlorophenolmg/LNDkachlorophenolmg/LNDkachlorophenolmg/LNDkachlorophenolmg/LNDkachlorophenolmg/LNDkachlorophenolmg/LNDkachlorophenolmg/LND | rachloroethenemg/LNDchloroethenemg/LNDyl chloridemg/LNDDichlorobenzenemg/LND5-Trichlorophenolmg/LND6-Trichlorophenolmg/LNDDinitrotoluenemg/LNDsols (Methyl Phenols)mg/LNDcachlorobenzenemg/LNDcachlorobenzenemg/LNDcachlorobenzenemg/LNDcachlorobenzenemg/LNDcachlorobenzenemg/LNDcachloroethanemg/LNDobenzenemg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LNDotachlorophenolmg/LND |

Table 3-7Results for Site 21

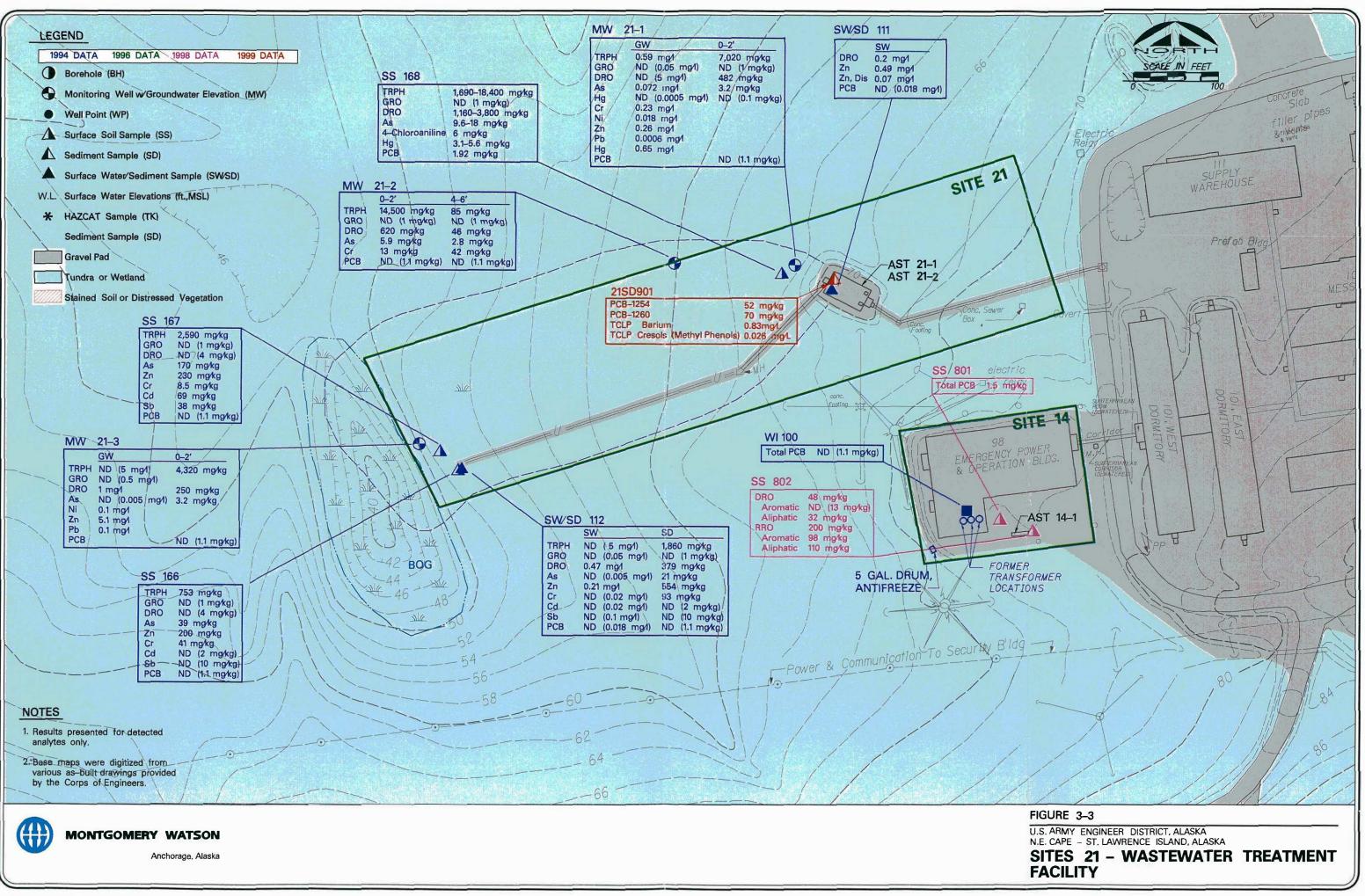
Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL Page 3-11 June, 2000


| Site | Tank     | Capacity  | Past Contents                                 | Current                                                       | Paint Color(s)               | Paint                      | Pb      |
|------|----------|-----------|-----------------------------------------------|---------------------------------------------------------------|------------------------------|----------------------------|---------|
|      | Number   | (gallons) |                                               | Contents                                                      |                              | Coverage                   | mg/Kg   |
| 2    | AST 2-1  | 1,000     | Diesel                                        | Empty                                                         | Green, white                 | < 1%                       | NA      |
| 3    | AST 3-1  | 500       | Diesel                                        | Empty                                                         | White                        | < 1%                       | ND      |
|      | AST 3-2  | 335       | Diesel                                        | Empty                                                         | White                        | < 1%                       | ND      |
| 4    | AST 4-1  | 15,000    | Potable water                                 | Empty                                                         | White                        | < 5%                       | 1,100   |
|      | AST 4-2  | 400       | Potable water                                 | 30% full<br>(rainwater)                                       | White, blue                  | 25%                        | 2,100   |
| 6    | AST 6-1  | 500       | Potable water                                 | Empty                                                         | Red                          | End 100%,<br>Body <<br>10% | 42,000  |
| 11   | AST 11-1 | 400,000   | Diesel                                        | 1.3% full<br>(rainwater with<br>sheen)                        | Green, black                 | 90%                        | 1,400   |
|      | AST 11-2 | 400,000   | Diesel                                        | Empty                                                         | Green, black                 | 90%                        | 920     |
|      | AST 11-3 | 400,000   | Diesel                                        | Empty                                                         | Green, black                 | 90%                        | 1,200   |
| 12   | AST 12-1 | 15,000    | Gasoline                                      |                                                               |                              | End 95%,<br>Body 80%       | 64,000  |
|      | AST 12-2 | 30,000    | Gasoline                                      | Empty                                                         | (none)                       | (none)                     | NA      |
| 13   | AST 13-1 | 1,000     | Diesel                                        | Empty                                                         | Gray                         | < 20%                      | 99      |
|      | AST 13-4 | 5,000     | Diesel                                        | Empty                                                         | Green, red,<br>orange        | 60%                        | 100,000 |
|      | AST 13-5 | 500       | Potable water                                 | Empty                                                         | Green, orange                | 95%                        | 110,000 |
|      | AST 13-6 | 204,000   | Potable water                                 | Empty                                                         | Orange, green,<br>red, gray  | 90%                        | 100,000 |
| 14   | AST 14-1 | 5,000     | Fuel                                          | 50% full<br>(rainwater)                                       | Orange, yellow               | < 1%                       | 49,000  |
| 16   | AST 16-1 | 1,000     | Oil for roads<br>(probably used<br>motor oil) | 50% full<br>(rainwater,<br>sludge and<br>floating<br>product) | Orange, black                | 5%                         | 140,000 |
| 18   | AST 18-1 | 200       | Unknown                                       | Empty                                                         | White                        | 5%                         | 350     |
| 19   | AST 19-1 | 250       | Spent<br>antifreeze                           | 20% full (spent antifreeze)                                   | Red, green                   | < 2%                       | 4,100   |
|      | AST 19-2 | 250       | Potable water                                 | Empty                                                         | Yellow, red                  | 50%                        | 93,000  |
| 22   | AST 22-2 | 60,000    | Potable water                                 | Empty                                                         | Gray, orange,<br>green, blue | 75%                        | 100,000 |
|      | AST 22-3 | 60,000    | Potable water                                 | Empty                                                         | Gray, orange,<br>green, blue | 75%                        | 93,000  |
|      | AST 22-4 | 60,000    | Potable water                                 | Empty                                                         | Gray, orange,<br>green, blue | 75%                        | 110,000 |
|      | AST 22-5 | 60,000    | Potable water                                 | Empty                                                         | Gray, orange,<br>green, blue | 75%                        | 83,000  |

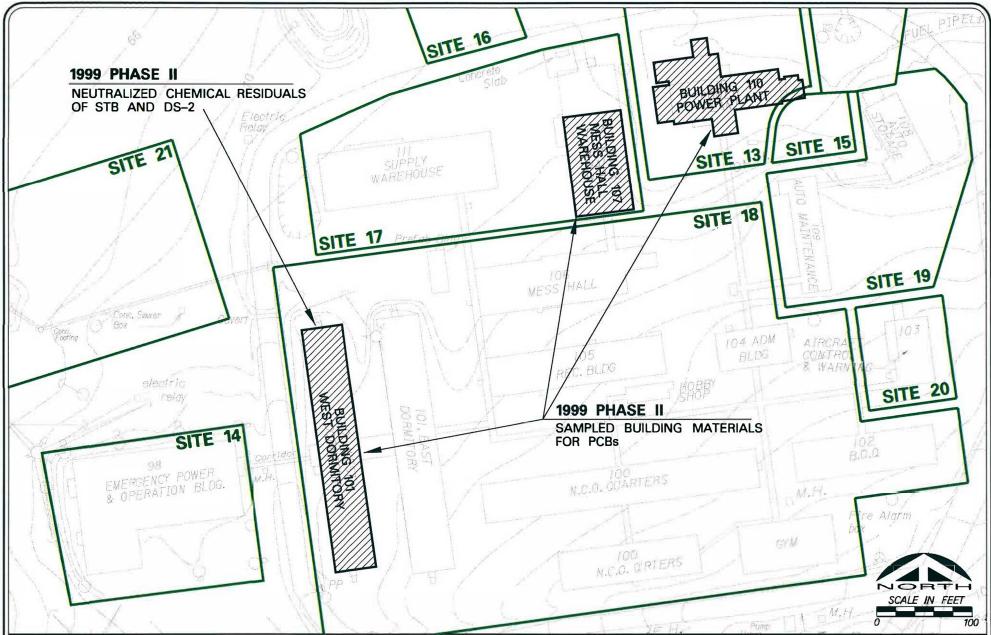

| Table 3-8 | Lead Results for Painted ASTs |
|-----------|-------------------------------|
| ILDICCO   |                               |

.

AST - aboveground storage tank NA - Not analyzed ND - Not detected Pb - lead


Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL @Page 3-12 June, 2000



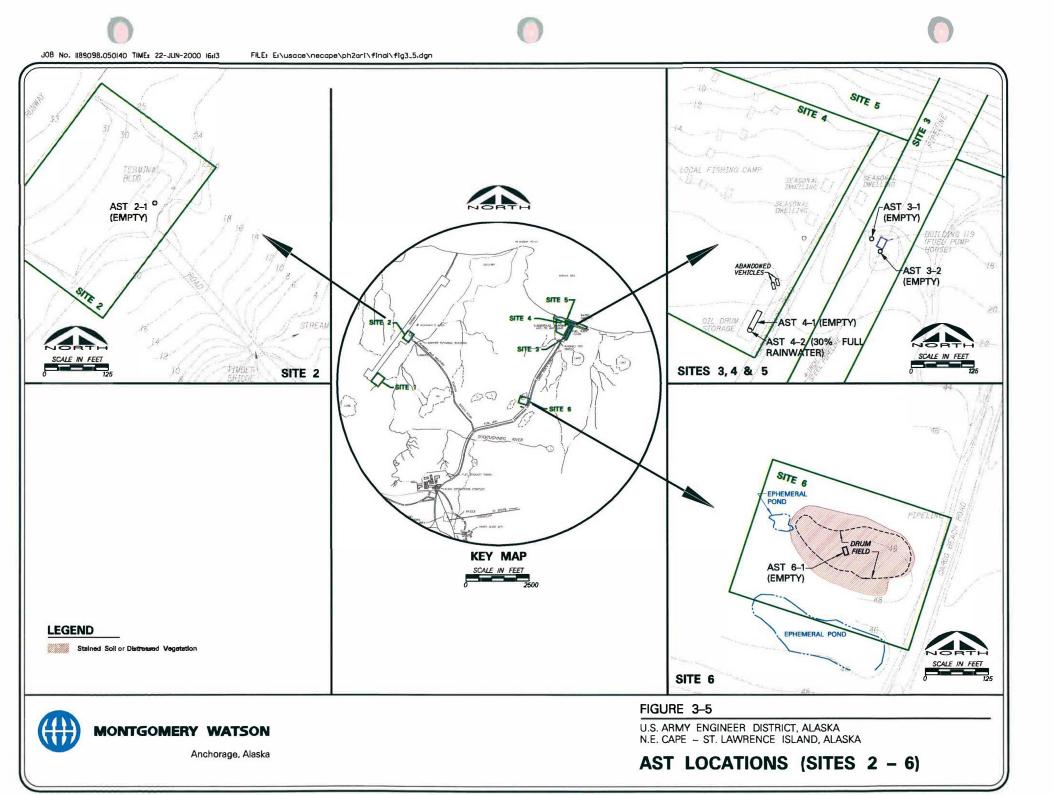



SITE 12 – GASOLINE TANK AREA

No. 1189098.050101 800









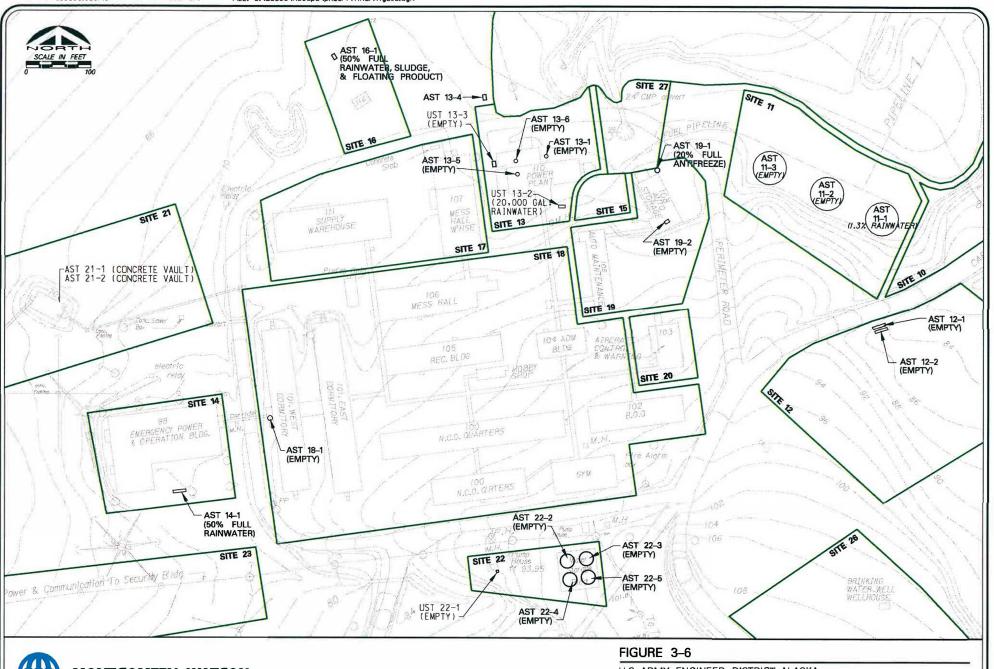


U.S. ARMY ENGINEER DISTRICT, ALASKA N.E. CAPE – ST. LAWRENCE ISLAND, ALASKA

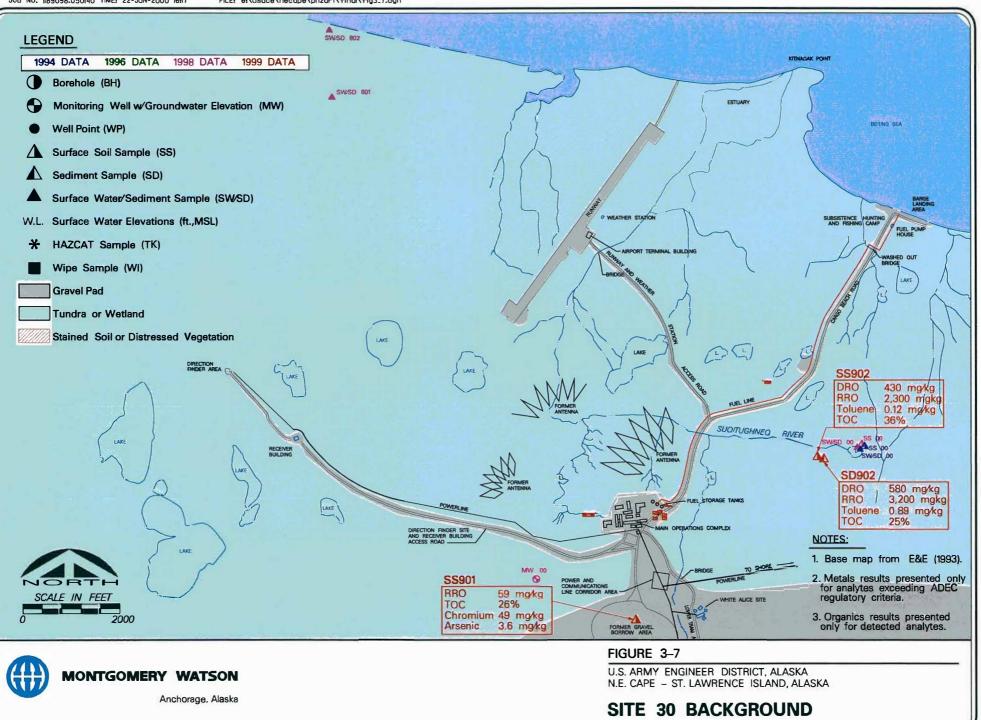
FIGURE 3-4

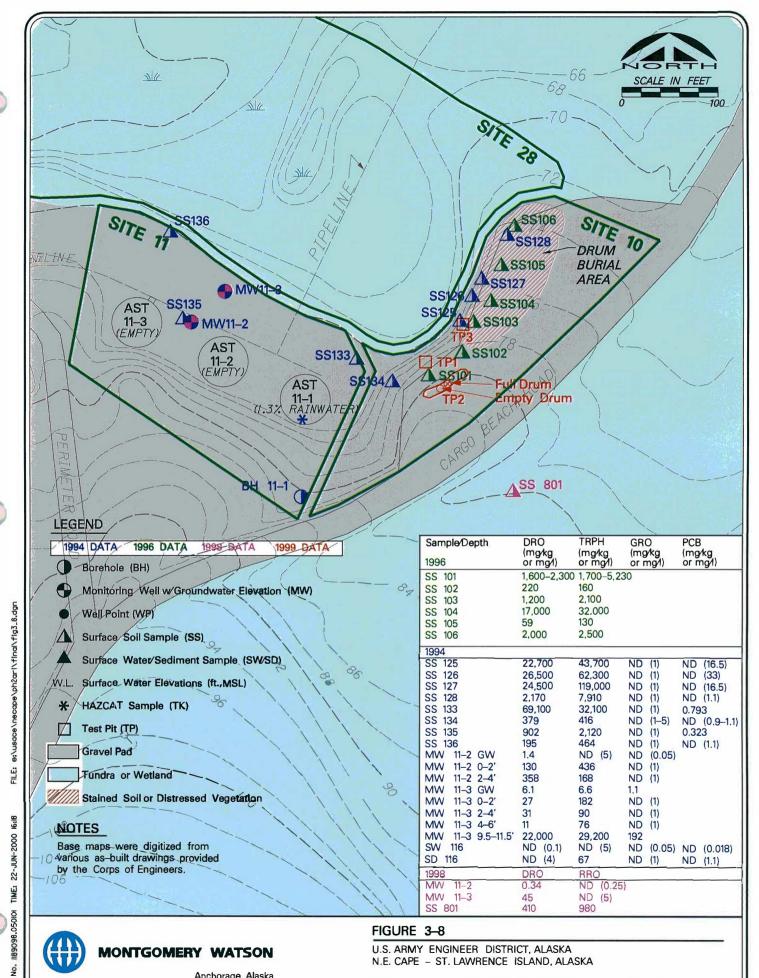
BUILDINGS 101, 107, AND 110








MONTGOMERY WATSON


u.s. army engineer district, alaska n.e. cape – st. lawrence island, alaska

AST LOCATIONS (SITES 11 - 22)

JOB No. 1189098.050140 TIME: 22-JUN-2000 16:17 FILE: e: N

FILE: e:\usace\necape\ph2ari\final\fig3\_7.dgn





Anchorage, Alaska

800

SITE 10 – BURIED DRUM FIELD

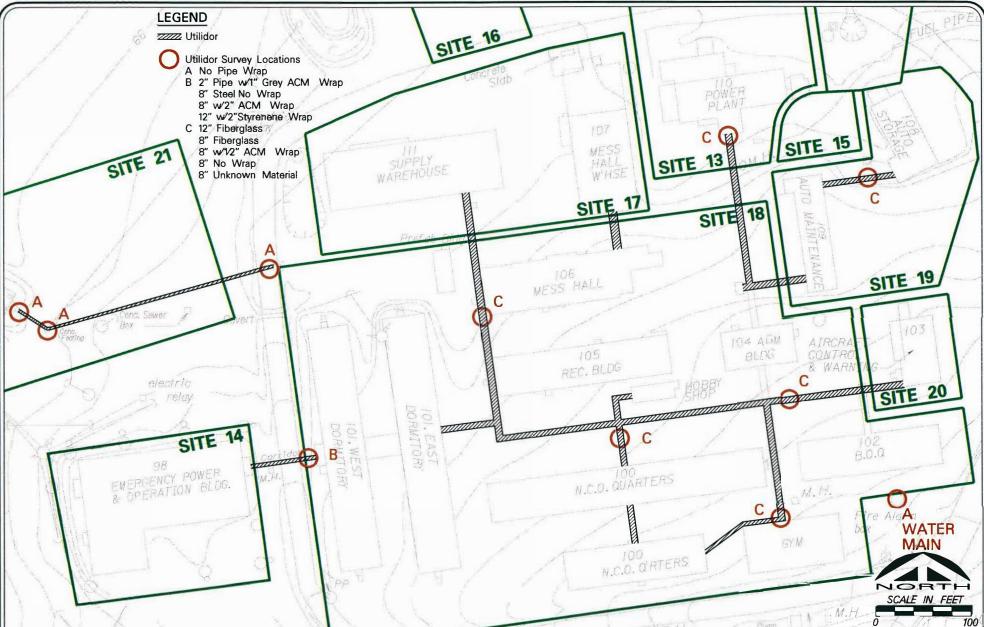
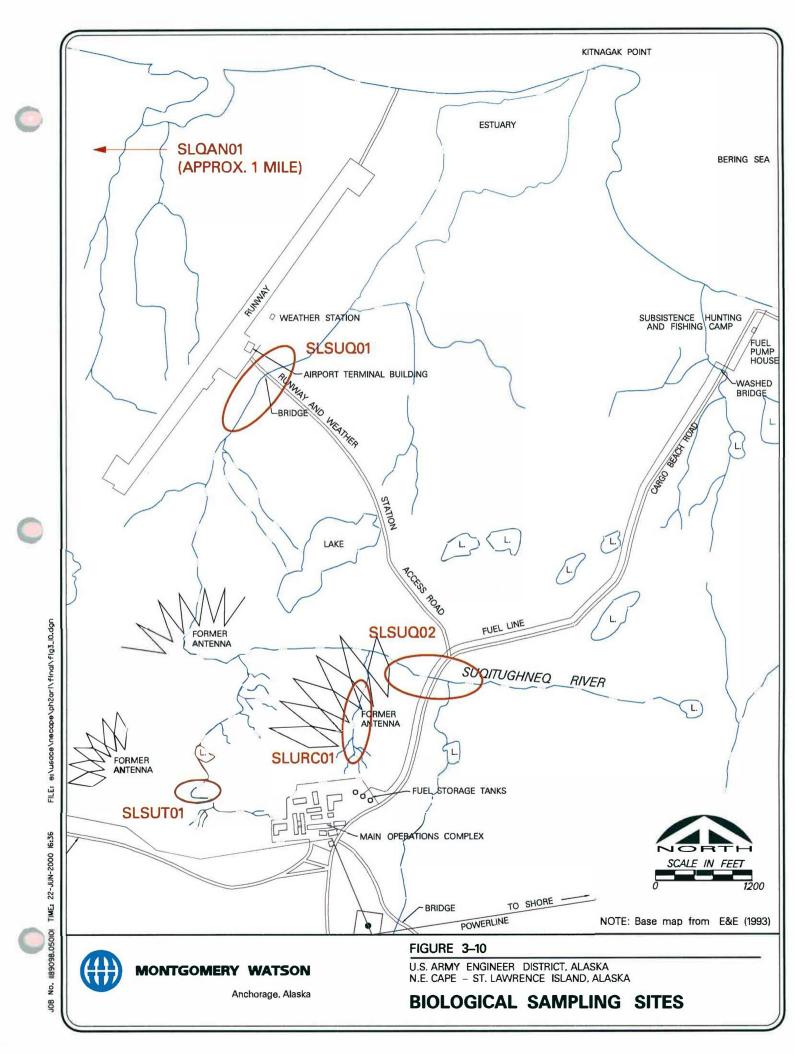






FIGURE 3-9

U.S. ARMY ENGINEER DISTRICT, ALASKA N.E. CAPE – ST. LAWRENCE ISLAND, ALASKA

UTILIDOR SAMPLE LOCATIONS



# 4. CONCLUSIONS AND RECOMMENDATIONS

The Northeast Cape 1999 Phase II RI was performed to fill data gaps associated with results from 1996 and 1998 Phase II RI work. Conclusions of the Northeast Cape 1999 Phase II RI are summarized in Table 4-1. For sites where new data has affected data interpretation or remediation options, recommendations are presented.

# 4.1 BACKGROUND SOIL AND SEDIMENT - SITE 30

Background soil and sediment data were required to resolve four data gaps identified during previous investigations:

- 1. Levels of TRPH and DRO were unexpectedly high and exceeded regulatory criteria in many previous samples, including a background sample.
- 2. In many areas where DRO was the only fuel contaminant of concern and naturally occurring organics were expected to be low, TRPH levels in soil exceeded DRO levels by up to an order of magnitude. This phenomenon was also observed in a background soil sample collected in 1994, where background levels of 190 mg/Kg DRO and 3,040 mg/Kg TRPH were confirmed by laboratory analysis.
- 3. In samples collected during 1998, the aromatic and aliphatic fractions of DRO did not sum to the total DRO found using laboratory method AK 102.
- 4. DRO levels in background soil samples did not appear to be reproducible.

To resolve these data gaps, Montgomery Watson collected three additional background samples in 1999. These samples consisted of:

- One sediment sample representative of sediment collected from surface water in tundra areas
- One soil sample representative of surface soil in tundra areas
- One soil sample representative of surface soil used to construct the gravel pads at the installation

Analysis of 1999 background samples revealed high concentrations of TOC, DRO, and RRO in soil and sediment collected from tundra areas, suggesting that results from samples collected in tundra areas may be heavily influenced by biogenic organic material. The unexpectedly high levels of TRPH and DRO found in previous investigations can probably be attributed to background organics for samples collected from tundra areas.

The only sample collected to represent gravel pad background concentrations was collected during the 1999 Phase II RI. TOC, DRO, and RRO concentrations were low in the background soil sample, indicating that DRO and RRO concentrations for samples collected from gravel pad areas are generally not influenced by naturally occurring organics. Fuel components from

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

| Site Description                         | Site             | Data Gap                                                                                                  | Work Performed                                                                                                                                                                                             | Result                                                                                                      | Data Gap<br>Resolved | Conclusion                                                                                        |
|------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|
| Cargo Beach Road<br>Landfill             | 7                | Are fuel-related compounds<br>present above benchmark<br>screening criteria?                              | <ul> <li>Sediment sample         <ul> <li>(including QC and QA</li> <li>samples) collected and</li> <li>analyzed for DRO and</li> <li>RRO using most current</li> <li>ADEC methods.</li> </ul> </li> </ul> | DRO and RRO<br>concentrations below<br>regulatory limits.                                                   | Yes                  | Fuel contamination not<br>indicated in sediments at this<br>site.                                 |
|                                          |                  | Can previous high TRPH<br>and low DRO results be<br>confirmed?                                            |                                                                                                                                                                                                            | High RRO and low DRO concentrations detected.                                                               | Yes                  | High TRPH probably due to<br>high background organic<br>content.                                  |
| Gasoline Tank<br>Area                    | 12               | Are fuel constituents present in soil at this site?                                                       | Surface soil samples<br>collected and analyzed<br>for GRO, DRO, RRO,<br>BTEX.                                                                                                                              | No contaminants<br>present above<br>regulatory limits.                                                      | Yes                  | No fuel contamination indicated in soil at this site.                                             |
| Wastewater<br>Treatment Facility         | 21               | Is the sludge in the tanks a hazardous waste?                                                             | Sample collected and<br>analyzed for PCBs and<br>TCLP metals,<br>pesticides, VOCs, and<br>SVOCs.                                                                                                           | PCB concentrations<br>above ADEC and<br>federal criteria.                                                   | Yes                  | Sludge must be disposed at a PCB waste permitted facility.                                        |
| Buildings<br>Scheduled for<br>Demolition | 13,<br>17,<br>18 | How will potential presence<br>of PCBs in paint affect<br>building demolition debris<br>disposal options? | Building material<br>composite samples<br>collected and analyzed<br>for PCBs.                                                                                                                              | PCB concentration<br>below 18 AAC 60<br>solid waste disposal<br>limits.                                     | Yes                  | Building debris can be<br>disposed in a permitted solid<br>waste landfill.                        |
| Painted ASTs                             | Mult<br>-iple    | Are ASTs painted with<br>lead-based paint, posing a<br>potential risk to site<br>workers?                 | Paint samples collected<br>from painted ASTs and<br>analyzed for lead.                                                                                                                                     | Lead present in all paint samples.                                                                          | Yes                  | Abatement and/or PPE<br>recommended to protect site<br>workers during tank<br>demolition.         |
| Background Areas                         | 30               | Why are TRPH and DRO<br>concentrations so high in<br>background soil samples?                             | Soil and sediment<br>samples collected and<br>analyzed for GRO,<br>DRO, RRO, TOC, and<br>TAL metals.                                                                                                       | TOC, DRO, and RRO<br>consistently high in<br>tundra areas.<br>Chromatograms<br>indicate biogenic<br>source. | Yes                  | Background tundra areas have<br>biogenic DRO and RRO above<br>ADEC benchmark criteria.            |
|                                          |                  | Can high TRPH with low<br>DRO concentrations in soil<br>samples be explained?                             |                                                                                                                                                                                                            |                                                                                                             | Yes                  | High levels of biogenic<br>organics are likely source of<br>high TRPH results in tundra<br>areas. |
|                                          |                  | Do DRO aliphatic and<br>aromatic fractions sum to<br>total DRO concentration?                             | Background samples<br>were not analyzed for<br>DRO aliphatic and<br>aromatic fractions.                                                                                                                    | No data obtained to resolve this data gap.                                                                  | No                   | Should evaluate whether the value of this data warrants the effort necessary to obtain it.        |

# Table 4-1Summary Of 1999 Phase II RI Work and Results

1

| Site Description                                | Site          | Data Gap                                                                    | Work Performed                                                                                                        | Result                                                                                                                                        | Data Gap<br>Resolved | Conclusion                                                                                                                      |
|-------------------------------------------------|---------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Background Areas<br>(continued)                 |               | Are DRO results<br>reproducible?                                            | Current and previous<br>analytical results<br>compared.                                                               | Analytes and<br>analytical methods<br>not consistent over<br>the study period;<br>DRO results vary<br>depending on<br>location and soil type. | No                   | Comparison of DRO data<br>obtained using different<br>analytical methods not<br>recommended.                                    |
| Buried Drum Field                               | 10            | Is POL product present in<br>buried drums and causing<br>soil staining?     | Test pits excavated,<br>drums exposed and<br>examined.                                                                | No leaking drums<br>were found. One<br>intact drum full of<br>POL product was<br>uncovered.                                                   | Yes                  | Previous surface spills are likely source of soil staining.                                                                     |
| Housing Facilities<br>and Squad<br>Headquarters | 18            | Do STB and DS-2 chemical residuals remain in the former storage area?       | Sodium bicarbonate and<br>sodium bisulfate slurries<br>applied to former<br>storage area.                             | Residuals neutralized by slurry.                                                                                                              | Yes                  | Materials not expected to<br>exhibit hazardous waste<br>characteristics.                                                        |
| Main Operations<br>Complex                      | Mult<br>-iple | 1 1 5                                                                       | Visual survey conducted throughout the utilidor system.                                                               | Piping accessibility determined.                                                                                                              | Yes                  | Pipes expected to be easily<br>accessible during BD/DR<br>activities, especially once<br>aboveground structures are<br>removed. |
|                                                 |               | Does piping insulation consist of PACM?                                     | Piping insulation<br>inspected during utilidor<br>survey.                                                             | Pipe insulation includes PACM.                                                                                                                | Yes                  | Pipe insulation will require handling as PACM.                                                                                  |
|                                                 |               | Do the utilidors provide<br>contaminant migration<br>pathways?              | Contaminant migration<br>potential evaluated<br>during utilidor survey.                                               | Utilidors upgradient<br>of spill sites; no<br>contaminant<br>migration observed.                                                              | Yes                  | Utilidors not believed to be contaminant migration pathways.                                                                    |
| Drainage Basin<br>Area, Suqitughneq<br>River    | 28,<br>29     | Has fuel contamination<br>impacted the ecological<br>health of these areas? | Biological sampling<br>performed including<br>sediment toxicity, fish<br>tissue toxicity, and<br>habitat assessments. | Toxicity and<br>bioavailability of<br>contaminants verified<br>in sediment samples;<br>PAHs and PCBs<br>detected in fish<br>tissues.          | Yes                  | Contamination has adversely<br>impacted the ecology<br>downstream of the fuel spill<br>site.                                    |

.

#### Table 4-1 (Continued) Summary Ut 1999 Phase II RI Work and Results

| Site Description           | Site          | Data Gap | Work Performed                                                           | Result                                              | Data Gap | Conclusion |
|----------------------------|---------------|----------|--------------------------------------------------------------------------|-----------------------------------------------------|----------|------------|
|                            |               |          |                                                                          |                                                     | Resolved |            |
| Sample Locations           | Mult<br>-iple | NA       | Sampling and test pit locations surveyed.                                | Sampling and test pit locations accurately located. | NA       | NA         |
| Installation<br>Structures | Mult<br>-iple | NA       | Qualified Historical<br>Architect documented<br>installation structures. | SHPO requirements were met.                         | NA       | NA         |

- ADEC Alaska Department of Environmental Conservation
- AST aboveground storage tank
- BD/DR building demolition and debris removal
- BTEX benzene, toluene, ethylbenzene, and xylenes
- DRO diesel range organic
- DS-2 decontamination agent 2
- GRO gasoline range organic
- NA not applicable
- PACM presumed asbestos-containing materials
- PAH polynuclear aromatic hydrocarbons
- PCB polychlorinated biphenyl
- POL petroleum, oil, and lubricant
- PPE personal protective equipment
- QA quality assurance
- QC quality control
- RRO residual range organic
- SHPO State Historical Preservation Office
- STB super tropical bleach
- SVOC semivolatile organic compound
- TAL target analyte list
- TCLP toxicity characteristic leaching procedure
- TOC total organic content
- TRPH total recoverable petroleum hydrocarbons
- VOC volatile organic compound

1

outside the DRO and RRO ranges may be responsible for the high TRPH levels previously found in some gravel pad samples. This could be confirmed only by further sampling.

Several TAL metals were found in all 1999 background samples in concentrations exceeding ADEC Method 2 criteria by up to two orders of magnitude. The background gravel area sample had the highest metals concentrations.

Given the 1999 data, there is enough evidence to suggest that background concentrations could effect the interpretation of some analytical data. This should be taken into consideration when making remediation recommendations for sites with metals contamination or sites with high DRO concentrations located in tundra environments. DRO and RRO found in gravel pad areas are probably not due to biogenic organics.

The 1999 data cannot be used to calculate background concentrations for application installationwide as alternate cleanup levels because not enough background samples were collected to constitute a statistically significant population. Therefore, no new site-specific cleanup levels or changes to the remediation recommendations made in the Phase II RI Final Report (MW, 1999) are proposed at this time. Alternate cleanup levels for DRO and metals could be calculated if adequate additional background samples were collected. Alternate cleanup levels based on background concentrations have the potential to be markedly different than the cleanup levels currently proposed for Northeast Cape.

# 4.2 BIOLOGICAL ASSESSMENT AT DRAINAGE BASIN, SUQITUGHNEQ RIVER, AND CONTROL STREAM - SITES 28, 29 AND 30

Macroinvertebrate and fish community assessments and Microtox® bacterial bioassays verified the toxicity and bioavailability of contaminants in the downstream Suqitughneq River and the spill tributary. PCBs and PAHs were detected in fish tissues of Dolly Varden char and Alaska blackfish collected throughout the Suqitughneq River drainage.

The 1999 biological assessment did not determine the extent to which the Suqitughneq River drainage is used by wildlife or whether toxicants have accumulated in wildlife tissue. Migration of fish to other water bodies on St. Lawrence Island and potential for human consumption of wildlife species that have accumulated toxicants should be evaluated to refine the remedial action plan and more accurately measure risks to human and ecosystem health from the Northeast Cape FUDS.

- Alaska Department of Environmental Conservation (ADEC). 1999. Alaska Oil and Hazardous Substances Pollution Control Regulations, 18 AAC 75. January.
- Benton, M.J., M.L. Malott, S.S. Knight, C.M. Cooper, and W.H. Benson. 1995. Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. *Environmental Toxicology and Chemistry*. 14(3):411-414.
- Caton, L.W. 1991. Improving subsampling methods for the EPA "Rapid Bioassessment" benthic protocols. *Bulletin of the North America Benthological Society*. 8(3):317-319.
- Clifford, H.F. 1991. Aquatic invertebrates of Alberta. The University of Alberta Press, Edmonton, Alberta, Canada. 538 pp.
- Crawford, et al. 1993. Environmental and Natural Resources Institute (ENRI). 1999. Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska. Revised Draft. November.
- Ecology and Environment, Inc.(E&E). 1992. Site Inventory, Northeast Cape, St. Lawrence Island, Alaska. December.
- E&E. 1993. Chemical Data Acquisition Plan Site Inventory Update, Northeast Cape, St. Lawrence Island, Alaska. February.
- Environmental and Natural Resources Institute (ENRI). 1999. Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska. Revised Draft. November.
- ETHIX. 2000. Chemical Data Quality Review, Northeast Cape Sampling Event, 1999. Prepared for Army Corps of Engineers - Alaska Division. January 18.
- Major, E.B., M.T. Barbour, J.S. White, and L.S. Houston. 1998. Development of a biological assessment approach for Alaska streams: a pilot study on the Kenai Peninsula. Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK. 31 pp. And appendices.
- Major, E.B., and M.T. Barbour. 1997. Standard operating procedures for the Alaska Stream Condition Index: a modification of the U.S. EPA rapid bioassessment protocols.
- Merritt, R.W., and K.W. Cummins, eds. 1996. An introduction to the aquatic insects of North America. 3rd ed. Kendall/Hunt Publishing Company, Dubuque, IA. 862 pp.
- Montgomery Watson (MW). 1995. Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. January 25.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

- MW. 1995. Building Demolition and Debris Removal Technical Memorandum, Northeast Cape, St. Lawrence Island, Alaska. January 10.
- MW. 1995. Remedial Action Alternatives Technical Memorandum, Northeast Cape, St. Lawrence Island, Alaska. November.
- MW. 1996. Engineering Evaluation/Cost Analysis, Northeast Cape, St. Lawrence Island, Alaska. February.
- MW. 1997a. St. Lawrence Island Investigation HTW Activities Summary. September 18.
- MW. 1997b. Letter Report to Alaska District summarizing wire removal. October 10.
- MW. 1998. Final Work Plan 1998-1999 Phase II Remedial Investigation. Northeast Cape, St. Lawrence Island, Alaska. August 24.
- MW. 1999. Final Phase II Remedial Investigation. Northeast Cape, St. Lawrence Island, Alaska. August.
- Northwest EnviroService, Inc. (NES), 1995, HTW Removal at Northeast Cape, St. Lawrence, Alaska. June.
- Patton, W.W. & B. Csejtey. 1980. Geologic Map of St. Lawrence Island, Alaska, USGS Miscellaneous Investigation Map No. I-1203.
- Pennak. 1989. Environmental and Natural Resources Institute (ENRI). 1999. Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska. Revised Draft. November.
- Ringwood, A.H., M.E. DeLorenzo, R.E. Ross, and A.F. Holland. 1997. Interpretation of Microtox® solid-phase toxicity tests: the effects of sediment composition. *Environmental Toxicology and Chemistry.* 16(6): 1135-1140.
- Stewart, K.W., and B.P. Stark. 1993. Nymphs of North American stonefly genera (Plecoptera). University of North Texas Press, Denton, TX . 460 pp.
- Toolie, E. 1999. Personal communication, August 3. Northeast Cape, St. Lawrence Island, AK.
- United States Army Engineer District, Alaska (USAED). 1999. Trip report: Suqitughneq River fish community assessment and habitat characterization, Northeast Cape, Saint Lawrence Island, Alaska. Engineer District, Alaska, U.S. Army Corps of Engineers, Anchorage, AK. 21 pp.
- USAED. 1998. Letter from Deirdre M. Ginter (USAED) to Glenn Miller (ADEC) detailing building materials sampling procedures. October 29.

Phase II Remedial Investigation Report Addendum, 1999 Fieldwork, Northeast Cape, Alaska - FINAL June, 2000

- United States Army Environmental Hygiene Agency (USAEHA). 1993. Sampling Protocol, Building Demolition Debris and Buildings Painted with Lead-Based Paint.
- United States Department of Housing and Urban Development (HUD). 1990. Lead-Based Paint Interim Guidelines.
- United States Environmental Protection Agency (EPA). 1998. Toxic Substances Control Act, EPA Spill Cleanup Policy. 40 CFR 761.61. August 28.
- EPA. 1999. Polychlorinated biphenyls (PCBs) update: Impact on fish advisories. Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA-823-F-99-019. 7 pp.
- United States Fish and Wildlife Service (USFW). 1998. Listing of Endangered, Threatened and Candidate Species in Alaska. May.
- URS Corporation (URS). 1985. Defense Environmental Restoration Account, City of Gambell and Northeast Cape, St. Lawrence Island, Alaska. Volume II. Final Environmental Assessment, No. DACA85-85-C-0036. Anchorage, Alaska. August.
- Wiggins, G.B. 1996. Larvae of the North American caddisfly genera (Trichopetera). 2nd ed. University of Toronto Press, Toronto, Canada. 457 pp.

# APPENDIX A

Site Photographs





Blological Sampling at SLSUQ01



SLSUQ01



### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Biological Sampling at SLSUQ01



Biological sampling at SLSUQ01



APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

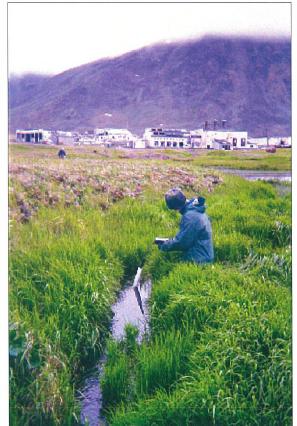


Sheen after kicking the bank at SLSUQ01



Electrofishing at SLSUQ01




APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

### SITE PHOTOGRAPHS



Flectrofishing at SLSUQ01



Biological sampling at drainage basin upstream of Suqitughneq River



MONTGOMERY WATSON Anchorage, Alaska

### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

# SITE PHOTOGRAPHS

JOB No. 11 060101 USACE/necape/ph2ari/appendic/Vphoto-.co-

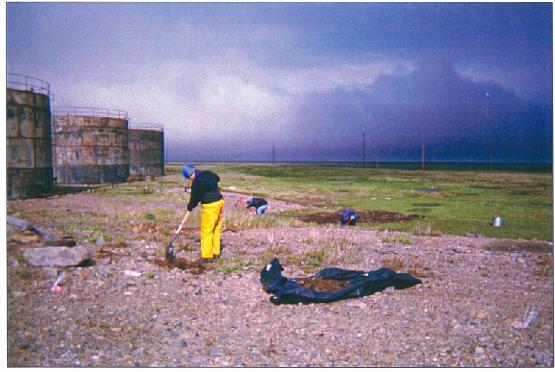


Sediment sampling location at Site 7



Site 10 bluff




MONTGOMERY WATSON Anchorage, Alaska

### APPENDIX A

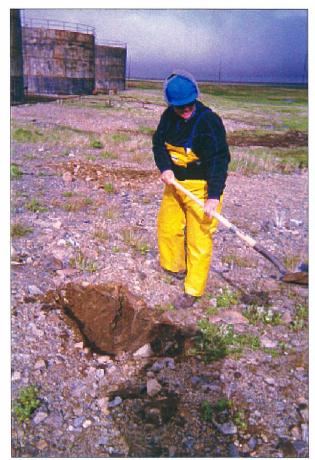
U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Site 10 excavation



Digging test pits at Site 10


Anchorage, Alaska

MONTGOMERY WATSON



APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Digging test pits at Site 10



Site 10 excavation

Anchorage, Alaska



APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

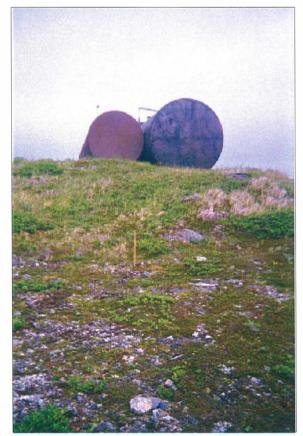


Buried drum excavated at Site 10



Clearing cobbles before collecting soil sample SS01 at Site 12




| MONTGOMERY | WATSON          |
|------------|-----------------|
|            | chorage, Alaska |

APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Site 12, SS04, SS03, and SS02 locations



Site 12, SS05 location



MONTGOMERY WATSON Anchorage, Alaska APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Sampling building materials at Site 13



Sampling building materials at Site 13



MONTGOMERY WATSON

APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Preparing to sample building materials at Site 17



Using a saw to access the utilidor at Site 19



### APPENDIX A

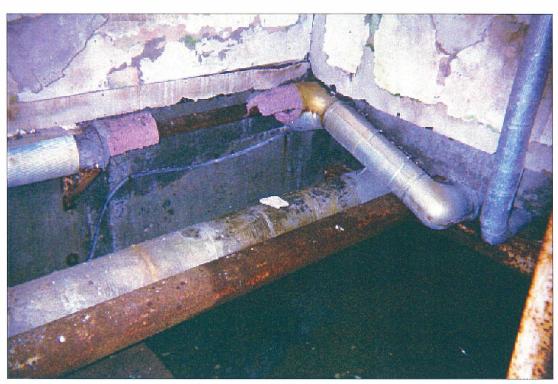
U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

#### Anchorage, Alaska



Utilidor pipes at Site 13




Utilidor pipes at Site 13



MONTGOMERY WATSON

APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Utilidor pipes at Site 13



Utilidor pipes at Site 13



MONTGOMERY WATSON Anchorage, Alaska APPENDIX A

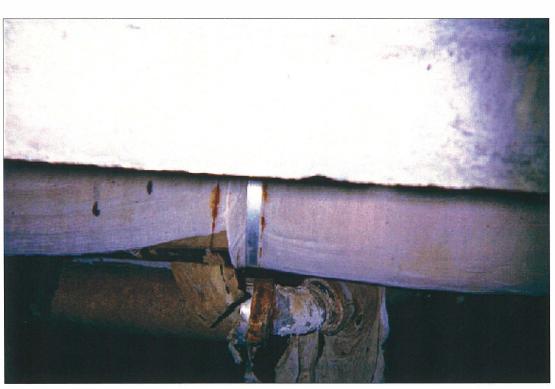
U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



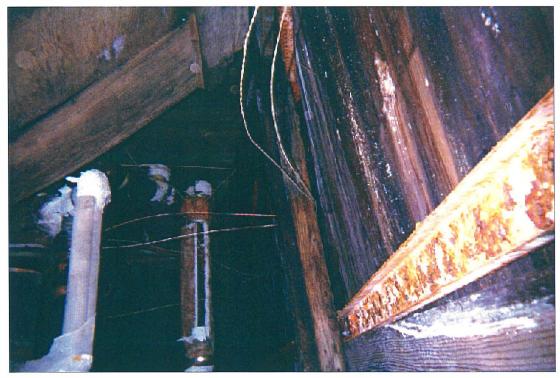
Pipes with wrap, Site 13



Partially collapsed arctic walkway over utilidor


### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK


# SITE PHOTOGRAPHS



Anchorage, Alaska



Piping in utilidor



Piping in utilidor



MONTGOMERY WATSON Anchorage, Alaska APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Vault from Rec Hall



Pipe vault at Site 21 attached to structure



### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

### SITE PHOTOGRAPHS

Anchorage, Alaska



Pipe vault leading to Site 21 on east side of road



Pipes and pipe wrap in Building 101



APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

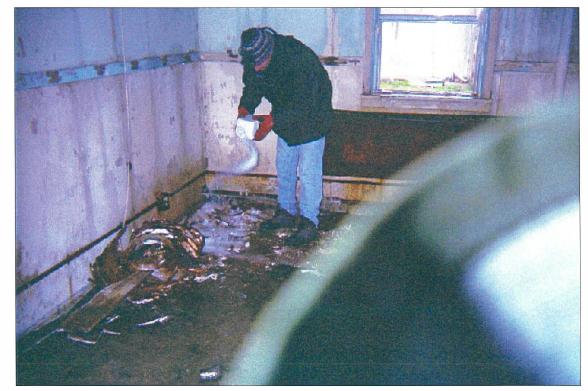


Pipes and pipe wrap in Building 101



Utilidor pipes




MONTGOMERY WATSON

APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Chemical neutralization in Building 101



Chemical neutralization in Building 101

Anchorage, Alaska

MONTGOMERY WATSON

### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Chemical neutralization in Building 101



Sludge sampling attempt at Site 21

Anchorage, Alaska



### APPENDIX A

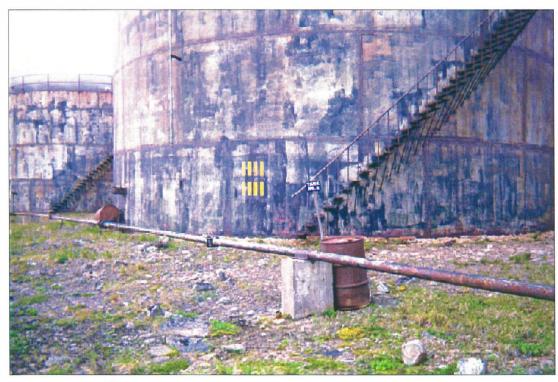
U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Composting a sludge sample at Site 21



Tank 2-1




MONTGOMERY WATSON Anchorage, Alaska APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Tank 6-1



Tanks 11-2, 11-3



APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

# SITE PHOTOGRAPHS

Anchorage, Alaska



Tank 13-4



Site 13 interior water tank



MONTGOMERY WATSON

APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Tank 16-1



AST in building at Site 13 (next to water tank)

JOB No. 11

.050101 USACE/necape/ph2ari/appendixA/phote: + 3dr



### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Background sampling location at gravel area



Background soil and sediment sample location with White Alice in the distance

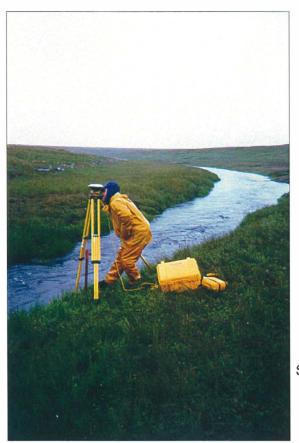


APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Survey at Site 10




Survey at Site 7



MONTGOMERY WATSON Anchorage, Alaska APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK



Survey at reference stream



Montgomery Watson field team leader Bonnie McLean with local residents and visitors



MONTGOMERY WATSON Anchorage, Alaska

### APPENDIX A

U.S. ARMY ENGINEER DISTRICT, ALASKA NORTHEAST CAPE PHASE II R. I., 1999 FIELD WORK

# APPENDIX B

Laboratory Results



| eld Sample ID | Samp. Date               | Parameter               | Result     | MRL        | Units          | Flag          | Method  | Lab Samp. No. | Lat |
|---------------|--------------------------|-------------------------|------------|------------|----------------|---------------|---------|---------------|-----|
| 9NEC03MI901   | 07/31/1999               | Lead                    | ND         | (16.0000)  | mg/kg          | U, <b>C</b> I | SW6010  | 821765-1      | MAS |
| DNEC03MI902   | 07/31/1999               | Lead                    | ND         | (31.0000)  | mg/kg          | U,CI          | SW6010  | 821765-2      | MAS |
| NEC04MI901    | 07/31/1999               | Lead                    | 1100.0000  | (16.0000)  | mg/kg          |               | SW6010  | 821765-3      | MAS |
| NEC04MI902    | 07/31/1999               | Lead                    | 2100.0000  | (110.0000) | mg/kg          |               | SW6010  | 821765-4      | MAS |
| NEC06M1901    | 08/01/1999               | Lead                    | 42000.0000 | (190.0000) | mg/kg          |               | SW6010  | 821765-5      | MA  |
| 0NEC07SD901   | 08/01/1999               | Diesel Range Organics   | 380.0000   | (110.0000) | mg/kg          |               | AK102   | 821760-1      | MA  |
| 9NEC07SD901   | 08/01/1999               | Oil, Misc.              | 3900.0000  | (220 0000) | mg/kg          |               | AK103   | 821760-1      | MA  |
| ONEC07SD902   | 08/01/1999               | Diesel Range Organics   | 340.0000   | (77.0000)  | mg/kg          |               | AK102   | 821760-2      | MA  |
| 9NEC07SD902   | 08/01/1999               | Oil, Misc.              | 3600.0000  | (150.0000) | mg/kg          |               | AK103   | 821760-2      | MA  |
| ONEC11MI901   | 08/01/1999               | Lead                    | 1400.0000  | (16.0000)  | mg/kg          |               | SW6010  | 821765-6      | MA  |
| 9NEC11MI902   | 08/01/1999               | Lead                    | 920.0000   | (16.0000)  | mg/kg          |               | SW6010  | 821765-7      | MA  |
| 9NEC11MI902   | 08/01/1999               | Lead                    | 1200.0000  | (16.0000)  | mg/kg          |               | SW6010  | 821765-8      | MA  |
|               |                          | Lead                    | 64000.0000 | (320.0000) | mg/kg          |               | SW6010  | 821765-18     | MA  |
| PNEC12MI901   | 08/01/1999               |                         | 22.0000    | (5.0000)   | mg/kg          |               | AK101   | 821760-3      | MA  |
| PNEC12SB901   | 08/01/1999               | Gasoline Range Organics | 140.0000   | (11.0000)  | mg/kg          |               | AK102   | 821760-3      | MA  |
| NEC12SB901    | 08/01/1999               | Diesel Range Organics   |            |            |                |               | AK102   | 821760-3      | MA  |
| NEC12SB901    | 08/01/1999               | Oil, Misc.              | 230.0000   | (22.0000)  | mg∕kg<br>ma∕ka | U             | SW8021F | 821760-3      | MA  |
| NEC12SB901    | 08/01/1999               | Benzene                 | ND         | (0.0200)   | mg/kg          | U             |         |               | MA  |
| NEC12SB901    | 08/01/1999               | Ethylbenzene            | 0.1100     | (0.0250)   | mg/kg          |               | SW8021F | 821760-3      |     |
| NEC12SB901    | 08/01/1999               | Toluene                 | ND         | (0.0250)   | mg/kg          | U             | SW8021F | 821760-3      | MA  |
| NEC12SB901    | 08/01/1999               | Xylenes                 | 0.1600     | (0.0250)   | mg/kg          |               | SW8021F | 821760-3      | MA  |
| NEC12SS902    | 08/01/1999               | Gasoline Range Organics | ND         | (5.7000)   | mg/kg          | U             | AK101   | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Diesel Range Organics   | 42.0000    | (12.0000)  | mg/kg          |               | AK102   | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Oil, Misc.              | 560.0000   | (24.0000)  | mg/kg          |               | AK103   | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Benzene                 | ND         | (0.0230)   | mg/kg          | U             | SW8021F | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Ethylbenzene            | ND         | (0.0280)   | mg/kg          | U             | SW8021F | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Toluene                 | ND         | (0.0280)   | mg/kg          | U             | SW8021F | 821760-4      | MA  |
| NEC12SS902    | 08/01/1999               | Xyl enes                | ND         | (0.0280)   | mg/kg          | U             | SW8021F | 821760-4      | MA  |
| NEC12SS903    | 08/01/1999               | Gasoline Range Organics | ND         | (6.0000)   | mg/kg          | U             | AK101   | 821760-5      | MA  |
| NEC12SS903    | 08/01/1999               | Diesel Range Organics   | 68.0000    | (60.0000)  | mg/kg          |               | AK102   | 821760-5      | MA  |
| NEC12SS903    | 08/01/1999               | Oil, Misc.              | 620.0000   | (120.0000) | mg/kg          |               | AK103   | 821760-5      | MA  |
| NEC12SS903    | 08/01/1999               | Benzene                 | ND         | (0.0240)   | mg/kg          | U             | SW8021F | 821760-5      | MA  |
| NEC12SS903    | 08/01/1999               | Ethylbenzene            | ND         | (0.0300)   | mg/kg          | U             | SW8021F | 821760-5      | MA  |
|               | 08/01/1999               | Toluene                 | 0.0310     | (0.0300)   | mg/kg          |               | SW8021F | 821760-5      | MA  |
| NEC12SS903    | 08/01/1999               |                         | ND         | (0.0300)   | mg/kg          | U             | SW8021F | 821760-5      | MA  |
| NEC12SS903    |                          | Xylenes                 | 11.0000    | (6.1000)   | mg/kg          | U             | AK101   | 821760-6      | MA  |
| NEC12SS904    | 08/01/1999<br>08/01/1999 | Gasoline Range Organics | 59.0000    | (11.0000)  | -              |               | AK102   | 821760-6      | MA  |
| NEC12SS904    |                          | Diesel Range Organics   |            |            | mg/kg          |               | AK102   | 821760-6      | MA  |
| NEC12SS904    | 08/01/1999               | Oil, Misc.              | 470.0000   | (23.0000)  | mg/kg          | U             | SW8021F | 821760-6      | MA  |
| DNEC12SS904   | 08/01/1999               | Benzene                 | ND         | (0.0240)   | mg/kg          |               | SW8021F | 821760-6      | MA  |
| 0NEC12SS904   | 08/01/1999               | Ethylbenzene            | ND         | (0.0310)   | mg/kg          | U             | SW8021F |               |     |
| 9NEC12SS904   | 08/01/1999               | Toluene                 | ND         | (0.0310)   | mg/kg          | U             |         | 821760-6      | MA  |
| NEC12SS904    | 08/01/1999               | Xyl enes                | 0.0350     | (0.0310)   | mg/kg          |               | SW8021F | 821760-6      | MA  |
| PNEC12SS905   | 08/01/1999               | Gasoline Range Organics | ND         | (5.9000)   | mg/kg          | U             | AK101   | 821760-7      | MA  |
| 9NEC12SS905   | 08/01/1999               | Diesel Range Organics   | 29.0000    | (13.0000)  | mg/kg          |               | AK102   | 821760-7      | MA  |
| 9NEC12SS905   | 08/01/1999               | Oil, Misc.              | 290.0000   | (26.0000)  | mg/kg          |               | AK103   | 821760-7      | MA  |
| NEC12SS905    | 08/01/1999               | Benzene                 | ND         | (0.0240)   | mg/kg          | U             | SW8021F | 821760-7      | MA  |
| 9NEC12SS905   | 08/01/1999               | Ethylbenzene            | ND         | (0.0290)   | mg/kg          | U             | SW8021F | 821760-7      | MA  |
| NEC12SS905    | 08/01/1999               | Toluene                 | ND         | (0.0290)   | mg/kg          | U             | SW8021F | 821760-7      | MA  |
| NEC12SS905    | 08/01/1999               | Xylenes                 | ND         | (0.0290)   | mg/kg          | U             | SW8021F | 821760-7      | MA  |
| NEC12SS906    | 08/01/1999               | Gasoline Range Organics | ND         | (5.6000)   | mg/kg          | U             | AK101   | 821760-8      | MA  |
| NEC12SS906    | 08/01/1999               | Diesel Range Organics   | 46.0000    | (11.0000)  | mg/kg          |               | AK102   | 821760-8      | MA  |
| NEC12SS906    | 08/01/1999               | Oil, Misc.              | 390.0000   | (22.0000)  | mg/kg          |               | AK103   | 821760-8      | MA  |
| NEC12SS906    | 08/01/1999               | Benzene                 | ND         | (0.0230)   | mg/kg          | U             | SW8021F | 821760-8      | MA  |
| NEC1255906    | 08/01/1999               | Ethylbenzene            | ND         | (0.0280)   | mg/kg          | U             | SW8021F | 821760-8      | MA  |
|               | 08/01/1999               | Toluene                 | ND         | (0.0280)   | mg/kg          | U             | SW8021F | 821760-8      | MA  |
| 9NEC12SS906   |                          |                         |            |            |                |               |         |               |     |

VLB Val. Qual.: Result negatively biased. VQQ Val. Qual.: PQL approx. due to QC or matrix effects

256

VR Val. Qual.: rejected value

des/pc:VFP5/appendix.prg/recs:

| Field Sample ID              | Samp. Date | Parameter                                          | Result       | MRL        | Units | Flag           | Method  | Lab Samp. No. | Lab |
|------------------------------|------------|----------------------------------------------------|--------------|------------|-------|----------------|---------|---------------|-----|
| 99NEC12SS906                 | 08/01/1999 | Xylenes                                            | ND           | (0.0280)   | mg/kg | U              | SW8021F | 821760-8      | MAS |
| 99NECI2TB901                 | 08/01/1999 | Gasoline Range Organics                            | ND           | (5.3000)   | mg/kg | U              | AK101   | 821760-13     | MAS |
| 99NEC12TB901                 | 08/01/1999 | Benzene                                            | ND           | (0.0210)   | mg⁄kg | U              | SW8021F | 821760-13     | MAS |
| 99NEC12TB901                 | 08/01/1999 | Ethylbenzene                                       | ND           | (0.0270)   | mg/kg | U              | SW8021F | 821760-13     | MAS |
| 99NEC12TB901                 | 08/01/1999 | Toluene                                            | ND           | (0.0270)   | mg/kg | U              | SW8021F | 821760-13     | MAS |
| 99NEC12TB901                 | 08/01/1999 | Xylenes                                            | ND           | (0.0270)   | mg/kg | U              | SW8021F | 821760-13     | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (6.7000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1248 (Aroclor 1248)                            | ND           | (3,3000)   | ug/l  | U.VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1248 (Aroclor 1248)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1254 (Aroclor 1254)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
|                              | 08/02/1999 | PCB-1254 (Aroclor 1254)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | PCB-1254 (Aroclor 1254)<br>PCB-1260 (Aroclor 1260) | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 |            | PCB-1260 (Aroclor 1260)                            | 0.2800       | (0.0330)   | mg/kg | VLB            | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 |                                                    | 0.2800<br>ND | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | Total Polychlorinatedbiphenyls                     | 0.2800       | (0.0330)   | mg/kg | VLB            | SW8082  | 821774-1      | MAS |
| 99NEC13BD901                 | 08/02/1999 | Total Polychlorinatedbiphenyls                     | 99.0000      | (33.0000)  |       | VLD            | SW6010  | 821765-9      | MAS |
| 99NEC13MI901                 | 07/31/1999 | Lead                                               | 100000.0000  |            | mg/kg |                | SW6010  | 821765-10     | MAS |
| 99NEC13MI902                 | 08/01/1999 | Lead                                               |              | (410.0000) | mg/kg |                |         | 821765-11     | MAS |
| 99NEC13MI903                 | 08/01/1999 | Lead                                               | 110000.0000  | (500.0000) | mg/kg |                | SW6010  | 821765-12     | MAS |
| 99NEC13MI904                 | 08/01/1999 | Lead                                               | 100000.0000  | (410.0000) | mg/kg |                | SW6010  |               |     |
| 99NEC14MI901                 | 07/31/1999 | Lead                                               | 49000.0000   | (330.0000) | mg/kg |                | SW6010  | 821765-13     | MAS |
| 99NEC16MI901                 | 08/01/1999 | Lead                                               | 140000.0000  | (570.0000) | mg/kg | 11100          | SW6010  | 821765-14     | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (6.7000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (0.0330)   | mg/kg | U, <b>V</b> QQ | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1248 (Aroclor 1248)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1248 (Aroclor 1248)                            | 0.1100       | (0.0330)   | mg/kg | VLB            | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1254 (Aroclor 1254)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1254 (Aroclor 1254)                            | ND           | (0.0330)   | mg/kg | U.VQQ          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1260 (Aroclor 1260)                            | 1.5000       | (3.3000)   | ug/l  | J,VLB          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | PCB-1260 (Aroclor 1260)                            | 2.6000       | (0.3300)   | mg/kg | VLB            | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | Total Polychlorinatedbiphenyls                     | 1.5000       | (3.3000)   | ug/l  | J,VLB          | SW8082  | 821774-2      | MAS |
| 99NEC17BD901                 | 08/02/1999 | Total Polychlorinatedbiphenyls                     | 2.7000       | (0.0330)   | mg/kg | VLB            | SW8082  | 821774-2      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1016 (Aroclor 1016)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (6.7000)   | ug/l  | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1221 (Aroclor 1221)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1232 (Aroclor 1232)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (3.3000)   | ug/l  | U.VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 | 08/02/1999 | PCB-1242 (Aroclor 1242)                            | ND           | (0.0330)   | mg/kg | U,VQQ          | SW8082  | 821774-3      | MAS |
|                              | 08/02/1999 | PCB-1248 (Arocior 1248)                            | ND           | (3.3000)   | ug/l  | U,VQQ          | SW8082  | 821774-3      | MAS |
| 99NEC18BD901                 |            |                                                    |              | (          | -0.   |                |         |               |     |
| 99NEC18BD901<br>99NEC18BD901 | 08/02/1999 | PCB-1248 (Aroclor 1248)                            | 0.1600       | (0.0330)   | mg/kg | VLB            | SW8082  | 821774-3      | MAS |

VLB Val. Qual.: Result negatively biased.

VQQ Val. Qual.: PQL approx. due to QC or matrix effects VR Val. Qual .: rejected value

-

| Field Sample ID | Samp. Date | Parameter                      | Result     | MRL        | Units   | Flag           | Method               | Lab Samp. No. | La |
|-----------------|------------|--------------------------------|------------|------------|---------|----------------|----------------------|---------------|----|
| 9NEC18BD901     | 08/02/1999 | PCB-1254 (Aroclor 1254)        | ND         | (3.3000)   | ug/l    | U, <b>VQ</b> Q | SW8082               | 821774-3      | MA |
| 9NEC18BD901     | 08/02/1999 | PCB-1254 (Aroclor 1254)        | ND         | (0.0330)   | mg/kg   | U.VQQ          | SW8082               | 821774-3      | MA |
| 9NEC18BD901     | 08/02/1999 | PCB-1260 (Aroclor 1260)        | ND         | (3.3000)   | ug/l    | U,VQQ          | SW8082               | 821774-3      | MA |
| 9NEC18BD901     | 08/02/1999 | PCB-1260 (Aroclor 1260)        | 1.6000     | (0.3300)   | mg/kg   | VLB            | SW8082               | 821774-3      | MA |
| 9NEC18BD901     | 08/02/1999 | Total Polychlorinatedbiphenyls | ND         | (3.3000)   | ug/l    | U              | SW8082               | 821774-3      | MA |
| 9NEC18BD901     | 08/02/1999 | Total Polychlorinatedbiphenyls | 1.8000     | (0.0330)   | mg/kg   | VLB            | SW8082               | 821774-3      | MA |
| 9NEC18MI901     | 08/01/1999 | Lead                           | 350.0000   | (31.0000)  | mg/kg   |                | SW6010               | 821765-15     | M  |
| 9NEC19MI901     | 07/31/1999 | Lead                           | 4100.0000  | (17.0000)  | mg/kg   |                | SW6010               | 821765-16     | M  |
| 9NEC19M1902     | 07/31/1999 | Lead                           | 93000.0000 | (410.0000) | mg/kg   |                | SW6010               | 821765-17     | M  |
| 9NEC21SD901     | 08/01/1999 | Percent Moisture               | 54.0000    | (0.0000)   | percent |                | CLPPM                | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Arsenic                        | ND         | (0.1000)   | mg/l    | U              | SW6010               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Barium                         | 0.8300     | (0.2000)   | mg/l    |                | SW6010               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Cadmium                        | ND         | (0.0050)   | mg/l    | U              | SW6010               | 821760-12     | M  |
|                 | 08/01/1999 | Chromium                       | ND         | (0.0100)   | mg/l    | U              | SW6010               | 821760-12     | M  |
| 9NEC21SD901     |            |                                | ND         | (0.0300)   | mg/l    | U              | SW6010               | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | Lead                           | ND         | (0.1000)   | -       | U              | SW6010               | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | Selenium                       | ND         |            | mg/l    | U              | SW6010               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Silver                         |            | (0.0100)   | mg/l    | U              | SW7470A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Mercury                        | ND         | (0.0002)   | mg/l    |                | SW 7470A<br>SW 8081A |               | M  |
| 9NEC21SD901     | 08/01/1999 | Chlordane                      | ND         | (0.0007)   | mg/l    | U              |                      | 821760-12     |    |
| 9NEC21SD901     | 08/01/1999 | Endrin                         | ND         | (0.0003)   | mg/l    | U              | SW8081A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Heptachlor                     | ND         | (0.0002)   | mg/l    | U              | SW8081A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Heptachlor epoxide             | ND         | (0.0002)   | mg/l    | U              | SW8081A              | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Methoxychlor                   | ND         | (0.0017)   | mg/l    | U              | SW8081A              | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Toxaphene                      | ND         | (0.0050)   | mg/l    | U              | SW8081A              | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | gamma-BHC (Lindane)            | ND         | (0.0002)   | mg/l    | U              | SW8081A              | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | PCB-1016 (Aroclor 1016)        | ND         | (0.7200)   | mg/kg   | U,CI           | SW8082               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | PCB-1221 (Aroclor 1221)        | ND         | (0.7200)   | mg/kg   | U,CI           | SW8082               | 821760-12     | Μ  |
| 9NEC21SD901     | 08/01/1999 | PCB-1232 (Aroclor 1232)        | ND         | (0.7200)   | mg/kg   | U,CI           | SW8082               | 821760-12     | Μ  |
| 9NEC21SD901     | 08/01/1999 | PCB-1242 (Aroclor 1242)        | ND         | (0.7200)   | mg/kg   | U,CI           | SW8082               | 821760-12     | Μ  |
| 9NEC21SD901     | 08/01/1999 | PCB-1248 (Aroclor 1248)        | ND         | (0.7200)   | mg/kg   | U,CI           | SW8082               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | PCB-1254 (Aroclor 1254)        | 52.0000    | (7.2000)   | mg/kg   |                | SW8082               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | PCB-1260 (Aroclor 1260)        | 70.0000    | (7.2000)   | mg/kg   |                | SW8082               | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | Total Polychlorinatedbiphenyls | 120.0000   | (0.7200)   | mg/kg   |                | SW8082               | 821760-12     | м  |
| 99NEC21SD901    | 08/01/1999 | 1,1-Dichloroethene             | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | 1,2-Dichloroethane             | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | м  |
|                 |            |                                | ND         | (0.1000)   | mg/l    | U              | SW8260A              | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | 2-Butanone                     | ND         | -          | -       | U              | SW8260A              | 821760-12     | м  |
| 99NEC21SD901    | 08/01/1999 | Benzene                        |            | (0.0100)   | mg/l    |                |                      |               |    |
| 9NEC21SD901     | 08/01/1999 | Carbon tetrachloride           | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Chlorobenzene                  | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Chloroform                     | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | Tetrachloroethene              | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | м  |
| 99NEC21SD901    | 08/01/1999 | Trichloroethene                | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | М  |
| 99NEC21SD901    | 08/01/1999 | Vinyl chloride                 | ND         | (0.0100)   | mg/l    | U              | SW8260A              | 821760-12     | M. |
| 9NEC21SD901     | 08/01/1999 | 1,4-Dichlorobenzene            | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | 2,4,5-Trichlorophenol          | ND         | (0.1700)   | mg/l    | U              | SW8270               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | 2,4,6-Trichlorophenol          | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | M  |
| 9NEC21SD901     | 08/01/1999 | 2,4-Dinitrotoluene             | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Cresols (Methyl Phenols)       | 0.0260     | (0.0330)   | mg/l    | J              | SW8270               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Hexachlorobenzene              | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Hexachlorobutadiene            | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | М  |
| 9NEC21SD901     | 08/01/1999 | Hexachloroethane               | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | Nitrobenzene                   | ND         | (0.0330)   | mg/l    | U              | SW8270               | 821760-12     | м  |
| 9NEC21SD901     | 08/01/1999 | Pentachlorophenol              | ND         | (0.1700)   | mg/l    | U              | SW8270               | 821760-12     | м  |
|                 |            | •                              |            |            | -       |                |                      |               |    |
| 9NEC21SD901     | 08/01/1999 | Pyridine                       | ND         | (0.1700)   | mg/l    | U              | SW8270               | 821760-12     | М  |

U EPA Flag - Compound was analyzed for, but was not detected

VLB Val. Qual.: Result negatively biased.

VQQ Val. Qual.: PQL approx. due to QC or matrix effects VR Val. Qual.: rejected value

des/pc:VFP5/appendix.prg/recs: 256

| ield Sample ID | Samp. Date               | Parameter                  | Result          | MRL        | Units   | Flag | Method  | Lab Samp. No. | L  |
|----------------|--------------------------|----------------------------|-----------------|------------|---------|------|---------|---------------|----|
| 9NEC22MI901    | 07/31/1999               | Lead                       | 100000.0000     | (380.0000) | mg/kg   |      | SW6010  | 821765-19     | MA |
| 9NEC22MI902    | 07/31/1999               | Lead                       | 93000.0000      | (410.0000) | mg/kg   |      | SW6010  | 821765-20     | M  |
| NEC22MI903     | 07/31/1999               | Lead                       | 110000.0000     | (490.0000) | mg/kg   |      | SW6010  | 821765-21     | M. |
| 9NEC22MI904    | 07/31/1999               | Lead                       | 83000.0000      | (470.0000) | mg/kg   |      | SW6010  | 821765-22     | M  |
| 9NEC30SD903    | 08/01/1999               | Gasoline Range Organics    | ND              | (27.0000)  | mg/kg   | U    | AK101   | 821760-11     | м  |
| 9NEC30SD903    | 08/01/1999               | Diesel Range Organics      | 580.0000        | (56.0000)  | mg/kg   |      | AK102   | 821760-11     | м  |
| 9NEC30SD903    | 08/01/1999               | Oil, Misc.                 | 3200.0000       | (110.0000) | mg/kg   |      | AK103   | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Percent Moisture           | 80.0000         | (0.0000)   | percent |      | CLPPM   | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Antimony                   | ND              | (13.0000)  | mg/kg   | U    | SW6010  | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Barium                     | 49.0000         | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Beryllium                  | ND              | (1.3000)   | mg/kg   | U    | SW6010  | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Cadmium                    | ND              | (1.3000)   | mg/kg   | U    | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Calcium                    | 1700.0000       | (27.0000)  | mg/kg   |      | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Chromium                   | 6.9000          | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Cobalt                     | ND              | (2.7000)   | mg/kg   | U    | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Copper                     | 4.4000          | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Iron                       | 7900.0000       | (13.0000)  | mg/kg   |      | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Magnesium                  | 1100.0000       | (13.0000)  | mg/kg   |      | SW6010  | 821760-11     | M  |
|                | 08/01/1999               | Manganese                  | 43.0000         | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | м  |
| 99NEC30SD903   | 08/01/1999               | Nickel                     | 4.3000          | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | M  |
| 99NEC30SD903   |                          | Potas sium                 | 270.0000        | (54.0000)  | mg/kg   |      | SW6010  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999<br>08/01/1999 |                            | 270.0000<br>ND  | (2.7000)   | mg/kg   | U    | SW6010  | 821760-11     | M  |
| 99NEC30SD903   |                          | Silver                     | 10.0000         |            |         | U    | SW6010  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Vanadium                   |                 | (2.7000)   | mg/kg   |      | SW6010  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Zinc                       | 15.0000         | (2.7000)   | mg/kg   |      |         | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Arsenic                    | ND              | (1.3000)   | mg/kg   | U    | SW7060  |               |    |
| 99NEC30SD903   | 08/01/1999               | Lead                       | 4.0000          | (0 7400)   | mg/kg   | ••   | SW7421  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Mercury                    | ND              | (0.5200)   | mg/kg   | U    | SW7471  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Selenium                   | ND              | (1.3000)   | mg/kg   | U    | SW7740  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Thallium                   | ND              | (1.3000)   | mg/kg   | U    | SW7841  | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Benzene                    | ND              | (0.1100)   | mg/kg   | U    | SW8021F | 821760-11     | M  |
| 99NEC30SD903   | 08/01/1999               | Ethylbenzene               | ND              | (0.1300)   | mg/kg   | U    | SW8021F | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Toluene                    | 0.8900          | (0.1300)   | mg/kg   |      | SW8021F | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Xylenes                    | ND              | (0.1300)   | mg/kg   | U    | SW8021F | 821760-11     | Μ  |
| 99NEC30SD903   | 08/01/1999               | Total Organic Carbon (TOC) | 25.0000         | (0.0000)   | percent |      | SW9060  | 821760-11     | М  |
| 99NEC30SS901   | 08/01/1999               | Gasoline Range Organics    | ND              | (4.7000)   | mg/kg   | U    | AK101   | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Diesel Range Organics      | ND              | (11.0000)  | mg/kg   | U    | AK102   | 821760-9      | М  |
| 99NEC30SS901   | 08/01/1999               | Oil, Misc.                 | 59.0000         | (22.0000)  | mg/kg   |      | AK103   | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Percent Moisture           | 12.0000         | (0.0000)   | percent |      | CLPPM   | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Antimony                   | ND              | (2.9000)   | mg/kg   | U    | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Barium                     | 65.0000         | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Beryllium                  | 0. <b>79</b> 00 | (0.2900)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Cadmium                    | 0.3100          | (0.2900)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Calcium                    | 3200.0000       | (110.0000) | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Chromium                   | 49.0000         | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | м  |
| 99NEC30SS901   | 08/01/1999               | Cobalt                     | 8.6000          | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Copper                     | 31.0000         | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 99NEC30SS901   | 08/01/1999               | Iron                       | 21000.0000      | (57.0000)  | mg/kg   |      | SW6010  | 821760-9      | м  |
| 99NEC30SS901   | 08/01/1999               | Magnesium                  | 6700.0000       | (57.0000)  | mg/kg   |      | SW6010  | 821760-9      | м  |
| 9NEC30SS901    | 08/01/1999               | Manganese                  | 290.0000        | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | Μ  |
| 9NEC30SS901    | 08/01/1999               | Nickel                     | 24.0000         | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | M  |
| 9NEC30SS901    | 08/01/1999               | Potas sium                 | 2100.0000       | (11.0000)  | mg/kg   |      | SW6010  | 821760-9      | M  |
| 99NEC30SS901   | 08/01/1999               | Silver                     | ND              | (1.1000)   | mg/kg   | U,CI | SW6010  | 821760-9      | M  |
| 99NEC30SS901   | 08/01/1999               | Vanadium                   | 28.0000         | (0.5700)   |         | 0,01 | SW6010  | 821760-9      | M  |
|                |                          |                            |                 |            | mg/kg   |      |         |               |    |
| 9NEC30SS901    | 08/01/1999               | Zinc                       | 77.0000         | (0.5700)   | mg/kg   |      | SW6010  | 821760-9      | M  |

VLB Val. Qual.: Result negatively biased. VQQ Val. Qual.: PQL approx. due to QC or matrix effects

VQQ Val. Qual.: PQL approx. due to QC or matrix effects VR Val. Qual.: rejected value

des/pc:VFP5/appendix.prg/recs: 256

. .

Printed: 11/05/199

.....

-

| Field Sample ID | Samp. Date | Parameter                  | Result    | MRL       | Units   | Flag | Method  | Lab Samp. No. | Lab |
|-----------------|------------|----------------------------|-----------|-----------|---------|------|---------|---------------|-----|
| 99NEC30SS901    | 08/01/1999 | Arsenic                    | 3.6000    | (1.4000)  | mg/kg   |      | SW7060  | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Lead                       | 25.0000   | (3.4000)  | mg/kg   |      | SW7421  | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Mercury                    | ND        | (0.1100)  | mg/kg   | U    | SW7471  | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Selenium                   | ND        | (0.3000)  | mg/kg   | U    | SW7740  | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Thallium                   | ND        | (0.6000)  | mg/kg   | U,CI | SW7841  | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Benzene                    | ND        | (0.0190)  | mg/kg   | U    | SW8021F | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Ethylbenzene               | ND        | (0.0230)  | mg/kg   | U    | SW8021F | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Toluene                    | ND        | (0.0230)  | mg/kg   | U    | SW8021F | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Xylenes                    | ND        | (0.0230)  | mg/kg   | U    | SW8021F | 821760-9      | MAS |
| 99NEC30SS901    | 08/01/1999 | Total Organic Carbon (TOC) | 0.2600    | (0.0000)  | percent |      | SW9060  | 821760-9      | MAS |
| 99NEC30SS902    | 08/01/1999 | Gasoline Range Organics    | ND        | (20.0000) | mg/kg   | U    | AK101   | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Diesel Range Organics      | 430.0000  | (43.0000) | mg/kg   |      | AK102   | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Oil, Misc.                 | 2300.0000 | (87.0000) | mg/kg   |      | AK103   | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Percent Moisture           | 81.0000   | (0.0000)  | percent |      | CLPPM   | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Antimony                   | ND        | (14.0000) | mg/kg   | U    | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Barium                     | 46.0000   | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Beryllium                  | ND        | (1.4000)  | mg/kg   | U    | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Cadmium                    | ND        | (1.4000)  | mg/kg   | U    | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Calcium                    | 2200.0000 | (27.0000) | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Chromium                   | 5.2000    | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Cobalt                     | ND        | (2.7000)  | mg/kg   | U    | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Copper                     | 4.3000    | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Iron                       | 8800.0000 | (14.0000) | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Magnesium                  | 1100.0000 | (14.0000) | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Manganese                  | 22.0000   | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Nickel                     | 3.8000    | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Potassium                  | 470.0000  | (55.0000) | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Silver                     | ND        | (2.7000)  | mg/kg   | U    | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Vanadium                   | 8.3000    | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Zinc                       | 12.0000   | (2.7000)  | mg/kg   |      | SW6010  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Arsenic                    | ND        | (1.4000)  | mg/kg   | U    | SW7060  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Lead                       | 4.8000    | (0.7700)  | mg/kg   |      | SW7421  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Mercury                    | ND        | (0.5500)  | mg/kg   | U    | SW7471  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Selenium                   | ND        | (1.4000)  | mg/kg   | U    | SW7740  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Thallium                   | ND        | (1.4000)  | mg/kg   | U    | SW7841  | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Benzene                    | ND        | (0.0810)  | mg/kg   | U    | SW8021F | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Ethylbenzene               | ND        | (0.1000)  | mg/kg   | U    | SW8021F | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Toluene                    | 0.1200    | (0.1000)  | mg/kg   |      | SW8021F | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Xylenes                    | ND        | (0.1000)  | mg/kg   | U    | SW8021F | 821760-10     | MAS |
| 99NEC30SS902    | 08/01/1999 | Total Organic Carbon (TOC) | 36.0000   | (0.0000)  | percent |      | SW9060  | 821760-10     | MAS |

•

| Flag Key: CI See narrative                                   | J EPA Flag. Estimated value   |                    |
|--------------------------------------------------------------|-------------------------------|--------------------|
| U EPA Flag - Compound was analyzed for, but was not detected |                               |                    |
| VLB Val. Qual.: Result negatively biased.                    |                               |                    |
| VQQ Val. Qual.: PQL approx. due to QC or matrix effects      | VR Val. Qual.: rejected value |                    |
| des/pc:VFP5/appendix.prg/recs: 256                           | Page 5                        | Printed: 11/05/199 |

# APPENDIX C

Data Quality Assessment



#### 1999 Phase II RI Northeast Cape, St. Lawrence Island, Alaska Data Quality Assessment

Twenty-seven samples were collected between July 31 and August 2, for diesel range organics/residual range organics (DRO/RRO), gasoline range organics/benzene, toluene, ethylbenzenes, and xylenes (GRO/BTEX), polychlorinated biphenyls (PCB), lead, target analyte list (TAL) metals, full toxicity characteristic leaching procedure (TCLP), TCLP/PCBs and total organic content (TOC). Samples were extracted and analyzed within holding time criteria, with the exception of total and TCLP/PCBs. Cooler temperatures were in control for all sample shipments. Samples were reported on a dry weight basis as applicable. The trip blanks and method blanks were free of target analyte. For results reported between the method reporting limit (MRL) and the method detection limit (MDL), data are qualified as estimates with a VJ. This qualification is intended to clarify the data and in no way impacts data quality. Data are considered valid and useable for the project objectives, with qualifications, as discussed below.

#### TCLP/PCBs - SW1311/8082

• Samples for TCLP/PCBs were extracted 8 days past the 14-day holding time for 99NEC13BD901, 99NEC17BD901 and 99NEC18BD901. Positive results were qualified as biased low with a VLB and MRLS were qualified as estimates with a VQQ due to the missed holding time.

#### Total PCBs - SW8082

• Samples for total PCBs were extracted 4 days past the 14-day holding time for samples 99NEC13BD901, 99NEC17BD901 and 99NEC18BD901. Positive results were qualified as biased low with a VLB and MRLs were qualified as estimates with a VQQ due to the missed holding time.

#### DRO/RRO – Methods AK102/203

• There was no qualification of DRO/RRO results. However, evaluation of the chromatograms shows that reported results consisted of predominantly biogenic hydrocarbons rather than petroleum hydrocarbons.

#### <u>BTEX – SW8021</u>

- Surrogate recovery (55%) for 99NEC30SD903 was below acceptance limits (63-119) due to high percent moisture in the sample. Thus, positive results were qualified as biased low with a VLB and MRLs were qualified as estimates with a VQQ.
- MRLs for several samples were elevated due to high percent moisture and/or low sample volumes.

# **APPENDIX D**

Biological Sampling Results ENRI Report Alaska District Report



Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska .

# Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska

## **REVISED DRAFT REPORT**

by Lisa Houston, Michael Kelly, and Elaine Major Environment and Natural Resources Institute University of Alaska Anchorage 707 A Street, Anchorage, AK 99501

> for Montgomery Watson 4100 Spenard Road Anchorage, AK 99517

> > November 1999

## Contents

```
Tables and Figures
                   ν
Introduction 1
Study Area 3
          5
Methods
      Site Characterization 5
      Sediment Toxicity
                          7
      Community Assessments
                               9
            Macroinvertebrates
                               9
            Fish
                   10
      Fish Tissue Toxicity 10
Results
         13
      Site Characterization 13
      Sediment Toxicity 14
      Community Assessments
                               16
            Macroinvertebrates
                               16
            Fish
                  17
      Fish Tissue Toxicity 19
Discussion
            21
Conclusions 25
References Cited
                  27
Appendices
      A. Site Characterization Data
      B. Site Photographs
      C. Laboratory and Quality Assurance Procedure Results
```

## Tables

- 1. Site locations, identification codes, and descriptions 5
- 2. Expected metric responses to stress 9
- 3. USEPA (1999) default risk-based consumption limits 10
- 4. Sample preparation and analysis methods for PAHs and PCBs 11
- 5. Microtox® bioassay sample identification information and results 14
- 6. Macroinvertebrate metric results 16
- 7. Summary of fish capture information 17
- 8. Concentrations in parts per billion of PAHs and PCBs in fish tissue samples 19

## Figures

- 1. St. Lawrence Island and Northeast Cape FUDS 3
- 2. Northeast Cape sampling sites 6
- 3. Sediment grain-size analysis and Microtox® results 15
- 4. Results of taxa richness 16
- 5. Percent dominant taxon 17
- -6. Length-frequency histograms of Dolly Varden char collected in Suqitughneq and Quangeghsaq Rivers 18
- 7. Length-frequency histogram of blackfish captured in Suqitughneq River 18

Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska • ENRI

The U.S. Air Force established a surveillance site on the Northeast Cape of St. Lawrence Island, Alaska, in 1952 that provided radar coverage for the area until 1972. In 1969, a fuel tank within the facility spilled 180,000 gal of diesel fuel that, along with other nearby sources, contaminated the Suqitughneq River drainage. Northeast Cape is now classified as a Formerly Used Defense Site (FUDS). In 1995, Montgomery Watson, a private contractor, completed Phase I of a remedial investigation (RI) of the site as part of the U.S. Department of Defense Environmental Restoration Program, as implemented by the U.S. Army Corps of Engineers (COE). In 1996, Montgomery Watson initiated Phase II of the RI to: (1) delineate the area contaminated by the 1969 spill, (2) evaluate impairment to water quality and biological communities (benthic macroinvertebrates, phytoplankton, and zooplankton), and (3) collect information needed to recommend and implement the most appropriate remedial action to protect human health and minimize ecological impairment.

The results of the Phase II surface water and sediment screening at 8 sites indicated significant potential for adverse ecological effects to biological communities inhabiting the area (Montgomery Watson 1996). Concentrations of diesel range organics (DROs) and polychlorinated biphenyls (PCBs) detected in bulk sediment and surface water were well above the toxicity benchmark values as calculated and reported by Montgomery Watson. These results indicated a potential for ecological effects from exposure to polynuclear aromatic hydrocarbons (PAHs) and PCBs. In addition, DROs were detected in sediment samples collected upstream of the spill area by Montgomery Watson in 1996, suggesting an upstream source of contamination.

Although the RI studies identified potential ecological and human health risks, there was insufficient information to support decisions about remediation. Needed were quantitative data pertaining to the ecological resources at risk within the drainage, terrestrial and aquatic wildlife using those resources, and DROs and PCBs present in the diet and tissues of flora and fauna (Montgomery Watson 1996). Consequently, Montgomery Watson contracted with the University of Alaska Anchorage's Environment and Natural Resources Institute (ENRI) in 1998 to conduct a Tier II Ecological Assessment of the Northeast Cape area to provide information for development of an appropriate remedial action plan

The objectives of the Tier II Ecological Assessment were to: (1) physically characterize each of the study sites, (2) evaluate sediment toxicity using the Microtox® bacterial bioassay, (3) document and assess the macroinvertebrate and fish communities, and (4) quantify the accumulation of toxins in fish tissues. ENRI conducted fieldwork from 31 July to 3 August 1999. Chain-of-custody requirements were followed as outlined by Montgomery Watson. All samples, voucher collections, data, and other materials associated with the assessment are the property of Montgomery Watson.

The Northeast Cape FUDS is approximately 9 mi west of the northeastern cape of St. Lawrence Island and encompasses approximately 4 sq mi (Figure 1). The Suqitughneq River is the primary stream drainage in the area, extending from the base of the Kinipaghulghat Mountains (at an elevation of approximately 100 ft above mean sea level) to the Bering Sea. The site is situated on a tundra plain with few changes in elevation. Hydrology, flora, and fauna reported for the area are characteristic of tundra ecosystems (Montgomery Watson 1996).

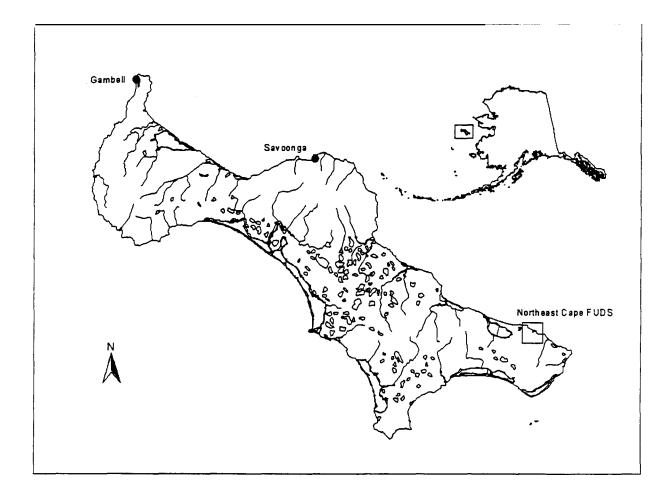



Figure 1. St. Lawrence Island and Northeast Cape FUDS.

Five primary study sites were established for the Tier II Ecological Assessment: four within the Suqitughneq River drainage and one in the Quangeghsaq River drainage (Figure 2). ENRI site identification codes and descriptions are displayed in Table 1, as well as the Montgomery Watson codes. The Suqitughneq River drainage was sampled at two control sites outside of the original 1969 spill area, one at a downstream tributary (slsut01) and one upstream on the river's main channel (slsuq02). Two stressed sites were also established in the Suqitughneq River drainage, one 2 km downstream of the spill area (slsuq01) and one at the spill tributary (slurc01). In the Quangeghsaq River drainage, one control site (slqan01) was sampled. It was selected because it was nearby, physically similar to the Suqitughneq River, and not impaired.

| Table 1. | Site locations, | identification codes | s, and descriptions. |  |
|----------|-----------------|----------------------|----------------------|--|
|          |                 |                      |                      |  |

| Location                       | AENRICIDE: | Nonvones<br>WasoniDe | A STOCK                 |                                                                                             |
|--------------------------------|------------|----------------------|-------------------------|---------------------------------------------------------------------------------------------|
| Quangeghsaq<br>River           | slqan01    | 99NEBK               | Control                 | 200 m just upstream of highest storm tide.                                                  |
| Suqitughneq<br>River           | slsuq02    | 99NE00               | Upstream<br>control     | Upstream of confluence with receptor creek, 100 m above to 200 m below access road culvert. |
| Suqitughneq<br>River           | slsuq01    | 99NE01               | Potentially<br>stressed | 50 m below to 200 m above runway bridge.                                                    |
| Suqitughneq<br>River Tributary | slsut01    | 99NE02               | Downstream<br>control   | 100 m reach in headwaters of small tributary.                                               |
| Spill Tributary                | slurc01    | 99NERC               | Potentially<br>stressed | 200 m reach from large pool below spill to confluence with Suqitughneq River.               |

The methods used to conduct the Tier II Ecological Assessment for site characterization, sediment toxicity, community assessment, and fish tissue toxicity are described below.

## Site Characterization

Each site was evaluated to define the chemical and physical conditions that could influence community assessments and ecosystem health and to determine whether control sites were similar to stressed sites. Water chemistry information was collected using a Hydrolab Surveyor 4 Data Display and MiniSonde equipped with pH, dissolved oxygen, conductivity, and water temperature data probes.

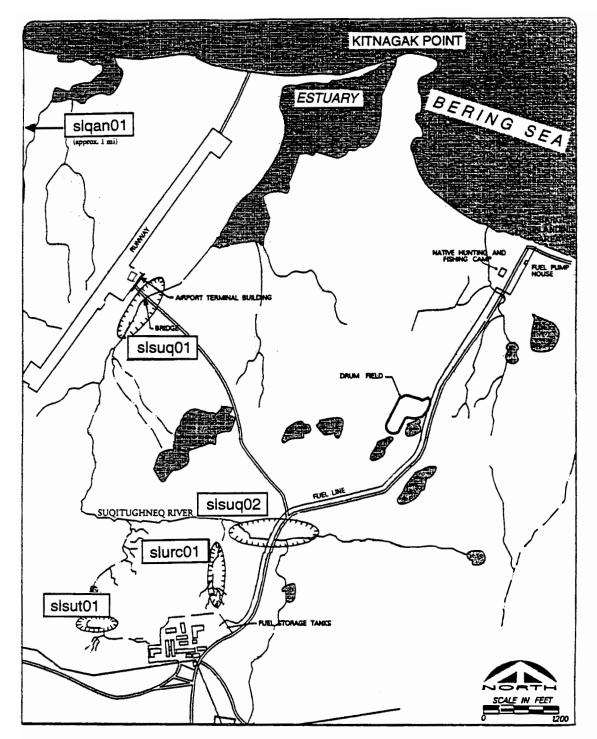



Figure 2. Northeast Cape sampling sites.

Physical parameters were measured at various points throughout the sampling reaches. Three crosschannel transects were established within each 100 m sampling reach and generally encompassed the widest and narrowest points of the stream. Width and depth measurements were taken of a riffle, run, and pool (if present) at each transect. Stream discharge was measured at the most downstream transect using a Marsh-McBirney flow meter. Gradient over the stream reach was measured using a hand level and flow rod. Substrate composition and percent habitat type were visually estimated. Riparian vegetation information and local watershed characteristics were also documented.

Habitat quality was visually assessed and rated at each sampling site following the Alaska Stream Condition Index (ASCI) habitat assessment method developed by ENRI (Major and Barbour 1997; Major and Houston 1999). With the ASCI, 10 habitat parameters are visually assessed for an optimal total score of 200. The assessment evaluates the condition and quality of major habitat characteristics that support macroinvertebrate communities. Habitat quality is correlated with the abundance and diversity of biological communities (Barbour and Stribling 1994). Parameters assessed include instream characteristics (habitat availability and variability, degree of sediment deposition, loss of habitat, and channel morphology), bank and vegetative stability, and riparian zone measurements.

### **Sediment Toxicity**

Sediment samples were collected to characterize toxicity of the instream sediments using the Microtox® solid-phase bacterial bioassay. Sediment-associated contaminant availability has been recognized as a link in defining ecosystems and characterizing ecosystem perturbations (Burton 1991). Microtox® toxicity assessments were used to determine the bioavailable fraction of the contaminants. This technique uses lysed cells of the luminescent marine bacteria *Vibrio fisheria* as an indicator of overall potential sediment toxicity. The bacteria's light-producing mechanism is tied to the metabolic processes of the cell, and exposure of the bacteria to toxic substances in sediment samples causes a reduction in metabolic activity. Bacteria luminescence is proportional to the degree of toxicity. The bioassay is based on detecting changes in light output between control samples and various concentrations of sediment. The reduction in metabolic luminescence is calculated as median effective concentration (EC50) and reported as relative toxicity unit (TU) values for each sample. The EC50 is a calculated toxicity value representing the sample concentration, in percent, estimated to cause a 50% response by exposed test organisms. The TU value is based on the calculated toxicity value and is used for reporting purposes because it has a positive relationship with toxicity. It is calculated as the inverse of the EC50 multiplied by 100.

Grain-size composition has a direct effect on toxicity results, and comparisons of control and stressed samples should only be made if sites have similar sediment grain-size composition (Benton et al. 1995; Ringwood et al. 1997). ENRI carefully selected the sediment-sampling areas within each site so only fine-grained sediments would be tested. Samples were collected from the left and right banks of the Suqitughneq River below the spill area (slsuq01), from up- and downstream of the spill tributary reach (slurc01), from up- and downstream on the Quangeghsaq River reach

(slqan01), from upstream of the spill area at the Suqitughneq River (slsuq02), and from the downstream tributary (slsut01).

A stainless steel Ekman dredge was used to collect the sediment samples, which were thoroughly homogenized in a stainless steel bowl with a spoon and the overlying water poured off. Two replicates were collected from each site and spooned into labeled, precleaned, U.S. Environmental Protection Agency (USEPA) level 3 glassware. One was used for the bioassay and the other for the sediment grain-size analysis. Samples were labeled, refrigerated until shipment to ENRI's laboratory, and analyzed within 48 hr of collection using the Microtox® bacterial bioassay solid-phase protocol and the Microbics model 500 analyzer. Three replicates were tested from each sample. Light output was recorded after a 20 min exposure of the bacteria to the sediment.

Solid-phase diluent was added to the sediment in a 2:1 dilution scheme from an initial sample concentration of 10%. After temperature equilibration of the sample and diluent, the reagent was reconstituted and 20  $\mu$ L of reagent were added to each solid-phase test tube. Samples were mixed well and allowed to incubate 20 min. The filtrate was then extracted and transferred to Microtox® cuvettes in the Microtox® incubation block. Three control samples were used to calibrate the light readings after a 5 min temperature equilibration period. Sample light readings were recorded and TU values calculated using the Microtox® data-reduction program. The replicates tested from each sample were averaged, reported as average TUs, and a coefficient of variation (CV) was calculated on the mean of the TU by site. CV was calculated by dividing the standard deviation of TU for each sample and by the mean TU for each sample.

Sediment grain-size was determined by weight in the laboratory after each sample had been dried and sieved using nested 1 mm, 495  $\mu$ m, and 250  $\mu$ m mesh sieves. Each size fraction was washed until the water ran clear. Material less than 250  $\mu$ m was captured with the rinse water in a plastic 5 gal bucket. Each size fraction was wrapped in aluminum foil and placed in a drying oven for 24 hr, cooled, and then weighed. Proportions of coarse particulate organic matter (CPOM) (> 1 mm) and fine particulate organic matter (FPOM) (< 1 mm) were visually estimated for each size fraction. To estimate the amount of silt (particle size < 250  $\mu$ m) in each sediment sample, the rinse water was stirred vigorously until the material was in suspension. A 20 mL sample was extracted, placed in a ceramic crucible in the drying oven for 24 hr, and weighed.

Percent similarities were used to compare substrate compositions among samples. TU values from study sites were compared to control samples when grain-size-composition similarity was 90% or more.

#### **Community Assessments**

#### Macroinvertebrates

Assessment of the macroinvertebrate community consisted of sampling at the four selected sites within the Suqitughneq River drainage (slsuq01, slsuq02, slsut01, slurc01) and the Quangeghsaq River control site (slqan01). Samples were collected following ASCI rapid bioassessment sampling protocols developed specifically for Alaska streams (Major and Barbour 1997; Major et al. 1998; Major and Houston 1999). The ASCI uses an array of measures that individually provide information on diverse biological attributes and, when integrated, an overall assessment of biological condition. ENRI selected metrics for this study that have been shown to detect perturbations caused by chemical contamination using taxa richness, taxonomic and functional composition, community tolerance measures, and abundance. Metrics based on evaluating sensitive taxa within the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) were also selected. Table 2 provides definitions and expected responses of macroinvertebrate metrics to stressors.

A D-frame dip net was used to collect a composite sample of 20 sweeps or jabs from the predominant habitats represented over a 100 m reach of the stream. Habitat types were sampled in proportion to representation within the selected stream reach. The collected material was composited, preserved in the field with 90% ethanol, and returned to ENRI's laboratory for processing and identification. Samples were subsampled to 300 organisms (+20%) using a Caton subsampler (Caton 1991). The entire sample was then quickly examined for large and/or rare organisms not collected in the subsample to ensure accuracy of the taxa richness measures.

Organisms were identified to genus level when possible (Clifford 1991; Merritt and Cummins 1996; Stewart and Stark 1993; Wiggins 1996). Annelids were identified to class, and Hydracarina were identified to family. For each sample, a 100 organism subsample of Chironomids was mounted on slides and identified to genus (Wiederholm 1983). The antennae and mentum of the Chironomidae identified were inspected for deformities to compare the incidence of deformity among sample sites.

| Taxa richness measures         |                                                         |          |
|--------------------------------|---------------------------------------------------------|----------|
| Total taxa                     | Variety of macroinvertebrate assemblage                 | Decrease |
| EPT taxa                       | Number of mayfly, stonefly, and caddisfly taxa          | Decrease |
| Chironomidae taxa              | Number of chironomidae taxa                             | Decrease |
| Composition measures           |                                                         |          |
| % EPT/(% EPT + Chironomidae)   | Ratio of mayfly, stonefly, and caddisfly larvae         | Decrease |
| Tolerance/intolerance measures |                                                         |          |
| % Dominant Taxon               | Measure of single most abundant taxon                   | Increase |
| Feeding and habit measures     |                                                         |          |
| % Predators                    | Percent of predator functional feeding group            | Decrease |
| % Clingers                     | Percent of organisms with behavioral or morphological   |          |
|                                | adaptations for attachment to surfaces in flowing water | Decrease |
| Population measures            |                                                         |          |
| Estimated density              | Abundance corrected to number per sq mi                 | Decrease |

| Table 2. | Expected | metric | responses | to stress. |
|----------|----------|--------|-----------|------------|
|----------|----------|--------|-----------|------------|

Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska • ENRI 9

#### Fish

Minnow trapping and electroshocking were the primary sampling techniques used to determine fish presence and relative abundance in the Suqitughneq River drainage. Hook-and-line sampling was also used to confirm the presence of anadromous char and salmon at the mouth of the Suqitughneq and Tapisaghak Rivers. At each of the four sites in the Suqitughneq River drainage, minnow trapping was conducted to determine the presence and size of juvenile fish. Wire minnow traps baited with salmon eggs were fished overnight. Electroshocking was conducted using a Cofelt backpack electroshocker, and dip nets were used to catch a representative sample of the fish community at sites in the Suqitughneq River drainage (slsuq01 and slut01) and in the Quangeghsaq River control site (slqan01). Captured fish were identified, enumerated, and visually inspected for deformities and disease. Fork lengths were measured to the nearest millimeter. Length-frequency distributions of Dolly Varden char (*Salvelinus malma*) from the Suqitughneq River were determined.

### **Fish Tissue Toxicity**

Fish tissue was analyzed to determine any human health risks related to fish consumption. (ENRI also proposed to collect and analyze mollusk tissue, but no mollusks were found in the Suqitughneq River outflow areas.) Table 3 shows the recommended monthly consumption limits for PCBs for fish consumers based on the USEPA values for risk assessment parameters (EPA-823-F-99-019, September 1999). USEPA guidelines were used because Alaska has not established fish-tissue monitoring or fish consumption advisory guidelines for PCBs. USEPA (1999) recommends that tissue samples be analyzed for PAHs, because naturally occurring lipids may interfere with petroleum/diesel analysis.

Table 3. USEPA (1999) default risk-based consumption limits.

| Risk-Based<br>Consumption<br>Limit | Noncancer Health<br>Endpoints | Cancer Health<br>Endpoints |
|------------------------------------|-------------------------------|----------------------------|
|                                    | Fish Tissue                   | Fish Tissue                |
| Fish Meals*                        | Concentrations                | Concentrations             |
| /Month                             | (ppb wet weight)              | (ppb wet weight)           |
| 16                                 | >6-12                         | >1.5-3                     |
| 12                                 | >12-16                        | >3-4                       |
| 8                                  | >16-24                        | >4-6                       |
| 4                                  | >24-48                        | >6-12                      |
| 3                                  | >48-64                        | >12-16                     |
| 2                                  | >64-97                        | >16-24                     |
| 1                                  | >97-190                       | >24-48                     |
| <0.5                               | >190-390                      | >48-97                     |
| None (<0.5)*                       | >390                          | >97                        |

•Meal = 8 oz fish tissue; None = no consumption recommended.

A whole-fish, composite sample weighing approximately 200–300 g was taken from the fish collected for the community assessment (see methods above). Each fish tissue sample was placed on ice in a Ziploc bag while in the field. They were wrapped in aluminum foil, labeled, and frozen within 8 hr of collection. Tissue samples were then sent to the laboratory of Columbia Analytical Services in Kelso, Washington, where they were analyzed for the presence of PAHs and PCBs following USEPA preparation and analysis methods (Table 4). This was done in accordance with the firm's quality assurance program.

|                        | ale al reparation as  |               | Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAHs                   | The Work Construction | SAMURELLOUS A | Canal Cana |
| 2-Methylnaphthalene    | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acenaphthene           | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Anthracene             | EPA 3540<br>EPA 3540  | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | EPA 3540<br>EPA 3540  | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benz(a)anthracene      | EPA 3540<br>EPA 3540  | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzo(a)pyrene         |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(b)fluoranthene   | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzo(g,h,i)perylene   | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzo(k)fluoranthene   | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chrysene               | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dibenz(a,h)anthracene  | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dibenzofuran           | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fluoranthene           | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fluorene               | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Indeno(1,2,3-cd)pyrene | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Naphthalene            | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Phenanthrene           | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pyrene                 | EPA 3540              | SIM           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PCBs                   |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aroclor 1016           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1221           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1232           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1242           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1248           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1254           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aroclor 1260           | EPA 3540C             | EPA 8082      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 4. Sample preparation and analysis methods for PAHs and PCBs.

## Results

### Site Characterization

Water chemistry information displayed values typical for Alaska for each parameter tested, and dissolved oxygen and pH were similar for each of the sites tested in this Tier II assessment. Temperatures varied from 3°C at the downstream control (slsut01) to 10°C at the spill tributary (slurc01). Conductivity ranged from 75  $\mu$ mhos at the Suqitughneq River control (slsuq02) to 142  $\mu$ mhos at the Quangeghsaq River (slqan01). The pH ranged from 6.6 at the Quangeghsaq River (slqan01) to 7.4 at the spill tributary (slurc01). Site characterization data (physical and chemical) are provided in Appendix A, and site photographs are provided in Appendix B.

Physical characteristics and predominant habitat type were evaluated for the sites. Gradient, channel morphology, and substrate composition in run and pool areas in the lower Suqitughneq River site (slsuq01) were similar to Suqitughneq River control sites (slsuq02 and slsut01). Gravel, sand, and silt were the dominant substrates. Gradient, channel morphology, and drainage characteristics of the Quangeghsaq River were similar to the Suqitughneq River sites, except for having sandier substrates and slightly lower pH. The much smaller spill tributary (slurc01) differed from the other sites in that it had an unconfined channel and lower flows.

Predominant habitat types differed between the lower Suqitughneq River site (slsuq01) and control sites (slsuq02 and slsut01). Percent habitat was visually estimated as 55% run, 35% riffle, and 10% pool at the downstream stressed site (slsuq01), while 50% run and 50% pool at the control sites (slsuq02 and slsut01). The riffle at the downstream stressed site (slsuq01) was characterized by stable substrate, which is optimal for macroinvertebrate colonization. The spill tributary (slsurc01) displayed different habitat types estimated as 50% run, 25% riffle, and 25% pool. The Quangeghsaq River site habitat types were estimated as 85% run, 10% riffle, and 5% pool.

It should be noted that diesel oils were evident in the substrate during sampling at slsuq01 and slurc01. The Suqitughneq River was at flood stage during sampling; depths were difficult to measure and were estimated to be 1.5 to 2.0 ft above normal. These conditions are reflected in the site characterization information collected throughout the drainage. Although depth of the run at the site (slsuq02) was estimated at 2.5 ft, the tributary does not normally flow during summer months (E. Toolie, pers. comm.). Channel widths within the Suqitughneq River drainage ranged from 4 to 7 ft in the run and 12 to 15 ft in the pool areas.

Physical habitat quality was similar between control and stressed sites as reflected in the habitat assessment scores: 170 at the Suqitughneq River below the spill area (slsuq01), 172 at both the spill tributary (slurc01) and the downstream control (slsut01), 176 at the Suqitughneq River above the spill site (slsuq02), and 164 at the Quangeghsaq River site (slqan01). These scores indicate optimal habitat conditions for macroinvertebrate communities with potential to support similar diversity and abundance. Physical habitat assessment scores are displayed by parameter in Appendix A.

### Sediment Toxicity

Microtox® bioassay sample identification and sample results are displayed in Table 5. Montgomery Watson identifiers are included with the CV for the sample TUs. Because sediment particle size has a direct relationship to toxicity, only samples with similar sediment grain-size composition were compared. Analyses of sediment size fractions classified sediment samples into three groups, primarily based on percent fines. Figure 3 pairs the groups of sites by percent sediment size fractions with the TU values for those sites.

Samples collected from the up- and downstream or left and right banks at each site did not have similar sediment grain-size characteristics and were only compared to a control sample with similar attributes. Samples from slqan01 (upstream), slsuq01 (right bank), and slurc01 (upstream) were not dominated by fine-grained sediments and are shown in Figure 3a. Fine sediments made up a larger fraction of the samples for slqan01 (downstream) and slsuq01 (left bank) (Figure 3b). Fine sediments (< 250  $\mu$ m) dominated substrate composition of three samples: slsuq02 (right bank), slurc01 (downstream), and slsut01 (midchannel) (Figure 3c).

Microtox® analyses verified toxicity at the spill tributary from both up- and downstream samples (slurc01) and at the lower Suqitughneq River from both the right and left bank samples (slsuq01). TU values for samples from stressed sites were significantly higher than values from control samples with similar substrate characteristics (Figures 3d-f).

| ENRID T  |            | Montgomery<br>Watson IDc. |        |      |       |
|----------|------------|---------------------------|--------|------|-------|
| slquan01 | Downstream | 99NEBKSD100               | 8-3-99 | 31.1 | 65.9  |
| slquan01 | Upstream   | 99NEBKSD101               | 8-3-99 | 50.0 | 34.9  |
| slsut01  | Midchannel | 99NE02SD100               | 8-2-99 | 33.1 | 202.1 |
| slsuq02  | Right bank | 99NE00SD100               | 8-2-99 | 15.7 | 72.5  |
| slsuq01  | Left bank  | 99NE01SD100               | 8-2-99 | 44.2 | 174.1 |
| slsuq01  | Right bank | 99NE01SD101               | 8-2-99 | 23.0 | 423.6 |
| slurc01  | Upstream   | 99NERCSD100               | 8-2-99 | 37.5 | 213.3 |
| slurc01  | Downstream | 99NERCSD100               | 8-2-99 | 45.6 | 846.0 |

Table 5. Microtox® bioassay sample identification information and results.

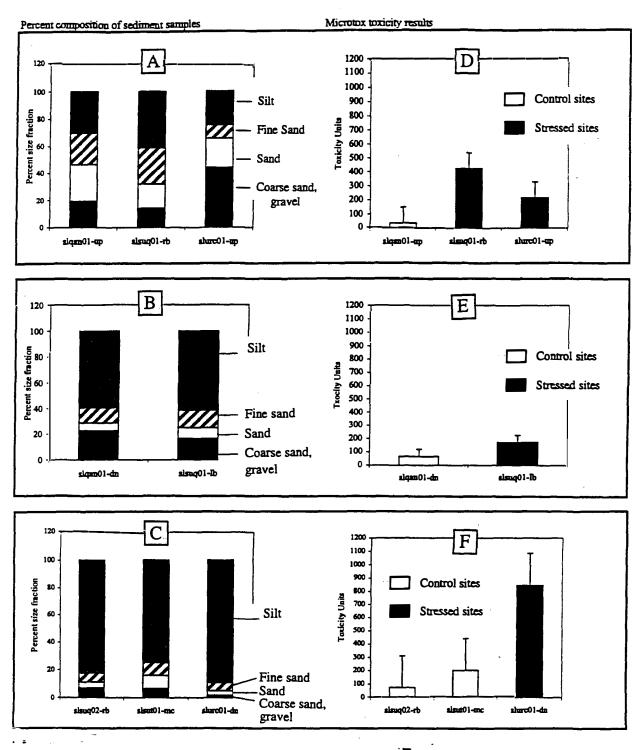



Figure 3. Sediment grain-size analysis and Microtox® results. Error bars reflect sample variability (rb=right bank, lb=left bank, mc=midchannel, up=upstream, dn=downstream).

Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska • ENRI 15

### **Community Assessments**

#### Macroinvertebrates

Metric results are displayed in Table 6. Like the sediment toxicity results, they indicate impairment below the spill area (slsuq01) and at the spill tributary (slurc01). The site below the spill area was characterized by lower total taxa richness and chironomid taxa richness and higher percent dominant taxon than the Quangeghsaq River control site (slqan01) and the upstream Suqitughneq River control site (slsuq02) (Figures 4 and 5). The spill tributary (slurc01) had similar numbers of total taxa, but no pollution-sensitive EPT taxa were collected at the site. Density was also an order of magnitude lower at the spill tributary (slurc01) than at any other site.

Table 6. Macroinvertebrate metric results.

| Taxa richness measures          | Contraction and |      |      |      | ASI SULLOUS |
|---------------------------------|-----------------|------|------|------|-------------|
| Totel taxa                      | 18              | 21   | 14   | 13   | 17          |
| EPT taxa                        | 3               | 3    | 3    | 1    | 0           |
| Chironomidae taxa               | 8               | 10   | 5    | 7    | 9           |
| Composition measures            |                 |      |      |      |             |
| %EPT/%EPT+%Chironomidae         | 15              | 29   | 14   | 1    | 0           |
| % dominant taxon                | 24              | 23   | 68   | 24   | 33          |
| Feeding and habit measures      |                 |      |      |      |             |
| % predators                     | 1               | 3    | 5    | 2    | 1           |
| % clingers                      | 5               | 8    | 1    | 3    | 1           |
| Population measures             |                 |      |      |      | -           |
| Estimated abundance (no./sq mi) | 2165            | 1291 | 2960 | 2238 | 261         |

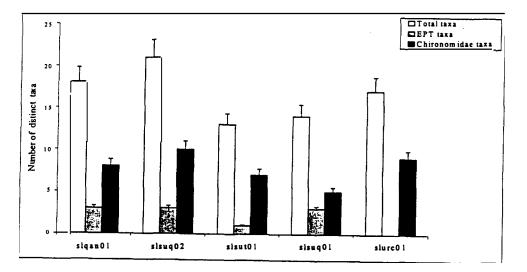



Figure 4. Results of taxa richness. (Error bars represent sampling variability.)

16 ENRI • Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska

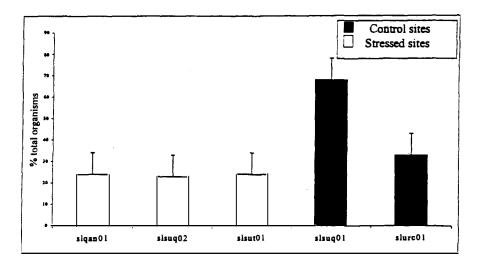



Figure 5. Percent dominant taxon. (Error bars reflect sampling variability.)

#### Fish

Dolly Varden char, Alaska blackfish, ninespine stickleback (*Pungitius pungitius*), and fourhorn sculpin (*Myoxocephalus quadricornis*) were captured in the Suqitughneq River during the 1999 survey (Table 7). Dolly Varden and blackfish were captured throughout the drainage, while stickleback and a single marine sculpin were captured only at the furthest downstream reach (slsuq01) near the intertidal lagoon. Blackfish was the only species captured in the spill tributary (slurc01). Dolly Varden and ninespine stickleback were captured in the Quangeghsaq River control site (slqan01).

| Table 7. | Summary | of fish | capture | information. |
|----------|---------|---------|---------|--------------|
|----------|---------|---------|---------|--------------|

|         |                                                               | Sampling                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 | Effort                                                                                                                                                                                                                                                                                                        | No. of                                                                                                                                                                                                                                                                                           | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site    | Date                                                          | Method                                                                                                                                                                                                                                                     | Species*                                                                                                                                                                                                        | <u>(hr)</u>                                                                                                                                                                                                                                                                                                   | Fish                                                                                                                                                                                                                                                                                             | Range (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| slsuq01 | 8/1/99                                                        | Minnow trap                                                                                                                                                                                                                                                | CHAR                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                               | 73–166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| slsuq01 | 8/1/99                                                        | Electroshock                                                                                                                                                                                                                                               | SCUP                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                               |                                                                                                                                                                                                                                                            | 9SSB                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 27                                                                                                                                                                                                                                                                                               | 40–70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                               |                                                                                                                                                                                                                                                            | CHAR                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                               | 41-225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| slsuq01 | 8/2/99                                                        | Electroshock                                                                                                                                                                                                                                               | 9SSB                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                           | 48                                                                                                                                                                                                                                                                                               | 42–65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| slsuq02 | 8/2/99                                                        | Minnow trap                                                                                                                                                                                                                                                | CHAR                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                               | 114–212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -       |                                                               | -                                                                                                                                                                                                                                                          | BLFS                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                | 90–117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| slut01  | 8/1/99                                                        | Minnow trap                                                                                                                                                                                                                                                | BLFS                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 8/2/99                                                        | Electroshock                                                                                                                                                                                                                                               | CHAR                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                | 155–180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| slurc01 | 8/2/99                                                        | Minnow trap                                                                                                                                                                                                                                                | BLFS                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                               | 90–145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| slqan01 | 8/2/99                                                        | Electroshock                                                                                                                                                                                                                                               | CHAR                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                               | 137–195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                               |                                                                                                                                                                                                                                                            | 9SSB                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                               | 45-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | slsuq01<br>slsuq01<br>slsuq01<br>slsuq02<br>slut01<br>slurc01 | slsuq01         8/1/99           slsuq01         8/1/99           slsuq01         8/2/99           slsuq02         8/2/99           slut01         8/1/99           slut01         8/1/99           slut01         8/2/99           slurc01         8/2/99 | SiteDateMethodslsuq018/1/99Minnow trapslsuq018/1/99Electroshockslsuq018/2/99Electroshockslsuq028/2/99Minnow trapslut018/1/99Minnow trapslut018/1/99Electroshockslut018/2/99Electroshockslurc018/2/99Minnow trap | SiteDateMethodSpecies*slsuq018/1/99Minnow trapCHARslsuq018/1/99ElectroshockSCUP9SSBCHAR9SSBcHARSlsuq018/2/99slsuq028/2/99Electroshock9SU8/2/99Minnow trapslut018/1/99Minnow trap8/2/99ElectroshockBLFSslut018/1/99Minnow trap8/2/99ElectroshockCHARslurc018/2/99ElectroshockCHARslqan018/2/99ElectroshockCHAR | SiteDateMethodSpecies*(hr)slsuq018/1/99Minnow trapCHAR20slsuq018/1/99ElectroshockSCUP19SSB19SSB1CHAR19SSB0.5slsuq018/2/99Electroshock9SSB0.5slsuq028/2/99Minnow trapCHAR20slut018/1/99Minnow trapBLFS20slut018/1/99Minnow trapBLFS20slurc018/2/99ElectroshockCHAR1slqan018/2/99ElectroshockCHAR1 | Site         Date         Method         Species*         (hr)         Fish           slsuq01         8/1/99         Minnow trap         CHAR         20         14           slsuq01         8/1/99         Electroshock         SCUP         1         1           slsuq01         8/1/99         Electroshock         SCUP         1         1           slsuq01         8/2/99         Electroshock         9SSB         1         27           slsuq01         8/2/99         Electroshock         9SSB         0.5         48           slsuq02         8/2/99         Minnow trap         CHAR         20         20           slut01         8/1/99         Minnow trap         BLFS         20         2           slut01         8/1/99         Minnow trap         BLFS         20         1           slurc01         8/2/99         Electroshock         CHAR         1         4           slurc01         8/2/99         Electroshock         CHAR         1         17 |

• CHAR = Dolly Varden char; SCUP = fourhorn sculpin; 9SSB = ninespine stickleback; BLFS = Alaska blackfish

Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska • ENRI 17

Dolly Varden captured from the Suqitughneq River drainage ranged in size from 41 to 225 mm and the length-frequency histogram (Figure 6) shows a relatively even distribution of sizes. Dolly Varden captured in the Quangeghsaq River drainage showed a much smaller size range distribution. A length-frequency histogram is provided in Figure 7 for blackfish captured in the Suqitughneq River drainage.

In addition to minnow trapping and electroshocking, angling was also attempted at the mouths of the Suqitughneq and Tapisaghak Rivers to compare fish communities. The Tapisaghak River is approximately 3 mi east of the Northeast Cape FUDS. One adult Dolly Varden was captured at the mouth of the Suqitughneq River, and several adult (450–600 mm) Dolly Varden and two pink salmon (*Oncorhynchus gorbuscha*) were captured in the Tapisaghak River.

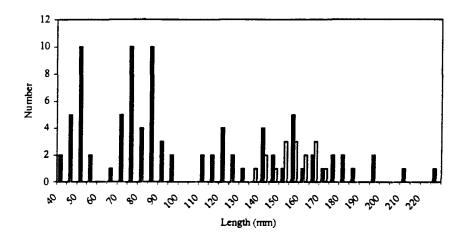
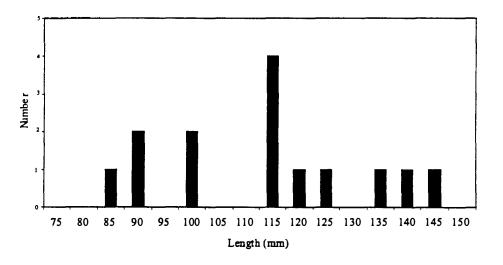
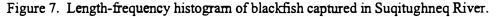





Figure 6. Length-frequency histograms of Dolly Varden char collected in Suqitughneq (black bars) and Quangeghsaq Rivers (white bars).





18 ENRI • Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska

### Fish Tissue Toxicity

Of the 18 PAHs tested, 5 were detected in the blackfish samples collected at the spill tributary (slurc01) (Table 8). The PCB Aroclor 1260 was present in tissue samples of Dolly Varden collected from the downstream stressed site (slsuq01) and the upstream control site (slsuq02), as well as in blackfish from the spill tributary (slurc01). Results of the sample analyses and quality assurance procedures of Columbia Analytical Services are provided in Appendix C.

Table 8. Concentrations in parts per billion of PAHs and PCBs detected in fish tissue samples.

|                     | Site and Fish Species Codes |                 |                    |  |  |  |
|---------------------|-----------------------------|-----------------|--------------------|--|--|--|
| Parameter - Solar   | Sisuque                     | sisaq02<br>GHAR | shirc012<br>BLIESS |  |  |  |
| PAHs                |                             |                 |                    |  |  |  |
| 2-Methylnaphthalene |                             |                 | 71                 |  |  |  |
| Acenaphthene        |                             |                 | 7                  |  |  |  |
| Fluorene            |                             |                 | 11                 |  |  |  |
| Naphthalene         |                             |                 | 16                 |  |  |  |
| Phenanthrene        |                             |                 | 9                  |  |  |  |
| PCBs                |                             |                 |                    |  |  |  |
| Aroclor 1260        | 140                         | 160             | 100                |  |  |  |

• CHAR = Dolly Varden char; BLFS = Alaska blackfish

÷

In 1966, high levels of DROs and PCBs were detected in sediment and/or water samples collected at the spill tributary in the Suqitughneq River above and below the spill area (Montgomery Watson 1996). Sediment samples collected by ENRI in 1999 and analyzed using the Microtox® bacterial bioassay verify the sediment toxicity and bioavailability of chemical contaminants within the spill tributary and at the downstream Suqitughneq River site. The Microtox® sediment toxicity tests did not reveal any evidence of contamination or stress upstream of the spill area.

Assessment of the macroinvertebrate community indicated impairment at the downstream Suqitughneq River site and at the spill tributary, supporting Microtox® bioassay results. At the downstream Suqitughneq River site, the macroinvertebrate community was characterized by lower total taxa richness, lower Chironomidae taxa richness, and higher percent dominant taxon when compared to sites with similar physical characteristics (the Quangeghsaq River or upstream of the Suqitughneq River). These results indicate that loss of taxa is due primarily to chemical contamination. In areas primarily impacted by chemical contaminants, biological communities have been shown to be less abundant and diverse than surrounding habitat should support (Barbour and Stribling 1994; Bennett and Cubbage 1992).

Assessment of the spill tributary was more difficult because of physical features differentiating this site from the larger Suqitughneq and Quangeghsaq Rivers. The spill tributary was characterized by marsh areas supporting hydrophilic vegetation and bottom substrates dominated by mud/muck and silt, while the Suqitughneq and Quangeghsaq Rivers were characterized by defined stream channels and cobble/gravel and sand substrates. Differences in these stream characteristics can affect benthic diversity in the absence of any chemical contamination (Barbour and Stribling 1994). However, the habitat assessment conducted at the spill tributary indicated habitat conditions were optimal and could potentially support a diverse macroinvertebrate community. The low abundance of organisms and lack of EPT taxa are indicative of a site affected by chemical contamination (Barbour et al. 1999).

The most significant finding related to the fish community is that the Suqitughneq River supports viable populations of Dolly Varden, blackfish, and ninespine stickleback. Of the species of fish found in the Suqitughneq River, Dolly Varden was the most common and widespread. Dolly Varden were captured both up- and downstream of the spill site. The wide and evenly distributed size range of the Dolly Varden suggests several year classes presently occupy the drainage. The capture of very small juveniles (< 50 mm) suggests this species is spawning in the drainage as well.

Based on the physical appearance of the captured Dolly Varden, both resident and anadromous forms occur in the study area. Resident fish appear very colorful and sexually mature at small sizes (125–200 mm), while the anadromous forms are almost completely silver. Only Dolly Varden resembling the anadromous form were captured in the Quangeghsaq River. There was no evidence of spawning taking place in this drainage. The capture of many large anadromous Dolly Varden at

the mouth of the Tapisaghak River indicates that this is an important spawning drainage for this species. Blackfish was also relatively common throughout the Suqitughneq River drainage and was the only species captured in the spill tributary. Ninespine stickleback was common in the lower Suqitughneq River just upstream of the lagoon. The fourhorn sculpin captured in the lower Suqitughneq River is a relatively common nearshore species that often ascends freshwater streams.

Dolly Varden fish tissue analyses from the Suqitughneq River indicated potential toxicity and subsequent risks to human health from consumption. Fish tissue analyses detected the PCB Aroclor 1260 in Dolly Varden tissue collected from the Suqitughneq River both above and below the spill area and in blackfish from the spill tributary. Five PAHs were detected in tissue samples collected from blackfish in the spill tributary. Contaminants were also detected in fish tissues collected from areas where no sediment toxicity was noted. This is probably due to fish movement throughout the Suqitughneq River drainage.

The toxicity and bioavailability of PAHs varies with molecular weight (Research Triangle Institute 1995). Three of the five compounds identified in fish tissues from the study area (acenaphthene, fluorine, and phenanthrene) have low molecular weights and are generally considered to have relatively low toxicity (Eisler 1987). Naphthalene, which was also found, is not carcinogenic but has a higher molecular weight and may cause acute toxicity and other adverse affects to organisms (Research Triangle Institute 1995). It also sorbs less readily to sediment and organic compounds in soil and is, therefore, more available to biological communities (Research Triangle Institute 1995). The analyses also identified 2-methylnaphthalene in fish tissue, but no information was found in the literature concerning toxicity and bioavailability characteristics. Lesions and eroded fins, common mutagenic effects of PAHs on fish, were not observed in fish captured at any site.

Based on USEPA (1999) guidelines, concentrations of PCBs in Dolly Varden and blackfish throughout the Suqitughneq River drainage were within the "No consumption recommended" risk category. USEPA consumption limits are calculated as the number of allowable fish meals per month, based on the ranges of PCBs in the consumed fish tissue (fillets). The concentrations detected in samples collected at Northeast Cape are based on whole-fish, composite samples and, therefore, may not be directly comparable to USEPA consumption limits. PCBs are lipophilic and tend to collect in fatty tissues (belly flap, subcutaneous and dorsal fat, internal organs, gills, eyes, and brain), so concentrations detected at Northeast Cape represent the maximum levels of PCBs and PAHs consumed in whole fish. Actual exposure and risk to humans consuming these fish could depend on how they are prepared for consumption (i.e., eaten raw, cooked, and parts consumed) (USEPA 1999).

The human health risk from direct consumption of fish caught within the Suqitughneq River is presumed to be low, because the drainage is reportedly not used for subsistence fishing (E. Toolie, pers. comm.). Prior to this investigation, the Suqitughneq River was generally not believed to support a viable fish community. However, there is potential for human health concerns due to the migratory pattern of Dolly Varden. Although PCBs were not detected in Dolly Varden from the Quangeghsaq River, contaminated fish may be migrating to other water bodies. There may also be human health risk from consuming game tissue contaminated with PCBs. COE personnel observed and documented wildlife and waterfowl within the Suqitughneq River drainage during ENRI's Tier

<sup>22</sup> ENRI • Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska

II Ecological Assessment (COE 1999). However, the extent to which the drainage is used by wildlife and the accumulation of PCBs and PAHs in wild game inhabiting or foraging in the area has not been determined.

Macroinvertebrate and Microtox® bacterial bioassays verified the toxicity and bioavailability of contaminants in the downstream Suqitughneq River and the spill tributary. Although the Suqitughneq River supported a viable fish population, PCBs and PAHs were detected in fish tissues of Dolly Varden char and Alaska blackfish collected throughout the drainage.

At the request of the COE, the Agency of Toxic Substances and Disease Registry (ATSDR) has provided its expertise to help address health issues raised by the Alaska Native Board of Health concerning the Northeast Cape FUDS. The fish tissue analyses conducted during the 1999 Tier II Ecological Assessment may assist in completion of a site-specific health assessment. ENRI recommends that this report be forwarded to the ATSDR.

Further studies will be needed to determine the extent to which the Suqitughneq River drainage is used by wildlife, and whether toxicants are accumulating in wildlife tissue. ENRI recommends that tissue from wildlife species observed in the area and fish tissue samples from other St. Lawrence Island water bodies be collected and analyzed for PAHs and PCBs. This will provide information to refine the remedial action plan and to accurately measure risks to human and ecosystem health from the Northeast Cape FUDS.

- Barbour, M.T., J.Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd ed. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA 841-B-99-002.
- Barbour, M.T., and J.B. Stribling. 1994. A technique for assessing stream habitat structure. Pages 156-178 in National Association of Conservation Districts. Conference Proceedings, Riparian ecosystems in the humid U.S.: functions, values and management. March 15-18, 1993, Atlanta, GA.
- Bennett, J., and J. Cubbage. 1992. Effects of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lake Washington on freshwater bioassay organisms and benthic macroinvertebrates. Toxics, Compliance, and Ground Water Investigations Section, Environmental Investigations and Laboratory Services Program, Washington State Dept. of Ecology, Olympia, WA. 28 pp. and appendices.
- Benton, M.J., M.L. Malott, S.S. Knight, C.M. Cooper, and W.H. Benson. 1995. Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. *Environmental Toxicology and Chemistry*. 14(3):411-414.
- Burton, G.A., Jr. 1991. Assessing the toxicity of freshwater sediments. *Environmental Toxicology and Chemistry*. 10:1585-1627.
- Caton, L.W. 1991. Improving subsampling methods for the EPA "Rapid Bioassessment" benthic protocols. *Bulletin of the North America Benthological Society*. 8(3):317-319.
- Clifford, H.F. 1991. Aquatic invertebrates of Alberta. The University of Alberta Press, Edmonton, Alberta, Canada. 538 pp.
- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife and invertebrates: a synoptic review. U.S. Fish and Wildlife Service, Washington, DC. Biological Report 85.
- Major, E.B., M.T. Barbour, J.S. White, and L.S. Houston. 1998. Development of a biological assessment approach for Alaska streams: a pilot study on the Kenai Peninsula. Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK. 31 pp. and appendices.
- Major, E.B., and M.T. Barbour. 1997. Standard operating procedures for the Alaska Stream Condition Index: a modification of the U.S. EPA rapid bioassessment protocols.

Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK. Report for Alaska Dept. of Environmental Conservation.

- Major, E.B., and L.S. Houston. 1999. 1998 Alaska biological monitoring and water quality assessment program report. Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK. 24 pp. (and appendices).
- Merritt, R.W., and K.W. <u>Cummins</u>, eds. 1996. An introduction to the aquatic insects of North America. 3rd ed. Kendall/Hunt Publishing Company, Dubuque, IA. 862 pp.
- Montgomery Watson. 1996. Phase II remedial investigation/feasibility study, Northeast Cape, Alaska. Draft. Anchorage, AK. Report for the Engineer District, Alaska, U.S. Army Corps of Engineers, Anchorage, AK.
- Research Triangle Institute. 1995. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs) (update). Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Dept. of Health and Human Services, Atlanta, GA. 458 pp. and appendices.
- Ringwood, A.H., M.E. DeLorenzo, R.E. Ross, and A.F. Holland. 1997. Interpretation of Microtox® solid-phase toxicity tests: the effects of sediment composition. *Environmental Toxicology and Chemistry*. 16(6): 1135-1140.
- Stewart, K.W., and B.P. Stark. 1993. Nymphs of North American stonefly genera (Plecoptera). University of North Texas Press, Denton, TX. 460 pp.
- Toolie, E. 1999. Personal communication, August 3. Northeast Cape, St. Lawrence Island, AK.
- U.S. Army Corps of Engineers. 1999. Trip report: Suqitughneq River fish community assessment and habitat characterization, Northeast Cape, Saint Lawrence Island, Alaska. Engineer District, Alaska, U.S. Army Corps of Engineers, Anchorage, AK. 21 pp.
- U.S. Environmental Protection Agency. 1999. Polychlorinated biphenyls (PCBs) update: Impact on fish advisories. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-823-F-99-019. 7 pp.
- Wiederholm, T., ed. 1983. Chironomidae (Diptera) of the holarctic region: keys and diagnoses. Part 1 – Larvae. Entomologica Scandinavica Supplement 19. 457 pp.
- Wiggins, G.B. 1996. Larvae of the North American caddisfly genera (Trichoptera). 2nd ed. University of Toronto Press, Toronto, Canada. 457 pp.

# Appendix A

## Site Characterization Data

Appendix A, Table 1. Macroinvertebrate taxa lists.

| -            |                          |         |         | Station |          |         |                                        |
|--------------|--------------------------|---------|---------|---------|----------|---------|----------------------------------------|
|              | Taxa                     | slqan01 | slqan01 | slsuq01 | slsuq02  | slsut01 | slurc01                                |
| Ep           | hemeroptera              |         |         |         |          |         |                                        |
|              | Baetidae                 |         |         |         |          |         |                                        |
|              | Diphetor                 | 4       | 5       | 16      | 44       |         |                                        |
|              | Baetidae UNID            | 3       |         | 27      | 14       |         |                                        |
| Ple          | coptera                  |         |         |         |          |         |                                        |
|              | Nemouridae               |         |         |         |          |         |                                        |
|              | Nemoura                  |         | 1       |         |          |         |                                        |
|              | Perlodidiae              |         |         |         |          |         |                                        |
|              | Arcynopteryx             |         |         | 1       |          |         |                                        |
|              | Perlodidae UNID          | 1       |         |         |          |         |                                        |
|              | Trichoclinocera          |         |         |         |          |         | 2                                      |
| Tri          | choptera                 |         |         |         |          |         |                                        |
|              | Apataniidae              |         |         |         |          |         |                                        |
|              | Apatania                 |         |         |         | 2        |         |                                        |
|              | Limnephilidae            |         |         |         |          |         |                                        |
|              | Dicosmoecus              |         |         | 1       | 1        |         |                                        |
|              | Grensia                  | 7       | 28      |         |          |         |                                        |
| -            | Limnephilidae UNID       | 7       | 7       | 3       | 1        | 4       |                                        |
| Din          | otera                    |         |         |         |          |         |                                        |
|              | Chironomidae             |         |         |         |          |         |                                        |
|              | Tanypodinae              |         |         |         |          |         |                                        |
|              | Brundiniella             |         | 2       |         | —— †     |         |                                        |
|              | Orthocladinae            |         |         |         |          |         |                                        |
|              | Corynoneura              |         |         |         |          |         | 17                                     |
| $\dashv$     | Cricotopus               | 8       | 19      |         | 5        | 18      | 17                                     |
| $\neg$       | Cricotopus/ Orthocladius | 19      | 40      | 30      | 47       | 60      | 72                                     |
| +            | Diplocladius             |         | 40      |         |          | 88      | 12                                     |
| $\neg$       | Euorthocladius           |         |         |         |          | 32      |                                        |
| -            | Heterotrissocladius      |         | 2       | 3       |          |         |                                        |
| -            | Limnophyes               |         | 2       | 3       |          |         | 6                                      |
| -+           | nr. Hydrobaenus          |         |         |         |          | 14      | 0                                      |
| $\dashv$     | nr. Nanocladius          |         |         |         |          | 14      | 6                                      |
| -+           | nr. Tokunagayusurika     |         |         |         | 3        |         | 0                                      |
| +            | Orthocladius             | 32      | 43      |         | 8        |         |                                        |
| +            | Parakiefferiella         | 32      | 43      |         | 5        |         | 23                                     |
| +            | Tvetenia                 | 42      | 07      | 250     |          | 42      | 106                                    |
| +            |                          | 42      | 87      | 250     | 57       | 42      | 106                                    |
| +            | Zalutschia               |         |         |         | 3        |         | 14                                     |
| +            | Orthocladinae UNID dif   |         | 2       |         | <u> </u> |         | 3                                      |
| +            | Orthocladinae UNID       | 4       | 7       |         | 2        | 14      | 26                                     |
|              | Chironominae             |         |         |         |          |         |                                        |
| +            | Chironomus               |         |         |         |          |         | 3                                      |
| -            | Constempellina           |         |         | 3       | 3        |         |                                        |
| $\downarrow$ | Phaenopsectra            | 23      | 19      |         | 6        |         |                                        |
|              | Paratanytarsus           |         | 2       |         | 3        | 4       | ······································ |

2

. .

|                    |         |         | Station |         | <u> </u> |           |
|--------------------|---------|---------|---------|---------|----------|-----------|
| Таха               | slqan01 | slqan01 | slsuq01 | sIsuq02 | sIsut01  | shirc01   |
| Diamesa            |         |         | 3       | 8       | 67       |           |
| Empididae          |         |         |         |         |          |           |
| Simuliidae         |         |         |         |         |          |           |
| Simulium           |         |         | 3       | 11      | 12       | 2         |
| Tipulidae          |         |         |         |         |          |           |
| Dicranota          |         | 1       |         | 1       | 5        |           |
| Prionocera         |         |         |         |         |          | 3         |
| Tipulidae UNID dif |         | 1       |         |         |          |           |
| Tipulidae UNID     |         |         |         |         |          | 16        |
| Coleoptera         |         |         |         |         |          |           |
| Dytiscidae         |         |         |         |         |          |           |
| Hydaticus          |         |         |         |         |          | 1         |
| Helophoridae       |         |         |         |         |          |           |
| Helophorus         |         | 1       |         |         |          | <u></u>   |
| Nematoda           | 1       |         |         |         | <u> </u> | ···· ···· |
| Annelida           |         |         |         |         |          |           |
| Oligochaeta        | 12      | 77      | 2       | 5       | 7        | 8         |
| Hirudinea          |         |         |         | 1       |          | _         |
| Turbellaria        |         |         | 4       |         |          |           |
| Crustacea          |         |         |         | j       |          |           |
| Isopoda            |         |         |         |         |          |           |
| Lirceus            | 1       | 8       |         |         |          |           |
| Amphipoda          |         |         |         |         |          |           |
| Gammanis           |         | 2       | 2       | 2       | 1        | 2         |
| Ostracoda          |         |         |         |         |          | 3         |
| Hydracarina        | 3       | 2       | 5       | 9       | İ        | 1         |
| Lebertiidae        |         |         |         |         | 2        |           |
| Sperchonidae       |         |         | 14      | 6       | · j      |           |
| Mollusca           |         | j       |         |         |          |           |
| Sphaeriidae        | İ       | i       |         | 2       |          |           |
| Total              | 167     | 358     | 367     | 249     | 370      | 328       |

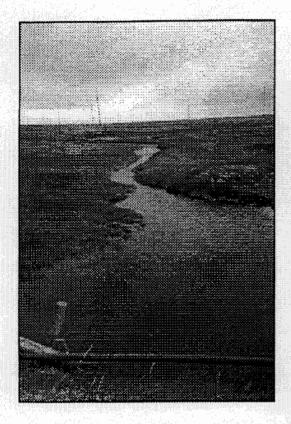
### Appendix A, Table 1. Macroinvertebrate taxa list.

| StationID ::                   | slqan01 - | slsuq01 | slsuq02 | slsut01 | store01 |
|--------------------------------|-----------|---------|---------|---------|---------|
| Collection date                | 8/3/99    | 8/2/99  | 8/1/99  | 7/31/99 | 8/1/99  |
| Collection time (24 hrs)       | 1050      | 1120    | 1130    | 1300    | 1700    |
| Discharge (ft <sup>3</sup> /s) | 3.4       | 19.3    | 13      | 0.3     | 4.1     |
| Gradient of reach (ft/100ft)   | <0.01     | <0.01   | <0.01   | 0.01    | <0.01   |
| Average width (ft)             | 5         | 6       | 3.5     | 5.5     | 2*      |
| Average depth (ft)             |           |         |         |         |         |
| Riffle                         | 1         | 2       |         | 0.7     | 0.2     |
| Run                            | 1.5       | 2.5     | 4       | 2.5     | 0.9     |
| Pool                           | 0.8       | 3       | 5       | 3       | 1.2     |
| % Substrate composition        |           |         |         |         |         |
| Boulder                        | 2         | 2       | 0       | 0       | 0       |
| Cobble                         | 15        | 18      | 2       | 0       | 10      |
| Gravel                         | 35        | 30      | 24      | 1       | 15      |
| Sand                           | 55        | 40      | 60      | 20      | 20      |
| Silt                           | 0         | 10      | 14      | 80      | 55      |
| Field chemistry                |           |         |         |         |         |
| Temperature (°C)               | 8.7       | 6.1     | 5.8     | 3       | 10.1    |
| Dissolved oxygen (mg/l)        | 9.1       | 10.7    | 11.9    | 12.3    | 10.7    |
| pH (s.u.)                      | 6.6       | 7.3     | 7.0     | 6.9     | 7.4     |
| Conductivity (umhos)           | 142.3     | 103.8   | 74.8    | 97.8    | 88.3    |

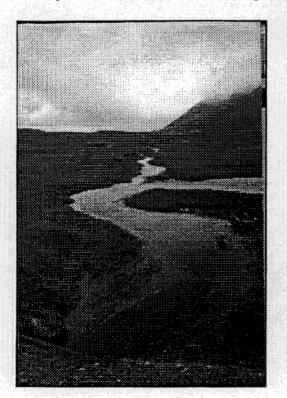
Appendix A Table 2. Physical and chemical site characterization data.

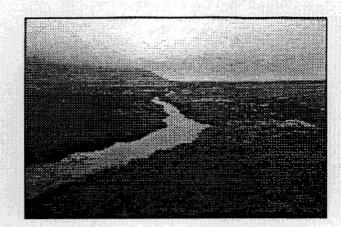
Appendix A Table 3. Habitat assessment results by site.

•


| Fables output for                      |     | test sin 225-                                                                                                  | Sile |      |     |
|----------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|------|------|-----|
| Instream measurements                  |     | and a second second second second second second second second second second second second second second second |      |      |     |
| Quality/ availability instream habitat | 14  | 15                                                                                                             | 17   | 13   | 11  |
| Substrate embeddedness                 | 19  | 20                                                                                                             | 15   | 16   | 11  |
| Velocity-depth combinations            | 9   | 14                                                                                                             | 16   | 17   | 13  |
| Sediment deposition                    | 15  | 19                                                                                                             | 13   | 16   | 18  |
| Channel flow status                    | 19  | 20                                                                                                             | 20   | 20 · | 20  |
| Channel alteration                     | 19  | 20                                                                                                             | 20   | 19   | 20  |
| Sinuosity                              | 9   | 8                                                                                                              | 9    | 11   | 19  |
| Bank and vegetative stability          |     |                                                                                                                |      |      |     |
| Bank stability-LB                      | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Bank stability-RB                      | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Bank vegetative protection-LB          | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Bank vegetative protection-RB          | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Riparian zone measurements             |     |                                                                                                                |      |      |     |
| Riparian vegetative zone width-LB      | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Riparian vegetative zone width-RB      | 10  | 10                                                                                                             | 10   | 10   | 10  |
| Total habitat score                    | 164 | 176                                                                                                            | 170  | 172  | 172 |

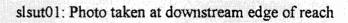
•

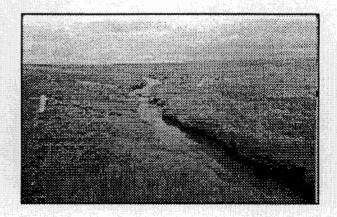

# Appendix B


# Site Photographs

.

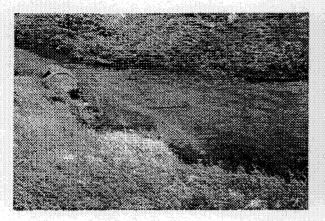


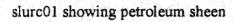

slsuq02 downstream of culvert bridge.

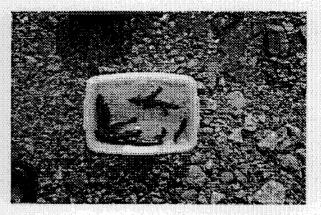




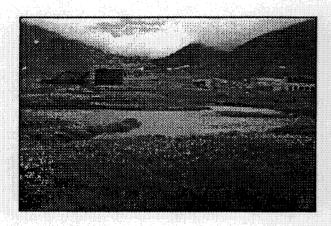

slsuq01upstream of access road near runway



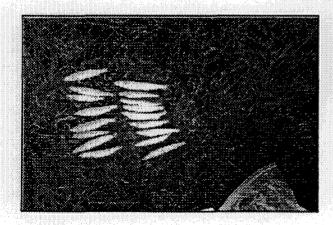



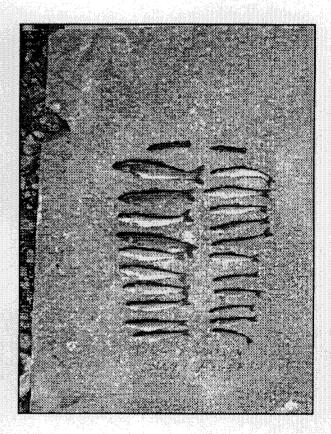

slqan01: Photo taken at downstream edge of reach


slsuq02 upstream of culvert bridge









Blackfish collected at slurc01



## Receiving pond at slurc01



Anadromous dolley varden collected at slqan01.



Blackfish and dolley varden collected at slsuq01.










slsuq01







slsuq01



slsuq01



sltan01



## Laboratory and Quality Assurance Procedure Results

ter, you & 1020



September 14, 1999

Service Request No: A9900436

Lisa Houston University of Alaska - ENRI 707 A Street Anchorage, AK 99501

## Re: Ecological Assessment of Northeast Cape, St. Lawrence Island

Dear Lisa:

Enclosed are the results of the samples submitted to our laboratory on August 6, 1999. For your reference, these analyses have been assigned our service request number A9900436. All analyses were performed in our Kelso, Washington laboratory under service request number K9905279.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 0821.

Respectfully submitted,

## Columbia Analytical Services, Inc.

atio Spela

Abbie Spielman Laboratory Director

AS/bej

000032 Page 1 of \_\_\_\_\_

## Acronyms

|            | •                                                                                    |
|------------|--------------------------------------------------------------------------------------|
| ASTM       | American Society for Testing and Materials                                           |
| A2LA       | American Association for Laboratory Accreditation                                    |
| CARB       | California Air Resources Board                                                       |
| CAS Number | Chemical Abstract Service registry Number                                            |
| CFC        | Chlorofluorocarbon                                                                   |
| CFU        | Colony-Forming Unit                                                                  |
| DEC        | Department of Environmental Conservation                                             |
| DEQ        | Department of Environmental Quality                                                  |
| DHS        | Department of Health Services                                                        |
| DOE        | Department of Ecology                                                                |
| DOH        | Department of Health                                                                 |
| EPA        | U. S. Environmental Protection Agency                                                |
| ELAP       | Environmental Laboratory Accreditation Program                                       |
| GC         | Gas Chromatography                                                                   |
| GC/MS      | Gas Chromatography/Mass Spectrometry                                                 |
| J          | Estimated concentration. The value is less than the method reporting limit, but      |
|            | greater than the method detection limit.                                             |
| LUFT       | Leaking Underground Fuel Tank                                                        |
| М          | Modified                                                                             |
| MCL        | Maximum Contaminant Level is the highest permissible concentration of a substance    |
|            | allowed in drinking water as established by the USEPA.                               |
| MDL        | Method Detection Limit                                                               |
| MPN        | Most Probable Number                                                                 |
| MRL        | Method Reporting Limit                                                               |
| NA         | Not Applicable                                                                       |
| NAN        | Not Analyzed                                                                         |
| NC         | Not Calculated                                                                       |
| NCASI      | National Council of the Paper Industry for Air and Stream Improvement                |
| ND         | Not Detected at or above the MRL                                                     |
| NIOSH      | National Institute for Occupational Safety and Health                                |
| PQL        | Practical Quantitation Limit                                                         |
| RCRA       | Resource Conservation and Recovery Act                                               |
| SIM        | Selected Ion Monitoring                                                              |
| ı PH       | Total Petroleum Hydrocarbons                                                         |
| tr         | Trace level is the concentration of an analyte that is less than the PQL but greater |
|            | than or equal to the MDL. 000002                                                     |
|            |                                                                                      |

#### Analytical Report

**Client:** Alaska, University of (Anchorage) Project: Ecological Assessment of Northeast Cape, St.Lawrence Island Sample Matrix: Tissue

Service Request: K9905279 Date Collected: 8/2/99 Date Received: 8/6/99 Date Extracted: 8/25/99 Date Analyzed: 8/25/99

#### Lipids Gravimetric Units: Percent (%) As Received Basis

.

| Sample Name  | Lab Code     | Result |
|--------------|--------------|--------|
| slsuq02a-DV  | K9905279-001 | 5.06   |
| slqan01a-DV  | K9905279-002 | 2.49   |
| slqan01a-9SB | K9905279-003 | 5.77   |
| rc01a-BF     | K9905279-004 | 2.06   |
| .sut01a-BF   | K9905279-005 | 4.41   |
| slsut01a-DV  | K9905279-006 | 3.20   |
| slsuq01a-DV  | K9905279-007 | 5.38   |
| slsuq01a-9SB | K9905279-008 | 4.58   |

have Approved By: 1A/102094 05279SVG.AB1 - TSolids 8/26/99

\_\_\_\_\_Date: <u>B-J6-99</u> 000000

Page No..

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/2/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

#### Polychlorinated Biphenyls (PCBs)

| Sample Name: | slsuq02a-DV  | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-001 | Basis: As Received |
| Test Notes:  | С            |                    |

| Analyte      | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|--------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Aroclor 1016 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1221 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1232 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1242 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1248 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| lor 1254     | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| lor 1260،    | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | 160    |                 |

С

.

The MRL is elevated because the sample required diluting.

MM Approved By: 1S22/020597p

Date: 8-31-99

052795VG.AY1 - 1 8/31/99

000004 Page No.:

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                           | Service Request: K9905279 |
|----------------|-------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St.Lawrence Island | Date Collected: 8/2/99    |
| Sample Matrix: | Tissue                                                      | Date Received: 8/6/99     |
|                |                                                             |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slqan01 a-DV | ug/Kg (ppb) |
|--------------|--------------|-------------|
| Lab Code:    | K9905279-002 | As Received |
| Test Notes:  | C            |             |

|              | Prep      | Analysis |     | Dilution |           | Date     |        | Result |
|--------------|-----------|----------|-----|----------|-----------|----------|--------|--------|
| Analyte      | Method    | Method   | MRL | Factor   | Extracted | Analyzed | Result | Notes  |
| Aroclor 1016 | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1221 | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1232 | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1242 | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1248 | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| or 1254      | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |
| ior 1260     | EPA 3540C | 8082     | 50  | 5        | 8/18/99   | 8/28/99  | ND     |        |

С

The MRL is elevated because the sample required diluting.

Approved By: \_ 1S22/020597p

ASM .

\_\_\_\_\_ Date: \_\_\_\_\_8-31-991\_\_\_\_

05279SVG.AY1 - 2 8/31/99

000005 Page No.

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/2/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slqan01a-9SB |   |        | ug/Kg (ppb) |
|--------------|--------------|---|--------|-------------|
| Lab Code:    | K9905279-003 |   | Basis: | As Received |
| Test Notes:  | c            | • |        |             |

|              | Ргер               | Analysis |     | Dilution | Date      | Date            |        | Result |
|--------------|--------------------|----------|-----|----------|-----------|-----------------|--------|--------|
| Analyte      | Method             | Method   | MRL | Factor   | Extracted | Analyzed        | Result | Notes  |
| Aroclor 101  | 6 EPA <b>3540C</b> | 8082     | 50  | 5        | 8/18/99   | <b>8/28</b> /99 | ND     |        |
| Aroclor 122  | 1 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |
| Aroclor 1232 | 2 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |
| Aroclor 1242 | 2 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |
| Aroclor 1248 | 8 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |
| clor 1254    | 4 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |
|              | 0 EPA 3540C        | 8082     | 50  | 5        | 8/18/99   | 8/28/99         | ND     |        |

С

The MRL is elevated because the sample required diluting.

Approved By: \_ 1S22/020597p

PIN

Date: 8-31-99

05279SVG.AY1 - 3 8/31/99

000006

Page No..

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/2/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slurc01a-BF  |   | Units: ug/Kg (ppb) |
|--------------|--------------|---|--------------------|
| Lab Code:    | K9905279-004 |   | Basis: As Received |
| Test Notes:  | С            | • |                    |
|              |              |   |                    |
|              |              |   |                    |

| Analyte      | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|--------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Aroclor 1016 | EPA 3540C      | 8082               | 50  | 5                  | <b>8/18/</b> 99   | 8/28/99          | ND     |                 |
| Aroclor 1221 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1232 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1242 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1248 | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| lor 1254     | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | ND     |                 |
| Jor 1260     | EPA 3540C      | 8082               | 50  | 5                  | 8/18/99           | 8/28/99          | 100    |                 |

Approved By: 1S22/020597p

PIM

\_\_\_\_ Date: <u>8-31-99</u>

05279SVG.AY1 - 48/31/99

00000<sup>PHe No.:</sup>

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                           | Service Request: K9905279 |
|----------------|-------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St.Lawrence Island | Date Collected: 8/1/99    |
| Sample Matrix: | Tissue                                                      | Date Received: 8/6/99     |
|                |                                                             |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slsut01a-BF  | ug/Kg (ppb) |
|--------------|--------------|-------------|
| Lab Code:    | K9905279-005 | As Received |
| Test Notes:  | F            |             |

|                 | Prep      | Analysis |     | Dilution | Date      | Date     |        | Result |
|-----------------|-----------|----------|-----|----------|-----------|----------|--------|--------|
| Analyte         | Method    | Method   | MRL | Factor   | Extracted | Analyzed | Result | Notes  |
| Aroclor 1016    | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1221    | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1232    | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1242    | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| Aroclor 1248    | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| lor 1254        | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |
| lor 1260 عد _ ، | EPA 3540C | 8082     | 20  | 1        | 8/18/99   | 8/28/99  | ND     |        |

The MRL is elevated because of the low percent solids in the sample as received.

PSM

\_\_\_\_\_Date: \_\_\_\_\_Date: \_\_\_\_\_\_

IS22/020597p

Approved By:

F

05279SVG AY1 - 5 8/31/99

Page No.: 00000

.

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/1/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name:<br>Lab Code: | slsut01a-DV<br>K9905279-006 |  | ug/Kg (ppb)<br>As Received |
|---------------------------|-----------------------------|--|----------------------------|
| Test Notes:               | С                           |  |                            |

|              | Ргер      | Analysis |     | Dilution | Date           | Date     |        | Result |
|--------------|-----------|----------|-----|----------|----------------|----------|--------|--------|
| Analyte      | Method    | Method   | MRL | Factor   | Extracted      | Analyzed | Result | Notes  |
| Aroclor 1016 | EPA 3540C | 8082     | 50  | 5        | 8/18/99        | 8/28/99  | ND     |        |
| Aroclor 1221 | EPA 3540C | 8082     | 50  | 5        | 8/18/99        | 8/28/99  | ND     |        |
| Aroclor 1232 | EPA 3540C | 8082     | 50  | 5        | <b>8/18/99</b> | 8/28/99  | ND     |        |
| Aroclor 1242 | EPA 3540C | 8082     | 50  | 5        | 8/18/99        | 8/28/99  | ND     |        |
| Aroclor 1248 | EPA 3540C | 8082     | 50  | 5        | 8/18/99        | 8/28/99  | ND     |        |
| 'or 1254     | EPA 3540C | 8082     | 50  | 5        | 8/18/99        | 8/28/99  | ND     |        |
| lor 1260 دس  | EPA 3540C | 8082     | 50  | 5        | <b>8/18/99</b> | 8/28/99  | ND     |        |

С

The MRL is elevated because the sample required diluting.

Approved By: \_

PSM

\_\_\_\_\_Date: <u>8-31-99</u>

1 S22/020597p

05279SVG.AY1 - 6 8/31/99

## Analytical Report

| Client:<br>Project: | Alaska, University of (Anchorage)<br>Ecological Assessment of Northeast Cape, St. Lawrence Island | Service Request:<br>Date Collected: |                |
|---------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|----------------|
| Sample Matrix:      | Tissue                                                                                            | Date Received:                      | <b>8/</b> 6/99 |
|                     |                                                                                                   |                                     |                |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slsuq01a-DV           |   | Units: ug/Kg (ppb) |
|--------------|-----------------------|---|--------------------|
| Lab Code:    | K99052 <b>7</b> 9-007 |   | Basis: As Received |
| Test Notes:  | C                     | - |                    |

| Analyte        | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|----------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Aroclor 1016   | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1221   | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1232   | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1242   | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1248   | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| or 1254        | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| ior 1260 اند ـ | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | 140    |                 |

The MRL is elevated because the sample required diluting.

Approved By: \_\_\_\_\_

С

PIM

Date: 8-31-99

05279SVG.AY2 - 7 8/31/99

000010 Page No.

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: NA        |
| Sample Matrix: | Tissue                                                       | Date Received: NA         |
|                |                                                              |                           |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | Method Blank | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K990818-MB   | Basis: As Received |
| Test Notes:  |              |                    |

| Analyte      | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|--------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Aroclor 1016 | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1221 | EPA 3540C      | 8082               | 20  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1232 | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1242 | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1248 | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| lor 1254     | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
|              | EPA 3540C      | 8082               | 10  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |

PIM Approved By: \_

\_\_\_\_\_ Date: \_\_\_\_\_\_ 8-31-99

I S22/020597p

05279SVG.AYI - MB 8/31/99

Page No.. 000014

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: | <b>8/</b> 1/99 |
|----------------|--------------------------------------------------------------|------------------|----------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected:  |                |
| Sample Matrix: | Tissue                                                       | Date Received:   |                |
| •              |                                                              |                  |                |

## Polychlorinated Biphenyls (PCBs)

| Sample Name: | slsuq01a-9SB | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-008 | Basis: As Received |
| Test Notes:  | c            |                    |

| Analyte      | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|--------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Aroclor 1016 | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1221 | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1232 | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1242 | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| Aroclor 1248 | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| or 1254      | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |
| or 1260      | EPA 3540C      | 8082               | 50  | 1                  | 8/18/99           | 8/28/99          | ND     |                 |

С

The MRL is elevated because the sample required diluting.

Approved <u>By:</u>

\_Date: <u>8-31-99</u>

05279SVGAY2 - 8 8/31/99

000012 Page No.

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/2/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

## Polynuclear Aromatic Hydrocarbons

| Sample Name: | slsuq02a-DV  | Units: ug/Kg (ppb) |  |
|--------------|--------------|--------------------|--|
| Lab Code:    | K9905279-001 | Basis: As Received |  |
| Test Notes:  |              |                    |  |

|                        | Ргер     | Analysis |     | Dilution | Date            | Date            |        | Result |
|------------------------|----------|----------|-----|----------|-----------------|-----------------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted       | Analyzed        | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| ene                    | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| .anthrene              | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     | •      |
| Pyrene                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | <b>8/18/</b> 99 | 9 <b>/3/</b> 99 | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99         | 9/3/99          | ND     |        |

Approved By: \_\_\_\_

1**S22/020597**p

.

05279SVM.AY1 - 1 9/9/99

((Lows

\_\_\_\_\_\_**SEP** 1 0 1999

000013 Page No.

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                           | Service Request: | K9905279 |
|----------------|-------------------------------------------------------------|------------------|----------|
| Project:       | Ecological Assessment of Northeast Cape, St.Lawrence Island | Date Collected:  | 8/2/99   |
| Sample Matrix: | Tissue                                                      | Date Received:   | 8/6/99   |

#### Polynuclear Aromatic Hydrocarbons

| Sample Name: | slurc01a-BF  | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-004 | Basis: As Received |
| Test Notes:  |              |                    |

|                        | Ргер     | Analysis |     | Dilution | Date      | Date     |        | Result |
|------------------------|----------|----------|-----|----------|-----------|----------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | 16     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | 71     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | 7      |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| rene                   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | 11     |        |
| nanthrene              | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | 9      |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     | •      |
| Pyrene                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |

Approved By: \_\_\_\_\_

1S22/020597p

05279SVM.AY1 - 4 9/9/99

.

<u>C(Leines</u> Date: SEP 1 0 1999

#### Analytical Report

Client:Alaska, University of (Anchorage)Service Request:K9905279Project:Ecological Assessment of Northeast Cape, St. Lawrence IslandDate Collected:8/2/99Sample Matrix:TissueDate Received:8/6/99

#### Polynuclear Aromatic Hydrocarbons

| Sample Name: | slqan01a-DV  | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-002 | Basis: As Received |
| Test Notes:  |              |                    |

|                        | Prep     | Analysis |     | Dilution | Date      | Date            |        | Result |
|------------------------|----------|----------|-----|----------|-----------|-----------------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed        | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| orene                  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| enanthrene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Pyrene                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9 <b>/3/</b> 99 | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |

(Laines

Approved By: 1S22/020597p

/P

000015 Page No.

**SEP** 1 0 1999

Date: \_

05279SVM.AYI - 2 9/9/99

#### Analytical Report

Client:Alaska, University of (Anchorage)Service Request:K9905279Project:Ecological Assessment of Northeast Cape, St. Lawrence IslandDate Collected:8/2/99Sample Matrix:TissueDate Received:8/6/99

#### Polynuclear Aromatic Hydrocarbons

| Sample Name: | slqan01a-9SB | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-003 | Basis: As Received |
| Test Notes:  |              |                    |

|                        | Prep     | Analysis |     | Dilution | Date      | Date     |        | Result |
|------------------------|----------|----------|-----|----------|-----------|----------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| r me                   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| . Anthrene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     | •      |
| Ругепе                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |

Approved By: \_\_\_\_\_\_

. .

C(Leines\_\_\_\_\_ Date: \_\_\_\_\_ SEP 1 0 1999

05279SVM\_AY1 - 3 9/9/99

#### Analytical Report

Client:Alaska, University of (Anchorage)Service Request:K9905279Project:Ecological Assessment of Northeast Cape, St. Lawrence IslandDate Collected:8/1/99Sample Matrix:TissueDate Received:8/6/99

#### Polynuclear Aromatic Hydrocarbons

| Sample Name: | slsut01a-BF  |   | Units: ug/Kg (ppb) |
|--------------|--------------|---|--------------------|
| Lab Code:    | K9905279-005 |   | Basis: As Received |
| Test Notes:  |              | • |                    |

|                        | Prep     | Analysis |     | Dilution | Date      | Date            | -      | Result |
|------------------------|----------|----------|-----|----------|-----------|-----------------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed        | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9 <b>/3</b> /99 | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| ene                    | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| manthrene              | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     | •      |
| Pyrene                 | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 10  | 1        | 8/18/99   | 9/3/99          | ND     |        |

Approved By: 1522/020397p

C (Heines\_\_\_\_\_

000017

Date: SEP 1 0 1999

05279SVM.AY1 - 5 9/9/99

#### Analytical Report

|                |                                                             | ţ |                  |                |
|----------------|-------------------------------------------------------------|---|------------------|----------------|
| Client:        | Alaska, University of (Anchorage)                           |   | Service Request: | K9905279       |
| Project:       | Ecological Assessment of Northeast Cape, St.Lawrence Island |   | Date Collected:  | 8/1/99         |
| Sample Matrix: | Tissue                                                      |   | Date Received:   | <b>8/6/</b> 99 |
| -              |                                                             |   |                  |                |

## Polynuclear Aromatic Hydrocarbons

| Sample Name: | slsuq01a-9SB |   | Units: ug/Kg (ppb) |
|--------------|--------------|---|--------------------|
| Lab Code:    | K9905279-008 |   | Basis: As Received |
| Test Notes:  |              | • |                    |

|                        | Ргер     | Analysis |     | Dilution | Date      | Date            |        | Result |
|------------------------|----------|----------|-----|----------|-----------|-----------------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed        | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9 <b>/3</b> /99 | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9 <b>/3</b> /99 | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| vrene                  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| nanthrene              | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     | •      |
| Pyrene                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99          | ND     |        |

| Approved By:  | ( (Louves_ |
|---------------|------------|
| 1\$22/020597p |            |

SEP 1 0 1999

000018

05279SVM.AY2 - 8 9/9/99

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: K9905279 |
|----------------|--------------------------------------------------------------|---------------------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected: 8/1/99    |
| Sample Matrix: | Tissue                                                       | Date Received: 8/6/99     |
|                |                                                              |                           |

## Polynuclear Aromatic Hydrocarbons

| Sample Name: | slsuq01a-DV  | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | K9905279-007 | Basis: As Received |
| Test Notes:  |              |                    |

|                        | Prep     | Analysis |     | Dilution | Date      | Date     |        | Result |
|------------------------|----------|----------|-----|----------|-----------|----------|--------|--------|
| Analyte                | Method   | Method   | MRL | Factor   | Extracted | Analyzed | Result | Notes  |
| Naphthalene            | EPA 3540 | SIM '    | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| 2-Methylnaphthalene    | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Acenaphthylene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Acenaphthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Dibenzofuran           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| rene                   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| anthrene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Anthracene             | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Fluoranthene           | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     | •      |
| Pyrene                 | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benz(a)anthracene      | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Chrysene               | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(b)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(k)fluoranthene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(a)pyrene         | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Indeno(1,2,3-cd)pyrene | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Dibenz(a,h)anthracene  | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |
| Benzo(g,h,i)perylene   | EPA 3540 | SIM      | 5   | 1        | 8/18/99   | 9/3/99   | ND     |        |

( (Louis

Approved By: \_

1S22/020597p

05279SVM.AY2 - 7 9/9/99

000019 Page No.:

SEP 1 0 1999

Date:

## Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: | K9905279       |
|----------------|--------------------------------------------------------------|------------------|----------------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected:  | 8/1/99         |
| Sample Matrix: | Tissue                                                       | Date Received:   | <b>8/</b> 6/99 |

## Polynuclear Aromatic Hydrocarbons

| Sample Name: | slsut0la-DV           | Units: ug/Kg (ppb) |
|--------------|-----------------------|--------------------|
| Lab Code:    | K9905 <b>27</b> 9-006 | Basis: As Received |
| Test Notes:  |                       |                    |

| A - alasta             | Prep<br>Method | Analysis<br>Method | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|------------------------|----------------|--------------------|------|--------------------|-------------------|------------------|--------|-----------------|
| Analyte                | MCCMUU         | Method             | MIKL | Factor             | Ellialicu         | Allalyzeu        | Acsuit | 110165          |
| Naphthalene            | EPA 3540       | SIM                | 5    | 1                  | 8/1 <b>8/</b> 99  | 9 <b>/3</b> /99  | ND     |                 |
| 2-Methylnaphthalene    | EPA 3540       | SIM                | 5    | 1                  | 8/1 <b>8/</b> 99  | 9/3/99           | ND     |                 |
| Acenaphthylene         | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Acenaphthene           | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Dibenzofuran           | EPA 3540       | SIM                | 5    | 1                  | 8/1 <b>8/</b> 99  | 9/3/99           | ND     |                 |
| ene                    | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| anthrene               | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Anthracene             | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Fluoranthene           | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     | •               |
| Рутепе                 | EPA 3540       | SIM                | 5    | 1                  | 8/1 <b>8/</b> 99  | 9/3/99           | ND     |                 |
| Benz(a)anthracene      | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Chrysene               | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Benzo(b)fluoranthene   | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Benzo(k)fluoranthene   | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Benzo(a)pyrene         | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Indeno(1,2,3-cd)pyrene | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Dibenz(a,h)anthracene  | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |
| Benzo(g,h,i)perylene   | EPA 3540       | SIM                | 5    | 1                  | 8/18/99           | 9/3/99           | ND     |                 |

| Approved     | By |
|--------------|----|
| 1S22/020597p |    |

05279SVM.AY1 - 6 9/9/99

Page No..

000020

~

#### Analytical Report

| Client:        | Alaska, University of (Anchorage)                            | Service Request: | K9905279 |
|----------------|--------------------------------------------------------------|------------------|----------|
| Project:       | Ecological Assessment of Northeast Cape, St. Lawrence Island | Date Collected:  | NA       |
| Sample Matrix: | Tissue                                                       | Date Received:   | NA       |

## Polynuclear Aromatic Hydrocarbons

| Sample Name: | Method Blank | Units: ug/Kg (ppb) |
|--------------|--------------|--------------------|
| Lab Code:    | KWG9902683-4 | Basis: As Received |
| Test Notes:  |              |                    |

| Analyte                | Prep<br>Method | Analysis<br>Method | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| Naphthalene            | EPA 3540       | SIM                | 5   | 1                  | <b>8/18/</b> 99   | 9/7/99           | ND     |                 |
| 2-Methylnaphthalene    | EPA 3540       | SIM                | 5   | 1                  | <b>8/18/</b> 99   | 9/7/99           | ND     |                 |
| Acenaphthylene         | EPA 3540       | SIM                | 5   | 1                  | <b>8/18/</b> 99   | 9/7/99           | ND     |                 |
| Acenaphthene           | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Dibenzofuran           | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| ene                    | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| anthrene               | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Anthracene             | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Fluoranthene           | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     | ٠               |
| Pyrene                 | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Benz(a)anthracene      | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Chrysene               | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Benzo(b)fluoranthene   | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Benzo(k)fluoranthene   | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Benzo(a)pyrene         | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Indeno(1,2,3-cd)pyrene | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Dibenz(a,h)anthracene  | EPA 3540       | SIM                | 5   | 1                  | 8/18/99           | 9/7/99           | ND     |                 |
| Benzo(g,h,i)perylene   | EPA 3540       | SIM                | 5   | I                  | 8/18/99           | 9/7/99           | ND     |                 |

Approved By: \_\_\_\_

IS22/020597p

05279SVM\_AY1 - MB 9/9/99

C (bleins

\_\_\_\_\_\_Date: \_\_\_\_\_SEP 1 0 1999

000021

Page No.:

Appendix A

Laboratory QC Results

## QA/QC Report

| Client:<br>Project:<br>Sample Matrix:                                                                                                  | Alaska, University<br>Ecological Assess<br>Tissue | ment of Northeast Cape, S<br>Surrogz                                                                                                                       | St. Lawrence Island<br>ate Recovery Summary<br>inated Biphenyls (PCBs) | Service Request:<br>Date Collected:<br>Date Received:<br>Date Extracted:<br>Date Analyzed: | 8/1 - 2/99<br>8/6/99<br>8/18/99 |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|
| Prep Method:<br>Analysis Method:                                                                                                       | EPA 3540C<br>8082                                 |                                                                                                                                                            |                                                                        | Units:<br>Basis:                                                                           | PERCENT<br>NA                   |
| Sample Name                                                                                                                            |                                                   | Lab Code                                                                                                                                                   | Test<br>Notes                                                          | Percent Recovery<br>Decachlorobiphenyl                                                     |                                 |
| slsuq02a-DV<br>slqan01a-DV<br>slqan01a-9SB<br>slurc01a-BF<br>slsut01a-BF<br>slsut01a-DV<br>slsuq01a-DV<br>slsuq01a-9SB<br>čethod Blank |                                                   | K9905279-001<br>K9905279-002<br>K9905279-003<br>K9905279-004<br>K9905279-005<br>K9905279-006<br>K9905279-007<br>K9905279-008<br>K9905279-008<br>K990818-MB |                                                                        | 97<br>89<br>87<br>92<br>93<br>88<br>94<br>92<br>100                                        |                                 |

CAS Acceptance Limits:

20-142

Approved By: \_\_\_\_\_\_\_\_

SUR 1/110697p 05279SVG AY1 - SUR 8/31/99 Date: <u>8-31-99</u>

000023

## QA/QC Report

| neat:<br>roject:<br>ample Matrix:    | Alaska, Univers<br>Ecological Asse<br>Tissue |          | • •  | Cape,  | St.Lawr | rence Islan             | d     |        |            | Da<br>Da<br>Dat | rice Request:<br>te Collected:<br>te Reseived:<br>e Extracted:<br>te Analyzed: | 8/2/99<br>8/6/99<br>8/18/99 |        |
|--------------------------------------|----------------------------------------------|----------|------|--------|---------|-------------------------|-------|--------|------------|-----------------|--------------------------------------------------------------------------------|-----------------------------|--------|
|                                      |                                              | 1        |      | -      | -       | e Matrix S<br>Biphenyls | -     | •      |            |                 |                                                                                | •                           |        |
| umple Name:<br>ab Code:<br>st Notes: | slsuq02a-DV<br>K9905279-001N                 | AS,      | K990 | 5279-0 | 01DMS   | ;                       |       |        |            |                 |                                                                                | ug/Kg (ppb)<br>As Received  |        |
|                                      |                                              |          |      |        |         | ·                       |       |        | Per        | cent            | Recover:<br>CAS                                                                | y<br>Relative               |        |
|                                      | Prep                                         | Analysis |      | Spik   | e Level | Sample                  | Spike | Result |            |                 | Acceptance                                                                     | Percent                     | Result |
| nalyte                               | Method                                       | Method   | MRL  | MS     | DMS     | Result                  | MS    | DMS    | MS         | DMS             | Limits                                                                         | Difference                  | Notes  |
| oclor 1016                           | EPA 3540C                                    | 8082     | 50   | 200    | 200     | ND                      | 160   | 160    | 80         | 80              | 35-140                                                                         | <1                          |        |
| oclor 1260                           | EPA 3540C                                    | 8082     | 50   | 200    | 200     | 160                     | 340   | 340    | <b>9</b> 0 | 90              | 35-140                                                                         | <1                          |        |

proved By: \_\_\_\_\_

<u>M</u>C4

Date: 8-31-99

•

S/020597p 05279SVG.AYi - DMS(nr) 8/31/99 000024 Mo.

## QA/QC Report

| Client:<br>Project:<br>LCS Matrix: | Alaska, University of (Anche<br>Ecological Assessment of Ne<br>Tissue | • •           | awrence Isla | nd              | D<br>D<br>Da | rvice Request:<br>ate Collected:<br>Date Received:<br>ate Extracted:<br>ate Analyzed: | NA<br>NA<br>8/18/99 |
|------------------------------------|-----------------------------------------------------------------------|---------------|--------------|-----------------|--------------|---------------------------------------------------------------------------------------|---------------------|
|                                    |                                                                       | Laboratory Co | ntrol Same   | le Summa        |              | <b>__</b>                                                                             |                     |
|                                    |                                                                       | Polychlorina  |              |                 | •            |                                                                                       |                     |
| Sample Name:                       | Lab Control Sample                                                    |               |              | J (- <b>-</b> ) |              | Units:                                                                                | ug/Kg (ppb)         |
| Lab Code:<br>Test Notes:           | K990818-LCS                                                           |               |              |                 |              |                                                                                       | As Received         |
|                                    |                                                                       |               |              |                 |              |                                                                                       |                     |
|                                    |                                                                       |               | ٠            |                 |              | CAS<br>Percent                                                                        |                     |
|                                    |                                                                       |               |              |                 |              | Recovery                                                                              |                     |
|                                    | Prep                                                                  | Analysis      | Тгие         |                 | Percent      | Acceptance                                                                            | Result              |
| Analyte                            | Method                                                                | •             | Value        | Result          | Recovery     | Limits                                                                                | Notes               |
| Aroclor 1016                       | EPA 3540                                                              | C 8082        | 200          | 152             | 76           | 50-130                                                                                |                     |

200

187

94

50-130

8082

EPA 3540C

Approved By:

Aroclor 1260

AUM

Date: 8-31-99

000025 Page No.:

LCS/080797p 05279SVG.AY1 - LCS(nr) 8/31/99

## QA/QC Report

| Client:<br>Project:<br>Sample Matrix:                                                                                                  | Alaska, University of (Anchor<br>Ecological Assessment of Nor<br>Tissue                                                                      | theast Cape, St.Law<br>Surrogate Rec | rence Island<br>covery Summary<br>natic Hydrocarbons | Service Request:<br>Date Collected:<br>Date Received:<br>Date Extracted:<br>Date Analyzed: | 8/1-2/99<br>8/6/99<br>8/18/99                            |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Prep Method:<br>Analysis Method:                                                                                                       | EPA 3540<br>SIM                                                                                                                              |                                      |                                                      | Units:<br>Basis:                                                                           | PERCENT<br>NA                                            |
| Sample Name                                                                                                                            | Lab Code                                                                                                                                     | Test<br>Notes                        | <b>Perce</b><br>Fluorene-d10                         | <b>n t R e c</b><br>Fluoranthene-d10                                                       | overy<br>Terphenyl-d14                                   |
| slsuq02a-DV<br>slqan01a-DV<br>slqan01a-9SB<br>slurc01a-BF<br>slsut01a-BF<br>slsut01a-DV<br>slsuq01a-DV<br>slsuq01a-9SB<br>fethod Blank | K9905279-001<br>K9905279-002<br>K9905279-003<br>K9905279-004<br>K9905279-005<br>K9905279-006<br>K9905279-007<br>K9905279-008<br>KWG9902683-4 |                                      | 45<br>42<br>43<br>46<br>38<br>45<br>41<br>45<br>24   | 48<br>45<br>45<br>44<br>42<br>50<br>46<br>49<br>45                                         | 48<br>52<br>48<br>52<br>44<br>49<br>50<br>50<br>50<br>44 |

CAS Acceptance Limits: 13-144

13-144

15-145

.

Approved By:

SUR3/111397p 05279SVM.AY1 - SUR 9/9/99

( there

**SEP** 1 0 1999 Date: 200026

# Appendix B

-.

Chain of Custody Information Cooler Receipt Form

## H996 43 University of Alaska Anchorage-Environment and Natural Resources Institute

Field Chain of Custody Record

Fish Tissue Samples

Fund Code: 230612

τ.

a.

Study: Ecological Assessment of Northeast Cape, St. Lawrence Island

|                      |                  | -             |                 |                         |     | Paramet | ter                |                     | <u></u>                              |
|----------------------|------------------|---------------|-----------------|-------------------------|-----|---------|--------------------|---------------------|--------------------------------------|
| Station #            | Date<br>mm/dd/yy | Time<br>24 hr | Species<br>Code | Collector's<br>Initials | РСВ | РАН     | Diesel<br>Modified | Pres.               | Lab I.D. #                           |
| slsuq02a             | 08/02/99         | 1200          | DV              | LB, MK, LH              | x   | х       | x                  | ice 1990            | 0436-1                               |
| slqan01a             | 08/02/99         | 1545          | DV              | LB, MK, LH              | Х   | Х       | Х                  | ice                 | 1-2                                  |
| slqan01a             | 08/02/99         | 1545          | 9SB             | LB, MK, LH              | Х   | Х       | Х                  | ice                 | -3                                   |
| slurc01a             | 08/02/99         | 1430          | BF              | LB, MK, LH              | Х   | Х       | Х                  | ice                 | -4                                   |
| slsut01a             | 08/01/99         | 1030          | BF              | LB, MK, LH              | Х   | Х       | Х                  | ice                 | -5                                   |
| slsut01a             | 08/01/99         | 1030          | DV              | LB, MK, LH              | Х   | Х       | Х                  | ice                 | 1-6                                  |
| slsuq01a             | 08/01/99         | 1500          | DV              | LB, MK, LH              | Х   | Х       | Х                  | ice                 | -7                                   |
| slsuq01a             | 08/01/99         | 1500          | 9SB             | L <u>B, MK, LH</u>      | Х   | Х       | Х                  | ice                 | <u>v -8</u>                          |
| 2                    |                  |               |                 |                         |     |         |                    |                     |                                      |
|                      |                  |               |                 |                         |     |         |                    |                     | · .                                  |
| Samples analyzed by  |                  |               |                 |                         |     | Date    |                    | т                   | ïmehrs                               |
| 1)                   |                  |               |                 |                         |     | ·D · -  |                    | _                   |                                      |
| Samples Collected By | Houston          |               |                 |                         | _ 6 | Liza 9  | Houston            | llector from each c | <u>4-99 1610 h</u><br>rew) Date/Time |

.

| Liza Houston                                                                            | 8-4-99       | 1610 hrs             |
|-----------------------------------------------------------------------------------------|--------------|----------------------|
| Relinquished by (Signature of one collector from                                        | n each crew) | Date/Time            |
| Tredha S. Olfor                                                                         | 816199       | 8:30                 |
| Relinquished by (Signature)                                                             |              | Date/Time            |
| Delinguished by (Cinesture)                                                             |              | Data/Time            |
| <u>'The Aha S. (Olhan</u><br>Relinquished by (Signature)<br>Relinquished by (Signature) | 8/6/99       | B : S C<br>Date/Time |

Send Report to: Lisa Houston, UAA - ENRI

707 A Street Anchorage, AK 99501 (907) 257-2744 <sup>257</sup>-2712 .2 00 00

## Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

| Prelimina              | ary Examination:                                                                    |              |
|------------------------|-------------------------------------------------------------------------------------|--------------|
| Project/C              | lient UAA - ENRI Work Order A9900436                                                |              |
| Cooler rea             | ceived on $869$ and opened on $8/6/99$ by $7.108519$ kg.                            |              |
| Carrier                | Shipping Number                                                                     | (NA)         |
| 1.                     | Were custody seals on outside of shipping container?<br>If yes, how many and where? | YES NO 🐼     |
| 2.                     | Were seals intact and signature & date correct?                                     | YES NO NA    |
| 3.                     | Temperature of cooler / Temperature blank upon receipt (circle): $M/A - E$          | n beg        |
| 4.                     | Were custody papers properly filled out (ink, signed, etc. )?                       | <b>NO NA</b> |
| Login Exa<br>Date samp | amination<br>bles were Logged-in 8-6-99 and unpacked by T. UESHARE.                 |              |
| 5.                     | Type of packing material present <u>Qarbage</u> bag                                 |              |
| 6.                     | Did all sample containers arrive in good condition (unbroken)?                      | (E) NO NA    |
| 7.                     | Were all sample labels complete ( <i>i.e.</i> analysis, preservation, etc.)?        | ES NO NA     |
| 8.                     | Did all sample labels and tags agree with custody papers?                           | ES NO NA     |
| 9.                     | Were the correct types of containers used for the tests indicated?                  | YES NO NA    |
| 10.                    | Were all of the preserved samples received at the lab with the appropriate pH?      | YES NO NA    |
| 11.                    | Were VOA vials checked for absence of air bubbles, and if present, noted below?     | YES NO A     |
| 12.                    | Did the sample containers originate from CAS/AK or a branch laboratory?             | YES NONA     |

Explain any discrepancies\_\_\_\_\_\_

| Sample ID | Reagent | Volume | Lot Number | Initials |
|-----------|---------|--------|------------|----------|
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            | <u></u>  |
|           |         |        |            |          |
| ·         | -       |        |            |          |

Verified By\_\_\_\_\_

000**029** 

-

-

81

Fund Code: 230612

University of Ala: Anchorage-Environment and Natural Resources Ir. ... Field Chain of Custody Record

Fish Tissue Samples (19905279 Study: Ecological Assessment of Northeast Cape, St. Lawrence Island

Parameter Station # Time Date Species Collector's Diesel Pres. Lab I.D. # mm/dd/yy 24 hr Code Initials PCB PAH Modified ice 1990436-1 slsuq02a 08/02/99 1200 DV LB, MK, LH Х Х Х 08/02/99 1545 -2 slqan01a DV LB, MK, LH Х Х Х ice \_2 slqan01a 08/02/99 1545 9SB LB, MK, LH Х Х Х ice slurc01a 08/02/99 1430 BF Х Х Х LB, MK, LH ice slsut01a 08/01/99 1030 BF LB, MK, LH Х Х Х ice 08/01/99 1030 slsut01a DV LB, MK, LH Х Х Х ice slsuq01a 08/01/99 1500 DV LB, MK, LH Х Х Х ice P 08/01/99 1500 slsuq01a 9SB LB, MK, LH Х Х Х ice Samples analyzed by Date Time hrs

Samples cted By (Signature and initial of one collector from each team) 814/99 16:10 Ohn greater 3. Samples Received by (Signature) Date/Time Bi 830 Date/Time Samples Rece ed by (Signature enter Samples Received in Lab By (Signature) Date/Time Received

-4-99 1610 hrs Date/Time quished by (Signature of one collector from each crew) 8:30 816199 -10 hu Relinquished by (Signature) Date/Time 100 Relinquished by (Signature Date/Time Kud Send Report to: Lisa Houston, UAA - ENRI

707 A Street Anchorage, AK 99501 (907) 257-2744

University of Ala: Anchorage-Environment and Natural Resources Inst

 $\sim$ Fund Code: 230612

പ

Field Chain of Custody Record Fish Tissue Samples Study: Ecological Assessment of Northeast Cape, St. Lawrence Island

| <b>/</b>        |                  |               | ······          |             |     | Daramati         |                    |       |            |
|-----------------|------------------|---------------|-----------------|-------------|-----|------------------|--------------------|-------|------------|
| Station #       | Date<br>mm/dd/yy | Time<br>24 hr | Species<br>Code | Collector's | PCB | Paramete<br>PAH. | Diesel<br>Mödified | Pres. | Lab I.D. # |
| I slsug02a      | 08/02/99         | 1200          | DV              | LB, MK, LH  | х   | x                | Х                  | ice M | 0436-1     |
| slqan01a        | 08/02/99         | 1545          | DV              | LB, MK, LH  | Х   | х                | Х                  | ice   | 1-2        |
| s slqan01a      | 08/02/99         | 1545          | 9SB             | LB, MK, LH  | Х   | х                | Х                  | ice   | -3         |
| slurc01a        | 08/02/99         | 1430          | BF              | LB, MK, LH  | Х   | х                | Х                  | ice   | -4         |
| <u>slsut01a</u> | 08/01/99         | 1030          | BF              | LB, MK, LH  | Х   | х                | Х                  | ice   | -5         |
| _slsut01a       | 08/01/99         | 1030          | DV              | LB, MK, LH  | X   | х                | Х                  | ice   | -6         |
| 7 slsug01a      | 08/01/99         | 1500          | DV              | LB, MK, LH  | Х   | х                | X                  | ice   |            |
| slsuq01a        | 08/01/99         | 1500          | 9SB             | LB, MK, LH  | Х   | х                | Х                  | ice   | V -8       |

| Samples analyzed by                                                                               |                                  | Date                                                                   | Timehrs          |
|---------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------|------------------|
| - Sise Houston                                                                                    |                                  | Lina Houston                                                           | 8-4-99 1610 K    |
| Samples Gliected By (Signature and initial of one collector from each team)<br>9712124 . S. Olion | 814199 16:10                     | Holinquisted by (Signature of one collector in<br>Streather S. (Olfern | 8/6/99 8:30      |
| Semples Received by (Signa)                                                                       | 0ato/Time<br>6/6/99 <u>15</u> 30 | Relinguished by (Signature)                                            | Date/Time        |
| Samples Received by (Signardref                                                                   | 8/1/99 0845                      | Relinquished by (Signeture)                                            | Date/Time        |
| Semples Received in Lab By (Signature)                                                            | Dete/Time                        | Send Report to: Lisa Hous                                              | ston, UAA - ENRI |
| Recined                                                                                           |                                  | 707 A                                                                  | Street           |
| 0. 1.                                                                                             |                                  | Ancho                                                                  | orage, AK 99501  |
|                                                                                                   |                                  | (907)                                                                  | 257-2744         |

っ

## Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

| Project/Cl | ient CMS AK Work Order K99_05279                                                                                       |        |
|------------|------------------------------------------------------------------------------------------------------------------------|--------|
| Cooler rec | verticed on $\frac{9}{7}$ $\frac{9}{9}$ and opened on $\frac{9}{7}$ $\frac{99}{9}$ by $\frac{99}{9}$ by $\frac{99}{9}$ |        |
| 1.         | Were custody seals on outside of cooler?<br>If yes, how many and where? ZFZB                                           | NO NO  |
| 2.         | Were seals intact and signature & date correct?                                                                        | NO RES |
| 3.         | COC #                                                                                                                  | ,      |
|            | Temperature of cooler(s) upon receipt:                                                                                 |        |
|            | Temperature Blank:                                                                                                     |        |
| 4.         | Were custody papers properly filled out (ink, signed, etc.)?                                                           | YES NO |
| 5.         | Type of packing material present <u>NONE</u>                                                                           |        |
| 6.         | Did all bottles arrive in good condition (unbroken)?                                                                   | NO SES |
| 7.         | Were all bottle labels complete (i.e. analysis, preservation, etc.)?                                                   | NO NO  |
| 8.         | Did all bottle labels and tags agree with custody papers?                                                              | NO NO  |
| <i>9</i> . | Were the correct types of bottles used for the tests indicated?                                                        | ES NO  |
| 10.        | Were all of the preserved bottles received at the lab with the appropriate pH?                                         | YES NO |
| 11.        | Were VOA vials checked for absence of air bubbles, and if present, noted below?                                        | YES NO |
| 12.        | Did the bottles originate from CAS/K or a branch laboratory?                                                           | YES 🔊  |
| Explain an | y discrepancies                                                                                                        |        |

## Samples that required preservation or received outside of temperature range at the lab(circle)

| Sample ID | Reagent | Volume | Lot Number | Initials |
|-----------|---------|--------|------------|----------|
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |
|           |         |        |            |          |

## **TRIP REPORT**

#### Suqitughneq River Fish Community Assessment and Habitat Characterization

#### Northeast Cape

#### Saint Lawrence Island, Alaska

## ABSTRACT

The fish community of the Suqitughneq River at Northeast Cape, Saint Lawrence Island, Alaska was assessed between 31 July and 4 August 1999. Baited minnow traps, a Coffelt electroshocker and sport tackle were used to capture fish. Four species, Dolly Varden, Alaska blackfish, ninespine stickleback, and fourhorn sculpin were captured. Year classes from young-of-year juvenile to adult Dolly Varden were captured. Resident and anadromous Dolly Varden were present. The fork length of Dolly Varden and Alaska blackfish was recorded. Fall out-migrating smolt were observed. The Quangeghsaq River was selected as a control stream based on the presence of habitat similar to that in the sampled reaches of Sugitughneq River. Anadromous Dolly Varden were captured in the Quangeghsaq River. The Tapisaghak River was sampled with sport tackle to confirm the presence of anadromous Dolly Varden and pink salmon. Anadromous Dolly Varden and pink salmon were captured in the Tapisaghak River. The Sugitughneq River mouth was sampled with sport tackle to confirm the presence of anadromous Dolly Varden. Anadromous Dolly Varden were captured at the mouth of the Sugitughneq River. A species list of wildlife seen on the project site was compiled. Dominant species of riparian vegetation were identified. Conclusions and recommendations are noted.

## BACKGROUND

Northeast Cape is approximately 15 kilometers west of the northeastern cape of Saint Lawrence Island, Alaska. The project site is situated on a tundra plain between the northern base of the Kinipaghulghat Mountains and the Bering Sea. Tundra lakes, streams, flora and fauna characterize the area. Access is by air or boat.

Construction of Northeast Cape facilities began in the early 1950's and the site was occupied by the military from the mid-1950's through the early 1970's. In 1969, 180,000 gallons of diesel fuel leaked from the center of three fuel tanks. The diesel fuel from this spill, and other nearby sources contaminated a small tributary drainage, and ultimately the Suqitughneq River.

Northeast Cape is classified as a Formerly Used Defense Site (FUDS). Montgomery Watson, a private contractor, completed phase I of a remedial investigation (RI) in 1995 as part of the Alaska District's Defense Environmental Restoration Program. Montgomery Watson started phase II of the RI in 1996 and continued through 1999. This fish community assessment is part of the phase II biological sampling of the Suqitughneq River.

## GOALS

In cooperation with Environment and Natural Resources Institute (ENRI) biologists (contracted by Montgomery Watson), complete the following:

1. Identify the species of resident and anadromous fish present in the Suqitughneq River between 31 July and 4 August 1999.

- 2. Investigate the suitability of two rivers, the Tapisaghak River and the Quangeghsaq River, as a control stream based on the presence of habitat similar to the Suqitughneq River.
- 3. Collect a 200 gram sample of each species for tissue samples within a 200 meter reach:
  - Upstream of the tributary where the spill occurred (hereafter referred to as the spill ditch).
  - Downstream of the spill ditch.
  - The spill ditch.
  - From a control stream with habitat similar to the sampled reaches in the Suqitughneq River.
- 4. Preserve a reference specimen of each species collected in 95% denatured ethyl alcohol (ETOH).
- 5. Investigate the presence or absence of anadromous salmon *Oncorhynchus sp.* in the Suqitughneq River, Tapisaghak River, and Quangeghsaq River.
- 6. Characterize the channel morphology of the Suqitughneq River and control stream.
- 7. Identify the riparian vegetation of the Suqitughneq River and control stream.
- 8. Develop a species list of wildlife observed on the project site.

# **METHODS**

Collecting methods employed:

- 1. Minnow traps baited with cured salmon eggs.
- 2. Coffelt model BP-6 backpack electroshocker producing direct current and powered by a modified Tanaka-Kogyo model QEG-300R generator.
- 3. Dip nets.
- 4. Sport tackle.

Minnow traps were soaked overnight (18 to 24 hours) in habitat judged suitable to hold fish. The electroshocker was used to augment samples collected in minnow traps or, in the case of the Quangeghsaq River control stream, to collect the entire sample. Sport tackle was used to confirm the presence of anadromous char, presumably Dolly Varden *Salvelinus malma*, and pink salmon *O. gorbuscha* at the mouth of the Tapisaghak River and anadromous Dolly Varden at the mouth of the Suqitughneq River.

# RESULTS

#### **FISH SPECIES COLLECTED**

Fish species collected in the Suqitughneq River were:

- 1. Dolly Varden Salvelinus malma.
- 2. Alaska blackfish Dallia pectoralis.
- 3. Ninespine stickleback Pungitius pungitius.

4. Fourhorn sculpin Myoxocephalus quadricornis.

Fish species collected in the Quangeghsaq River were:

- 1. Dolly Varden Salvelinus malma.
- 2. Alaska blackfish Dallia pectoralis.
- 3. Ninespine stickleback Pungitius pungitius.

Fish species collected in the Tapisaghak River were:

- 5. Dolly Varden Salvelinus malma.
- 6. Pink salmon Oncorhynchus gorbuscha.

#### **COLLECTING REACHES IDENTIFIED**

Reach #1. Reach #1 was upstream of the spill ditch confluence and sampled with minnow traps (figure 1). It was in two 100-meter sections: the first section was upstream of the access road culvert and ended at the culvert while the second section started approximately 100 meters downstream of the culvert and continued downstream for 100 meters.

Sampling with electroshock gear could not be conducted in this reach because the water was too deep and unstable cutbanks made standing at the river's edge very hazardous. The size of fish captured in reach #1 was limited by the size of the opening in the minnow traps. Regardless of the limitations, both anadromous and resident forms of Dolly Varden were captured. The fork lengths of fish captured in this reach are presented in Appendix A1.

Reach #2. Reach #2 (figure 1) was several hundred meters downstream of where the spill occurred and began immediately upstream of the highest storm tide or lagoon flooding due to berm formation on the beach. Changes in channel morphology and sediment deposition identified this point. Reach #2 was sampled with minnow traps and the electroshocker. A 305-mm Dolly Varden was captured with the electroshocker in reach #2 but revived and released because the 200-gram tissue sample had been previously reached. The fork lengths of fish captured in this reach are presented in Appendix A1.

Reach #3. Reach #3 (figure 1) was within the spill ditch. Minnow traps were used to sample the spill ditch. Only Alaska blackfish were captured in this reach. The fork lengths of blackfish captured in this reach are presented in Appendix A1.

Reach #4. Reach #4 (figure 1) was in the headwaters of a small tributary that entered the Suqitughneq River a few hundred meters downstream of the spill ditch. This reach was sampled with minnow traps and the electroshocker. The fork lengths of fish captured in this reach are presented in Appendix A1.

Control reach. The Quangeghsaq River was selected as a control stream based on the presence of habitat similar to that in the sampled reaches in the Suqitughneq River. The control reach was a 200 meter-long reach immediately upstream of the highest storm tide or lagoon flooding due to berm formation on the beach. Vegetation changes and the position of drift logs identified this point. Fish community samples in the control reach were collected with the electroshocker and during the invertebrate sampling. The fork lengths of fish captured in this reach are presented in Appendix A1.

All positions of sample reaches were fixed and staked by survey methods on 4 August 1999.

#### **DISPOSITION OF SPECIMENS COLLECTED**

In excess of two hundred grams of Dolly Varden tissue was collected from reach #1, #2 and the Quangeghsaq River. Approximately 200 grams of Alaska blackfish were collected from reach #3. The habitat in reach #3 was not the type typically occupied by Dolly Varden and they were not found to be present. Although two species, Dolly Varden and Alaska blackfish were captured in reach #4, insufficient quantities of tissue were collected for analysis.

Fish in excess of the 200 grams required for tissue analysis were packaged and frozen in the manner of the tissue samples and given to the Alaska Department of Fish and Game in Nome, Alaska. Reference specimens of each species (juvenile, and anadromous and resident adults in the case of Dolly Varden) were preserved in 95% ETOH and retained by the ENRI biologists.

#### SAMPLING OF THE SUQITUGHNEQ RIVER MOUTH WITH SPORT TACKLE

The mouth of the Suqitughneq River lagoon was briefly sampled with sport tackle on 4 August 1999 for the presence of anadromous fish (figure 1). Tide levels were favorable but the river was at flood stage, a strong wind was blowing, and sampling conditions were poor. The prime holding water could not be covered under the existing conditions. One large anadromous Dolly Varden was caught during approximately 20 minutes of sampling with sport tackle. The presence of large anadromous Dolly Varden entering the Suqitughneq River lagoon from the Bering Sea was confirmed with the capture of this 402-mm fish. The fish was released.

#### SAMPLING OF THE TAPISAGHAK RIVER MOUTH WITH SPORT TACKLE

The Tapisaghak River was not selected for a control stream because it is much larger then the Suqitughneq River and had dissimilar habitat characteristics (figure 1). The Tapisaghak River was sampled with sport tackle on 3 August 1999. Fish caught on sport tackle were not counted or measured and the number of Dolly Varden and the lengths are estimated. Approximately 20 anadromous Dolly Varden between about 406 and 558 mm, and two pink salmon adults about 508 mm were caught in the lagoon. Dolly Varden appeared to be more abundant than pink salmon. The intent of this effort was only to determine a presence of the sought species. The fish were released.

#### STREAM CHARACTERIZATION

#### Suqitughneq River.

The Suqitughneq River is typical of the type of drainage found in northern-tundra soils. It originates in a small lake and runs west then north (figure 1) through peat supported by permafrost.

Typical of many tundra drainages, the channel is narrow but relatively deep as it cuts through the predominantly peat soils. Channel width at the surface ranged from approximately 1 to 8 meters. The widest reaches are associated with a few small ponds and a single riffle area immediately upstream of the lagoon. Depth ranged from approximately 0.6 meters in the riffle area to over 2 meters in the peat-soil areas. Steep, undercut banks typified the peat-soil areas. Substrate ranges from mud and sand with an occasion boulder in the peat-soil area to boulders, cobble and gravel in the riffle area. Rusted fuel drums and sheetmetal occasionally litter the substrate. Although not measured, the gradient is low. The lagoon is studded with large boulders protruding from a mud bottom. Soft sand dominates the lagoon substrate near the beach.

Physical parameters of the sampled reaches are in Appendix B1. Water color and turbidity measurements were not taken.

#### Suqitughneq River tributaries.

Numerous tributaries enter the Suqitughneq River. Tributaries range from low-gradient wetland drainages originating in ponds, lakes, and springs to high-gradient rills originating in the rocky, Kinipaghulghat Mountains about one kilometer south of the main river channel.

The spill ditch tributary is a low-gradient, low-velocity, heavily vegetated drainage interspersed with shallow ponds. The substrate is mud.

#### Quangeghsaq River.

The Quangeghsaq River originates from several small lakes on an elevated tundra wetland at the western base of the Kinipaghulghat Mountains. The river flows northerly approximately 4.5 kilometers to where it enters the Bering Sea 2.8 kilometers west of the Suqitughneq River.

The headwater reach is characterized by a narrow and deep channel cutting through tundra soil and heavily vegetated with grass. The headwater area was flooded during the survey and the substrate type could not be identified.

Steep banks cut through peat and clay characterize the survey reach. Channel width ranges from about 1 to 3 meters and depth ranges from about 0.5 to 1.5 meters in deeper holes. The substrate is soft and composed of sand and mud with an occasional boulder. Cobbles were occasionally present under the mud.

Discharge measurements were taken by ENRI biologists and will be reported their report but on 2 and 3 August 1999, discharge of the Quangeghsaq River appeared to be approximately 66 percent of the Suqitughneq River.

The Quangeghsaq River enters a small lagoon before flowing into the Bering Sea. The outlet of the lagoon was not sampled for the presence of anadromous Dolly Varden.

Physical parameters of the control reach are in Appendix B1. Water color and turbidity measurements were not taken.

#### Tapisaghak River.

The Tapisaghak River originates on the slopes of the Kinipaghulghat Mountains and Seevookhan Mountains and flows northerly into the Bering Sea approximately 5.3 kilometers southeast of the Suqitughneq River. The Tapisaghak River is several times larger than the Suqitughneq River. The gradient is much steeper and braided channels interspersed with unvegetated gravel bars characterize it. The substrate in the lower reach is composed of sand and gravel. The upper reach was not surveyed. A small lagoon is at its mouth.

Water quality measurements were not taken.

#### **RIPARIAN VEGETATION**

Riparian vegetation was typical of tundra habitat. Grasses, sedges, willow and wildflowers dominated. Dominant riparian plants were collected for identification. Plants identified were:

- 1. Cotton grass Eriophorium sp. (especially E. angustifolium).
- 2. Coltsfoot Petasites sp. (especially P. frigidus).
- 3. Jacobs's ladder Polemonium sp. (especially P. acutiflorum).
- 4. Club mosses Lycopdium sp.

- 5. Willow Salix sp. (especially S. chamissonis, S. arcticus, and S. pulchra).
- 6. Crowfoot Thalictrum sp.
- 7. Nagoon berry rubis arcticus.
- 8. Monkshood Aconitum sp.
- 9. Arctic dock Rumex arcticus.
- 10. Rose root Sedum sp.
- 11. Bog star Parnassia kotzebuei.
- 12. Swamp horsetail Equisetum fluviatile.
- 13. Polargrass Arctagrostis latifolia.

#### WILDLIFE

Wildlife was observed but was not particularly abundant on the Northeast Cape project site during the 31 July to 5 August 1999 visit. The birds and mammals seen at the project site are included in the list below.

- 1. Common raven Corvus corax.
- 2. Sandhill crane Grus canadensis.
- 3. Unidentified loons Gravia sp.
- 4. Long-tailed Jaeger Stercoraius longicaudus.
- 5. Glaucous gull Larus hyperboreus.
- 6. Glaucous-winged gull Larus glaucescens.
- 7. Black-legged kittiwake Rissa brevirostris.
- 8. Arctic tern Sterna paradisaea.
- 9. Unidentified duck (brown with white on wings).
- 10. Northern phalarope Lobipes lobatus.
- 11. Common snipe Capella gallinago.
- 12. Semipalmated plover charadrius semipalmatus.
- 13. Snow bunting Plectrophenax nivalis.
- 14. McKay's bunting Plectrophenax hyperboreus.
- 15. Lapland longspur Calcarius lapponicus.
- 16. Unidentified brown sparrows, possibly Savanah sparrows Passerculus sandwichensis.
- 17. Unidentified sandpipers.
- 18. Arctic ground squirrel Spermophilus parryii.
- 19. Arctic fox Alopex lagopus.

### DISCUSSION

#### FISH COMMUNITY

#### **Dolly Varden**

The fish species sampled in the Suqitughneq River were as expected for the region. The dominant species was presumably Dolly Varden, a species of char common to the area. Both anadromous and resident forms of the species were present in the Suqitughneq River. Only the anadromous form was seen in the Tapisaghak River and Quangeghsaq River.

The life history of Dolly Varden can be complex. There are two population groups: the southern and northern groups. Saint Lawrence Island Dolly Varden belong to the northern group. They spawn in streams, usually during the fall from mid-August to November. The eggs develop slowly in the cold water temperatures present during the incubation period. Hatching may occur in March, four to five months after fertilization. After hatching, the young Dolly Varden feed from their yolk sac and usually do not emerge from the gravel until this food source is used up. Emergence from the gravel usually occurs in June for the northern form.

Young Dolly Varden rear in streams before beginning their first migration to sea. Some never go to sea and become resident in their natal drainage. During this rearing period, their growth is slow. Young Dolly Varden often remain on the bottom, hidden from view under stones and logs, or in undercut areas along the stream bank, and appear to select most of their food from the stream bottom.

Most Dolly Varden migrate to sea in their third or fourth year, but some wait as long as their sixth year. At the time of their first seaward migration, they are about 5 inches long and are called smolt. This migration usually occurs in May or June, although significant but smaller numbers have been recorded migrating to sea in September and October. Once at sea, they begin a fascinating pattern of migration.

After their first seaward migration, Dolly Varden usually spend the rest of their lives wintering in and migrating to and from fresh water. Most, but not all, northern Dolly Varden overwinter in rivers.

At maturity, Dolly Varden return to spawn in the stream from which they originated. Dolly Varden in the northern group usually overwinter in the river system in which they have spawned.

Northern Dolly Varden reach maturity at age 5 to 9 after having spent three or four summers at sea, and may be 16 to 24 inches long. Mortality after spawning varies depending on the sex and age of the fish. Males suffer a much higher mortality rate after spawning, partly due to fighting and the subsequent damage inflicted on each other. It is doubtful that much more than 50 percent of the Dolly Varden live to spawn a second time. A small number may live to spawn more than twice. Northern Dolly Varden may live as long as 16 years, but individuals over age 10 are uncommon. Dolly Varden typically grow to between 15 and 22 inches and up to 4 pounds; however, occasional 9- to 12-pounders are sometimes reported in northern populations.

Dissecting and aging the otolith is the standard method for Dolly Varden because their scales are too small to age. However, by applying biological knowledge of the northern group to the Suqitughneq River population, the age and year class of live fish can be roughly estimated. Based on this knowledge of Dolly Varden, there appears to be multiple year classes present, included young-of-year juveniles, rearing juveniles and smolting parr in addition to resident and anadromous adults, in the Suqitughneq River. Evidence is that the Suqitughneq River is an important spawning and rearing habitat for the species.

The spawning areas in the Suqitughneq River were not determined because of the high water present during the survey but numerous juveniles in the 40 to 50 mm size class were captured in the boulder-cobble-gravel riffle in reach #2 near the runway with the electroshocker. Fish this size were spawned in fall of 1998 and emerged from the spawning gravel at about 30 to 35 mm long in early June 1999. It is most likely the fish were spawned and hatched in this reach because the habitat is ideal for spawning and rearing Dolly Varden. Not all Dolly Varden captured were killed for tissue samples but several other year classes up to and including adults were present in this reach. Young-of-year juveniles were not captured in any other reach sampled.

The majority of Dolly Varden smolt migrate to sea in the spring but some migrate in the fall. Several Dolly Varden smolt, with parr marks faintly visible, were captured during this study. Even though fall migrating smolt were captured, it is assumed the population follows normal Dolly Varden life history patterns and the major smolt migration takes place in the spring.

Two assumptions were dispelled during the survey. The rumored "steelhead" that once inhabited the Suqitughneq River is not the anadromous rainbow trout *Oncorhynchus mykiss* commonly known as "steelhead" but is actually a male Dolly Varden in spawning colors. This was determined by drawing a picture of a fish with spawning colors and features, and interviewing local Native elders. In fact, it turns out that the locals have several names for the same fish depending on what life-cycle phase the fish is in. These multiple local names for the same species can lead the uninitiated to conclude there are several species of fish present when there is actually only one.

A second assumption was that there were no longer any fish in the Suqitughneq River. Based on the finding of this survey, the Suqitughneq River is a viable producer of Dolly Varden. The timing of this survey however, was slightly too early, the water conditions were too adverse and the gear taken on the trip was ineffective for the capture of additional large fish fresh from the sea.

If Dolly Varden numbers were reduced in the Suqitughneq River due to degraded habitat or water quality, they may be in natural recovery due to improving habitat and water quality. A baseline population estimate could be established with additional research but comparison of current abundance with pre-spill abundance is not possible.

#### **Pink Salmon**

A conclusion to rumor of pink salmon running in the Suqitughneq River in past years was not reached. There are two and possibly more, theoretical explanations why pink salmon may have been observed in the Suqitughneq River in recent memory but may be no longer present. Some points to consider follow:

- The Suqitughneq River is not, and never has been, a large river.
- The lagoon at the mouth of the Suqitughneq River is open to the sea during periods of prolonged southerly winds.

- The lagoon at the mouth of the Suqitughneq River is bermed during periods of prolonged northerly winds and ice movement and, according to the testimony of local Natives and physical evidence, there is no opening to the sea during these times.
- The sea level has been static for approximately the past 4,000 years of Dolly Varden and pink salmon evolution.
- The nearby, and much larger, Tapisaghak River has a run of pink salmon.
- Pink salmon are noted for straying from their natal drainages.
- The probability of a non-natal river receiving more strays increases during years of pink salmon abundance.
- Pink salmon are noted to spawn intertidally and the riffle area at the head of the lagoon appears to be suitable spawning habitat for the species.
- Pink salmon fry migrate to the sea immediately after emerging from spawning gravel.
- Pink salmon fry are an important food source for Dolly Varden.
- Dolly Varden are present in the Suqitughneq River and lagoon in varying but unknown numbers.
- Pink salmon feed at sea for two years before returning to spawn, i.e. there are no multiple-year returns from a single brood year.

#### Theory #1: Pink salmon have never successfully colonized the Suqitughneq River.

The continued success of pink salmon in the Suqitughneq River may revolve around natural conditions relating to the direction of prevailing winds, sea ice, and river discharge.

It is reasonable to surmise that pink salmon strays from the nearby Tapisaghak River would occasionally establish a temporary foothold in the Suqitughneq River. There are however, several important reasons why the species may not have, or be able to, successfully adapt to the Suqitughneq River.

First, because pink salmon emerge and go directly to sea, the timing of pink salmon emergence is very important in relation to the condition of the receiving estuary. Food resources must be nonlimiting and predator abundance within limits for the species to survive. Second, according to local testimony and physical evidence, north winds and sea ice berm the mouth of the lagoon and because the Suqitughneq River has always been a small river, it may have never have had adequate spring discharge to breach the berm in step with pink salmon emergence. Late or irregular breaching of the Suqitughneq River lagoon berm could subject out-migrating fry to hostile lagoon conditions and work against the long-term survival of the species. Third, late or irregular breaching could contain and subject out-migrating pink salmon fry to an abundance of predators (Dolly Varden) in the lagoon. Pink salmon that do attempt to colonize the Suqitughneq River may succeed only temporarily and die out after several returns. Conditions such as described could possibly have made pink salmon presence coincide with recent memories. In contrast, because the Tapisaghak River has a much larger discharge, it may be able to overcome these limiting obstacles and support annual migrations of pink salmon. If the above description is the case why there are currently no pink salmon present, no amount of habitat enhancement or reintroduction will guarantee successful, long-term establishment of the species.

#### Theory #2: Pink salmon were present but died out due to man made causes.

It is also possible that a small run of pink salmon (a small run because of limited spawning habitat) adapted to the natural conditions of the system and was successful. Pink salmon spend two years feeding at sea before returning to spawn in fresh water. It is possible that water quality was unacceptable for the production of pink salmon for several brood years in a row, thus effectively destroying the gene pool specific to the Suqitughneq River. If this is the case, natural re-colonization by strays will be a random process that could take centuries to complete. An alternative to the natural process would be reintroduction of the species. Adaptation of non-natal (introduced) pink salmon to the specific conditions of the system however, may not be successful.

#### Alaska Blackfish

Alaska blackfish were found to be common in suitable Suqitughneq River habitat. This small, bottom-dwelling fish is found only in eastern Siberia and Alaska. They typically live in densely vegetated areas of lowland swamps, ponds, rivers, and lakes. They normally grow up to about 200 mm and live to about eight years. Blackfish eat insects and other small invertebrates in addition to small fish including other blackfish. They are also air-breathers and can live in moist environments for extended periods.

Blackfish were present in all reaches sampled and in the control stream. They appeared to be more abundant in reach #3 (the spill ditch) because of what appeared to be more suitable habitat but the high water conditions during the survey may have prevented their effective capture in the main river channel. Blackfish captured in the spill ditch may be an important indicator species because of their long life and habitat preferences in proximity to petroleum contaminated soils on the project site.

It is interesting to note that blackfish specimens were shown to Native elders visiting the project site from Savoonga and Gambell and they did not know the species and did have a local name for it. This apparent lack of local knowledge was surprising because the species is well documented in literature as indigenous to Saint Lawrence Island.

#### Ninespine Stickleback

Ninespine stickleback was common in reach #2 and in the control stream. This small fish can tolerate brackish water but requires freshwater to spawn. They can grow up to 90 mm but most do not exceed 65 mm. Males seldom live longer than 3 years but females can live up to 5 years. Food consists mainly of copepods, chironomids, Cladocera, and other small crustaceans. They in turn, are a important food source for arctic char and Dolly Varden.

Ninespine stickle back appeared to be relatively abundant in reach #2 when it was electroshocked for samples. A quantity of the species was collected for tissue analysis. The species was not found in the other, more upstream reaches.

#### Fourhorn Sculpin

The fourhorn sculpin is an arctic marine species that sometimes inhabits freshwater for extended periods. A single specimen was captured near the lagoon with the electroshocker and is considered atypical of the drainage.

#### STREAM CHARACTERIZATION

The main channel of the Suqitughneq River is typical of tundra drainages. It is deep and narrow with steep undercut banks that were hazardous to stand on. At the time of the fish community survey, the river was reported by Montgomery-Watson staff on site to be at the highest flow observed during the past six summers and entering the water to sample in most places was not safe.

During some summers the river was reported to be much lower and with more of a riffle-pool configuration. The high water during the survey eliminated all riffles except the riffle in reach #2.

Tributaries originating in the mountains were reported to be dry in some years by Mr. Eugene Toolie, an Alaska Native who was born on site, and currently has a summer fish camp in the area. Mr. Toolie reported that the tributary selected by ENRI biologist and designated reach #4 in this report, is frequently dry during the summer. This fact may have affected the diversity and abundance of the fish present during this survey. The reach was selected by ENRI biologists the first day on site (31 July 1999) because the Suqitughneq River was at flood stage and they thought they would not be able to sample the main stem for invertebrates and sediments.

#### **Riparian Vegetation**

Major riparian vegetation appeared low in species diversity but high in area coverage. There were no major examples of erosion noted on the main river channel. The river was running so high that riparian vegetation was up to 0.6 meters underwater in some places. During the extreme high flow on 4 August 1999, a tributary originating in the valley behind the White Alice site was turbid and discolored the main river downstream from its confluence. The spill ditch, although higher than reported by previous visitors to the site, appeared unaffected by the variation in flow during the survey.

The upper portion of the spill ditch has a dense growth of polargrass growing in the wetted area. This dense growth may be benefiting from the hydrocarbons leeching from nearby contaminated soils.

#### **OBSERVATIONS OF CONTAMINATION**

On the surface the main river downstream of the spill ditch appeared clean. The water was clear and although the river was running high, the bottom could be seen in all areas except the deepest holes. However, while sampling reach #2 a light sheen smelling of petroleum was observed surfacing after disturbing underwater mud deposits along the westside bank where the river enters the lagoon.

The spill ditch included a small pond, partially filled with sediment that receives drainage from a tributary ditch leading from an old fueling area complete with a gas pump. Petroleum sheen was present on the surface of this tributary ditch during each of several visits. The mud on the margins of the pond also had a petroleum odor when disturbed. Two minnow traps were set in the pond but no blackfish were caught. Black fish were caught up and downstream from this pond. A pair of northern phalaropes was observed feeding on the pond's surface during each of three site visits.

Downstream of the polargrass and cottongrass are growing profusely and choke the channel. Hydrocarbon enrichment may be partially responsible for this profuse growth.

#### WILDLIFE

The project site supports a diverse fauna. The surrounding tundra is a maze of pathways and tunnels made by small rodents. Although none were seen, the pathways are most likely made by the tundra vole *Mycrotus oeconomus*, or perhaps the brown lemming *Lemmus sibericus* or Saint Lawrence Island lemming *Dicrostonyx exsul*. Arctic fox *Alopex lagopus*, long-tailed jaegers *Stercoraius longicaudus*, sandhill cranes *Grus canadensis*, and glaucous gulls *Larus hyperboreus* were observed hunting them on several occasions. These small rodents are also an important food source for ravens *Corvus corax*. A raven nest in the tram building contained the bones of many small rodents. Small rodents should be trapped and identified on subsequent visits to the project site.

Local Natives report polar bears *Thalarctos maritimus* to be common on the site during winter and occasionally during summer. Domestic raindeer *Rangifer tarandus tarandus* are also common but no live animals were seen. Red fox *Vulpes vulpes* in the cross fox color phase are also reported as present but only arctic fox in summer pelage were seen.

# **FINDINGS**

The findings of this fish community survey are:

- 1. The Suqitughneq River supports viable populations of anadromous and resident Dolly Varden char, and a viable population of Alaska blackfish, and ninespine stickleback at minimum.
- 2. The Quangeghsaq River supports a viable population of Dolly Varden char, Alaska blackfish, and ninespine stickleback at minimum.
- 3. The Tapisaghak River supports a viable population of Dolly Varden char and pink salmon at minimum.
- 4. The Northeast Cape project site supports a diverse wildlife fauna.

# RECOMMENDATIONS

If further fisheries assessment is needed, the following are recommended.

- 1. Estimate the potential contribution of the drainage to the local subsistence fishery and provide baseline escapement data by operation of a adult fish weir at the downstream end of reach #2 between approximately 25 July and 10 September, one season before, during, and one season after cleanup operations.
- 2. Adclip and tag captured Dolly Varden 150 mm and longer with numbered tags to assess future contributions to nearby subsistence fisheries.
- 3. Pursue an aggressive advertising and mail campaign of island residents to recover tag data.
- 4. Monitor cleanup operations.

If assessment of the adult return suggests that additional in-depth research is needed, then:

5. Construct and operate a smolt weir at the downstream end of reach #2 from immediately after ice-out to about 30 June to estimate the smolt production of the drainage.

6. Initiate a bio-remediation study to evaluate the effects of polargrass and cottongrass on hydrocarbon uptake in the spill ditch.

# **APPENDIX A**

. .

•

Fork length in millimeters by species, reach, and gear type.

-

|           |            | ach #1     |           |            | Reach # | 2    |     | Reach #3                   |           |            |            | ontrol R |      |
|-----------|------------|------------|-----------|------------|---------|------|-----|----------------------------|-----------|------------|------------|----------|------|
| Method    |            | MT I       | MT        |            |         | S    | EUO |                            |           | ES         |            | ES       | Net  |
| Species   |            | AKBF       | DV        |            | 922B    | AKBF | LH2 |                            | AKBF      |            | DV         |          | AKBF |
| Length mm | 212        | 114        | 73        | 41         |         |      |     | 145                        |           |            |            |          |      |
|           | 180<br>199 |            | 75<br>76  |            |         |      |     | 127                        |           | 176<br>158 |            |          |      |
|           | 124        |            | 78<br>78  | 46<br>47   |         |      |     | 120                        |           | 158        |            |          |      |
|           | 155        |            | 78<br>78  | 47         |         |      |     | 88<br>117                  |           | 155        | 140<br>167 |          |      |
|           | 171        |            | 82        | 47         |         |      |     | 90                         |           |            | 152        |          |      |
|           | 163        |            | 118       | 49         |         |      |     | 144                        |           |            | 152        |          |      |
|           | 175        |            | 121       | 50         |         |      |     | 136                        |           |            | 170        |          |      |
|           | 168        |            | 122       | 50         |         |      |     | 117                        |           |            | 156        |          |      |
|           | 154        |            | 127       | 50         |         |      |     | 100                        |           |            | 141        |          |      |
|           | 125        |            | 130       | 50         |         |      |     | 101                        |           |            | 163        |          |      |
|           | 143        |            | 143       | 52         |         |      |     |                            |           |            | 195        |          |      |
|           | 140        |            | 144       | 53         |         |      |     |                            |           |            | 166        |          |      |
|           | 147        |            | 166       | 54         |         |      |     |                            |           |            | 147        |          |      |
|           | 155        |            |           | 54         |         |      |     |                            |           |            | 155        |          |      |
|           | 159        |            |           | 54         |         |      |     |                            |           |            | 150        |          |      |
|           | 116        |            |           | 54         |         |      |     |                            |           |            | 164        |          |      |
|           | 148        |            |           | 56         |         |      |     |                            |           |            |            |          |      |
|           | 123        |            |           | 59         |         |      |     |                            |           |            |            |          |      |
|           | 116        |            |           | 68         |         |      |     |                            |           |            |            |          |      |
|           | 120        |            |           | 72         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 73         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 74         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 74         |         |      |     | <b>D</b> <i>a</i> · ·      |           |            |            |          |      |
|           |            |            |           | 75         |         |      |     | Definitions:               |           |            |            |          |      |
|           |            |            |           | 75         |         |      |     | mm = millin                |           |            |            |          |      |
|           |            |            |           | 76<br>79   |         |      |     | MT = minno                 |           |            |            |          |      |
|           |            |            |           | 78<br>78   |         |      |     | ES = electron              |           |            |            |          |      |
|           |            |            |           | 78<br>78   |         |      |     | DV = Dolly                 |           | fich       |            |          |      |
|           |            |            |           | 80         |         |      |     | AKBF = Ala                 |           |            |            |          |      |
|           |            |            |           | 81         |         |      |     | 9SSB = 9-sp<br>FHS = 4-hor |           | CUACK      |            |          |      |
|           |            |            |           | 83         |         |      |     | 1 113 - 4-1101             | n scuipin |            |            |          |      |
|           |            |            |           | 85         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 85         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 86         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 86         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 86         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 86         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 87         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 88         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 89         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 89         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | <b>9</b> 0 |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 90         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 92         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 98         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 98         |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 114        |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 185        |         |      |     |                            |           |            |            |          |      |
|           |            |            |           | 195        |         |      |     |                            |           |            |            |          |      |
| ount      | 21         | 1          | 14        | 51         | 27      | 1    | 1   | 11                         | 1         | 4          | 17         | 20       | 1    |
| lean      | 152        | 114        | 110       | 76         |         |      |     | 117                        | 118       | 167        |            |          |      |
| ledian    | 154        | 114        | 120       | 75         |         |      |     | 117                        | 118       | 167        | 156        |          |      |
| laximum   | 212<br>116 | 114<br>114 | 166<br>73 | 195<br>41  |         |      |     | 145                        |           | 180        |            |          |      |
| linimum   |            |            | 72        |            |         |      |     | 88                         | 440       | 155        | 407        |          |      |

•

Appendix A1. The fork length in millimeters of captures by reach, gear type, and species.

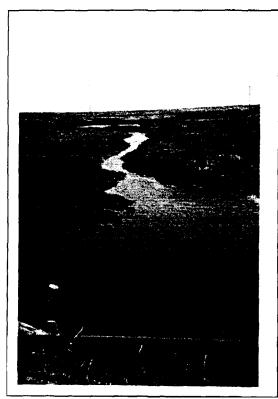
# **APPENDIX B**

-

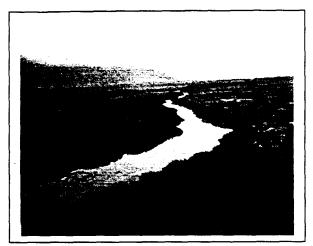
-

Physical parameters of sampled reaches.

Appendix B1. Temperature (°C), specific conductivity (µmhos/cm), dissolved oxygen (DO, mg/l), and pH of the water at reaches sampled for fish communities on the Suqitughneq River at Northeast Cape, Saint Lawrence Island, Alaska from 31 July through 3 August 1999.


|                         | Reach #1 | Reach #2 | Reach #3 | Reach #4 | Control |
|-------------------------|----------|----------|----------|----------|---------|
| Sample date             | 8/1/99   | 8/2/99   | 8/1/99   | 7/31/99  | 8/3/99  |
| Sample time             | 11:30    | 11:20    | 17:00    | 13:00    | 10:50   |
| Temperature (°C)        | 5.8      | 6.1      | 10.05    | 3.0      | 8.7     |
| Conductivity (µmhos/cm) | 74.8     | 103.8    | 88.3     | 97.8     | 142.3   |
| DO (mg/l)               | 11.9     | 10.7     | 10.72    | 12.3     | 9.06    |
| рН                      | 7.02     | 7.25     | 7.38     | 6.9      | 6.57    |

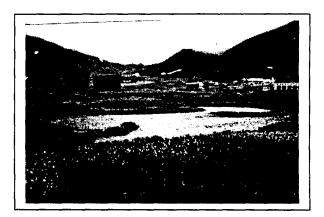
# **APPENDIX C**


Photographs.

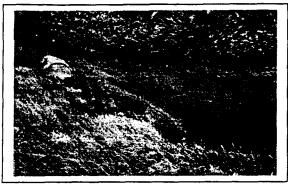


Reach #1 upstream view.




Reach #1 downstream view.




Reach #2 upstream view.



Reach #2 downstream view, sampling with electroshocker.

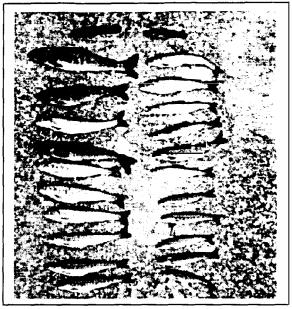


Reach #3 upstream view of receiving pond.

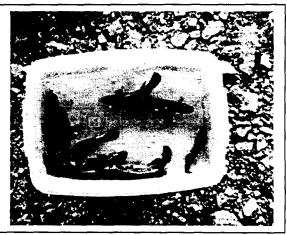


Petroleum sheen in Reach #3 tributary ditch.

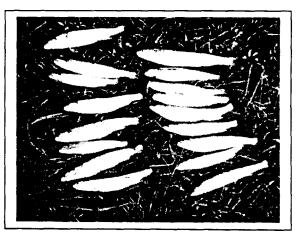



Sampling in reach #4.




Control reach upstream view.




Control Reach downstream view.



Dolly Varden and Alaska blackfish captured in reach #1.



Alaska blackfish captured in reach #3.



Dolly Varden captured in the control reach.

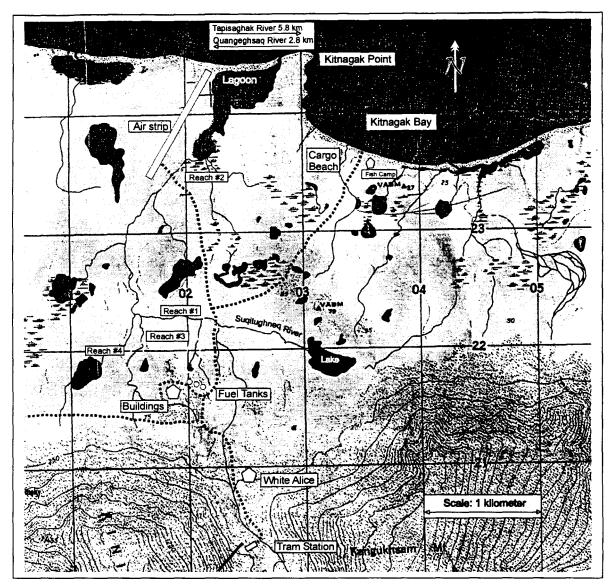



Figure 1. Fish community assessment reaches #1 through #4 on the Suqitughneq River in proximity to the Northeast Cape FUDS, Saint Lawrence Island, Alaska, sampled from 31 July through 3 August 1999.

# APPENDIX E

Site Survey and Control Report



# **MULLIKIN SURVEYS**

381 E. Bonanza Ave., P.O. Box 790, Homer, AK 99603-0790 Ph. & Fax: (907) 235-8975 E-mail: mullikin@xyz.net

August 17, 1999

Gary Busse Montgomery Watson 4100 Spenard Road Anchorage AK 99517-2901

LETTER OF TRANSMITTAL

Dear Gary:

We have completed our survey of Northeast Cape, St. Lawrence Island, and enclose the following:

- Survey Report
- Copy of Email sent to Larry Gall
- hard copy coordinate file 99nec.pts

- hard copy spreadsheet of control points

-copy of field book

- invoice

- floppy disk of autocad drawing, coordinate file, spreadsheet, survey report

Thank you for using Mullikin Surveys

Call if you have questions.

Sincerely,

Timothy L. Mullikin, P.L.S.

C:\My Documents\LETTERS\nec99cover.wpd

# MULLIKIN SURVEYS 381 E. Bonanza Ave., P.O. Box 790, Homer, AK 99603-0790 Ph. & Fax: (907) 235-8975 E-mail: mullikin@xyz.net

August 17, 1999

#### SURVEY REPORT FOR NORTHEAST CAPE, ST LAWRENCE ISLAND

Field work was conducted on September 4, 1999 at an abandoned military base on St. Lawrence Island. During the survey it was raining, 47 degrees (F.), wind 20 mph estimated.

The purpose of the survey was to measure locations as staked by Montgomery Watson personnel.

Trimble 4700 GPS survey units were used in static mode. Geographic position on St. Lawrence Island was established by simultaneous observations with NGS Continuous Operating Reference Stations at Kenai, Cold Bay, and Central, Alaska, and is reported in the excell format spread sheet for points GPS 1 & 2, set in 1998, and tied in 1998 to previous survey control.

The 1999 local coordinates were rotated to match the previous USCOE datum. Elevations for new 1999 points were generated using the 1996 geoid undulation model.

C:\My Documents\LETTERS\nec99.wpd

To: larry.gall@us.mw.com
From: "Donald E. Mullikin" <mullikin@xyz.net>
Subject: NE CAPE, 1999
Cc:
Bcc:
Attached: A:\99nec.pts; A:\NEC99.xls; A:\Necape.dwg;

Dear Larry:

Attached are there files, in similar format to our 1998 submission:

- \*\* necape.dwg, an autocad version 12 c.3 for dos;
- \*\* nec99.xls, an excell format spreadsheet of control monuments, with latitude and longitude added;
- \*\* 99nec.pts, an ascii file, comma delimited: point number, northing, easting, elevation, description.

As I said on the phone last week, many of the lath were not marked. Hopefully your field crew can cross reference them so that you can change the description of the points for your final product.

PLease call if you have any questions.

tim mullikin 235-8975 phone & fax

#### File: A:99NEC.PTS

•

| 107155 8050 | 89931 3930                                                                                                                                                                                                                                                                                                                                                                                                | 2.8650, 99NEC LATH                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           | 25.5280, 99NEC FND AL CAP2058                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 97974.6010, | 96705.6640,                                                                                                                                                                                                                                                                                                                                                                                               | 84.1320, 99NEC 12-5                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 97997.2090, | 96674.6270,                                                                                                                                                                                                                                                                                                                                                                                               | 86.4120, 99NEC 12-4                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           | 76.2820, TEST PIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •           | •                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •           | •                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | -                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -           | -                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | -                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1820, 99NEC LATH MOST UPSTRRM                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99173.5680, | 99956.0100,                                                                                                                                                                                                                                                                                                                                                                                               | 52.6400, 99NEC EDGE H2O                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 106672.7250,<br>95780.5380,<br>97622.2620,<br>97705.2300,<br>99173.5680,<br>100762.7240,<br>99641.4270,<br>100179.7470,<br>101981.1100,<br>97974.6010,<br>97997.2090,<br>97990.6060,<br>97997.2090,<br>97990.6060,<br>97985.2970,<br>97967.4890,<br>98154.1900,<br>98154.1900,<br>98183.7710,<br>99601.9200,<br>98161.5060,<br>99928.5800,<br>99736.3500,<br>103506.3230,<br>103418.0630,<br>103177.1690, | 106672.7250,89931.9310,95780.5380,96201.6180,97622.2620,95105.8620,97705.2300,94884.2310,99173.5680,99956.0100,100762.7240,98829.6570,99641.4270,97547.1310,100179.7470,98613.2740,101981.1100,93684.9440,97974.6010,96705.6640,97997.2090,96674.6270,97990.6060,96650.7800,97985.2970,96635.9760,97967.4890,96631.1700,98154.1900,96847.9800,98154.1900,96847.9800,98161.5060,96962.9400,99736.3500,97155.5420,103506.3230,95556.4450,103418.0630,95412.6210, |

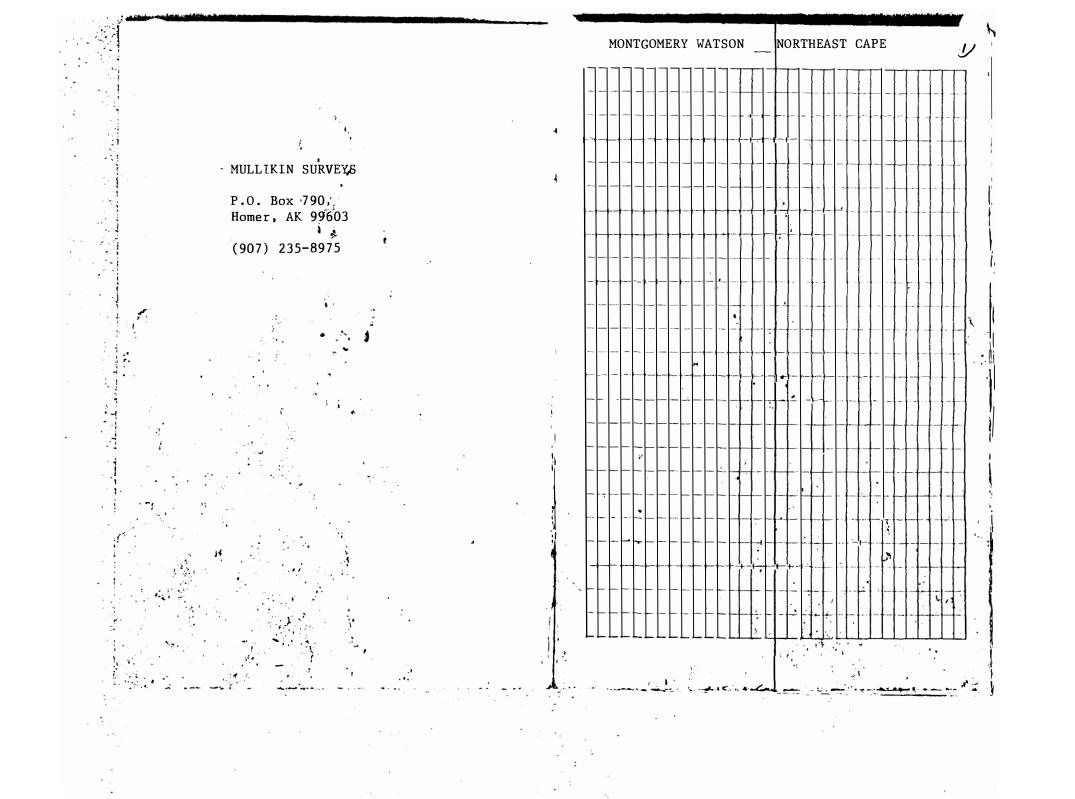
|   | A    | В                         | С                | D         | E    | F    | G       | Н        | I      |
|---|------|---------------------------|------------------|-----------|------|------|---------|----------|--------|
| 1 | 2000 | NE Cape, St. Lawrence Is. | St. Lawrence Is. | Mullikiin | GPS2 | 1998 | US Feet | 1950 MSL | 26.262 |
| 2 | 2058 | NE Cape, St. Lawrence Is. | St. Lawrence Is. | Mullikiin | GPS1 | 1998 | US Feet | N950 MSL | 25.645 |

v

•

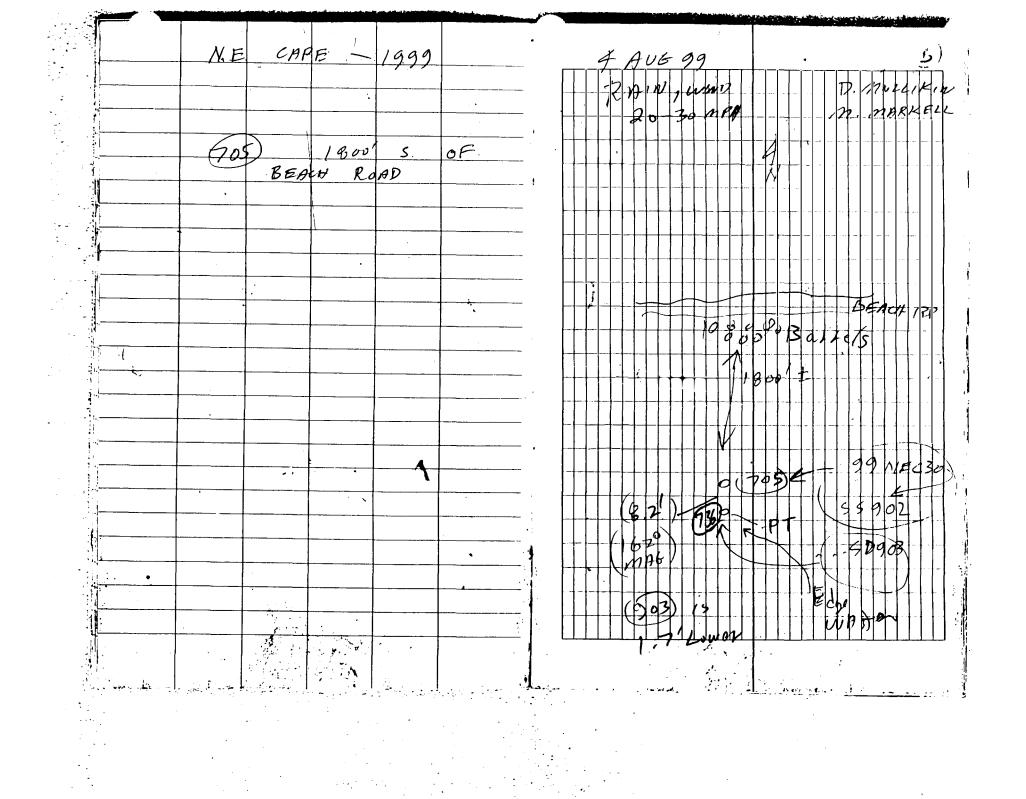
|   | J | к | L          | М         | N | 0 | P | Q          | R         |
|---|---|---|------------|-----------|---|---|---|------------|-----------|
| 1 |   |   | 103549.699 | 95161.128 | 9 |   |   | 1039119.61 | 551588.39 |
| 2 |   |   | 101981.082 | 93684.912 | 9 |   |   | 1038634.67 | 551145.89 |

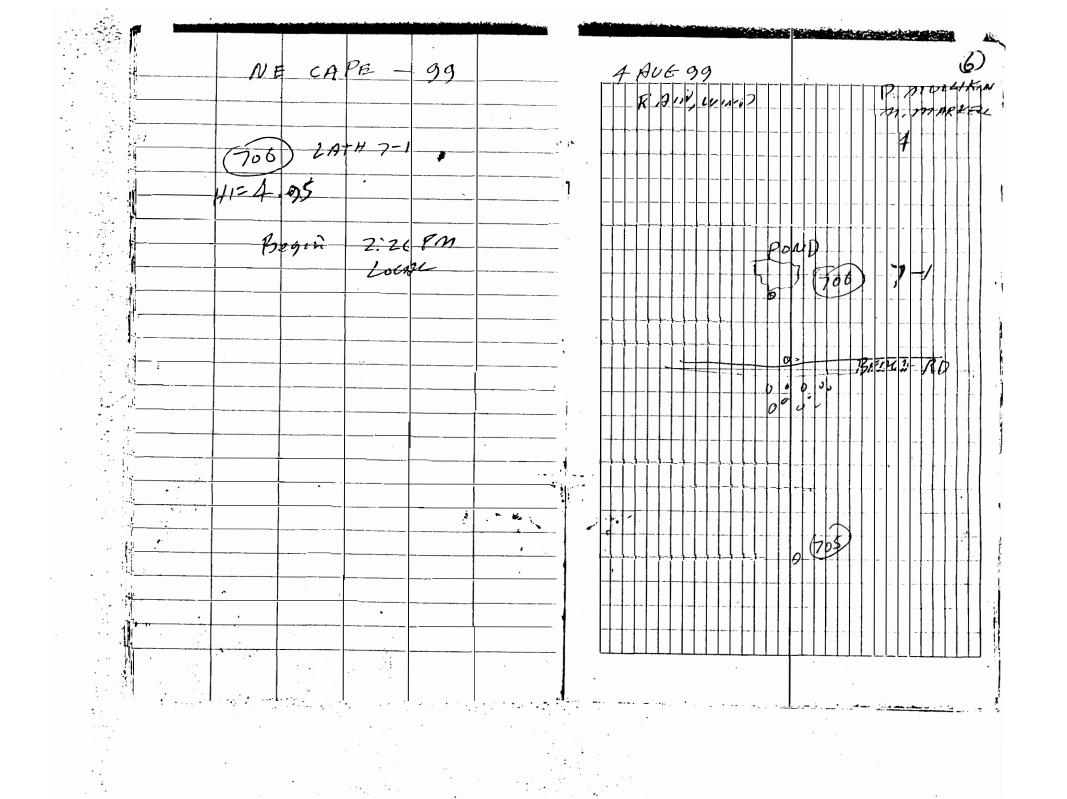
|   | S S                                          | Т |
|---|----------------------------------------------|---|
| 1 | 2000-FND AL CAP ON 5/8" REBAR, 4469-S, GPS-2 |   |
| 2 | 2058-FND AL CAP ON 5/8" REBAR, 4469-S, 1998  |   |


1

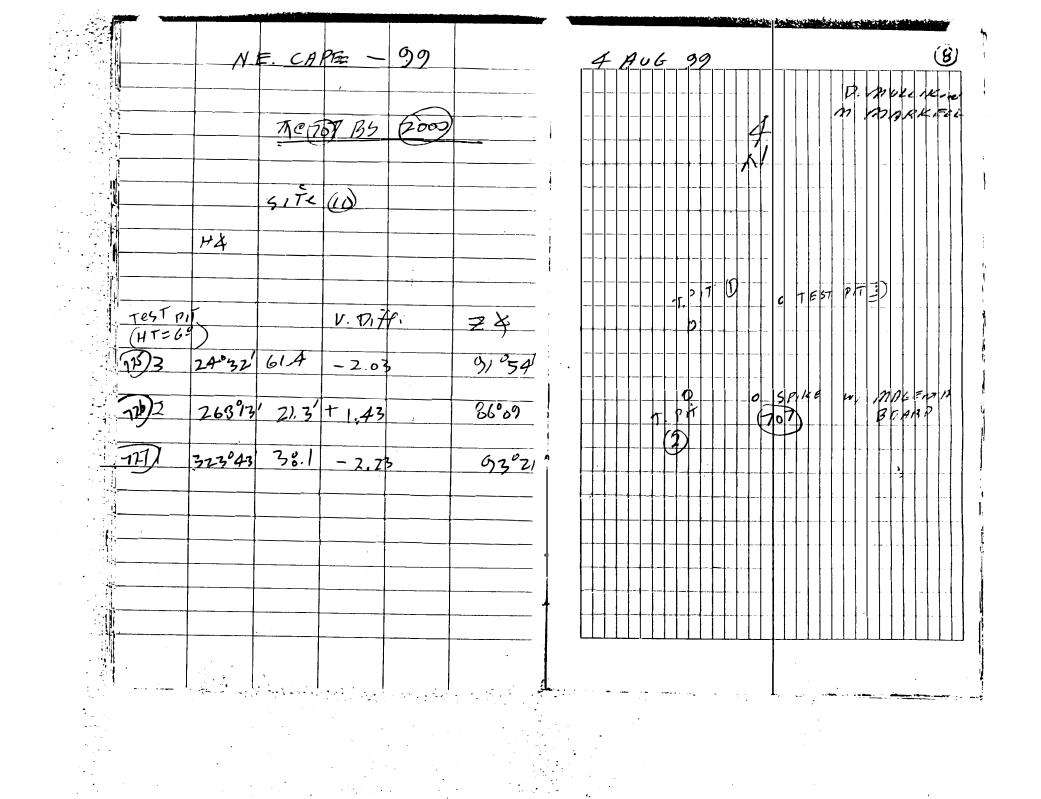
•

<u>`</u>


.


(




1 V.E. CAPE -1999 MONTEUMERY WATSON # 746 194 ULKYA Bor pT PI MARKELL 20.00 lista Bunh ٠ RO PARIA H12 4.55' 162"4 EPS FAST ST. PTIC SURVEYS TRIMBLE 4700 014 **f**Z ζ FOR LATITUDES LONE. USED CORS 70) O LATH - NORKS 7(100 1t ÉS 10:57 AM LOLAL al - 91 7 ę. Ĵ 5 ) D HI maz 7 11 9 B 1/h 2 ، من 1 1 B - 10 01 --98NEL B/K SW/SP BOL 1000 м . 4 -**ei**:

٠, N.E. CAPE FAUG 99 RHAN 1999 t ilda mini M MARKELL 11 4.75 TOZ BDUL GROUND #1 LATH Louigz JEGIN 12:20 PM SIDE ON oF MT. TO SUUTH D #= 8 OF BUILDINGS Þ #1:55. 183 1) Fitlam N. Side C.R. a stor is 1. 704) ON S SIDIE Down Stley in " 4 Ħ7 9 0. VS. S. S. BEGIN • LATH #8 BM 764-75, 102º MAG ÷., ٠.





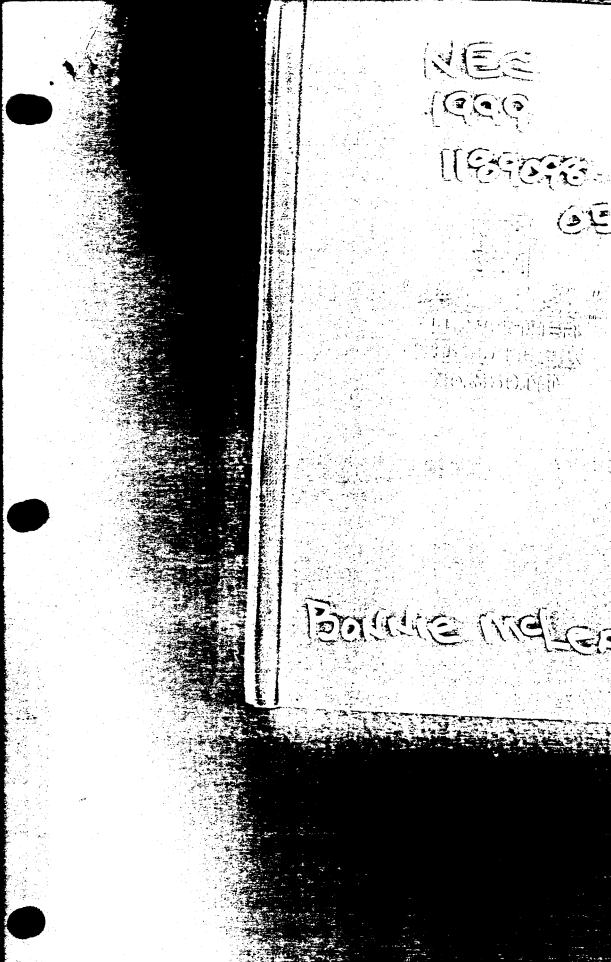
CAPE フ N.E. A AUG 99 -90 4 'n D. 4 mi A14.82 h W FND Spike 707 WHISKERS 2-2 1:--3 5.01 5 P2 IL-Begin Logging in P.C. -50 1/12-TANK 2:53 PM A. P. To D#1 = \$133 BS 2000 HDI ( روار الله 4 RT VERT DAY 2833 2-5 233 51 230.04 + 5.82 12 4 242036 233.05 + 8.10 (12) 38°02' 254.93 9.24 °8°55' (72) 7-3-745 19 123 12 2 246 35 269.55 0,7053 0,97 12-1 244-30 295-10.57 37053 5 ED 72 P Co 2R 7. AND A Pis Æ L . ..... •





and the second second second second second second second second second second second second second second second N.E CAPE - 99 4 AUG 99 Rpm march SET SPIKE 709 BS (707) Tre b PARKEZ 1 533 · ÷., 121'00" ++ LATH - 98 45 4 SPIKe 1 FAVD BEUCH RP ANHT 217° 25'30' 8 9° 25'25 47: 4.7 GPS = QLP CONTROL OJ TO 709 •••• Í. 4.50 PM . . Pregit UD.17 HAH HD15, 1,00 9039 650.95 -5.25 0,0°27 730) DOWN Stream RT UT St 331 73'06 40200 0)0'49 5.32 ه. . . L e é ....

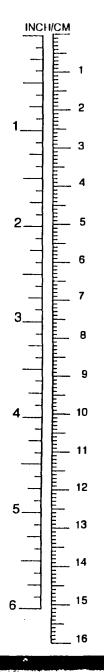
Children and the Color States م المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المر مراجع المراجع ا مراجع المراجع ا ļļ NE CAPE - 89 4 AUG 99 RAIN L 1 4. PSE) Al (2001) 710 END ALCHE END ALCHE ON STERB. RS 1/1= 4 83 UN V R レの 732 7154.34 0.248 890 501 60 *4*6' 内马手 Ð 63 IFF HT = 60 CREEK - 30,7.69 -72.29 930122 Afis 2.33--:; B (75) 254°2 283 86 -19.60 0,3°58' (13) 378.38 92'52 ÷ -13.91 1. 1. ١. . . . . .


State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state : : : : : 1 4 BUG 99 Rp12, 11111P NE CAPE. 99 27 mph + ++++ E.STATIU F . RS RULLAY Beyin 0 5:30 PM GPS Dose ;• -` 1#1= 5 09 Tes. TERMINA BLDE au (12 00 i. . ]--١ ٠. · . . ·:. 1 1. 3 •• /

## APPENDIX F

r

Field Notes






GEGIERO

項約.(cca.e.g)

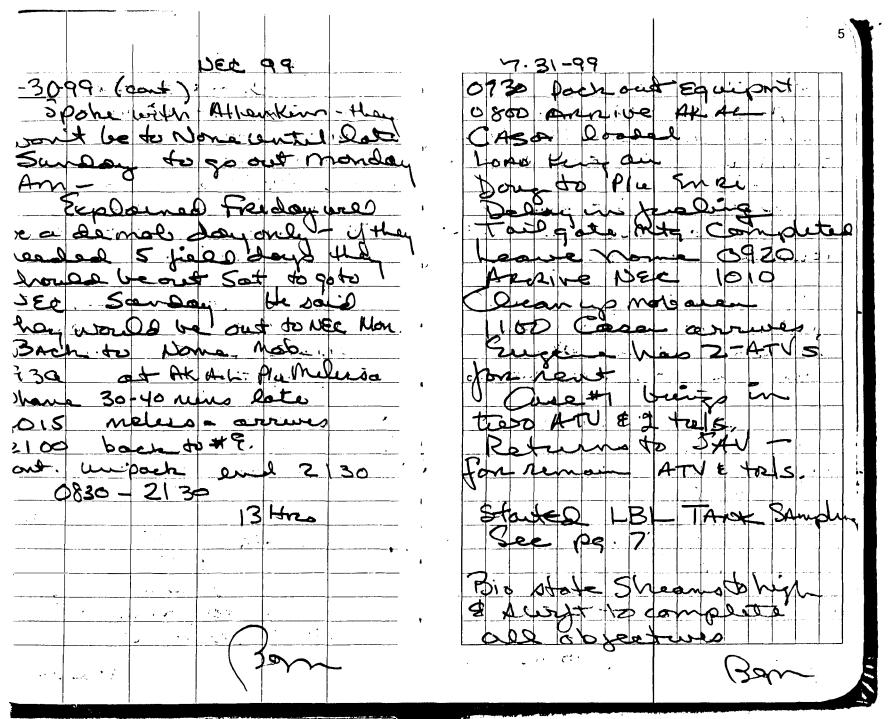
BAULIE MELERY



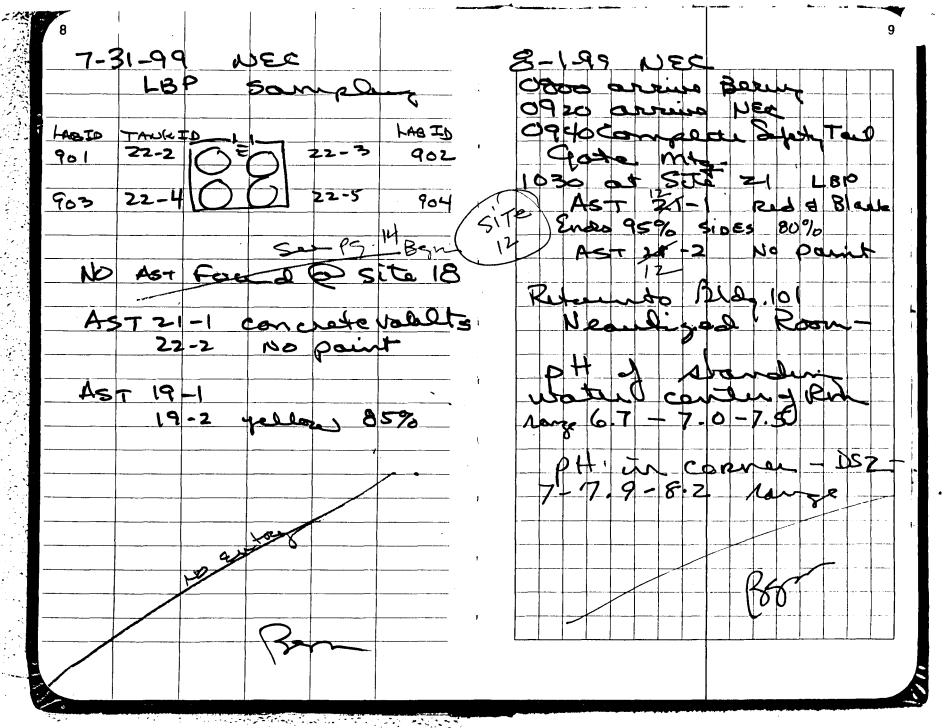
| MEASUREMEI                     |                   | EDGLONG               |
|--------------------------------|-------------------|-----------------------|
|                                |                   |                       |
|                                | MULTIPLY<br>BY    | TO FIND               |
| LENGTH                         |                   |                       |
| inches<br>feet                 | 2.540             | centimeters           |
| yards                          | 30.480<br>0.914   | centimeters<br>meters |
| miles                          | 1.609             | kilometers            |
| millimeters                    | 0.039             | inches                |
| centimeters                    | 0.393             | inches                |
| meters<br>meters               | 3.280             | feet                  |
| kilometers                     | 1.093<br>0.621    | yards<br>miles        |
|                                | 0.021             | 1111165               |
| WEIGHT                         |                   |                       |
| ounces                         | 28.350            | grams<br>kilograms    |
| pounds<br>grams                | 0.453<br>0.035    | Kilograms<br>Ounces   |
| kilograms                      | 2.204             | pounds                |
| VOLUME                         | 2.201             | •                     |
|                                |                   |                       |
| fluid ounces                   | 29.573            | milliliters           |
| pints<br>quarts                | 0.473<br>0.946    | liters<br>liters      |
| gallons (U.S.)                 |                   | liters                |
| milliliters                    | 0.033             | fluid ounces          |
| liters                         | 1.056             | quarts                |
| liters                         | 0.264             | gallons               |
|                                |                   | (U.S.)                |
| TEMPERATURE                    |                   |                       |
| °C = (F°-32)<br>°F = (°C x 1.1 | x .555<br>8) + 32 |                       |
|                                | _                 |                       |
| Inches                         | Decimais          | _ <u>Milli-</u>       |
|                                | 011001            | meters                |
| 1/16<br>1/8                    | .0052 \<br>.0104  | 1.5875                |
| 3/16                           | .0156             | 3.1750                |
| 1/4                            | 0208              | 4.7625<br>6.3500      |
| 5/16                           | .0260             | 7.9350                |
| 3/8                            | 0313              |                       |
| 1/2                            | .0313<br>0417     | 9.5250                |
| 5/8                            | .0521             | 12,700<br>15,875      |
| 3/4                            | 0625              | 15.875                |
| 7/8                            | .0729             | 22.225                |
|                                | .0833             |                       |
| 1*<br>2*                       | .1667             | 25.400                |
| 3.                             | .2500             | 50.800                |
| 4*                             | 3333              | 76.200<br>101.60      |
| 5"                             | .4167             | 127.00                |
|                                | 6000              |                       |
| 6°<br>7'                       | .5000<br>.5833    | 152.40                |
| 8"                             | .5633             | 177.B0                |
| 9"                             | .7500             | 203.20<br>228 60      |
| 10"                            | .8333             | 254.00                |
|                                |                   |                       |
| 11"<br>1 foot                  | .9167<br>1.000    | 279.40                |

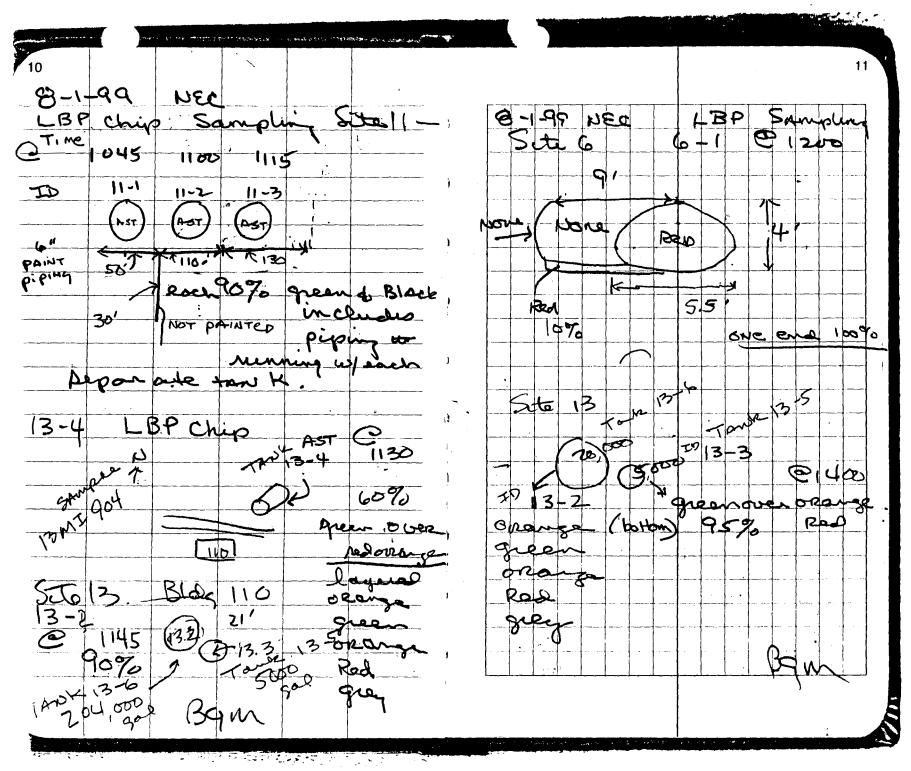
,

)

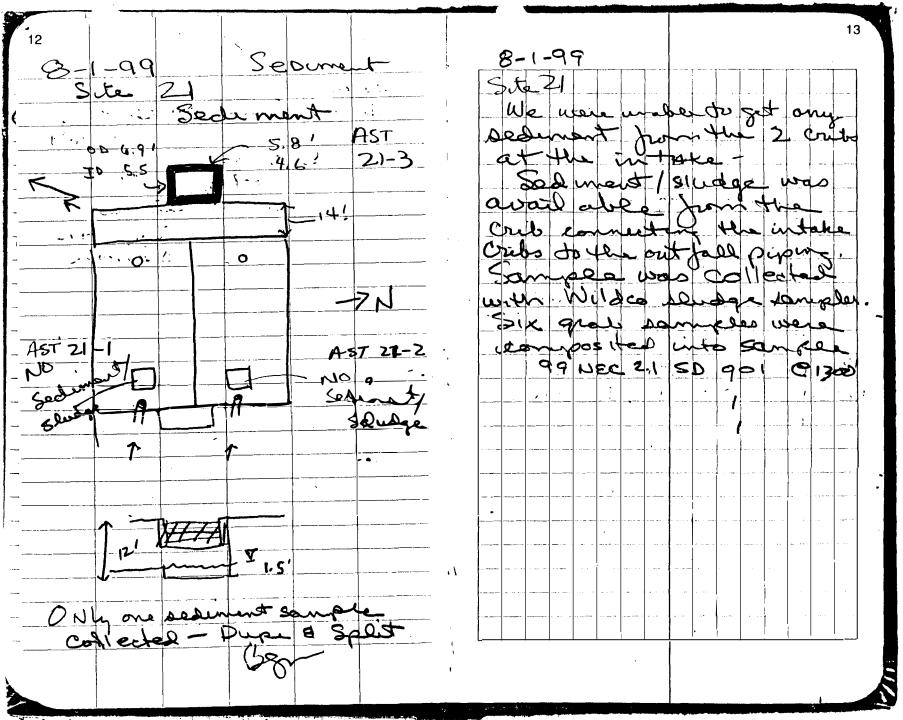

,

4

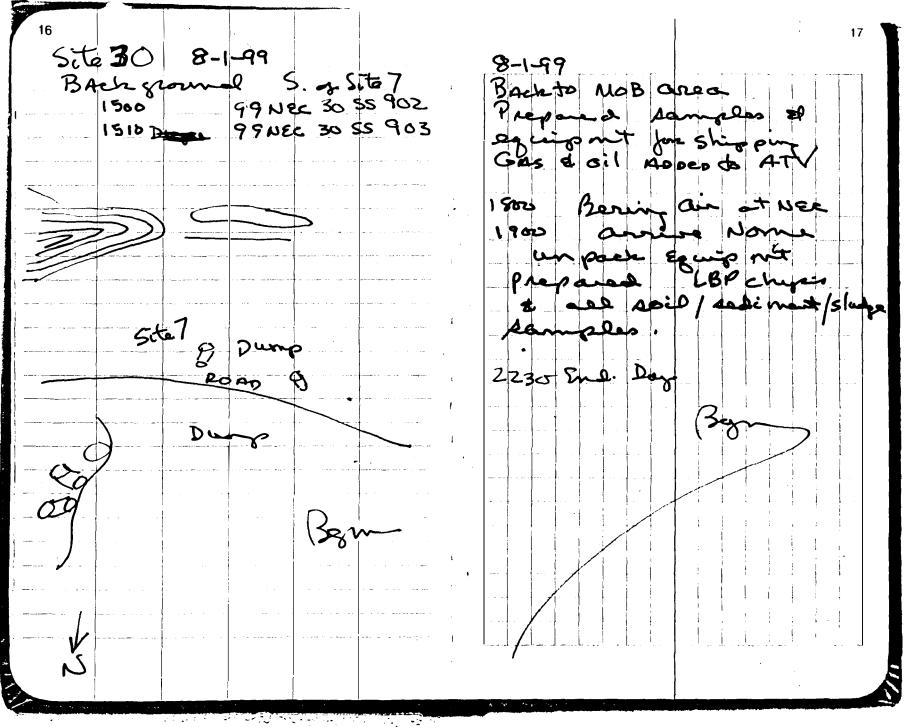

"Dit the D." MONTGOMERY WATSON 4100 Spenard Road Anchorage, Alaska 99517-2901 Bonnie G. McLean **Environmental Scientist** Telephone: 907 248 8883 H/W Field Supervisor Direct: 907 266 1141 Health & Safety Officer 800 Number: 888 686 6442 Fax: 907 248 8884 bonnie.mclean@mw.com Serving the World's Environmental Needs Phone\_ Project 1189098.050130 "Rite in the Rain"-a unique all-weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather. a product of J. L. DARLING CORPORATION TACOMA, WA 98421-3696 USA


٠

the supervised and supervised and the supervised as a supervised as a supervised as a supervised with the supervised supervised as a supervised supervised as a supervised supervised as a supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised supervised superv 2 Ν. 99 USACOE · · · · rec AIA -ARRIVE ŀ 1. J. - 1 1 2 -#152 and 1647 . cs.) - بعني ا RRIVE Me 1300 NANUA . ρ 2 Apt 1 · 2. P/ch Ford 95 اور ایر ارتخان دهر • <sup>~</sup> • • • • • 95 FOR CL المستعملين ٠, . . · \*... . . . Bari . • • • most eq ama 7 **.** 4 . . . 1 1 10 **N** 4 4 - A. R. . . . · . × ... 24 i a 1 1 A 1 1 ... have × , 3 A. S. 5 2 12 . . . . ste . • . Juis · ~ ::·· المعارات المراكلة · . / ,i 2.1.12 . سال م V -1 -. . . N S . 63. 1 ۰. . Me ( **O** . .



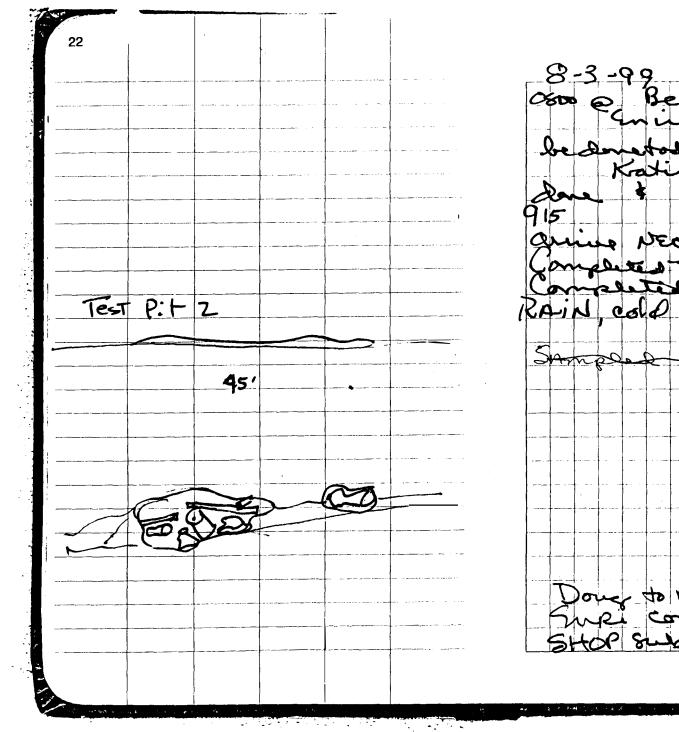

The Mathematic States and the second NE NEC 7-31-99 -B1-99 # 2-5 <u>Sa</u> ISD DJdc 101 ~ 12 16 S-N Tim ANK 1000 atto (Bolling bir Don 1200 one in the 1230 of Room Where STR 1300 might have been ne 1330 دج noin water 6 1 1400 renter سك ind 13 1430 1500 22 3 Soderin 1530 apote to Sus corner 23 1545 22room where DS2 2/ 72 1600 - may have specialed, 1630 22 5 Rev 645 22 LBP chip. . 4+ 67 00 Ket 1700 6 lamp? 6 · Cot NONDAST SOL en air at 3 W7 Cor 18+1 (3) al gary in steam from 81 12 escont DQ 4 I - stand ber No bo Barin CRIB Ha 0 1.5 1+2 on scontof set 3 1830 Leone NEC 2 0 1915 arrive Non complete notes 2100. JAna callo - Betx > 1 Battle af sug Gora 1

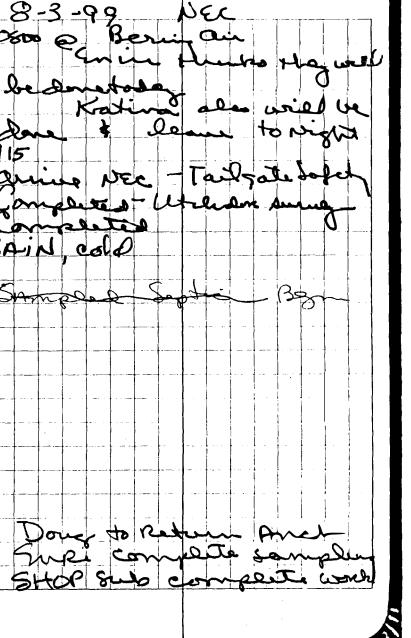


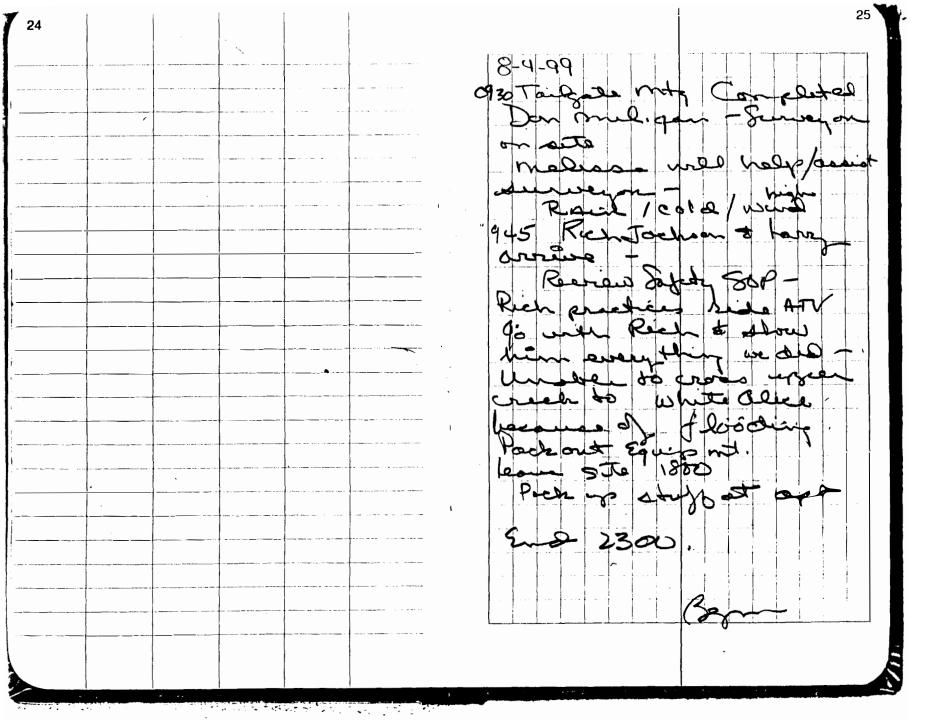



•



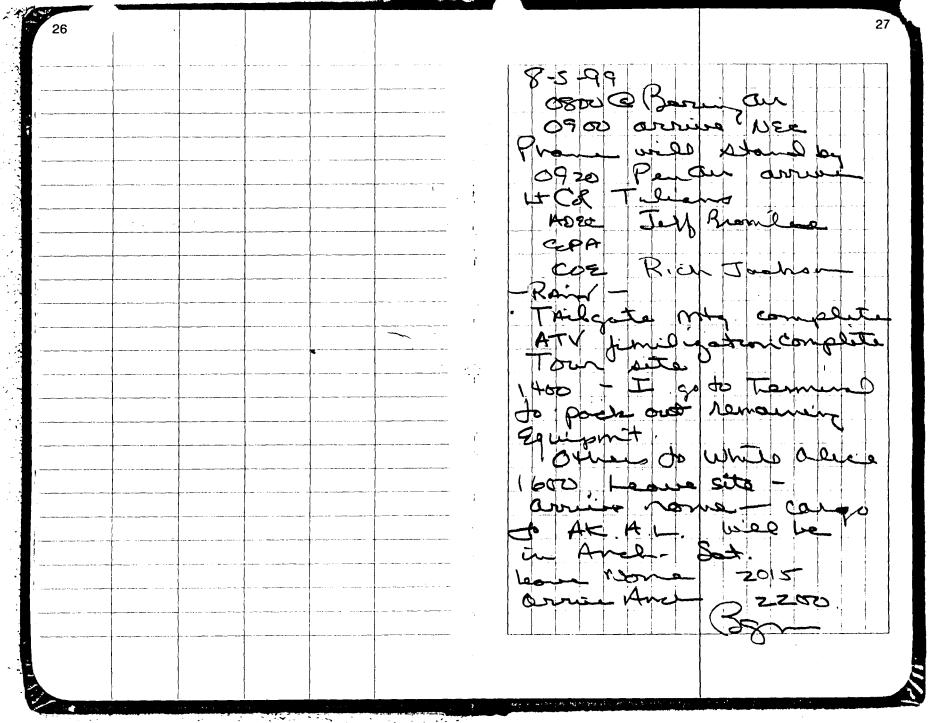

15 ANEC BIDG 101 E 8-1-99 NEC 8-1-99 Ste 18 Antes Subtrainain Plumbers 6-1 1200 Room 1045 w/ bi @ 1415 11-2 1100 18-1 -3 1115 ushite 20 % Dia 1.5 1145 20,000 1400 709 Length 2.0 130 13 Contents; Shup Orginias contento Unk 430 6 Subtarriar 18 1415 Steam Room - BLAGIOIE 19 18-2AST - PACM covered hot water that / Steam plevater 21-1 030 complete that 9 0 99 NEC 11' × 41 47-1 1 SAmple sit LBP TANK 2-1 YR C) % NO Sample
 Collected
 Anall green white patch # in Site collected 6x4"

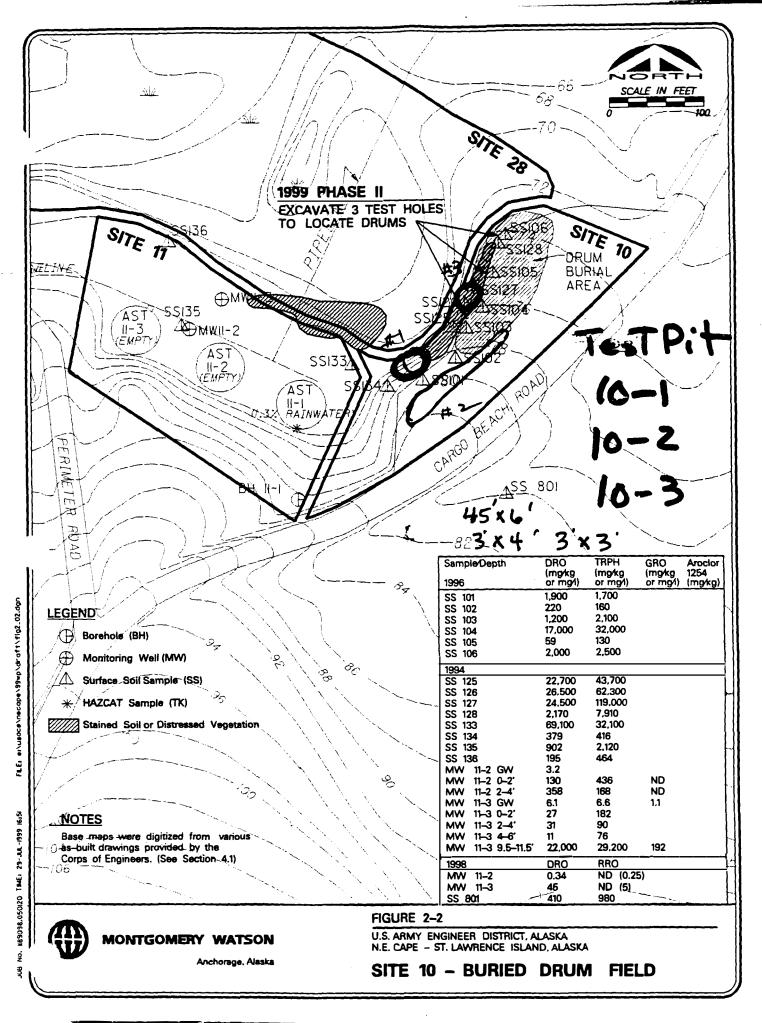


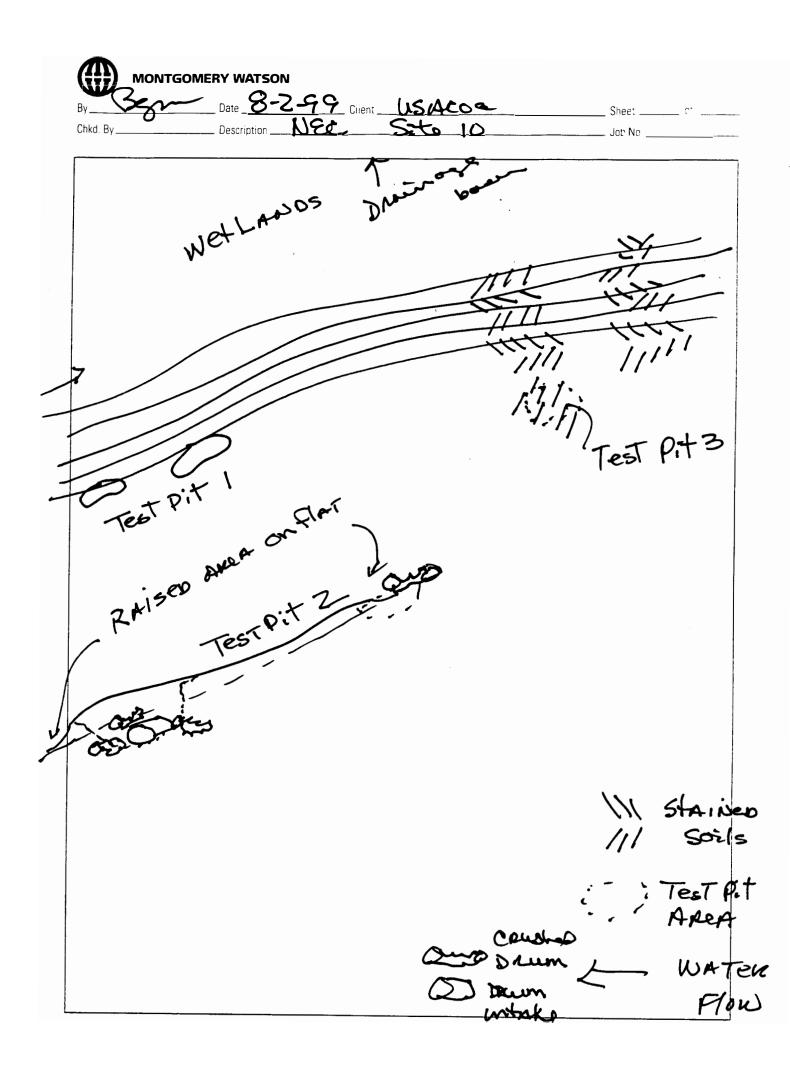


19 18 8-2-99 NEC 8-2-55 0800 leave None - Bering air Rain - stype 10 m an 0850 arrive NEC Baring lawes for SAV to Plu workers 3 angate Sajete My Pomplete SAV Joens arrives - Coeliason write chew Says Bert -Sivuen VP wait (ambe) ain peloto official tak ATV tu) goesty GAMber ٠ to NEC 1200 ar Bis Khows -Ca tot in WR. Lolo Site 10 TPitte metal detector ou Len IID Test Pet ale a 2-40'x 6' spot-start Crushed 55-gol 

20 21 Set. 10 8-2-95 8-2-95 stell Test Pit Eo-ust oil drum soid stained on top Don non le rain water in one - no sheen no readual North To duct seen in water. Bank DOU to mid center of - Car No matel delactor - Dirat . DD on that 55-900 Nou aber of reda &VCdu Hole - clean 600 lig, no snell. site Fish Stocher of hale ut woode rel'us/tefen tope. Ren O No realide - debri, Jam bal with en Cover e voids seen - Est 1700 zero to SAV cruched drums (-A t th Pit #2 is the only elevated Don't of dreem stores to None Jod. Jugene Said last 1900 plople cherg \$ breede 2015. dumb.

.




·

•







|       |            |                                       | Sample         | wood<br>structure | corkwall | cement<br>board | metal | painted<br>area | roofing | roof<br>tar | wall<br>insulation | ACM<br>siding | clay<br>tile | vinyl<br>ACM | concrete | ceiling | total | TCLP<br>results | MRL   |
|-------|------------|---------------------------------------|----------------|-------------------|----------|-----------------|-------|-----------------|---------|-------------|--------------------|---------------|--------------|--------------|----------|---------|-------|-----------------|-------|
| Site  | Building # | Building Name                         | identification | (%)               | (%)      | (%)             | (%)   | (%)             | (%)     | (%)         | (%)                | (%)           | (%)          | (%)          | (%)      | (%)     | (%)   |                 | (mg/) |
| NE 02 | N/A        | Airport Terminal with Tower           | 95NE02401BD1   | 60                |          | 10              | 10    | 2               | 3       |             | 2                  | 10            | _            | 3            |          |         | 100   | 0.14            | 0.05  |
| NE 03 | 119        | Fuel Pumphouse                        | 95NE03119BD1   | L                 |          |                 |       |                 |         |             |                    |               |              |              | {        |         | 0     | 0.13            | 0.05  |
| NE 13 | 110        | Heat and Electrical Power Building    | 95NE13110BD1   | Pier              |          | 10              | 1     |                 | 25      | 1           |                    | 165           |              |              |          |         | 100   | 0.22            | 0.05  |
| NE 14 | 098        | Emergency Power Operations Building   | 95NE14098BD1   | ] 10              |          | 2               | 30    | 3               |         |             | 5                  |               | ]            | 5            | 45       | }       | 100   | ND              | 0.05  |
| NE 14 | N/A        | Debris Pile                           | 95NE14401BD1   | 1                 |          |                 | 100   | 0               | {       |             | <b>}</b>           | 1             | 1            | 1 1          | T T      | 1       | 100   | 5.54*           | 0.05  |
| NE 14 | N/A        | Debris Pile                           | 95NE14401BD2   | ļ                 |          |                 | 100   | 0               | Į į     |             | [                  | {             |              | l I          | {        | ł       | 100   | 4.41            | 0.05  |
| NE 14 | N/A        | Debris Pile                           | 95NE14401BD3   |                   | l        | l i             | 100   | 0               | 1       |             | Į                  |               | Į            | 1            | ł        | l       | 100   | 4.2             | 0.05  |
| NE 16 | 112        | Paint and Dope Building               | 95NE16112BD1   | 29                | [        | 3               | 1     | ĺ ī .           | 21      | 1           | 42                 | 2             | 1            | 1            | 1        | ſ       | 100   | 0.34            | 0.05  |
| NE 17 | 106        | Mess Hall Building                    | 95NE17106BD1   | 50.5              | 1.7      | 4               | 0.2   | 1               | 27      | 1           | 10                 | 1.5           | 2.5          | 0.6          | 1        | }       | 100   | ND              | 0.05  |
| NE 17 | 107        | Mess Hall Warehouse Building          | 95NE17107BD1   | 39                | 1        | 3               | 0.3   | 1               | 44      | 1           | 10                 | 0.7           |              |              | 1        | 1       | 100   | 0.16            | 0.05  |
| NE 17 | 111        | General Supply Warehouse Building 🔶   | 95NE17111BD1   | - 33              | -        | 3               | 0.5   | -1.5            | _ 49    | 1           | 10                 | {_1           | {            | ξ 1          | {        | {       | 100   | 0.3             | 0.05  |
| NE 18 | 099        | Recreation Building                   | 95NE18099BD1   | 48                |          | [               | 50    | 2               | ļ       | ļ           | Į                  | {             |              | [            | 1        | 1       | 100   | ND              | 0.05  |
| NE 18 | 100        | NCO Quarters - N&S buildings          | 95NE18100BD1   | 45.5              |          | 20              | 0.5   | 1               | 20      |             | 1                  | 10            |              | 2            |          |         | 100   | 0.09            | 0.05  |
| NE 18 | 101        | Dormitory E&W buildings               | 95NE18101BD1   | 39.5              |          | 18              | 0.5   | 1               | 19      | 1           | )                  | 20            | )            | 1            | 1        | 1       | 100   | 2.85            | 0.05  |
| NE 18 | 102        | BOQ Building                          | 95NE18102BD1   | 50                |          | 5               |       | 1               | 18      |             | 1                  | 3             | 1            | 3            | 1        | 20      | 100   | 0.15            | 0.05  |
| NE 18 | 104        | Administration Building               | 95NE18104BD1   | 52                |          | 15              | 0.5   | 1               | 15      |             | 5                  | 8             | (            | 3.5          | 4        | Į       | 100   | 0.38            | 0.05  |
| NE 18 | 105        | Theater Building                      | 95NE18105BD1   | 25                | (        | 5               | 1     | 1               | 25      |             | 1                  | 12            |              | 5            |          | 25      | 100   | 0.07            | 0.05  |
| NE 19 | 108        | Vehicle Storage Building              | 95NE19108BD1   | 37.3              |          | 2.8             | 0.4   | 1               | 26      | 1           | 30                 | 1.5           | ]            |              |          |         | 100   | 0.57            | 0.05  |
| NE 19 | 108        | Vehicle Storage Building              | 95NE19108BD2   | 37.3              | 1        | 2.8             | 0.4   | 1               | 26      | 1           | 30                 | 1.5           | 1            |              | 1        | i i     | 100   | 0.34            | 0.05  |
| NE 19 |            | Vehicle Storage Building              | 95NE19108BD3   | 37.3              | Į –      | 2.8             | 0.4   | 1               | 26      | 1           | 30                 | 1.5           | }            | 1            |          |         | 100   | 0.27            | 0.05  |
| NE 19 | 109        | Garage Building                       | 95NE19109BD1   | 37.3              | {        | 2.8             | 0.4   | 1               | 26      | 1           | 30                 | 1.5           | 1            | ł            | {        | {       | 100   | 0.19            | 0.05  |
| NE 20 | 103        | Aircraft Control and Warning Building | 95NE20103BD1   | 1                 |          | ļ               | l     | l               |         | Į           | l                  | l             |              | 1            | 1        | l       | 0     | ND              | 0.05  |
| NE 22 | 113        | Water Supply Building                 | 95NE22113BD1   | 60                |          |                 | 19    | 1               |         |             |                    | 20            |              |              |          |         | 100   | ND              | 0.05  |
| NE 22 | 114        | Pump Station Building                 | 95NE22114BD1   | 30                |          |                 | 1     | 30              | 19      |             | ]                  | 20            | 1            | 1            |          | 1       | 100   | 0.2             | 0.05  |

Table 3 Summary of TCLP Results Northeast Cape, St. Lawrence Island, Alaska

\* Adjusted TCLP results taking into account the steel girders sampled at the debris pile (Site 14) that are present in Building 98 (Site 14) :

Assuming that the steel girders do not occupy more than 1/4 of the total volume of Building 98; the adjusted TCLP result is:

3/4 (95NE14098BD1) + 1/4 (95NE14401BD1) = TCLP 3/4 (ND) + 1/4 (5.54%) = 1.39 % TC LP

•

| Component                    | Thickness (assumptions based on field observations) |             |
|------------------------------|-----------------------------------------------------|-------------|
| Window                       | 1/4"                                                |             |
| Door Trim                    | 1/2-                                                |             |
| Interior Wallboard           | 1/2"                                                |             |
| Wood Structure               | 2" x 6" w/16" center                                |             |
| Roof Insulation (glass foam) | 3"                                                  | 2000<br>100 |
| ACM Siding                   | 1/8"                                                | 1           |
| Tarpaper                     | 1/16"                                               | ×           |
| Metal Flashing               | 1/32" (12" height for both floor and roof)          |             |
| Wall Insulation              | 4"                                                  |             |
| Door                         | 2.1                                                 |             |
| Wood Siding                  | P                                                   |             |

.

| Table 3                                     |
|---------------------------------------------|
| Summary of TCLP Results                     |
| Northeast Cape, St. Lawrence Island, Alaska |

. 2

|       |                  |                                       | Sample         | wood<br>structure | corkwall | cement<br>board | metal | painted<br>area | roofing | roof<br>tar | wall<br>insulation | ACM<br>siding | clay<br>tile | vinyl<br>ACM | concrete | ceiling    | total | TCLP<br>results | MRL    |
|-------|------------------|---------------------------------------|----------------|-------------------|----------|-----------------|-------|-----------------|---------|-------------|--------------------|---------------|--------------|--------------|----------|------------|-------|-----------------|--------|
| Site  | Building #       | Building Name                         | identification | (%)               | (%)      | (%)             | (%)   | (%)             | (%)     | (%)         | .(%)               | (%)           | (%)          | (%)          | (%)      | (%)        | (%)   | (mg/l)          | (mg/l) |
| NE 02 |                  | Airport Terminal with Tower           | 95NE02401BD1   | 60                |          | 10              | 10    | 2               | 3       |             | 2                  | 10            |              | 3            |          |            | 100   | 0.14            | 0.05   |
| NE 03 | 119              | Fuel Pumphouse                        | 95NE03119BD1   |                   |          |                 |       |                 |         |             |                    |               |              |              | l        |            | 0     | 0.13            | 0.05   |
| NE 13 | 110              | Heat and Electrical Power Building    | 95NE13110BD1   | 50,5-             |          | 10              | 1     | 1               | 25      | 1           | }                  | 10            |              | {            |          |            | 100   | 0.22            | 0.05   |
| NE 14 | 098              | Emergency Power Operations Building   | 95NE14098BD1   | 10                |          | 2               | 30    | 3               |         |             | 5                  | l             |              | 5            | 45       |            | 100   | ND              | 0.05   |
| NE 14 | N/A              | Debris Pile                           | 95NE14401BD1   |                   |          |                 | 100   | 0               |         |             | ł                  |               |              |              |          |            | 100   | 5.54•           | 0.05   |
| NE 14 | N/A              | Debris Pile                           | 95NE14401BD2   |                   |          |                 | 100   | 0               | ļ       |             |                    |               |              |              |          | 1          | 100   | 4.41            | 0.05   |
| NE 14 | N/A <sup>1</sup> | Debris Pile                           | 95NE14401BD3   | 1                 |          |                 | 100   | 0               | 1       |             | }                  | 1             |              | }            |          | }          | 100   | 4.2             | 0.05   |
| NE 16 | 112              | Paint and D ope Building              | 95NE16112BD1   | 29                |          | 3               | 1     | 1               | 21      |             | 42                 | 2             |              | ļ            |          |            | 100   | 0.34            | 0.05   |
| NE 17 | 106              | Mess Hall Building                    | 95NE17106BD1   | 50.5              | 1.7      | 4               | 0.2   | 1               | 27      |             | 10                 | 1.5           | 2.5          | 0.6          |          |            | 100   | ND              | 0.05   |
| NE 17 | 107              | Mess Hall Warehouse Building          | 95NE17107BD1   | 39                | 1        | 3               | 0.3   | 1               | 44      | i           | 10                 | 0.7           | 2            |              |          |            | 100   | 0.16            | 0.05   |
| NE 17 | 111              | General Supply Warehouse Building     | 95NE17111BD1   | 33                |          | 3               | 0.5   | 1.5             | 49      |             | 10                 | 1             |              | 1            |          |            | 100   | 0.3             | 0.05   |
| NE 18 | 099              | Recreation Building                   | 95NE18099BD1   | 48                |          |                 | 50    | 2               | }       |             |                    | [ · ·         | 1            |              | 1        |            | 100   | ND              | 0.05   |
| NE 18 | 100              | NCO Quarters - N&S buildings          | 95NE18100BD1   | 45.5              |          | 20              | 0.5   |                 | 20      |             | 1                  | 10            | (            | 2            | l        | <b>(</b> ) | 100   | 0.09            | 0.05   |
| NE 18 | 101              | Dormitory E& W buildings              | 95NE18101BD1   | 39.5              |          | 18              | 0.5   | 1               | 19      |             | 1                  | 20            |              | l ī          |          |            | 100   | 2.85            | 0.05   |
| NE 18 | 102              | BOQ Building                          | 95NE18102BD1   | 50                |          | 5               |       | 1               | 18      |             | 1                  | 3             | 1            |              |          | 20         | 100   | 0.15            | 0.05   |
| NE 18 | 104              | Administration Building               | 95NE18104BD1   | 52                |          | 15              | 0.5   |                 | 15      |             | 5                  | 8             |              | 3.5          | 1        |            | 100   | 0.38            | 0.05   |
| NE 18 | 105              | Theater Building                      | 95NE18105BD1   | 25                |          | 5               | 1     | l i             | 25      |             |                    | 12            | ļ            | 5            | ļ        | 25         | 100   | 0.07            | 0.05   |
| NE 19 | 108              | Vehicle Storage Building              | 95NE19108BD1   | 37.3              |          | 2.8             | 0.4   | l i             | 26      |             | 30                 | 1.5           |              | 1            |          |            | 100   | 0.57            | 0.05   |
| NE 19 | 108              | Vehicle Storage Building              | 95NE19108BD2   | 37.3              |          | 2.8             | 0.4   | l i             | 26      | li          | 30                 | 1.5           | 1            | 1            | 1        | 1          | 100   | 0.34            | 0.05   |
| NE 19 | 108              | Vehicle Storage Building              | 95NE19108BD3   | 37.3              |          | 2.8             | 0.4   |                 | 26      | 1           | 30                 | 1.5           | <b>\</b>     | 1            |          |            | 100   | 0.27            | 0.05   |
| NE 19 | 109              | Garage Building                       | 95NE19109BD1   | 37.3              |          | 2.8             | 0.4   | ( )             | 26      | l i         | 30                 | 1.5           | (            | (            | l        | (          | 100   | 0.19            | 0.05   |
| NE 20 | 103              | Aircraft Control and Warning Building | 95NE20103BD1   | 1                 |          |                 |       |                 | 1       |             |                    | 1             | 1            | J .          |          |            | 0     | ND              | 0.05   |
| NE 22 | 113              | Water Supply Building                 | 95NE22113BD1   | 60                |          |                 | 19    |                 |         |             |                    | 20            |              | ]            | ]        | ]          | 100   | ND              | 0.05   |
| NE 22 | 114              | Pump Station Building                 | 95NE22114BD1   | 30                |          |                 | 1     | 30              | 19      | }           |                    | 20            | 1            | 1            |          | 1          | 100   | 0.2             | 0.05   |

\* Adjusted TCLP results taking into account the steel girders sampled at the debris pile (Site 14) that are present in Building 98 (Site 14) :

Assuming that the steel girders do not occupy more than 1/4 of the total volume of Building 98; the adjusted TCLP result is:

3/4 (95NE14098BD1) + 1/4 (95NE14401BD1) = TCLP 3/4 (ND) + 1/4 (5.54%) = 1.39 % TC LP

| Component                    | Thickness (assumptions based on field observations) |
|------------------------------|-----------------------------------------------------|
| Window                       | 1/4"                                                |
| Door Trim                    | 1/2"                                                |
| Interior Wallboard           | 1/2"                                                |
| Wood Structure               | 2" x 6" w/16" center                                |
| Roof Insulation (glass foam) | 3"                                                  |
| ACM Siding                   | 1/8"                                                |
| Татрарег                     | 1/16"                                               |
| Metal Flashing               | 1/32" (12" height for both floor and roof)          |
| Wall Insulation              | 4"                                                  |
| Door                         | 2''                                                 |
| Wood Siding                  | 1"                                                  |

.

:

### TCLP Sampling Methodology

Each structure or item of debris was evaluated to determine or confirm if it contained suspected lead-based paint. Once this determination was made, TCLP core sampling was accomplished.

TCLP samples were collected using procedures in conformance with the U.S. Army Environmental Hygiene Agency Sampling Protocol for Building Demolition Debris and Buildings Painted with Lead-Based Paint as found in the Interim Final Report Lead-Based Paint Contaminated Debris Waste Characterization Study (USEHA 1993). To ensure an 80 percent confidence level in the determination of TCLP lead, each structure or debris suspected of containing lead-based paint was sampled.

One composite sample was collected for each selected sample structure. The composite sample included approximate proportions of all materials constituting the structure. Proportions of structure materials were determined by measuring volumes using the Disto® hand-held distance meter. The area of each wall, ceiling and floor was calculated, and this value was multiplied by the thickness of each individual material, such as wall insulation or cork. Once the volumes of all materialsconstituting that structure was calculated, the percentages of individual material compared to the whole structure was established, and the weight of that particular material which would go into the 120 gram sample was noted.

Certain assumptions were made as to the thickness of selected materials based on field servations. These were used only if the material was found to be a constituent of the structure \_\_ing sampled. Assumed components and their thicknesses are as follows:

| <u>Component</u>             | Thickness                                           |
|------------------------------|-----------------------------------------------------|
| window                       | 1/4"                                                |
| door trim                    | 1/2"                                                |
| interior wallboard           | 1/2"                                                |
| wood structure               | 2 X 6" with 16" centers                             |
| roof insulation (glass foam) | 3"                                                  |
| Asbestos siding              | 1/8"                                                |
| tarpaper                     | 1/16"                                               |
| metal flashing               | 1/32" (12" height for both floor and roof flashing) |
| wall insulation              | 4"                                                  |
| door                         | 2"                                                  |
| wood siding                  | 1"                                                  |
| clay tile                    | 1/2"                                                |
| vinyl asbestos tile          | 1/8"                                                |
| cork wall                    | 2"                                                  |

Tools used to collect component samples were the DeWault® portable hand drill, a metal saw, a hammer and chisel, and an electric hand saw powered by a generator.

### TCLP Sampling Methodology

Each structure or item of debris was evaluated to determine or confirm if it contained suspected lead-based paint. Once this determination was made, TCLP core sampling was accomplished.

TCLP samples were collected using procedures in conformance with the U.S. Army Environmental Hygiene Agency Sampling Protocol for Building Demolition Debris and Buildings Painted with Lead-Based Paint as found in the Interim Final Report Lead-Based Paint Contaminated Debris Waste Characterization Study (USEHA 1993). To ensure an 80 percent confidence level in the determination of TCLP lead, each structure or debris suspected of containing lead-based paint was sampled.

One composite sample was collected for each selected sample structure. The composite sample included approximate proportions of all materials constituting the structure. Proportions of structure materials were determined by measuring volumes using the Disto® hand-held distance meter. The area of each wall, ceiling and floor was calculated, and this value was multiplied by the thickness of each individual material, such as wall insulation or cork. Once the volumes of all materials constituting that structure was calculated, the percentages of individual material compared to the whole structure was established, and the weight of that particular material which would go into the 120 gram sample was noted.

#### 

Certain assumptions were made as to the thickness of selected materials based on field rvations. These were used only if the material was found to be a constituent of the structure sampled. Assumed components and their thicknesses are as follows:

| <u>Component</u>             | <u>Thickness</u>                                    |
|------------------------------|-----------------------------------------------------|
| window                       | 1/4"                                                |
| door trim                    | 1/2"                                                |
| interior wallboard           | 1/2"                                                |
| wood structure               | 2 X 6" with 16" centers                             |
| roof insulation (glass foam) | 3"                                                  |
| Asbestos siding              | 1/8"                                                |
| tarpaper                     | 1/16"                                               |
| metal flashing               | 1/32" (12" height for both floor and roof flashing) |
| wall insulation              | 4"                                                  |
| door                         | 2"                                                  |
| <pre>/ wood siding</pre>     | 1"                                                  |
| clay tile                    | 1/2"                                                |
| vinyl asbestos tile          | 1/8"                                                |
| cork wall                    | 2"                                                  |

Cools used to collect component samples were the DeWault® portable hand drill, a metal saw, a narmer and chisel, and an electric hand saw powered by a generator.

'ortheast Cape BD/DR Technical Memorandum - FINAL

"Outdoor writing products for outdoor writing people "Rite in the Rain ALL-WEATHER **LINE RULE** Notebook No. 391-M 7-30-99-8-3-99 NEC farmar Watson 05130 98 11490 Nustlas ', n a product of J. L. DAFLING CORPORATION TEXTE, WA 96424-1017 USA S3) 922-5000 - FAX (253) 622-5300

· · · · ·



.

à. N

,

Name

Address

Phone

Project

1

|                                          |   | PAGE_ | MEFEMENCE                             |
|------------------------------------------|---|-------|---------------------------------------|
| 1111                                     | • |       |                                       |
|                                          | : |       |                                       |
|                                          | • |       |                                       |
|                                          | ' |       |                                       |
|                                          | - |       | · · · · · · · · · · · · · · · · · · · |
|                                          |   |       |                                       |
|                                          |   |       |                                       |
|                                          |   |       | •                                     |
|                                          |   |       |                                       |
|                                          |   |       |                                       |
|                                          | • |       |                                       |
|                                          |   |       |                                       |
| · · · · · · · · · · · · · · · · · · ·    |   |       |                                       |
| uble for this style<br>/ & tear. Contact |   |       |                                       |
|                                          |   | ├     |                                       |

.

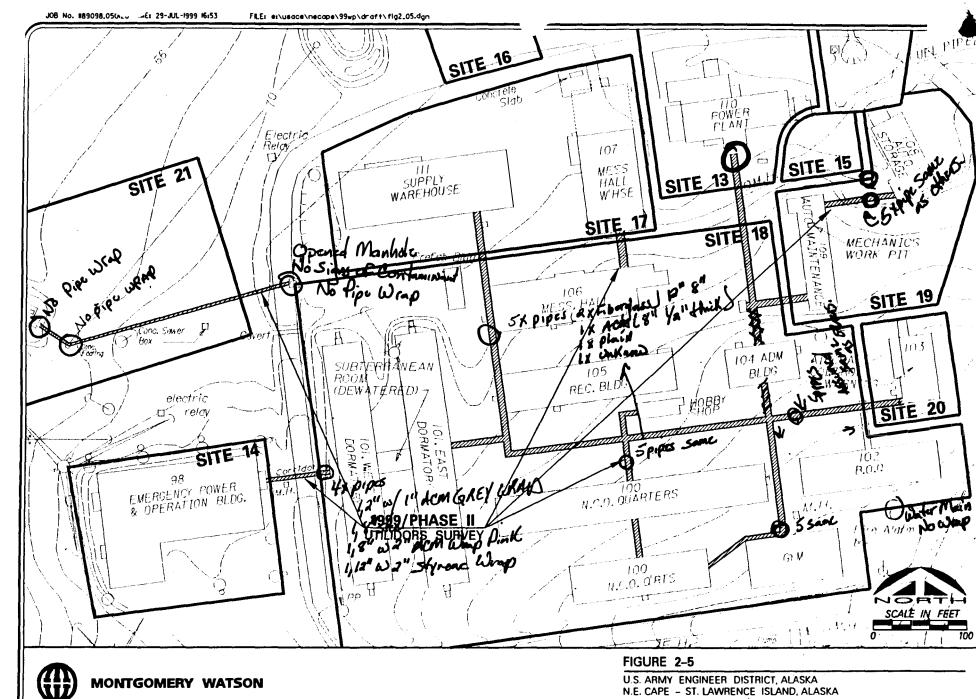
<u>،</u> ۲۰

CONTENTS

DATE

•

Clear Vinyl Protective Sipcovers (Item #32) are evaluable for this style of notaback. Helps protect your notaback from wear & tear. Contact your dealer or the J. L. Darling Corporation.


.

25

<u>7-31-19</u> ( soo To Augent for fust lup to 7-30-99 0925 - Depart ANC for NOM Nec. Millisa and (Daug) to callet Point chy samples from AST's 1220- Arrive Nom Get Vow and Pully from) Stamped feat a low at Harana Jan AST 4-1, AST 4.2, AST 3-1, AST 3-2 Mabilizer Equipment AST 13-1, AST 13-4 Get Onliaded fuel and Set Sampling paints for Set 12 Sail and Salesenfor Sail Supling . 170 - PerAu Anne w/ Colored Jahm Sugarne Branchemp, Farry Bistogel Colonel Jakon through sett. 1850 - Segnet for Non Saught # 34/9 7/30/49

8-1-99 8-1-11 Collect Background Sample of the To of the Mountain at the gravel Bour PJ Xies Called Sail Samples from Sil 12 9INECLOSS905 12-2 99220535901 · 994661258901 (2'65) 12-1 tout south TINECISSION Called Confunction Sample @ 99NFC1255902 906 Dup 907 Split Site 7 Near NW Tox of Jamffel 99 PEC 1253 103 Mars 99 NEC 0755701 901 Dup 903 Split No Clean Contrauntin with the Exception of Sistered Soil @ 901 All Samples Collected @ 6' Bys except 901 @ 2' Bas. Callet Background SS and SU fre I Pour Cody approx the mile fin St 7 99NEC 305590/ 99NEC 30 50902 8/199

้ 8-2-**11** 8-2.99 Most UTILIDONS CONTAIN 5 pipes. Quest Pat Luchens (SHAD HARS Sorry I w/ ACA WRAP, I w/ - Filinglass wrap 1 alama Chy Syras Sumilar to costing) with Sill. and I Bare Expand See Map For Dimension1\_ Building Proved to Congrest 107, 110, 101 99NEC 13 BD 901 99NEC 17 BD 901 99NEC 18 BD 901 900 fordy ممعا 1100 Accorpting Pat frack mit to 24 Receiver bul Fituer and Bigen vilider Survey. See map for Notes an utilider Cantent. 1 8/2/11



-----

Anchorage, Alaska

### UTILIDOR SYSTEM

5)

2

100

## APPENDIX G

Field Forms



#### 1999 Northeast Lare Sample Check List Site 7, Site 12, and Site 13

.

| Anatytical Laboratory:                                  | MultiChem Analy      | tical Sevices            |             |            |                                                | _                                                     |                                               |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            | <u> </u>                             |                                   |
|---------------------------------------------------------|----------------------|--------------------------|-------------|------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------|--------------------------------------------------|-------------------------|-------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------|
| Phone: 907-248-8273 Fax: 907-248-8274                   | r                    |                          |             |            | Sediment                                       |                                                       | Se                                            | all                                            |                                |                                                    | 2                     | Sludge                                           | 2                       | 1                                   | Bld<br>Mate                                | ۲ Y                                  | Paint                             |
| Sample I dentification                                  | Location Description | Date                     | Time        | Depth      | DRO/RRO - AK102/AK103<br>44 oz amber glass jar | GRO/BTEX - AK10L/SW8021B<br>4 oz amber glass jar MeOH | DRO/RRO - AK102/AK103<br>4 or amber glass jar | TAL M सम्राज्य SW6010/7000<br>8 oz amber glass | TOC - SW9060<br>4 oz glass jar | TCLP Metals SW1311/6010B/7000<br>4 ox. amber glass | CCLP VOCs SW1311/8260 | TCLP Pesticides SW1311/8081<br>4 oz, amber glass | TCLP SVOCs SW1311/8270B | PCBs SW8082<br>4 oz amber glass Jar | TCLP PCBs SW1311/8082<br>4 ox, amber glass | PCBs SW8082<br>14 oz amber glass jar | Pb SW7421<br>4 oz amber glass jar |
| Northeast Cane                                          |                      | thorized sampl           |             |            | 1                                              |                                                       | C samo                                        | les: M                                         |                                | and fiel                                           | d dunl                | licate                                           | CPR CAR                 | and the                             |                                            | <u></u>                              |                                   |
|                                                         | Resample.            | 8/1/19                   | 1230        | <b>6</b> " |                                                |                                                       | msp                                           | 1                                              |                                |                                                    | u uupi                |                                                  |                         |                                     | [                                          |                                      | i i                               |
| 99NEC 07 SD902 MAS Dooof 01                             | at NEW<br>Tos of     | 8/1/99                   | 1235        | 6''        |                                                | QC                                                    |                                               |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            |                                      | i i                               |
| 99NECO750903 Awaly. Solit of 01                         | LandFillMass         | 8/1/99                   | 1240        | 6"         |                                                | QA                                                    |                                               |                                                |                                |                                                    |                       | İ                                                |                         |                                     |                                            | ,                                    | İ                                 |
| 99NEC                                                   | j                    |                          |             |            |                                                |                                                       |                                               |                                                |                                |                                                    |                       | İ                                                |                         |                                     |                                            |                                      |                                   |
| Site 12 Gasoline Tank Area                              |                      | uthorized samp           | es          |            | Ī                                              | 5                                                     | 5                                             |                                                |                                |                                                    |                       | Ì                                                |                         |                                     |                                            |                                      |                                   |
|                                                         | Fill End of<br>Tanks | 8/1/99                   | 1100        | ' ہے       | Ī                                              | -                                                     | ~                                             |                                                |                                |                                                    |                       | Ì                                                |                         |                                     |                                            |                                      |                                   |
| 99NEC 1255 901                                          |                      | 81199                    | 1170        | 6"         |                                                | -                                                     | 1                                             |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            |                                      |                                   |
| 99NEC 1255 903                                          |                      | 81199                    | 1130        | د"         |                                                | 1                                                     | <i>✓</i>                                      |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            |                                      |                                   |
| 99NEC 1255 904                                          |                      | 8/1/19                   | 1140        | 6"         |                                                | ~                                                     | /                                             |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            |                                      |                                   |
| 99NEC (255 905                                          |                      | 81199                    | 1150        | 6"         |                                                | 1                                                     | ~                                             |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            |                                      |                                   |
| 99NEC 1255 906 TO MAS DC                                | Duplicate of 2       | 8/1/99                   | 1125        | <b>4</b> " | ļ                                              | 1                                                     | ~                                             |                                                |                                |                                                    |                       |                                                  |                         |                                     |                                            | [                                    |                                   |
| 99×50 2355 90 7 ΤΟ Αναλγτικά Φά<br>Site 13 Building 110 | Split of 2 AI        | 8 1 99<br>uthorized samp | 1130<br>les |            | OA/QC re                                       | quired                                                |                                               |                                                |                                | ļ                                                  |                       |                                                  |                         |                                     | 1                                          | 1                                    |                                   |
| 99NEC 13 BD 901                                         |                      | 8-2                      | 200         | Cyc 3      | <u> </u>                                       |                                                       |                                               |                                                | <u> </u>                       | <u> </u>                                           |                       |                                                  |                         |                                     |                                            | X                                    |                                   |
| 99NEC                                                   |                      |                          |             | <u> </u>   | <u> </u>                                       | <u> </u>                                              |                                               |                                                |                                | <u> </u>                                           |                       |                                                  |                         |                                     | ł                                          | <u> </u>                             |                                   |
| 99NEC                                                   |                      |                          |             |            |                                                | <u> </u>                                              |                                               |                                                |                                | <u> </u>                                           |                       |                                                  |                         | <u> </u>                            |                                            | <u> </u>                             |                                   |
| 99NEC                                                   |                      |                          |             |            |                                                | ļ                                                     | l                                             | l                                              |                                |                                                    |                       |                                                  |                         |                                     | ļ                                          |                                      |                                   |

.

### 1999 Northeast Сыре Sample Check List Site 17, Site 18, and Site 21

| Analyticul Laboratory:                  | MultiChem Analytic   | cal Sevices  |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
|-----------------------------------------|----------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------------------|-------------|---------------------|-------------------------------------|-----------------------|-------------------------------------|-----------------------------------|
| Phone: 007 248 8273 Eav. 007. 248. 8274 |                      |              |              |                                                                                                                | Codemont              |                                                      | So                                            |                                                |                                |                                                    |                                            | Sludge      |                     |                                     | Bld<br>Mater          |                                     | Paint                             |
| Phone: 907-248-8273 Fax: 907-248-8274   | Location Description | Date         | Time         | Depth                                                                                                          | DRO/RRO - AK102/AK103 | GRO/BTEX - AK10L/SW8021B<br>4 oz amber glas jar MeOH | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | 프 TAL Metals SW6010/7000 플<br>8 oz amber glass | rOC - SW9060<br>4 oz glass jar | CCLP Metals SW1311/6010B/7000<br>4 oz, amber glass | TCLP VOCs SW1311/8260<br>4 oz. amber glass | SW1311/8081 | SW1311/8270B<br>ass | PCBs SW8082<br>6 oz amber glass jar | rCLP PCBs SW1311/8082 | PCBs SW8082<br>4 oz amber glass jar | Pb SW7421<br>4 oz amber glass jar |
| Northeast Cape                          |                      |              | 48.45 (8.465 | The second second second second second second second second second second second second second second second s | 17                    | र सर जन्म :<br>इ.स. जन्म :                           |                                               | and parts                                      |                                | -04-5-2                                            | art zit.                                   | 1.21        | n benne s           | her An                              | 184.4.4               |                                     | Level Ban                         |
| Site 17 Building 107                    | 1                    | horized samp |              |                                                                                                                | A/QC rec              | uired                                                |                                               |                                                |                                |                                                    |                                            | 1           |                     |                                     | (1)                   | )(_1                                |                                   |
| 99NEC 17 BD 901                         |                      | 8-2          | Bor          | <u>C-zc 3</u>                                                                                                  |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       | :                                   |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            | ļ           |                     |                                     |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
| Site 18 Building 101                    | Au                   | thorized sam | oles         | No (                                                                                                           | A/QC rei              | quired                                               |                                               |                                                |                                |                                                    |                                            |             |                     |                                     | 1                     | 1                                   |                                   |
| 99NEC 18 BD 90/                         |                      | 8-2          | 1100         | Cyr3                                                                                                           |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       | $\overline{()}$                     |                                   |
| 99NEC                                   |                      |              |              | 2                                                                                                              | ļ                     |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     |                       |                                     |                                   |
| Site <b>XI</b> Septic Tanks             | Au                   | thorized sam | ples         | No (                                                                                                           | A/QC re               | quired                                               |                                               |                                                |                                | 2                                                  | 2                                          | 2           | 2                   | 2                                   |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                |                                                    |                                            |             |                     |                                     | K                     |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                |                       |                                                      |                                               |                                                |                                | L                                                  |                                            |             |                     |                                     |                       |                                     |                                   |
| 99NEC                                   |                      |              |              |                                                                                                                | $\overline{ }$        | L                                                    |                                               |                                                |                                |                                                    | $\overline{\backslash}$                    |             |                     |                                     |                       |                                     | l                                 |
| 99NEC                                   |                      |              | $\mathbf{k}$ |                                                                                                                | ļ                     | `                                                    |                                               |                                                |                                |                                                    | ł                                          |             | $\downarrow$        | L                                   |                       | ļ                                   | $\overline{ }$                    |

.

### 1999 Northeast سريت Sample Check list Site 30 and Site 21

| Analytical Laboratory:      | MultiChem Analy                  | tical Sevi | Ces   |            |                                               |                                                       | <u></u>                                        | ·                                          |                                | r                                                  |                       |                                                  | <u></u>                                      |                                      |                                            |                                     | r                                 |
|-----------------------------|----------------------------------|------------|-------|------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------|
| Phone: 907-248-8273 Fax: 90 | 7-248-8274                       |            |       |            | Sediment                                      |                                                       | S                                              | oil                                        |                                |                                                    |                       | Sludg                                            | Bldg.<br>Materials                           |                                      | Paint                                      |                                     |                                   |
| Sample Identification       | Location Description             | Date       | Time  | Depth      | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | GRO/BTEX - AK101/SW8021B<br>4 oz amber glass jar MeOH | DRO/RRO - AK102/AK103<br>14 oz amber glass jar | TAL Metals SW6010/7000<br>8 oz amber glass | TOC - SW9060<br>4 oz glass jar | TCLP Metals SW1311/6010B/7000<br>4 oz, amber glass | TCLP VOCs SW1311/8260 | TCLP Pesticides SW1311/8081<br>4 oz, amber glass | TCLP SVOCs SW1311/8270B<br>4 oz, amber glass | ercBs SW8082<br>4 oz amber glass jar | TCLP PCBs SW1311/8082<br>4 oz, amber glass | PCBs SW8082<br>4 oz amber glass jar | Pb SW7421<br>4 oz amber glass jar |
| Site 30 Background *        |                                  | orized Sar |       |            |                                               | 3                                                     | 3                                              | 3                                          | 3                              | 2                                                  | 2                     | 2                                                | 2                                            | 2                                    | 5.041                                      | <u>ie a iere al</u>                 |                                   |
| 99NEC 30 55901              | Tozof Mountain<br>Edac of Grazi  |            | 120D  | <b>6</b> " |                                               | r                                                     |                                                | ~                                          | ~                              |                                                    |                       |                                                  |                                              |                                      |                                            |                                     |                                   |
| 99NEC 36 55 902             | Adnel 5 of site                  | 8/1/99     | 1500  | <u> </u>   |                                               | ~                                                     | ~                                              | ~                                          | $\leq$                         |                                                    |                       |                                                  | <u> </u>                                     |                                      |                                            |                                     |                                   |
| 99NEC30.50103               | Pond Sof Sitz7                   | 8/1/99     | 1510  | 6"         |                                               | sed                                                   | Sed                                            | ऽच्य                                       | Sed                            |                                                    |                       |                                                  |                                              |                                      |                                            |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       | <br>                                           |                                            | ļ                              |                                                    |                       |                                                  |                                              | <br>                                 |                                            |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              |                                      |                                            |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              |                                      |                                            |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              | ļ                                    |                                            | L                                   |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              |                                      |                                            | L                                   |                                   |
| Site 21 Septic Tanks        | ASTZI-3 Auth                     | orized sau | mples |            | QA/QC re                                      | quired                                                |                                                |                                            |                                | <b></b>                                            |                       |                                                  |                                              |                                      | 1                                          |                                     |                                   |
| 99NEC 2152901               | Northern Edge<br>of Septie Fornk | 8/1/99     | 1300  | 1.5 Bda    |                                               |                                                       |                                                |                                            |                                | ~                                                  | V                     | ~                                                | ~                                            | ~                                    |                                            |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              | <u> </u>                             |                                            |                                     | <u> </u>                          |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              |                                      | ļ                                          |                                     |                                   |
| 99NEC                       |                                  |            |       |            |                                               |                                                       |                                                |                                            |                                |                                                    |                       |                                                  |                                              |                                      |                                            |                                     |                                   |

\* Site 30 Background (00 is the background site, DB for drainage basin, SR for Suqi River, and BK for the uncontaminated control stream)

# 1999 Northeast שמים Pb

| Phone: 907-248-8273 Fax: 907-248-8274 |                         |      |      |                           |                                                 | Soll                                                |                                             |                                            | Siudge                         |                                                    |                                            |                                                 |                                              | Bldg.<br>Materials                  |                      | Paint                               |                                   |
|---------------------------------------|-------------------------|------|------|---------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------|----------------------|-------------------------------------|-----------------------------------|
| ample Identification                  | ocation Description     |      | Time | Colore<br>9/c,<br>Depth   | JDROVRRO - AK102/AK103<br>14 oz amber giass jar | GROBTEX - AK101/SW8021B<br>4 oz amber giæs jær MeOH | DRORRO - AKI02AK103<br>4 oz umber glass jar | TAL Metals SW6010/7000<br>8 oz amber glass | TOC - SW9060<br>4 oz giass jar | TCLP Metals SW1311/60108/7000<br>4 ox, amber glass | TCLP VOCs SW1311/2260<br>4 cc, amber glass | TCLP Pericides SW1311/8081<br>4 cc, amber glass | TCLP SVOCs SW1311/8270B<br>4 oz, amber glass | PCBs SW8062<br>4 oz amber glass jær | ICLPPCBs SW1311/8082 | PCBs SW8082<br>4 oz amber glass jar | Pb SW7421<br>4 oz amber ziasz iar |
| Multiple AST                          | TANK Authorized samples |      |      |                           |                                                 | No QA/QC required                                   |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      | /                                   |                                   |
| 99NEC 03 MI 901                       | 3-01                    | 7-31 | 1202 |                           |                                                 |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | R                                 |
| 99NEC ( ) 3 MI 902                    | 3-2                     | 2-31 | 1230 |                           |                                                 |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | V                                 |
| SONEC OH MI 94                        | 44                      | 7-31 | 1302 | 122 - 25 - 122<br>55 - 12 |                                                 |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | $\overline{\mathcal{V}}$          |
| PONEC CH MI 902                       | 47                      | 7-31 | 133  | BIL-                      | بر المن<br>2                                    |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | 10                                |
| SONEC US MT GUI                       | La-1                    | 9-31 | 1200 | Renter                    | 2 102<br>4 107                                  | e<br>G                                              |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | U                                 |
| 99NEC 11 #1 701                       | 11-1                    | 8-01 | 1045 | get que                   | うえ                                              | BK                                                  |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | 0                                 |
| PONEC I ME SUZ                        | <u>11-2</u>             | 8.01 | 1102 | C10 10 11                 |                                                 |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      | <br>                                |                                   |
| 99NEC 1 ME 5x 3                       | 11-3                    | 80   | 145  | Goto 4                    |                                                 |                                                     |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | 1 v                               |
| SONEC 13 MI SOI                       | 13-1                    | 1-31 | 1402 | Juice                     | <u>لارت</u> ن                                   | 2                                                   |                                             |                                            |                                |                                                    |                                            |                                                 |                                              |                                     |                      |                                     |                                   |
| 99NEC 13 ME 402                       | 13-b.                   | 8-1  | 1145 | 012000                    | s Tr                                            | رتبط                                                | ~ C7                                        | <u>ca</u>                                  | . 22                           | اكتنه                                              | ?in                                        | r, c                                            |                                              | 90                                  | %                    |                                     |                                   |
| 99NEC 13 MI - 403                     | 13-5                    | 8-1  | 1400 | inen                      | . CR                                            | 2.~~                                                | مد                                          | 95                                         | 40                             |                                                    |                                            |                                                 | 2                                            |                                     |                      |                                     | ~                                 |
| 99NEC 13 MI Sof                       | 13-4                    | 1-3  | 1130 | quin                      | Cirl                                            | <u>'</u> ~~                                         | ŗ,~                                         | 6Ċ,                                        | 510                            |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | V                                 |
| 99NEC 14 MT 701                       | 14-1                    | 7-31 | 1700 | Green                     | ere .                                           | hel                                                 | Joz.                                        | 5                                          | <19                            | د.                                                 |                                            |                                                 |                                              |                                     |                      |                                     | C                                 |
| 99NEC 16 mT- 901                      | 16: -1                  | 3.01 | 1430 | cnar                      | 5- 1                                            | كاه                                                 | n                                           |                                            | 5%                             |                                                    |                                            |                                                 |                                              |                                     |                      |                                     | 1-7                               |

.

. •

PS.1

. Dje

# 1999 Northeast Cape Sample Check List

| Phone: 907-248-8273 Fax: | 907-248-8274         | []           | ſ    |           | Sediment                                     |                                                      | Sc                                            | pil                                        |                                |                                                    | 8                                          | Sludge                                        | ·                                            |                                     | Bld<br>Mater                               | •                                   | Pain     |
|--------------------------|----------------------|--------------|------|-----------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|----------|
| Sample Identification    | Location Description | 1999<br>Date | Time | Depth     | DRORRO - AK102/AK103<br>4 oz amber glass jar | GROBTEX - AK101/SW8021B<br>4 oz amber glass jar MeOH | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | TAL Merais SW6010/7000<br>8 oz amber glass | TOC - SW9060<br>4 oz glæss jar | TCLP Metals SW1311/6010B/7000<br>4 oz, amber glass | TCLP VOCs SW1311/2260<br>4 ox, amber glass | TCLP Pericks SW1311/8081<br>4 oz, amber giass | TCLP SVOCs SW1311/8270B<br>4 ox, amber glass | PCBs SW8062<br>4 oz amber glass jár | TCLP PCBs SW1311/8062<br>4 cz, amber glass | PCBs SW8082<br>4 oz amber glass jar | P SW7421 |
| Nultiple AST             |                      | norized samp |      | 2.3个第二时计》 |                                              | No OA                                                | VQC rea                                       | auired                                     |                                |                                                    |                                            | "#"                                           | <u> </u>                                     |                                     |                                            |                                     | Y        |
| 99NEC 18 MI 901.         |                      |              | 1415 | <5        | wh                                           |                                                      |                                               |                                            |                                |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | ī        |
| 99NEC 19 MI 901          | 19-1                 | 831          | 1520 | < 2%      | Rice                                         | 15                                                   | Q.C.                                          | ,                                          |                                |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | v        |
| 99NEC 19 MI 902          | 19-2 BAN             | 7-31         | 1530 | 8%%       | ye!                                          | La                                                   | 14                                            | rec!                                       | ~                              |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | l        |
| 99NEC ZI MI FOI          | 10-1 12-1            | 2)-1         | 1C32 | 85%       | yel<br>Ral                                   | Ħ                                                    | Bia                                           | ck                                         |                                |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | L        |
| 99NEC 22MI 901           | 22-2                 | 7-31         | 1545 | 75%       |                                              |                                                      |                                               |                                            |                                |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | C        |
| 99NEC 22 MI SUZ          | 22-3                 | 2-31         | 1602 | 75%       |                                              |                                                      |                                               |                                            |                                |                                                    |                                            |                                               |                                              |                                     |                                            |                                     | L        |
| 99NEC 22 MI SC."         | 22-4                 | 7-31         | 1632 | 7572      |                                              |                                                      |                                               |                                            |                                |                                                    | ·                                          |                                               |                                              |                                     | L                                          |                                     |          |
| 99NEC 22 MI 524          | 225                  | 7-31         | 1645 | 7500      |                                              |                                                      |                                               |                                            |                                |                                                    |                                            |                                               |                                              |                                     |                                            | ļ                                   |          |
| 99NEC                    |                      |              |      |           |                                              |                                                      |                                               | ļ                                          |                                |                                                    | <br>                                       |                                               |                                              | <br>                                | <b> </b>                                   | ļ                                   |          |
| 99NEC                    |                      | ļ            |      |           | <u> </u>                                     |                                                      |                                               |                                            |                                | <u> </u>                                           |                                            |                                               |                                              | ·                                   | <u> </u>                                   | <u> </u>                            |          |
| 99NEC                    |                      | ļ            |      |           | <b> </b>                                     |                                                      |                                               | ļ                                          |                                |                                                    |                                            | <b> </b>                                      |                                              |                                     | <b> </b>                                   | ļ                                   | 1_       |
| 99NEC                    |                      | ļ            |      |           | <b> </b>                                     |                                                      | <b> </b>                                      |                                            |                                | ļ                                                  | <u> </u>                                   |                                               |                                              |                                     | <b> </b>                                   | <b> </b>                            | ┺        |
| 99NEC                    |                      | <u> </u>     |      |           | <b></b>                                      |                                                      |                                               |                                            |                                |                                                    |                                            |                                               |                                              |                                     | <u> </u>                                   | <b></b>                             | 1_       |
| 99NEC                    |                      |              |      |           |                                              |                                                      |                                               |                                            |                                | {                                                  |                                            |                                               |                                              |                                     |                                            |                                     |          |

the set for

17

Т

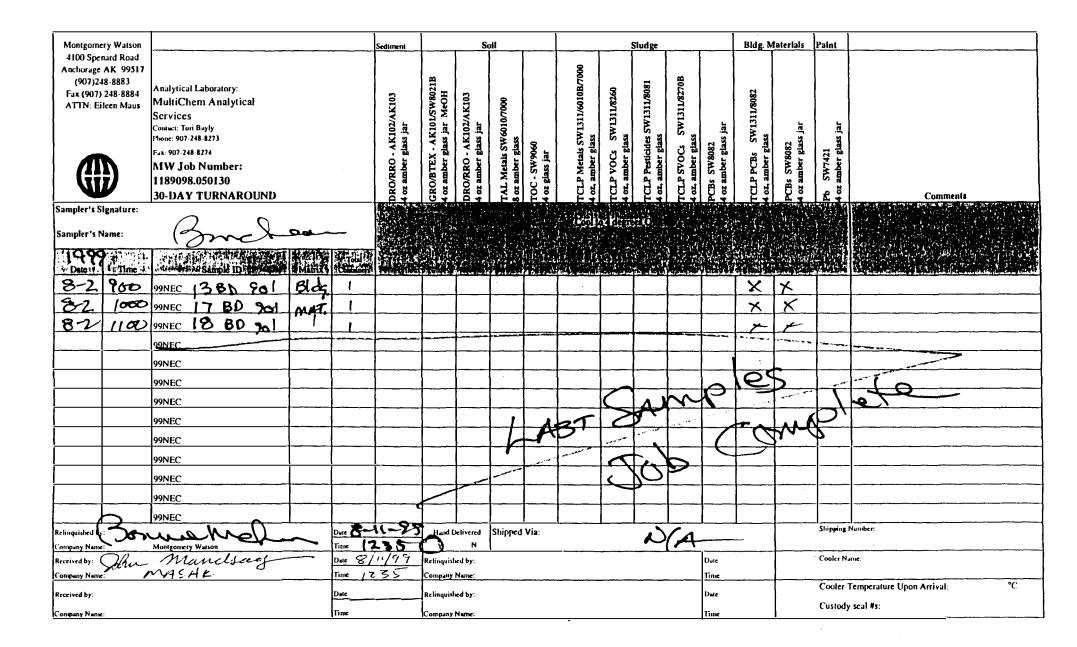
. ....

ł

| Montgomery Walson                                                                                   |                                                                                                                                                                                         |                         |         | Sediment                                      |                                                               | Sc                                              | <u></u>                                    |                                |                                                    |                                                               | Sludge                                           |                                              |                                     | Bidg. N                                    | laterials                           | Paint                             |                                                                                                                |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|
| 4100 Spenard Road<br>Anchorage AK 99517<br>(907)248-8883<br>Fax (907) 248-8884<br>ATTN: Eileen Maus | Analytical Laboratory:<br>MultiChem A nalytical<br>Services<br>Contect: Tori Bayly<br>Phone: 907-248-8273<br>Fax: 907-248-8274<br>MW Job Number:<br>1189098.050130<br>30-DAY TURNAROUND |                         |         | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | GRO/ <b>BTE</b> X - AK10LSW8021B<br>4 oz amber glass jar MeOH | DRO/RRO - AK 102/AK 103<br>4 oz amber glass jar | FAL Metals SW6010/7000<br>8 oz amber glass | rOC - SW9060<br>i oz glass jar | rCLP Metals SW1311/6010B/7000<br>1 oz, amber glass | rCLP VOCs SW1311/8260<br>f or, amber glass                    | CCLP Pesticides SW1311/8081<br>4 oz. amber glass | rCLP SVOCs SW1311/8270B<br>6 oz, amber glass | PCBs SW8082<br>I oz amber glass jar | FCLP PCBs SW1311/8082<br>6 oz, amber glass | PCBs SW8082<br>I oz amber glass jar | Pb SW7421<br>I oz amber glass jar | Comments                                                                                                       |
| Sampler's Signature:                                                                                | MCL                                                                                                                                                                                     | La                      | 5       |                                               |                                                               |                                                 |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     | e se file com                     |                                                                                                                |
|                                                                                                     |                                                                                                                                                                                         | 1                       | 5 M 7   |                                               | an an an an an an an an an an an an an a                      |                                                 | 1999)<br>- Erradia                         | يا.<br>المان من مان ما         | 6                                                  | المراجعة (1997)<br>مرجع المراجع (1997)<br>مرجع المراجع (1997) |                                                  | a                                            | دَه شين (دُيْدُ قُلْ                | a                                          | م د ۱۰ ما به فاه                    | ند<br>معند س                      | a la ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser |
| 21.199 1230                                                                                         | 99NEC 075 D 901                                                                                                                                                                         | Sedime                  | T.XI    |                                               |                                                               |                                                 |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     |                                   | ms/msD                                                                                                         |
| 8/1/99 1235                                                                                         | 99NEC OJSD902                                                                                                                                                                           |                         | J. X 8. |                                               |                                                               |                                                 |                                            |                                |                                                    |                                                               |                                                  | <u> </u>                                     |                                     |                                            |                                     | <u> </u>                          |                                                                                                                |
| 21,199 1100                                                                                         | 99NEC 12 5B 901                                                                                                                                                                         | Soil                    | 2       | Xiter                                         |                                                               | 1                                               |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     |                                   |                                                                                                                |
| 8/1/99 1120                                                                                         | 99NEC 12 55 902                                                                                                                                                                         |                         | 2       | ra X                                          |                                                               | 7                                               |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     |                                   |                                                                                                                |
| 8/1/19 1130                                                                                         | 99NEC 1255903                                                                                                                                                                           |                         | 2       | with the                                      | 1                                                             |                                                 |                                            |                                |                                                    |                                                               |                                                  | {                                            |                                     |                                            |                                     |                                   |                                                                                                                |
| 8/1/99 1140                                                                                         | 99NEC 1255904                                                                                                                                                                           |                         | 2       | J. W.K                                        |                                                               | 1                                               |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     |                                   |                                                                                                                |
| 8/1/99 1150                                                                                         | 99NEC 1255905                                                                                                                                                                           |                         | 2       | John X                                        | 17                                                            | 1                                               |                                            |                                |                                                    |                                                               | [                                                | 1                                            |                                     |                                            |                                     | 1                                 |                                                                                                                |
| 8/1199 1125                                                                                         | 99NEC 1255906                                                                                                                                                                           | $\overline{\mathbf{V}}$ | 2       | w <sup>ar</sup> X an                          | 17                                                            | 15                                              |                                            |                                |                                                    |                                                               |                                                  |                                              |                                     |                                            |                                     | 1                                 |                                                                                                                |
| 8/1/99 1200                                                                                         | 99NEC 3055901                                                                                                                                                                           | Suil                    | 4       |                                               | 1                                                             | 17                                              | ~                                          | 7                              |                                                    |                                                               |                                                  | 1                                            | [                                   |                                            | 1                                   | 1                                 |                                                                                                                |
| 8/1/99 1500                                                                                         | 99NEC ZOSS JOL                                                                                                                                                                          | T T                     | 4       |                                               | ~                                                             | ~                                               | ~                                          | $\overline{}$                  |                                                    | [                                                             |                                                  |                                              | <u> </u>                            |                                            |                                     | 1                                 |                                                                                                                |
| 8/1/99 1510                                                                                         |                                                                                                                                                                                         | Sediment                | 4       | 1                                             | V                                                             | 12                                              | ~                                          |                                |                                                    | 1                                                             |                                                  |                                              | 1                                   | <u> </u>                                   | 1                                   | 1                                 |                                                                                                                |
| 8/1199 1300                                                                                         | 99NEC 2150901                                                                                                                                                                           | U                       | 6       | 1                                             | 1                                                             | 1                                               | 1                                          |                                | V                                                  | V                                                             | 1                                                | ~                                            | 1                                   |                                            | 1                                   | 1                                 |                                                                                                                |
| 8/1/99 2100                                                                                         | 99NEC 12TB 9C1                                                                                                                                                                          | TR                      | 1       |                                               | V                                                             | 1                                               | t                                          |                                |                                                    | t                                                             | <u> </u>                                         | <b> </b>                                     |                                     | <b> </b>                                   |                                     | 1                                 |                                                                                                                |
|                                                                                                     | Moilgonkry Wilson                                                                                                                                                                       | ~~~                     | Dar 8-  | 2-59                                          | Hund I<br>Y                                                   | Delivered                                       | Shipped                                    | Via: (.                        | olds                                               | nea                                                           | h                                                |                                              |                                     | r                                          |                                     | Shipping                          | Number 1151 7391                                                                                               |
| Received by:                                                                                        |                                                                                                                                                                                         |                         | Date    |                                               | Relinguis                                                     |                                                 |                                            |                                |                                                    |                                                               |                                                  |                                              | Date                                |                                            |                                     | Cooler N                          | ame.                                                                                                           |
| Company Name:                                                                                       |                                                                                                                                                                                         |                         | Time    |                                               | Company                                                       | Name:                                           |                                            |                                |                                                    |                                                               |                                                  |                                              | Time                                |                                            |                                     | Cooler                            | Temperature Upon Arrival: °C                                                                                   |
| Received by:                                                                                        |                                                                                                                                                                                         |                         | Date    |                                               | Relinquis                                                     | hed by:                                         |                                            |                                |                                                    |                                                               |                                                  |                                              | Date                                |                                            |                                     |                                   | y seal #s:                                                                                                     |
| Company Name:                                                                                       |                                                                                                                                                                                         |                         | Time    |                                               | Company                                                       | Name:                                           |                                            |                                |                                                    |                                                               |                                                  |                                              | Time                                |                                            |                                     | C 05100                           | y 2201 m3                                                                                                      |

QA/LAB 600, 99NEC\_02 17328/17322

.


| Montgomery                                                              |                                       | 1                                                                                                                                                                                                       |                         |         | Sediment                                      | ļ                                                    | S                                             | , II                                      |                                           |                                                    |                                            | Sludge                                                                                                                                                                                                                                               |                                              |                                     | Bidg. N                                    | laterials                           | Paint                             |                                                                                |
|-------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------------------------------------------------|
| 4100 Spenar<br>Anchorage Al<br>(907)248-<br>Fax (907) 24<br>ATTN: Eilee | K 99517<br>8883<br>48-8884<br>-n Maus | Analytical Laboratory:<br>MultiChem Analytical Arv<br>Services A<br>Connect Teil Buyly C. 11 W & r<br>Plone: 907-248-8224<br>Fux: 907-248-8224<br>MW Job Number:<br>1189098.050130<br>30-DAY TURNAROUND | h M e<br>horge P<br>245 | 16-     | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | GRO/BTEX - AK10LSW8021B<br>4 ox amber glass Jar MeOH | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | AL Metals SW6010/7000<br>נ os amber glass | roc - sw9060<br>1 or glass jar            | f CL P Metals SW1311/6010B/7000<br>oc, amber glass | rCLP VOCs SW1311/8260<br>1 oz, amber glass | fCLP Pesticides SW1311/8081<br>1 oz, amber glass                                                                                                                                                                                                     | rcLP SVOCs SW1311/8270B<br>1 oz, amber glass | PCBs SW6082<br>4 oz amber glass jar | TCLP PCBs SW1311/8082<br>4 oz, amber glass | PCBs SW8082<br>4 oz amber glass jar | pb SW7421<br>4 oz amber glass jar | Comments                                                                       |
| npler's Sig                                                             | nature:                               | Bornine                                                                                                                                                                                                 | ncha                    | an      |                                               |                                                      |                                               |                                           |                                           |                                                    | 2927.5                                     | 1999 - 1999<br>1999 - 1999 - 1999<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                                              |                                     | 2000 H                                     |                                     |                                   |                                                                                |
| mpler's Nar                                                             | ne:                                   |                                                                                                                                                                                                         |                         |         |                                               |                                                      |                                               | V                                         |                                           |                                                    | - 11 ; 1)<br>-                             |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   |                                                                                |
|                                                                         |                                       |                                                                                                                                                                                                         | and States and States   |         |                                               |                                                      |                                               |                                           | 2014<br>1914 - 1914<br>1914 - 1914 - 1914 |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   |                                                                                |
| 11144                                                                   | 1242                                  | 99NEC 0750903                                                                                                                                                                                           | Sedina                  |         |                                               | 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1               | etauxii e 🦕                                   | f an an an an an an an an an an an an an  |                                           | Arshing, Indawer, ar                               | 5e i 37ee 5a                               | li diserti<br>I                                                                                                                                                                                                                                      |                                              | n son of                            | Sert Sameanst                              | a tente dan in                      | testavano -                       | ll term i na - had senara de la settarida encerto de la subsectar en la develo |
|                                                                         |                                       | 99NEC 1255907                                                                                                                                                                                           | Svil                    | 2       |                                               |                                                      | 17                                            |                                           |                                           |                                                    |                                            | <u> </u>                                                                                                                                                                                                                                             | <u> </u>                                     | [                                   |                                            |                                     | 1                                 | <u>}</u>                                                                       |
|                                                                         |                                       | 99NFC                                                                                                                                                                                                   |                         |         |                                               | <b> </b>                                             |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      | ļ                                            |                                     |                                            |                                     | 1                                 |                                                                                |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         |         | 1                                             | 1                                                    |                                               |                                           |                                           |                                                    |                                            | 1                                                                                                                                                                                                                                                    | 1                                            |                                     |                                            |                                     |                                   |                                                                                |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         | 1       | 1                                             | 1                                                    | 1                                             | [                                         |                                           |                                                    |                                            | 1                                                                                                                                                                                                                                                    |                                              |                                     |                                            |                                     |                                   |                                                                                |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         | 1       |                                               |                                                      |                                               |                                           |                                           |                                                    | -                                          |                                                                                                                                                                                                                                                      |                                              |                                     | 1                                          |                                     |                                   |                                                                                |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         |         | 1.                                            |                                                      |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   | Project                                                                        |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         |         | A                                             | PT                                                   |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   | 0 End.                                                                         |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         |         | -                                             | 1                                                    |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   |                                                                                |
|                                                                         |                                       | 99NEC                                                                                                                                                                                                   |                         |         | F                                             |                                                      |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      | ]                                            |                                     |                                            |                                     |                                   |                                                                                |
| 11                                                                      |                                       | 99NEC                                                                                                                                                                                                   |                         | 1       |                                               |                                                      |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   |                                                                                |
| 11/12                                                                   | 2100                                  | 99NEC 1278902                                                                                                                                                                                           |                         | 1       |                                               | V                                                    |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              | 1                                   |                                            |                                     |                                   |                                                                                |
| 111                                                                     | 100                                   | MINECTE D                                                                                                                                                                                               | P                       |         |                                               |                                                      |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              |                                     |                                            |                                     |                                   |                                                                                |
| inquished by:                                                           | 120                                   | mine WICI                                                                                                                                                                                               | en                      | Dale 8- | 2-95                                          | -                                                    | Delivered                                     | Shipped                                   | Via                                       | Sold                                               | 54                                         | -004                                                                                                                                                                                                                                                 | 16                                           |                                     |                                            | (                                   | Shippin                           | 19 4045                                                                        |
| ipany Name:                                                             |                                       | Montgoniery Walson                                                                                                                                                                                      |                         | Time 8  | on .                                          | Y<br>Relinguis                                       |                                               | 1                                         | <u> </u>                                  | 5010                                               |                                            | ICAE p                                                                                                                                                                                                                                               | **                                           | Dute                                |                                            | <b>`</b>                            | Cooker                            |                                                                                |
| erved by:<br>ipany Name:                                                |                                       |                                                                                                                                                                                                         |                         | Time    |                                               | Company                                              | •                                             |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              | Time                                |                                            |                                     |                                   |                                                                                |
| eived by:                                                               |                                       |                                                                                                                                                                                                         |                         | Dute    |                                               | Relinquis                                            |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              | Date                                |                                            |                                     | Coole                             | r Temperature Upon Arrival: °C                                                 |
|                                                                         |                                       |                                                                                                                                                                                                         |                         | Time    |                                               | Company                                              |                                               |                                           |                                           |                                                    |                                            |                                                                                                                                                                                                                                                      |                                              | Time                                |                                            |                                     | Custo                             | dy seat #s:                                                                    |

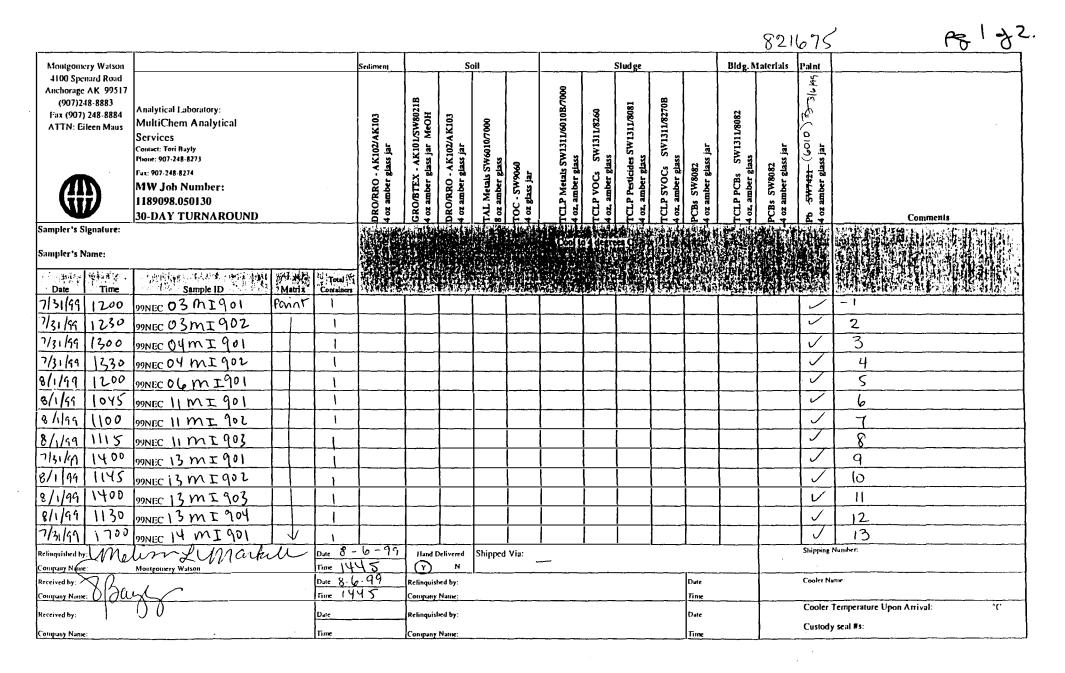


COCH 99NEC\_03 Revised

821774

| Muntgoni                                       | ery Walson                                                 | / <u></u>                                                                                                                                                        |        |       |          | Sedinvent                                     | [                                                     | s                                            | oll                                     |                             | {                                          |                                      | Sludge                                      |                                         |                                | Uldg. N                               | Interfals                     | Paint                       |                              |
|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------|---------------------------------------|-------------------------------|-----------------------------|------------------------------|
| 4100 Sper<br>Anchurage<br>(907)2-<br>Fax (907) | nard Road<br>AK 99517<br>48-8883<br>248-8884<br>ideen Maus | Analytical Laboratory:<br>MultiChem Analytic<br>Scrvices<br>Contact: Tori Bayly<br>Hone: 907-248 1273<br>Fax: 907-248 1274<br>AIW Job Number:<br>1 189098.050130 | al     |       |          | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | GRO/BTEX • AK10L/SW8021B<br>• or amber glues jar MeOH | DROKRO - AKJ02/AKJ03<br>4 oz amber glass jar | AL Metals SW6010/7000<br>or amber glass | OC - SW9060<br>oz glass jar | LP Metais SW1311/60108/7000<br>amber glass | LP VOCs SWIJI/8260<br>4. amber glass | LP Pesticides SW1311/8081<br>c. amber glass | LP SVOCs SW1311/8270B<br>c, amber glass | Bs SW80£2<br>c amber glass jar | LP PCBs SW1311/8082<br>4. amber glass | Bs SW8082<br>samber glass jar | SW7421<br>2 amber glass jar |                              |
| Sampler's S                                    | lenature:                                                  | 30-DAY TURNARO                                                                                                                                                   | DUND   |       |          |                                               | 20 - F                                                |                                              | 1 8<br>1 9                              |                             |                                            | 100                                  |                                             |                                         |                                |                                       |                               | 2                           | Comments                     |
| Sampler's N                                    |                                                            | Bre                                                                                                                                                              | J-     | معم   |          |                                               |                                                       |                                              |                                         |                             |                                            | ×14;u                                |                                             |                                         |                                |                                       |                               |                             |                              |
| 1999                                           | Filme A                                                    |                                                                                                                                                                  |        |       |          |                                               |                                                       |                                              |                                         |                             |                                            | ្សព្រឹ                               |                                             |                                         |                                |                                       |                               |                             |                              |
| 8-2                                            | •                                                          | الطنة مندانة تقتاد محدد وعد                                                                                                                                      | 901    | Bldg  | 1        | Sale 3' Gener                                 |                                                       | daa shira la                                 |                                         |                             |                                            |                                      | dat of <u>a</u> t t                         | ai fannin karad                         |                                | X                                     | মিও                           | 3m                          | Delie PCB 1                  |
| 82                                             | 1000                                                       | 99NEC 17 BD                                                                                                                                                      |        | MAT.  |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         |                                | X                                     | xB                            | for                         | (' 7                         |
| 82                                             | 1100                                                       | -                                                                                                                                                                | 201    | l. l. |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         |                                | ~                                     | Ae                            | for                         | - 11 3                       |
|                                                |                                                            | WINEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         |                                |                                       |                               |                             |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         | 1                              | ;                                     |                               |                             |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         |                                | <u>le</u>                             | Б                             |                             |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        | 1     |          | 1                                             |                                                       |                                              |                                         |                             |                                            | 7                                    |                                             | m                                       | P                              |                                       |                               | T                           | et e                         |
|                                                |                                                            | 99NEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              | ,                                       |                             | 50                                         | $\geq$                               |                                             |                                         |                                |                                       |                               | D                           |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              |                                         | A                           | P'                                         |                                      |                                             |                                         | 7                              | 7                                     | 1000                          | \$                          |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        | 1     |          |                                               |                                                       |                                              | -r-                                     |                             |                                            |                                      | -1                                          |                                         | 16                             |                                       | [                             | 1                           |                              |
| 1 1                                            | ,                                                          | 99NEC                                                                                                                                                            |        |       |          |                                               |                                                       |                                              |                                         | <u> </u>                    |                                            | 2                                    | 0                                           |                                         |                                |                                       |                               | 1                           |                              |
| j j                                            |                                                            | YINEC                                                                                                                                                            | •••••• |       |          |                                               | -                                                     |                                              |                                         |                             |                                            | ~                                    | P                                           | ,                                       |                                |                                       |                               | 1                           |                              |
|                                                |                                                            | 99NEC                                                                                                                                                            |        | 1     |          |                                               |                                                       |                                              |                                         |                             |                                            |                                      |                                             |                                         |                                |                                       |                               | 1                           |                              |
| Relanquished (                                 | (Jon                                                       | Multgonkry Welson                                                                                                                                                | 1      | ~     | Dule B-  | 11-95                                         | -I and E                                              | kivered<br>N                                 | Shippe d                                | Via:                        |                                            | 9 <u> </u>                           | と                                           | A                                       |                                |                                       |                               | Shipping                    | Nuniber:                     |
| Hereived by: (                                 | The                                                        | Manchsa<br>Mising                                                                                                                                                | e ef-  |       | Date 8/  | 11/99                                         | Retinquist                                            | red by:                                      | •                                       |                             |                                            |                                      |                                             |                                         | Dute                           |                                       |                               | Cooker Na                   | anie:                        |
| Columariy Name                                 | /                                                          | MASAK                                                                                                                                                            | J      |       | Time / 7 | :35                                           | Сопусану                                              | Nume:                                        |                                         |                             |                                            |                                      |                                             |                                         | Tine                           |                                       |                               | Cooler                      | Temperature Upon Arrival: °C |
| Received by:                                   |                                                            |                                                                                                                                                                  |        |       | Date     |                                               | Relinquist                                            | red by:                                      |                                         |                             |                                            |                                      |                                             |                                         | Dule                           |                                       | ł                             |                             |                              |
| Congany Nane                                   |                                                            |                                                                                                                                                                  |        |       | โine     |                                               | Company                                               | Nature:                                      |                                         |                             |                                            |                                      |                                             |                                         | Time                           |                                       | 1                             | Custody                     | y scal #s;                   |






.

•

**USACE Northeast Cape** Sampling

£



сос# 99NEC\_<u>ОЧ</u>\_\_\_

000#99NEC\_04\_ Pg. 2 - g2 Revised 8/17 Agn Bidg. Materials Paint Montgomery Watson Soll Sludge Sediment 4100 Spenard Road 81649 Anchorage AK 99517 CLP Metals SW1311/6010B/7000 (907)248-8883 GROABTEX - AKI01/SW8021B SW1311/8270B Analytical Laboratory: CLP Pesticides SW1311/8081 SW1311/8260 Fax (907) 248-8884 MeOH SW1311/8082 θ DRO/RRO - AK102/AK103 RO/RRO - AK102/AK103 MultiChem Analytical AL Metals SW6010/7000 ATTN: Eileen Maus Scrvices 6010 Contact: Tori Buyly riass jar j reį szelg Those: 907-248-8273 OC - SW9060 oz glass jar SW8082 CLP SVOCs SW8082 Fax: 907-248-8274 CLP VOC amber gi CLP PCBs oz, amber mber oz, amber oz amber oz amber MW Job Number: 5 1189098.050130 ñ ġ 5 **30-DAY TURNAROUND** Comments Sampler's Signature: Ύ. Inditix Kirgan Rel Sampler's Name: 8/1/99/1430 199NEC 16 MI931 Print  $\boldsymbol{\nu}$ 14 99NEC 18 MI 901 8/199/14/15  $\boldsymbol{\nu}$ 15 V 7/31/99 1500 99NEC 19 MI 901 16 This should be 12 MI 901 1530 99NEC 19 MI902 17  $\boldsymbol{\nu}$ 99NED 2 DMIGOI 1030 V 186  $\sim$ 1545 99NEC DI MIGOI 19 PONEC 21-MIGOZ  $\boldsymbol{\nu}$ 20 1600 1/ 21 99NEC 24MI 933 1630 1645 22 DONEC ZYMIQOY  $\mathbf{V}$ 99NEC 99NEC L 99NEC 99NEC Relinquisted but Anchon & Marhile Dule 8-6-59 Shipping Number: Shipped Via: Hand Delivered 1ime 1445  $(\mathbf{r})$ N Montgonery Walson Company Name Dule 8.6.99 Cooler Name: Date Relinquished by: Jur Time 1445 Time Company Name: Company Name: Cooler Temperature Upon Arrival: °C Dute Date Relinguished by:

Custody seal #s:

Time

731/19

8/1199

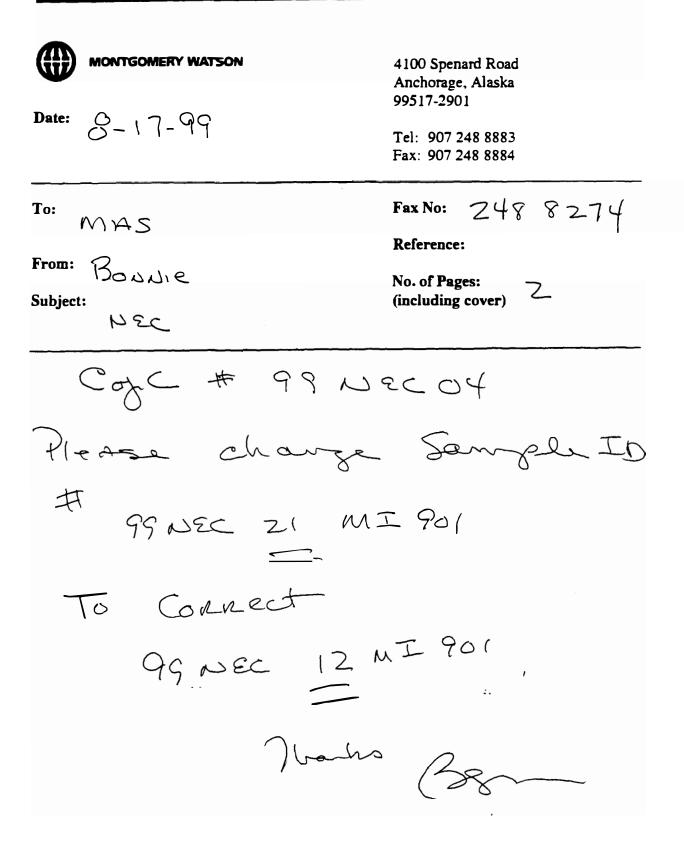
7/31/199

7/51/99

7/31/59

7/21/22

Received by


Received by:

Company Name

Time

Company Name:

#### FAX



If there are any problems with this transmission, please call 907-248-8883 for assistance. Thank you.

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                                |                  |                     |                              |             | 7                 | کر<br>در              | ا<br>ھ          | 57     |                  |                                 |      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------------------------|------------------|---------------------|------------------------------|-------------|-------------------|-----------------------|-----------------|--------|------------------|---------------------------------|------|
| Montgomery Watson                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Sediment      | -                              | Soil             |                     |                              | Slud        | dge               |                       | Bidg. Materials |        | Paint            |                                 |      |
| 4100 Spenard Road<br>Anchorage AK 99517 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               | B                              |                  |                     | 7000                         |             | <br>B             |                       |                 |        | ынч              |                                 |      |
| 5 4                                     | Analytical Laboratory:<br>MultiChem Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | K103          | 5W8021<br>feOH<br>K103<br>7000 | K103             |                     | /6010B/<br>1/8260<br>311/808 | 1/8260      | 11/808<br>11/8270 |                       | 1/8082          | ) B 8  | ) D •            |                                 |      |
|                                         | Services<br>Contact: Tori Bayly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 02/AI         | jar<br>(101/S<br>jar M         | 02/A1<br>jar<br> |                     | /1311/                       | <b>W131</b> | SW13              | jar                   |                 |        |                  |                                 |      |
|                                         | Mione: 907-248-8273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | AK1           | - AK<br>lass j                 | AK1<br>lass j    | <u>lass</u><br>60   | s SW<br>glass                | SV<br>glass | 's S              | giass<br>82<br>lass j | SW              | jass j |                  |                                 |      |
| )                                       | Fux: 907-248-8274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 0.            | er gi<br>EX er gi              | O -<br>er gl     | r gj<br>V90<br>jar  | er g                         | )Cs<br>er g | OC                | er g<br>/808<br>er gl | Bs<br>er g      | er gl  |                  |                                 |      |
|                                         | MW Job Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | RRC           | BTE                            | RR(<br>mbe       | - SW                | Me                           | v VO        | SV                | SW                    | PC              | mbe    |                  |                                 |      |
| Ę                                       | 30-DAY TURNAROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | DRO/          | GRO/                           | ORO/             | oz a<br>FOC<br>oz g |                              | FCLF        | CLF               | PCBs<br>oz a          | CLF             | oz a   | oza              | Comments                        | -    |
| Sampler's Signature:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               | a lister and                   |                  |                     |                              |             | 20                |                       |                 |        |                  |                                 |      |
| Sampler's Name:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                                |                  |                     |                              |             |                   |                       |                 |        |                  |                                 |      |
| Date 7                                  | A state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | Mana C            | Containers 1  |                                |                  |                     |                              |             |                   |                       |                 |        |                  |                                 |      |
| 01430                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Print             | -             |                                |                  |                     |                              |             |                   |                       |                 |        | 5                | 14                              |      |
| 8/1/91 1415                             | 99NEC 18 MI GOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -             |                                |                  |                     |                              |             |                   |                       |                 |        | , (<br>          | S                               | -    |
| 2/31/99 1500                            | 99NEC 19 MAI 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | -             |                                |                  |                     |                              |             |                   |                       |                 |        | ۲<br>            | 16                              | -    |
| 08 51 4411816                           | 99NECISMI902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u><br> <br> | -             |                                |                  |                     |                              |             |                   |                       |                 |        | 2                | 1                               | B    |
| 8/1199 1030                             | 102 MMIGON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | -             |                                |                  |                     |                              |             |                   |                       |                 |        | 2                | 8 <- This S                     | 1    |
| 7/31/99 1545                            | 99NEC DL MIGOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | _             |                                |                  |                     |                              |             |                   |                       |                 |        | <                |                                 | 2 MH |
| 7/51(99 1600                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                                |                  |                     |                              |             |                   |                       |                 |        | 5                | e<br>S                          | ()   |
| 0811 21/54 1630                         | 99NEC 24MI 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | -             |                                |                  |                     |                              |             | <br>              |                       |                 |        | 5                | 21                              |      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £                 |               |                                |                  |                     |                              |             |                   |                       |                 |        | 2                | 9                               |      |
|                                         | 99NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                                |                  |                     |                              |             | <br>              |                       |                 |        |                  |                                 |      |
|                                         | 99NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                                |                  |                     |                              |             |                   |                       |                 |        |                  |                                 |      |
|                                         | 99NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                                |                  |                     |                              |             |                   |                       |                 | -      |                  |                                 |      |
|                                         | 99NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                                |                  |                     |                              |             |                   |                       |                 |        |                  |                                 |      |
| And                                     | in y Marun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (<br>Dule         | <u>5-9-6-</u> | Hand Delivered                 |                  | Shipped Via:        |                              |             |                   |                       |                 | S      | Shipping Number  | uken.                           |      |
| Received by A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dute              | $\infty$      | Relinquished by:               | ed hy:           |                     |                              |             |                   | Date                  |                 | 2      | Cooler Name:     |                                 |      |
|                                         | ZY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tine              | 5 141 *       | Company Name                   | Vame:            |                     |                              |             |                   | Time                  |                 |        |                  |                                 |      |
| Received by:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dute              | e             | Relinquished by                | ed by:           |                     |                              |             |                   | Date                  |                 | -      | 'ooler Ten       | ooler Temperature Upon Arrival: | °C.  |
| Company Nume:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | line              | r             | Company Name:                  | lame:            |                     |                              |             |                   | Time                  |                 |        | Custody seal #s: | al As                           |      |

•

USACE Northeast Cape Sampling

coc**# 99NEC**\_04

÷

PY



.

821774

|                                                        |                                       |                                                                                                                                                                                        |        |                                               | 1                                                    |                                               |                                            |                               | 1                                                  |                                                                                 | <u> </u>                                         |                                              |                                     |                                           |                                     | 1                                 |                                       |
|--------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------|
| Montgomery<br>4100 Spena                               |                                       |                                                                                                                                                                                        |        | Sediment                                      | <u> </u>                                             | <u>s</u>                                      | 011<br>                                    | 1                             | 5<br>[                                             |                                                                                 | Sludge                                           | 1                                            |                                     | Bldg. 1                                   | daterials<br>I                      | Paint                             | 1                                     |
| Anchorage A<br>(907)248<br>Fax (907) 24<br>ATTN: Eiler | K 99517<br>8883<br>48-8884<br>en Maus | Analytical Laboratory:<br>MultiChem Analytical<br>Services<br>Contact: Tori Bayly<br>Phone: 907-248-8273<br>Fax: 907-248-8274<br>MW Job Number:<br>1189098.050130<br>30-DAY TURNAROUND |        | DRO/RRO - AK102/AK103<br>4 oz amber glass jar | GRO/BTEX • AK101/SW8021B<br>4 oz amber glas jar MeOH | DRO/RRO - AK102/AK103<br>4 oz amber giase jar | TAL Metals SW6010/7000<br>8 oz amber glass | TOC - SW9060<br>4 ez glas jar | TCLP Metals SW1311/6010B/7000<br>4 oz, amber glass | TCLP VOCs SW1311/8260<br>4 oz, amber glass                                      | TCLP Pesticides SW1311/8081<br>4 oz, amber glass | TCLP SVOCs SW1311/8270B<br>4 oz, amber glass | PCBs SW8082<br>4 oz amber glass jar | TCLP PCBs SW1311/8082<br>4 oz amber glass | PCBs SW8082<br>4 oz amber glass jar | Pb SW7421<br>4 oz amber glass jar | Courrents                             |
| Sampler's Sig                                          |                                       | Concher                                                                                                                                                                                | Marel  | N<br>N                                        |                                                      |                                               |                                            |                               |                                                    | ×¥ធំឆ                                                                           |                                                  |                                              |                                     |                                           |                                     |                                   |                                       |
| 1995                                                   | Time S.                               |                                                                                                                                                                                        |        |                                               |                                                      |                                               |                                            |                               |                                                    | n ja on ja<br>n ja na kao si<br>n na kao si si si si si si si si si si si si si |                                                  |                                              |                                     |                                           |                                     | ar i sing<br>Gradina<br>Tala      |                                       |
|                                                        | 900                                   | 99NEC 13BD 901                                                                                                                                                                         | 0)8/ 1 |                                               |                                                      |                                               |                                            | T                             |                                                    |                                                                                 |                                                  |                                              |                                     |                                           | IX                                  |                                   |                                       |
| 8-2                                                    | 1500                                  | 99NEC 17 BD 901                                                                                                                                                                        | Max 1  |                                               | 1                                                    |                                               | <u> </u>                                   |                               |                                                    |                                                                                 | 1                                                | 1                                            | 1                                   |                                           | X                                   |                                   | 2                                     |
| 82                                                     | 1100                                  | 99NEC 18 BO 901                                                                                                                                                                        | Har 1  |                                               |                                                      |                                               |                                            | 1                             |                                                    | <u> </u>                                                                        | <u> </u>                                         |                                              |                                     |                                           | X                                   | 1                                 | 3                                     |
|                                                        | <u></u>                               | 99NEC                                                                                                                                                                                  |        |                                               | 1                                                    | <u> </u>                                      |                                            |                               | <u> </u>                                           |                                                                                 | t                                                | 1                                            | 1                                   | 1                                         |                                     | 1                                 | LAST Project                          |
|                                                        | ··                                    | 99NEC                                                                                                                                                                                  |        |                                               |                                                      | 1                                             | <u> </u>                                   |                               | 1                                                  |                                                                                 |                                                  | 1                                            | 1                                   |                                           | 1                                   | -                                 | Star 2015                             |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        |                                               | - <del> </del>                                       |                                               | <u> </u>                                   | 1                             |                                                    | <u> </u>                                                                        | 1                                                | 1                                            | <u> </u>                            |                                           | 1                                   |                                   |                                       |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        |                                               |                                                      |                                               |                                            | 1                             | •                                                  |                                                                                 | 1                                                |                                              |                                     |                                           | - <u> </u>                          |                                   |                                       |
|                                                        |                                       | 99NEC                                                                                                                                                                                  | 1      |                                               |                                                      |                                               |                                            | 1                             |                                                    |                                                                                 | i                                                |                                              |                                     |                                           | 1                                   |                                   |                                       |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        |                                               |                                                      |                                               |                                            | 1                             | 1                                                  |                                                                                 | •<br>                                            |                                              | 1                                   |                                           | 1                                   |                                   | · · · · · · · · · · · · · · · · · · · |
|                                                        |                                       | 99NEC                                                                                                                                                                                  | 1      |                                               |                                                      |                                               |                                            |                               | 1                                                  |                                                                                 | <u> </u>                                         |                                              | <br>                                |                                           | 1                                   |                                   | · · · · · · · · · · · · · · · · · · · |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        |                                               |                                                      |                                               |                                            |                               |                                                    |                                                                                 | i                                                |                                              |                                     |                                           |                                     |                                   | 1                                     |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        |                                               |                                                      |                                               |                                            | 1                             |                                                    |                                                                                 | 1                                                |                                              | 1                                   |                                           | 1                                   | +                                 | 1                                     |
|                                                        |                                       | 99NEC                                                                                                                                                                                  |        | -  <u></u>                                    |                                                      |                                               |                                            | 1                             | ·                                                  |                                                                                 | 1                                                |                                              | 1                                   |                                           | +                                   | -                                 |                                       |
| Relinquished b:<br>Company Nape                        | Son                                   | Motigonery Walson                                                                                                                                                                      | Date E | 341                                           |                                                      | i<br>Delivered<br>N                           | Shipped                                    | l Via:                        | 16                                                 | A                                                                               | .I                                               |                                              |                                     |                                           |                                     | Shipping                          | Number:                               |
| Received by:                                           | Zhr                                   | id -                                                                                                                                                                                   | Dute   | - 16-4                                        | Relinquis                                            | -                                             |                                            |                               | ·                                                  |                                                                                 |                                                  |                                              | Date                                |                                           |                                     | Cooler N                          | lume:                                 |
| Company Name:                                          | Glea                                  | -DY                                                                                                                                                                                    | Time   | 1240                                          | Company                                              |                                               |                                            |                               |                                                    | ··                                                                              |                                                  | ······                                       | lime                                |                                           |                                     | Couler                            | Temperature Upon Arrival: °C          |
| Received by:                                           | ł                                     |                                                                                                                                                                                        | Dute   |                                               | Relinquis                                            |                                               |                                            |                               |                                                    |                                                                                 |                                                  |                                              | Date                                |                                           |                                     |                                   | ly scal #s:                           |
| Company Name:                                          |                                       |                                                                                                                                                                                        | Time   |                                               | Сопарану                                             | Name:                                         |                                            |                               |                                                    |                                                                                 |                                                  |                                              | lime                                |                                           |                                     |                                   | • • • • • •                           |

CyC 99NEC 04

t

•

### **TABLE 2-2**

.

۲

à

•

Aboveground Storage Tank Inventory Northeast Cape, St. Lawrence Island, Alaska

| Site | Tank Number | Paint Color and Coverage               | Contents     | Sample ID  | Size (gallons) |
|------|-------------|----------------------------------------|--------------|------------|----------------|
| 2    | AST 2-1     | 6" × 4" green / white<br>Loop than 019 | Ro Empt      | None       | 1,000          |
| 3    | AST 3-1     | white < 01%                            |              | 03 mI 901  | 500            |
|      | AST 3-2     | white <.01%                            |              | 03 mI 902  | 335            |
| 4    | AST 4-1     | White 25%                              |              | 04 MI 901  | 15,000         |
|      | AST 4-2     | White /Blue 25%                        | Rain Water   | 04 mI 902  | 400            |
| 6    | AST 6-1     | Red Cruz 100%.<br>Body Red. < 10%      | Empty        | 06mI 901   | 500            |
| 11   | AST 11-1    | green & Blk 90%                        | emoto        | 11 m I 901 | 400,000        |
|      | AST 11-2    | sier Bik 90%                           | - (          | 11 m I 902 | 400,000        |
|      | AST 11-3    | Steen & BIK Sold                       | × /          | 11 MI 903  | 400,000        |
| 12   | AST 12-1    | Red Black<br>End FG% Sides             | og snoty     | ZI MI 901  | 15,000         |
|      | AST 12-2    | NO Paint                               | Smotz        | NIA        | 30,000         |
| 13   | AST 13-1    | gra 1 20%                              | Compty       | 13 MI 901  | 1,000          |
|      | AST 13-4_   | quen redonance<br>60%                  | out in freed | B ME SOY   | 5,000          |
|      | AST 13-5    | green on or of                         | 0            |            | 500 0          |

|    | AST 13-6  | onon green of      | enoty            | 13 MI FOZ   | 204,000     |
|----|-----------|--------------------|------------------|-------------|-------------|
| 14 | AST 14-1  | ORANGE yellow < 1% | 5290 rainvatu    | 14 MI 901   | 5,000       |
| 16 | AST 16-1  | ononge black 5%    | 50% rainwater    | - 16 mI 901 | 1,000       |
| 18 | AST 18-1  | white 5%           | 1.5' x 2' compty | 18 MI 901   | 200         |
| 19 | AST 19-1  | red/green : 22%    | 20% Antipuer     | 19 MI 901   | 250         |
|    | AST 19-2  | yellow/real<br>50% | · sm str         | 15MI 902    | 250         |
| 21 | AST 21-1  | Concrete NO po     | int - 1.5' Water | NA          | Over 10,000 |
|    | AST 21-2* | connete ~ p        | aut 1.5 Walte    | NA          | Over 10,000 |
| 22 | AST 22-2  | 15%                | ampty (190 rain  | 22 MI 901   | 60,000      |
|    | AST 22-3  | 7590               |                  | 22 MI 902   | 60,000      |
|    | AST 22-4  | 75%                |                  | 22 MI 903   | 60,000      |
|    | AST 22-5  | 75%                | · · · · · · ·    | 22 mI 904   | 60,000      |

. .

•

.

Brachean

•

٠

•

.

| Date: 7-3 (-95_Time: 1030Job Number: 1189098.050130                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: <u>USACOE</u> Site Location: <u>Northeast Cape</u> Scope of Work:                                                                          |
| SAmpling, tours,                                                                                                                                   |
| Safety Topics Presented                                                                                                                            |
| ProtectiveClothing/Equipment: Steel toed boots, ear and eye protection, inner and chemical                                                         |
| protective gloves or leather gloves, Tyvek, rain gear or cold weather gear as needed                                                               |
| ATV Helmet (while Riding) hand hat in MAIN comple                                                                                                  |
| Chemical Hazards: Diesel fuel, gasoline, hexane Ashentes, LBP                                                                                      |
|                                                                                                                                                    |
| Physical Hazards: ATV transportation; slips, trips, and falls; muscle strain Fling objects                                                         |
| Special Equipment: <u>STATELITE phone</u> CB, ALE-GRE, ETL,                                                                                        |
| MARINE GAND, PID,                                                                                                                                  |
| MARINE 6400, PID,<br>Other: <u>Eyr NASH, FIRST Aid Kit Eng. Supplies</u><br>Emergency Procedures: <u>Apply first Aid - proceed to PenAir</u> Prove |
| Emergency Procedures: angly first Ais - proceed to PenAir Prove                                                                                    |
| Hospital: Norton Sound Regional Hospital, Nome Phone: 1-907-443-3311                                                                               |
| Air Ambulance Phone: LifeGuard Alaska 1-800-478-LIFE (5433)                                                                                        |
| Hospital Address and Route: N/A                                                                                                                    |
| ATTENDEES                                                                                                                                          |
| NAME PRINTED SIGNATURE                                                                                                                             |
| Michael D. Kelly Kelly                                                                                                                             |
| Elizabeth Houston Clizaleth Struston                                                                                                               |
| Melissa Markell Midi & Mm                                                                                                                          |
| Kevin Lee Ahl Le M                                                                                                                                 |
| BETTO WECKNERTH BEWALT                                                                                                                             |
| Nomlas avit Daudital                                                                                                                               |
|                                                                                                                                                    |
| Meeting Conducted By: <u>MCLease</u>                                                                                                               |
| Name Printed Signature                                                                                                                             |
| Project Safety Officer: DMCLERN_ Project Manager:                                                                                                  |

k

4

.

| Date: 8-1-99_Time:_                             | <u>C130_Job N</u>      | umber: <u>1189098.</u>                | 050130                    |
|-------------------------------------------------|------------------------|---------------------------------------|---------------------------|
| Client:_ <u>USACOE</u> Site Loo                 | cation: Northe         | east Cape Sco                         | ope of Work:              |
| Safety Topics Presented                         |                        | · · · _ · _ · _ · · · · · ·           |                           |
| ProtectiveClothing/Equipment                    | :_Steel toed boots,    | ear and eye protect                   | ction. inner and chemical |
| protective gloves or leather glo                | oves, Tyvek, rain ge   | ar or cold weathe                     | r gear as needed          |
| Chemical Hazards: <u>Diesel fue</u>             | l, gasoline, hexane    |                                       |                           |
| Physical Hazards: <u>ATV transp</u>             | portation; slips, trip |                                       | e strain                  |
| Special Equipment:                              |                        |                                       |                           |
| Other:                                          |                        |                                       |                           |
| Emergency Procedures:                           |                        |                                       |                           |
| Hospital: Norton Sound Reg                      | ional Hospital, Nor    | ne Phone: 1-9                         | 907-443-3311              |
| Air Ambulance Phone: LifeGu                     | ard Alaska 1-800-4     | 78-LIFE (5433)                        |                           |
| Hospital Address and Route:                     | N/A                    |                                       |                           |
| ATTENDEES                                       |                        |                                       |                           |
| NAME PRINTED                                    |                        | SIGNATURE                             |                           |
| Deussi markell                                  | 1                      | in                                    | Cilland-                  |
| Docalas Const                                   | -1                     | and the                               |                           |
| Michael Kelly                                   | ~                      | table 20                              | Ell,                      |
| Elizabeth House                                 | sfm E                  | lizabett                              | Anoto                     |
|                                                 |                        | · · · · · · · · · · · · · · · · · · · |                           |
| Meeting Conducted By: $\underline{\widehat{B}}$ | Mc Loan<br>ne Printed  | Bm                                    | chea                      |
| Project Safety Officer:                         |                        | Project Manager:                      | e                         |
|                                                 |                        |                                       |                           |

~

| Date: 0-2-9 ]_Time: 92                    |                           | umber: <u>1189</u>   | 098.050130     |         |          |
|-------------------------------------------|---------------------------|----------------------|----------------|---------|----------|
| Client:_USACOESite Location               | 1:Northe                  | east Ca <u>pe</u>    | Scope of W     | /ork:   | uple do  |
| _ hish some lin                           | bio su                    | mili                 | testp          | it cx   | (carat   |
| Safety Topics Presented                   | 5                         | v ,                  | <b>)</b> , .   |         |          |
| ProtectiveClothing/Equipment: _Ste        | el toed boots,            | ear and eve          | protection, in | ner and | chemical |
| protective gloves or leather gloves,      |                           |                      |                |         |          |
|                                           |                           |                      | ,              |         |          |
| Chemical Hazards: <u>Diesel fuel, gas</u> | soline, <del>hexane</del> | 010.2                |                |         |          |
|                                           |                           | ( 0                  |                |         |          |
| Physical Hazards:_ATV transportat         | ion: slips. trip          | s. and falls:        | muscle strain  | , be    | an ulcu  |
| Elesternic hon sh                         | schin                     | hex                  | le le          |         | edori-   |
| Special Equipment:                        | 8                         | <u>, 0</u>           |                |         | $\sim$   |
| PID schol                                 | lo ob                     |                      | hardh          | 200     | 101:     |
| Other: spill read                         |                           |                      |                |         |          |
| Emergency Procedures:                     |                           |                      |                |         |          |
| Hospital: <u>Norton Sound Regional</u>    | Hospital Non              |                      | ne: 1-907-443  | 3311    |          |
| Air Ambulance Phone: LifeGuard A          |                           |                      |                |         |          |
| -                                         | <u>1185Ka 1-000-4</u>     | <u>70-LII'E (</u> 34 | <u></u>        |         |          |
| Hospital Address and Route: <u>N/A</u>    |                           | <u> </u>             |                |         |          |
| ATTENDEES                                 | 4                         |                      |                |         |          |
| NAME PRINTED                              |                           | SIGNATUR             |                |         |          |
| Melissa Markell                           |                           | TALIA                |                | Nen     |          |
| ne list mainer                            | <u>\</u>                  | 71. 1                | 1 Ko           | 10      |          |
| Thi Nel Ferry                             |                           | Die 0                | 17-74          | 7       | 1        |
| Clizabern Houston                         | $- \langle - \rangle$     | Ch zak               |                | u       |          |
| PATRICK KROCHINA                          |                           | +                    |                |         |          |
|                                           |                           |                      |                |         |          |
| RIA                                       |                           |                      |                | !       |          |
| Meeting Conducted By: V<br>Name Prin      | red war                   |                      | Ci             |         |          |
|                                           |                           |                      | Signature      |         |          |
| Project Safety Officer:                   | <u> </u>                  | Project Man          | ager:          |         |          |

| Date: 0-3-99_Time: 920_                        | Job Number: <u>1189098.050130</u>                    |
|------------------------------------------------|------------------------------------------------------|
|                                                | Northeast CapeScope of Work:                         |
| James Acrowey                                  |                                                      |
| Safety Topics Presented                        |                                                      |
|                                                | ed boots, ear and eye protection, inner and chemical |
|                                                | k, rain gear or cold weather gear as needed          |
|                                                |                                                      |
| Chemical Hazards: <u>Diesel fuel, gasoline</u> | hexane prop                                          |
|                                                |                                                      |
| Physical Hazards: <u>ATV transportation: s</u> | slips. trips. and falls; muscle strain, fly in de    |
| narlomartin,                                   |                                                      |
| Special Equipment:                             |                                                      |
| satulile phone                                 |                                                      |
| Other:                                         |                                                      |
| Emergency Procedures:                          |                                                      |
| Hospital: <u>Norton Sound Regional Hosp</u>    | pital, NomePhone: 1-907-443-3311                     |
| Air Ambulance Phone: LifeGuard Alaska          | a 1-800-478-LIFE (5433)                              |
| Hospital Address and Route: <u>N/A</u>         |                                                      |
| ATTENDEES                                      |                                                      |
| NAME PRINTED                                   | SIGNATURE                                            |
| Melissa Markell                                | Martin Martin                                        |
| Douglas Duist                                  | Hausah in 1                                          |
| The difference                                 |                                                      |
| Michael A. S. My                               | Mula Atta                                            |
|                                                |                                                      |
|                                                |                                                      |
|                                                | !                                                    |
| Meeting Conducted By: 🚽 📈                      | hem. Blitting                                        |
| Name Printed                                   | Signature                                            |
| Project Safety Officer:                        | Project Manager:                                     |

\_\_\_\_

| Date: 8-4- ?? Time: -115 Job Number: 1189098.050130                                               |  |
|---------------------------------------------------------------------------------------------------|--|
| Client: USACOE Site Location: Northeast Cape Scope of Work:                                       |  |
| Safety Topics Presented                                                                           |  |
| ProtectiveClothing/Equipment: <u>Steel toed boots, ear and eye protection, inner and chemical</u> |  |
| protective gloves or leather gloves, Tyvek, rain gear or cold weather gear as needed              |  |
| protoci vo Elovos of reaction Elovos, Tyvek, Tam Ebar of cold weather Ecar as needed              |  |
| Chemical Hazards: Diesel fuel, gasoline, hexane- proposed                                         |  |
| Physical Hazards: ATV transportation; slips, trips, and falls; muscle strain , fly in the         |  |
| Bean wilcows, poor vie belity NACIS in debri                                                      |  |
| Special Equipment:                                                                                |  |
| Other:                                                                                            |  |
| Emergency Procedures:                                                                             |  |
| Hospital: Norton Sound Regional Hospital, Nome Phone: 1-907-443-3311                              |  |
| Air Ambulance Phone: LifeGuard Alaska 1-800-478-LIFE (5433)                                       |  |
| Hospital Address and Route: <u>N/A</u>                                                            |  |
| ATTENDEES                                                                                         |  |
| NAME PRINTED SIGNATURE                                                                            |  |
| DIVINITE MULLIKIN CLUB 2 / M.                                                                     |  |
|                                                                                                   |  |
| 1 - Ary and they                                                                                  |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
| Meeting Conducted By: B Mchem Bunches                                                             |  |
| sical Hazards: ATV transportation: slips, trips, and falls: muscle strain                         |  |
| Project Safety Officer: Project Manager:                                                          |  |

#### Attachment A: Personal Acknowledgment

is a component of the Site Safety and Health Plan (SHSP) designed to provide personnel safety iring the remedial investigation of this project, you are required to read and understand the SHSP. When you have fulfilled this requirement, please sign and date this personal acknowledgment \_

Malh Signature

Michael Name (Printed)

1

Northeast Cape Health and

Site Health and Safety Plan, ogy and Environment. In

İ

Safety Plan

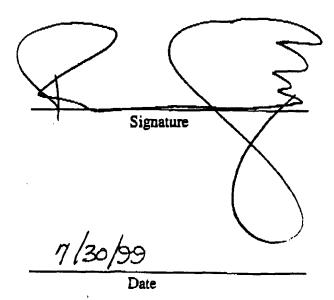
### Attachment A: Personal Acknowledgment

As a component of the Site Safety and Health Plan (SHSP) designed to provide personnel safety during the remedial investigation of this project, you are required to read and understand the SHSP. When you have fulfilled this requirement, please sign and date this personal acknowledgment.

Stouston abeth Signature

Date

Elizabeth S. Houston


Name (Printed)

· · · ·

2'

### Attachment A: Personal Acknowledgment

As a component of the Site Safety and Health Plan (SHSP) designed to provide personnel safety during the remedial investigation of this project, you are required to read and understand the SHSP. When you have fulfilled this requirement, please sign and date this personal acknowledgment.



PAT Name (Printed)

#### LAND-USE AGREEMENT COMMITTMENT

The CONTRACTOR and any CONTRACTOR representative arriving on St. Lawrence Island will abide by the landuse agreement in-place between the land holders and the USACOE. Any actions not in accordance with this agreement by a CONTRACTORs representative shall require immediate removal from St. Lawrence Island at the CONTRACTORs expense. All expenses incurred by MONTGOMERY WATSON while awaiting personnel replacement shall be reimbursed by the CONTRACTOR. The following are the major points of the Land-Use Agreement which will be enforced

- No alcohol in any form will be transported, consumed, or offered without compensation, for sale or trade on St. Lawrence Island.
- No non-prescription drugs will be transported, consumed, or offered without compensation, for sale or trade on St Lawrence Island.
- No prescription drugs will be offered for sale, trade or provided to any others on St. Lawrence Island.
- No fire arms will be transported, carried, used, or discharged by CONTRACTORs personnel on St. Lawrence Island
- No one will collect or purchase any raw material covered under the U.S. Marine Protection Act (i.e. bones, ivory, baleen).
- No one will collect any artifact while on St. Lawrence Island.

Munter Allenson

7/30/99

DATE

#### LAND-USE AGREEMENT COMMITTMENT

The CONTRACTOR and any CONTRACTOR representative arriving on St. Lawrence Island will abide by the landuse agreement in-place between the land holders and the USACOE. Any actions not in accordance with this ägreement by a CONTRACTORs representative shall require immediate removal from St. Lawrence Island at the CONTRACTORs expense. All expenses incurred by MONTGOMERY WATSON while awaiting personnel replacement shall be reimbursed by the CONTRACTOR. The following are the major points of the Land-Use Agreement which will be enforced:

- No alcohol in any form will be transported, consumed, or offered without compensation, for sale or trade on St. Lawrence Island.
- No non-prescription drugs will be transported, consumed, or offered without compensation, for sale or trade on St. Lawrence Island.
- No prescription drugs will be offered for sale, trade or provided to any others on St. Lawrence Island.
- No fire arms will be transported, carried, used, or discharged by CONTRACTORs personnel on St. Lawrence Island
- No one will collect or purchase any raw material covered under the U.S. Marine Protection Act (i.e. bones, ivory, baleen).
- No one will collect any artifact while on St. Lawrence Island.

DATE

#### QA/QC for USCOE

### Project Name <u>NEC</u> Phase IL Project Number <u>1189098, 050130</u>

| Date:         | COC:           |                              | Completed By: 🚶 | φ <u></u>                             |
|---------------|----------------|------------------------------|-----------------|---------------------------------------|
| 8   1   99    |                |                              |                 |                                       |
|               |                |                              | -               |                                       |
| Primary       | Replicate      | Split                        | Para            | neters                                |
| QQNCC120907   | QQLILL 2559AC  | 99NEL1255907<br>99NEL07SD901 | DED/RON GROUM   | The                                   |
| MANELIZSIUZ   | 1 INCLIZ33 106 | DANKIATSNAA!                 | DRO/RRO GRO/I   |                                       |
| 44NECO-ISDIDI | MANELOHODION   |                              | <u>DRU/ KRU</u> |                                       |
|               |                |                              |                 | · · · · · · · · · · · · · · · · · · · |
|               |                |                              | <u>.</u>        |                                       |
|               |                | •                            |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               | <u> </u>       |                              | 1               |                                       |
|               |                |                              |                 |                                       |
|               |                |                              | 1               |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
| Trip Blank-P  | Trip Blank-S   |                              | Trip Blank Date |                                       |
| 99NEC12TR901  | 99NECIZTB902   |                              | 8/1/99          |                                       |
|               |                |                              | /               |                                       |
| 1             |                |                              | I               |                                       |
| <u></u>       |                |                              |                 |                                       |
| <u> </u>      |                |                              |                 |                                       |
| 1             |                |                              | 1               |                                       |
| 1             |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
| ļ             |                |                              | 1               |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
| Rinsate-P     | Rinsate-S      | Sample Type                  | Sample Prior    | Sample After                          |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               | i              |                              |                 |                                       |
|               |                |                              |                 |                                       |
|               | <br>/          |                              |                 | -                                     |
|               |                |                              |                 |                                       |
| 1             |                | -                            |                 |                                       |
| <br>          |                |                              | -               | -                                     |
|               |                |                              |                 |                                       |

## APPENDIX H

Chemical Data Quality Review



### CHEMICAL DATA QUALITY REVIEW

#### **Northeast Cape**

Sampling Event 1999

Project # 99-NEC Received: 12/22/99

#### Prepared for

#### Army Corps of Engineers - Alaska Division

#### 1.0 Introduction

This report summarizes the technical review of analytical results generated in support of the sampling event at Northeast Cape, St. Lawrence Island, Alaska. The criteria applied for this review are consistent with analytical method protocols, in conjunction with the laboratory-established control limits. In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Instrument calibration review and raw data verification were not performed.

The report is arranged by method; within each method section is a sub-section addressing each data quality indicator. In situations where all applicable criteria were met, it will be stated. If criteria were not met, the non-compliance, qualifier and associated samples are listed. Appendices A and B list qualifier definitions and acronyms, respectively. Appendix C, the data summary table, displays all sample results, as well as qualifiers and descriptors that may apply. Appendix D includes a summary of all qualified data, by analytical method.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Authorized Signature (209) 576-2621

#### 2.0 Sample Collection, Preservation and Handling

Samples were collected July 31, August 1, and 2, 1999. Samples were received by MultiChem Analytical Services, Inc. and Columbia Analytical Services, Inc. within one to nine days of collection. The following samples were collected and analyzed by all applicable methods:

| Laboratory:      | CASK         |             |        |                   |            |                |      |    |
|------------------|--------------|-------------|--------|-------------------|------------|----------------|------|----|
| Project / Lab ID | Field ID     | Field QC ID | Matrix | Date<br>Collected | Temp<br>°C | Q <sup>1</sup> | Bias | RC |
| K9905279-001     | slsuq02a-DV  |             | Tissue | 8/2/99            | Frozen     | none           |      |    |
| K9905279-002     | slqan01a-DV  |             | Tissue | 8/2/99            | Frozen     | none           |      |    |
| K9905279-003     | slqan01a-9SB |             | Tissue | 8/2/99            | Frozen     | none           |      |    |
| K9905279-004     | slurc01a-BF  |             | Tissue | 8/2/99            | Frozen     | none           |      |    |
| K9905279-005     | slsut01a-BF  |             | Tissue | 8/1/99            | Frozen     | none           |      |    |
| K9905279-006     | slust01a-DV  |             | Tissue | 8/1/99            | Frozen     | none           |      |    |
| K9905279-007     | slsuq01a-DV  |             | Tissue | 8/1/99            | Frozen     | none           |      |    |
| K9905279-008     | slsuq01a-9SB |             | Tissue | 8/1/99            | Frozen     | none           |      |    |

.

Laboratory:

.

MASR

| Project / Lab ID | Field ID    | Field QC ID | Matrix | Date<br>Collected | Temp<br>°C | Q <sup>1</sup> | Bias | RC |
|------------------|-------------|-------------|--------|-------------------|------------|----------------|------|----|
| 821760-01        | 99NEC07SD90 |             | SE     | 8/1/99            | 5.1        | none           |      |    |
| 821760-02        | 99NEC07SD90 |             | ` SE   | 8/1/99            | 5.1        | none           | •    |    |
| 821760-03        | 99NEC12SB90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-04        | 99NEC12SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-05        | 99NEC12SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-06        | 99NEC12SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-07        | 99NEC12SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-08        | 99NEC12SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-09        | 99NEC30SS90 |             | SO     | 8/1/99            | 4.7        | none           |      |    |
| 821760-09        | 99NEC30SS90 |             | SO     | 8/1/99            | 5.1        | none           |      |    |
| 821760-10        | 99NEC30SS90 |             | so     | 8/1/99            | 5.1        | none           |      |    |
| 821760-10        | 99NEC30SS90 |             | SO     | 8/1/99            | 4.7        | none           |      |    |
| 821760-11        | 99NEC30SD90 |             | SE     | 8/1/99            | 4.7        | none           |      |    |
| 821760-11        | 99NEC30SD90 |             | SE     | 8/1/99            | 5.1        | none           |      |    |
| 821760-12        | 99NEC21SD90 |             | SE     | 8/1/99            | 4.7        | none           |      |    |
| 821760-13        | 99NEC12TB90 | Trip Blank  | SO     | 8/1/99            | 5.1        | none           |      |    |

| Project / Lab ID | Field ID    | Field QC ID | Matrix | Date<br>Collected | Temp<br>°C | Q <sup>1</sup> | Bias | RC |
|------------------|-------------|-------------|--------|-------------------|------------|----------------|------|----|
| 821765-01        | 99NEC03MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-02        | 99NEC03MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-03        | 99NEC04MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-04        | 99NEC04MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-05        | 99NEC06MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-06        | 99NEC11MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-07        | 99NEC11MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-08        | 99NEC11MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-09        | 99NEC13MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-10        | 99NEC13MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-11        | 99NEC13MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-12        | 99NEC13MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-13        | 99NEC14MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-14        | 99NEC16MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-15        | 99NEC18MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-16        | 99NEC19MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-17        | 99NEC19MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-18        | 99NEC12MI90 |             | Paint  | 8/1/99            | NA         | none           |      |    |
| 821765-19        | 99NEC22MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-20        | 99NEC22MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-21        | 99NEC22MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |
| 821765-22        | 99NEC22MI90 |             | Paint  | 7/31/99           | NA         | none           |      |    |

•

| Project / Lab ID | Field ID    | Field QC ID | Matrix     | Date<br>Collected | Temp<br>°C | Q <sup>1</sup> | Bias | RC |
|------------------|-------------|-------------|------------|-------------------|------------|----------------|------|----|
| 821774-01        | 99NEC13BD90 |             | Bldg. Mat. | 8/2/99            | NA         | none           |      |    |
| 821774-02        | 99NEC17BD90 |             | Bldg. Mat. | 8/2/99            | NA         | none           |      |    |
| 821774-03        | 99NEC18BD90 |             | Bldg. Mat. | 8/2/99            | NA         | none           |      |    |

1 According to the National Functional Guidelines for Data Review, if the sample temperature exceeds 2-6° C, for selected analytes all associated detected and nondetected results as estimated (J/UJ)

All sampling and sample receipt documentation were present and reviewed. No problems or discrepancies were observed.

#### 3.0 BTEX/Gas (SW8021/AK101)

#### 3.1 Holding Time

All samples were analyzed within the required technical holding time.

#### 3.2 Surrogates

All surrogate recoveries were within the required limits except the following:

| Laboratory:  | MASR   |               |                      |       | 1                  |      |      |    |
|--------------|--------|---------------|----------------------|-------|--------------------|------|------|----|
| Field ID     | Matrix | Dil<br>Factor | Surrogate            | % Rec | Recovery<br>Limits | Q2   | Bias | RC |
| 99NEC30SD903 | 3 SE   | 1             | 4-bromofluorobenzene | 55    | 63 - 119           | J/UJ | L    | b  |

Laboratory - established limits

<sup>2</sup> According to the Functional Guidelines for Organic Data Review, if the surrogate recovery is > UCL, flag detected results J; if the surrogate recovery is < LCL, flag detected results J and non-detects UJ; if the surrogate recovery is less than 10%, flag detected results J and non-detects UR</p>

#### 3.3 Blanks

Method blanks were analyzed at the minimum required frequency. All target compounds were reported as non-detect at the method detection limit.

One trip blank was collected for analysis by this method. All target compounds were reported as nondetect at the method detection limit.

No field rinsate blanks were collected for analysis by this method.

#### 3.4 Matrix Spike/Matrix Spike Duplicates

MS/MSDs were analyzed at the required frequency. Recoveries and RPDs were within the laboratory - established limits.

#### 3.5 Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. All recoveries and RPDs were within the required limits.

#### 3.6 Quantitation Limits

The practical quantitation limits (PQLs) achieved by the laboratory were acceptable relative to the estimated quantitation limits (EQL) suggested by this method for soil samples. All detected results reported were above the quantitation limit.

#### 3.7 Overall Assessment

Due to low surrogate recovery, one sample was qualified as estimated for BTEX and gasoline range organics Estimated data are useable for limited purposes.

#### 3.7 Overall Assessment

Minor data quality deficiencies were found, which had a slight impact to data useability. All data generated by this method, except where noted, should be considered useable as reported.

#### 4.0 Diesel/Residual Range Organics (AK102/AK103)

#### 4.1 Holding Time

All samples were prepared and analyzed within the required technical holding time.

#### 4.2 Surrogates

All surrogate recoveries were within the required limits.

#### 4.3 Blanks

Method blanks were analyzed at the minimum required frequency. All target compounds were reported as non-detect at the method detection limit.

No field rinsate blanks were collected for analysis by this method.

#### 4.4 Matrix Spike/Matrix Spike Duplicates

MS/MSDs were analyzed at the required frequency. Recoveries and RPDs were within the laboratory - established limits.

#### 4.5 Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. All recoveries and RPDs were within the required limits.

#### 4.6 Quantitation Limits

The practical quantitation limits (PQLs) achieved by the laboratory were acceptable relative to the quantitation limits suggested by this method for soil samples. All detected results reported were above the quantitation limit.

#### 4.7 Overall Assessment

No data quality deficiencies were found. All data generated by this method should be considered useable as reported.

#### 5.0 Toxicity Characteristic Leaching Procedure (TCLP)

TCLP extraction was performed on one sample for volatile organics, semivolatile organics, pesticides and metals, and four samples for polychlorinated biphenyls.

#### 5.1 Holding Time

All samples were prepared and analyzed within the required technical holding time except the following:

Laboratory: MASR

| Polychlorinated | Biphenyls - | TCLP      |          |          | Holdi<br>Time ( |         | RTI<br>(Da |         |      |      |    |
|-----------------|-------------|-----------|----------|----------|-----------------|---------|------------|---------|------|------|----|
| Field ID        | Matrix      | Collected | Prepared | Analyzed | Prep / A        | nalysis | Prep /     | Analysi | Q    | Bias | RC |
| 99NEC13BD901    | Bldg. Mat.  | 8/2/99    | 8/26/99  | 8/28/99  | 24              | 2       | 21         | 40      | J/UJ | L    | е  |
| 99NEC17BD901    | Bldg. Mat.  | 8/2/99    | 8/26/99  | 8/28/99  | 24              | 2       | 21         | 40      | J/UJ | L    | е  |
| 99NEC18BD901    | Bldg. Mat.  | 8/2/99    | 8/26/99  | 8/28/99  | 24              | 2       | 21         | 40      | J/UJ | L    | е  |

Required technical holding time established for the method

#### 5.2 Surrogates

All surrogate recoveries were within the required limits.

#### 5.3 Blanks

Method blanks were analyzed at the minimum required frequency. All target compounds were reported as non-detect at the method detection limit.

No field rinsate blanks were collected for analysis by this method.

#### 5.4 Matrix Spike/Matrix Spike Duplicates

MS/MSDs were analyzed at the required frequency. Recoveries and RPDs were within the laboratory - established limits.

#### 5.5 Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. All recoveries and RPDs were within the required limits except the following:

| Laboratory:<br>LCS Batch ID:<br>Prep Date: | <b>MASR</b><br>0811-8270T<br>8/11/99 |           |      |     |          |      |        |      |    |
|--------------------------------------------|--------------------------------------|-----------|------|-----|----------|------|--------|------|----|
| Matrix:                                    | SE                                   |           |      |     |          | ,    |        |      |    |
|                                            |                                      |           |      |     | Lin      | nits | 2      |      |    |
| Analyte                                    |                                      | LCS       | LCSD | RPD | % Rec    | RPD  | ۅؘ     | Bias | RC |
| hexachloroethane                           |                                      | 114       | NA   | NA  | 34 - 111 | 20   | J/none | н    | d  |
| Associated<br>Samples:                     | 99NEC21SD90                          | (821760-1 | 2)   |     |          |      |        |      |    |

Laboratory-established Limits

For specific analytes in all samples associated with the preparation batch - if the LCS recovery is > UCL apply J to all detect results; if the LCS recovery is < LCL apply J to all detected results, apply UR to all non-detects; if the RPD is > UCL, apply J to detected results, apply UJ to all nondetects (qualifiers do not apply to surrogate analytes)

#### 5.6 Quantitation Limits

1

The practical quantitation limits (PQLs) achieved by the laboratory were acceptable relative to the quantitation limits suggested by this method for soil samples. The following detected results reported were below the quantitation limit, and are flagged "J":

#### **Polychlorinated Biphenyls - TCLP**

|              |            | Dil    |                |        |     |       |   |
|--------------|------------|--------|----------------|--------|-----|-------|---|
| Field ID     | Matrix     | Factor | Analyte        | Result | PQL | Units | Q |
| 99NEC17BD901 | Bldg. Mat. | 1      | total aroclors | 1.5    | 3.3 | UG/L  | J |
| 99NEC17BD901 | Bidg. Mat. | 1      | aroclor 1260   | 1.5    | 3.3 | UG/L  | J |

#### Semivolatile Organics - TCLP

| Field ID     | Matrix | Dil<br>Factor | Analyte | Result | PQL   | Units | Q |
|--------------|--------|---------------|---------|--------|-------|-------|---|
| 99NEC21SD901 | SE     | 1             | cresol  | 0.03   | 0.033 | MG/L  | J |

Results below the quantitation limit are considered qualitatively acceptable but quantitatively unreliable.

#### 5.7 Overall Assessment

Due to holding time exceedance, three samples were qualified as estimated for polychlorinated biphenyls. Estimated data are useable for limited purposes.

#### 5.7 Overall Assessment (cont.)

Minor data quality deficiencies were found, which had a significant impact to polychlorinated biphenyls data useability. All data generated by this method, except where noted, should be considered useable as reported.

#### 6.0 Polychlorinated Biphenyls (SW8082)

#### 6.1 Holding Time

All samples were prepared and analyzed within the required technical holding time except the following:

| Laboratory: CA | SK     |           |                  |          |          |         | Holding<br>Time (Days) |          | RTHT<br>(Days) |      |    |  |  |
|----------------|--------|-----------|------------------|----------|----------|---------|------------------------|----------|----------------|------|----|--|--|
| Field ID       | Matrix | Collected | Prepared         | Analyzed | Prep / A | nalysis | Prep /                 | Analysis | Q              | Bias | RC |  |  |
| slqan01a-9SB   | Tissue | 8/2/99    | 8/18/99          | 8/28/99  | 16       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slqan01a-DV    | Tissue | 8/2/99    | 8/18/99          | 8/28/99  | 16       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slsuq01a-9SB   | Tissue | 8/1/99    | 8/18/99          | 8/28/99  | 17       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| sisuq01a-DV    | Tissue | 8/1/99    | 8/18/99          | 8/28/99  | 17       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slsuq02a-DV    | Tissue | 8/2/99    | 8/18 <b>/</b> 99 | 8/28/99  | 16       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slsut01a-BF    | Tissue | 8/1/99    | 8/18/99          | 8/28/99  | 17       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slurc01a-BF    | Tissue | 8/2/99    | 8/18/99          | 8/28/99  | 16       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |
| slust01a-DV    | Tissue | 8/1/99    | 8/18/99          | 8/28/99  | 17       | 10      | 14                     | 40       | J/UJ           | L    | е  |  |  |

| Laboratory: MASR |            |           |          |          | Holding<br>Time (Days) |   | RTHT<br>(Days)    |    |      |    |   |
|------------------|------------|-----------|----------|----------|------------------------|---|-------------------|----|------|----|---|
| Field ID         | Matrix     | Collected | Prepared | Analyzed | Prep / Analysis        |   | Prep / Analysis Q |    | Bias | RC |   |
| 99NEC13BD901     | Bldg. Mat. | 8/2/99    | 8/20/99  | 8/24/99  | 18                     | 4 | 14                | 40 | J/UJ | L  | е |
| 99NEC17BD901     | Bldg. Mat. | 8/2/99    | 8/20/99  | 8/24/99  | 18                     | 4 | 14                | 40 | J/UJ | L  | е |
| 99NEC18BD901     | Bldg. Mat. | 8/2/99    | 8/20/99  | 8/24/99  | 18                     | 4 | 14                | 40 | J/UJ | L  | е |

Required technical holding time established for the method

#### 6.2 Surrogates

All surrogate recoveries were within the required limits except the following:

| Dil          |        |        |                    | Recovery 2 |          |       |      |    |  |
|--------------|--------|--------|--------------------|------------|----------|-------|------|----|--|
| Field ID     | Matrix | Factor | Surrogate          | % Rec      | Limits   | Q     | Bias | RC |  |
| 99NEC21SD901 | SE     | 10     | decachlorobiphenyl | 0          | 28 - 165 | none* | NA   | NA |  |

Laboratory - established limits

<sup>2</sup> According to the Functional Guidelines for Organic Data Review, if the surrogate recovery is > UCL, flag detected results J; if the surrogate recovery is < LCL, flag detected results J and non-detects UJ; if the surrogate recovery is less than 10%, flag detected re and non-detects UR</p>

qualifiers do not apply if the sample was diluted by >5 times and the recovery is <LCL

#### 6.3 Blanks

Method blanks were analyzed at the minimum required frequency. All target compounds were reported as non-detect at the method detection limit.

#### 6.3 Blanks (cont.)

No field rinsate blanks were collected for analysis by this method.

#### 6.4 Matrix Spike/Matrix Spike Duplicates

MS/MSDs were analyzed at the required frequency. Recoveries and RPDs were within the laboratory - established limits.

#### 6.5 Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. All recoveries and RPDs were within the required limits.

#### 6.6 Quantitation Limits

The practical quantitation limits (PQLs) achieved by the laboratories were acceptable relative to the estimated quantitation limits (EQL) suggested by this method for soil samples. All detected results reported were above the quantitation limit.

#### 6.7 Overall Assessment

Due to holding time exceedance, eleven samples were qualified as estimated for all target compounds. Estimated data are useable for limited purposes.

Minor data quality deficiencies were found, which had a significant impact to data useability. All data generated by this method, except where noted, should be considered useable as reported.

#### 7.0 Total Metals

#### 7.1 Holding Time

All samples were prepared and analyzed within the required technical holding time.

#### 7.2 Blanks

Method blanks were analyzed at the minimum required frequency. All target analytes were reported as non-detect at the method detection limit.

No field rinsate blanks were collected for analysis by this method. All target analytes were reported as nondetect at the practical quantitation limit.

#### 7.3 Matrix Spike/ Sample Duplicates

Matrix spikes were analyzed at the required frequency. Recoveries were within the laboratory - established limits except for lead, cadium, iron, magnesium and manganese. In all cases the concentration of the sample was greater than four times the amount spiked.

#### 7.4 Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. All recoveries were within the required limits.

#### 7.5 Quantitation Limits

The practical quantitation limits (PQLs) achieved by the laboratories were acceptable relative to the estimated quantitation limits (EQL) suggested by this method for soil samples. All detected results reported were above the quantitation limit. The reporting limits for lead were elevated for sample 99NEC03MI901 and 99NEC03MI902, and for silver by a factor of two for sample 99NEC30SS901, due to matrix interference from high levels of iron.

#### 7.6 Overall Assessment

No data quality deficiencies were found. All data generated by this method should be considered useable as reported.

#### 8.0 Field Duplicates

.

Field duplicates were not collected for this project.

#### 9.0 References

"USEPA Test Methods for Evaluating Solid Waste Physical/Chemical Methods", July 1992 (SW-846)

"National Functional Guidelines for Organic Data Review", February, 1994

"State of Alaska Method AK101, Determination of Gasoline Range Organics"

"State of Alaska Method AK102, Determination of Diesel Range Organics"

"State of Alaska Method AK103, Determination of Residual Range Organics"

"USACOE Chemical Quality Assurance for HTRW Projects", October 1997

## Appendix A

# **Qualifier Definitions**

| В      | The sample result is less than 5 or 10 times (for common laboratory contaminants) the associated blank contamination.                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U      | The analyte was analyzed for, but was not detected above the reported quantitation limit.                                                                                                                                                                                        |
| UJ     | The analyte was not detected above the reported quantitation limit. However, the reported quantitation is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.                     |
| J      | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                             |
| J/none | Sample results for the analyte are estimated for positive results; results reported below the quantitation limit are not qualified (high bias).                                                                                                                                  |
| J/UJ   | Sample results for the analyte are estimated for both positive results and results reported below the quantitation limit (low bias).                                                                                                                                             |
| R/UR   | The sample results are rejected for both positive results and results reported below the<br>quantitation limit due to serious deficiencies in the ability to analyze the sample and meet<br>quality control criteria. The presence or absence of the analyte cannot be verified. |

### Appendix B

## Acronyms

- CASK Columbia Analytical Services, Inc.
- CRQL Contract Required Quantitation Limit
  - H High Bias
  - L Low Bias
  - LCL Lower Control Limit

LCS/LCSD - Laboratory Control Sample/Laboratory Control Sample Duplicate

- MASR MultiChem Analytical Services, Inc.
  - MB Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike/Matrix Spike Duplicate
  - N No Bias Determined
  - NA Not Applicable
  - NE Not Established
  - NR Not Reported
  - PQL Practical Quantitation Limit
    - Q Qualifier
  - QA Quality Assurance
  - QC Quality Control
  - RPD Relative Percent Difference
  - RRL Required Reporting Limit
  - RSD Relative Standard Deviation
  - RTHT Required Technical Holding Time
    - SD Sample Duplicate
    - SE Sediment
    - SO Soil
- SW-846 EPA Test Methods for Evaluating Solid Waste
  - UCL Upper Control Limit

Appendix C

## **Data Summary Table**

#### QUALIFIER REASON CODES

- a The analyte was found in the method blank
- a- Negative drift observed in instrument calibration blanks
- b Surrogate spike recovery outside control limits
- c Matrix Spike/Matrix Spike Duplicate (MS/MSD) recovery outside control limits
- d Laboratory Control Sample (LCS) recovery outside control limits
- e Holding time exceeded
- f MS/LCS sample duplicate failed precision criteria
- h Second column results indicate that the environmental results were not confirmed
- i Instrument Calibration outside control limits
- k The analyte was found in the field blank
- m Numerical value between the MDL and PQL
- n Field duplicate precision problem
- o Result reported exceeds calibration range
- p Sample was not properly collected, preserved or shipped
- s Internal Standard outside control limits
- t Sample temperature outside acceptance criteria

(Note: Where multiple qualifiers have been applied the first qualifier corresponds to the first reason code)

#### BTEX/Gas

#### DATA SUMMARY TABLE

| Sample ID<br>Field ID<br>Matrix<br>Dil Factor<br>Date Collected<br>Units | 99NEC<br>9 | 760-03<br>12SB<br>SO<br>1<br>1/99<br>S/KG |    | 99NEC  | 760-04<br>12SS9<br>SO<br>1<br>1/99<br>S/KG |    | 8/     |          |    | 8/     |          | 904 | 99NEC<br>5 | 760-07<br>12SS<br>SO<br>1<br>1/99<br>S/KG |    | 99NEC  | 760-08<br>12SS<br>SO<br>1<br>1/99<br>S/KG | · { |
|--------------------------------------------------------------------------|------------|-------------------------------------------|----|--------|--------------------------------------------|----|--------|----------|----|--------|----------|-----|------------|-------------------------------------------|----|--------|-------------------------------------------|-----|
| Analyte                                                                  | RESULT     | <b>Q</b>                                  | RC | RESULT | <b>Q</b>                                   | RC | RESULT | <b>Q</b> | RC | RESULT | <b>Q</b> | RC  | RESULT     | <b>Q</b>                                  | RC | RESULT | Q                                         | RC  |
| benzene                                                                  | 0.02       | U                                         |    | 0.023  | U                                          |    | 0.024  | U        |    | 0.024  | U        |     | 0.024      | U                                         |    | 0.023  | U                                         |     |
| ethylbenzene                                                             | 0.11       |                                           |    | 0.028  | U                                          |    | 0.03   | U        |    | 0.031  | U        |     | 0.029      | U                                         |    | 0.028  | U                                         |     |
| toluene                                                                  | 0.025      | U                                         |    | 0.028  | U                                          |    | 0.031  |          |    | 0.031  | U        |     | 0.029      | U                                         |    | 0.028  | U                                         |     |
| xylenes, total                                                           | 0.16       |                                           |    | 0.028  | U                                          |    | 0.03   | U        |    | 0.035  |          |     | 0.029      | U                                         |    | 0.028  | U                                         | İ   |
| gasoline range organics                                                  | 22         |                                           |    | 5.7    | U                                          |    | 6      | U        |    | 11     |          |     | 5.9        | U                                         |    | 5.6    | U                                         |     |

.

.....

r

#### BTEX/vas

#### DATA SUMMARY TABLE

| Sample ID                             |                | 60-09             |    |             | 760-10            |     |              | 760-11             |        | 8217  |                   |     |
|---------------------------------------|----------------|-------------------|----|-------------|-------------------|-----|--------------|--------------------|--------|-------|-------------------|-----|
| Field ID<br>Matrix                    |                | 30559<br>60       | 01 | 99NEC       | 30559<br>50       | 902 | 99NEC        | 30SD<br>SE         | 903    | 99NEC | 12TB<br>50        | 901 |
| Dil Factor<br>Date Collected<br>Units | -              | 1<br>1/99<br>5/KG |    |             | 1<br>1/99<br>S/KG |     |              | 1<br>'1/99<br>S/KG |        |       | 1<br>1/99<br>5/KG |     |
| Analyte                               | RESULT         |                   | RC | RESULT      | Q                 | RC  | RESULT       |                    | RC     |       |                   |     |
| benzene                               | 0.019          | U                 |    | 0.081       | U                 |     | 0.11         | UJ                 | b      | 0.021 | U                 |     |
| ethylbenzene                          | 0.023          | U                 |    | 0.1         | U                 |     | 0 13         | UJ                 | b      | 0.027 | U                 |     |
| toluene<br>xylenes, total             | 0.023<br>0.023 | U<br>U            |    | 0.12<br>0.1 | U                 |     | 0.89<br>0.13 | IJ                 | b<br>b | 0.027 | U<br>U            |     |
| gasoline range organics               | 0.023<br>4.7   | U                 |    | 0.1<br>20   | U                 |     | 0.13<br>27   | 0J                 | b      | 5.3   | U                 |     |

#### Diesel ...ange Organics

DATA SUMMARY TABLE

| Sample ID             | 821760-01    | 821760-02    | 821760-03    | 821760-04    | 821760-05    | 821760-06    |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field ID              | 99NEC07SD901 | 99NEC07SD902 | 99NEC12SB901 | 99NEC12SS902 | 99NEC12SS903 | 99NEC12SS904 |
| Matrix                | SE           | SE           | SO           | so           | SO           | SO           |
| Dil Factor            | 1            | 1            | 1            | 1            | 5            | 1            |
| Date Collected        | 8/1/99       | 8/1/99       | 8/1/99       | 8/1/99       | 8/1/99       | 8/1/99       |
| Units                 | MG/KG        | MG/KG        | MG/KG        | MG/KG        | MG/KG        | MG/KG        |
| Analyte               | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  |
| diesel range organics | 380          | 340          | 140          | 42           | 68           | 59           |

.

,

-

#### Diesel Range Organics

#### DATA SUMMARY TABLE

| Sample ID<br>Field ID   | 99NEC12SS905    | 821760-08<br>99NEC12SS906 | 821760-09<br>99NEC30SS901 | 821760-10<br>99NEC30SS902 | 821760-11<br>99NEC30SD903 |  |
|-------------------------|-----------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
| Matrix<br>Dil Factor    | SO<br>1         | SO<br>1                   | SO<br>1                   | SO<br>1                   | SE<br>1                   |  |
| Date Collected<br>Units | 8/1/99<br>MG/KG | 8/1/99<br>MG/KG           | 8/1/99<br>MG/KG           | 8/1/99<br>MG/KG           | 8/1/99<br>MG/KG           |  |
| Analyte                 | RESULT Q RC     | RESULT Q RC               | RESULT Q RC               | RESULT Q RC               | RESULT Q RC               |  |
| diesel range organics   | 29              | 46                        | 11 U                      | 430                       | 580                       |  |

•

-----

| Sample I           | 8217   | 60-1      | >   |
|--------------------|--------|-----------|-----|
| Field II           |        |           |     |
| Matri              |        | SE        | 301 |
| Dil Facto          |        | 1         |     |
| Date Collecte      |        | '<br>1/99 |     |
| Unit               |        | G/L       |     |
| Analyte            |        | Q         | RC  |
| gamma-BHC          |        | U         |     |
| -                  |        |           |     |
| chlordane          | 0 0007 | U         |     |
| endrin             | 0.0003 | U         |     |
| heptachlor         | 0.0002 | U         |     |
| heptachlor epoxide | 0.0002 | U         |     |
| methoxychlor       | 0.0017 | U         |     |
|                    |        |           |     |
| toxaphene          | 0.005  | U         |     |

•

. \_\_\_\_ .

-- · •

\*

#### Polychiorinated Biphenyls

.

#### DATA SUMMARY TABLE

|                              | Sample ID<br>Field ID<br>Matrix       | 99NEC2       |                    |    |
|------------------------------|---------------------------------------|--------------|--------------------|----|
|                              | Dil Factor<br>Date Collected<br>Units | 8/           | 10<br>1/99<br>5/KG |    |
| Analyte                      |                                       | RESULT       | Q                  | RC |
| aroclor 1016                 |                                       | 0 72         |                    |    |
| aroclor 1221<br>aroclor 1232 |                                       | 0.72<br>0.72 |                    |    |
| aroclor 1232<br>aroclor 1242 |                                       | 0.72         |                    |    |
| aroclor 1248                 |                                       | 0.72         |                    |    |
| aroclor 1254                 |                                       | 52           |                    |    |
| aroclor 1260                 |                                       | 70           |                    |    |
| total aroclors               |                                       | 120          |                    |    |

.

.

.

•

,

#### Residu... Range Organics

#### DATA SUMMARY TABLE

| Sample ID<br>Field ID<br>Matrix       |             | 821760-02<br>99NEC07SD902<br>SE | 821760-03<br>99NEC12SB901<br>SO | 821760-04<br>99NEC12SS902<br>SO | 821760-05<br>99NEC12SS903<br>SO | 821760-06<br>99NEC12SS904<br>SO |
|---------------------------------------|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Dil Factor                            | 1           | 1                               | 1                               | 1                               | 5                               | 1                               |
| Date Collected                        | 8/1/99      | 8/1/99                          | 8/1/99                          | 8/1/99                          | 8/1/99                          | 8/1/99                          |
| Units                                 | MG/KG       | MG/KG                           | MG/KG                           | MG/KG                           | MG/KG                           | MG/KG                           |
| Analyte                               | RESULT Q RC | RESULT Q RC                     | RESULT Q RC                     | RESULT Q RC                     | RESULT Q RC                     | RESULT Q RC                     |
| hydrocarbons quantitated as motor oil | 3900        | 3600                            | 230                             | 560                             | 620                             | 470                             |

.

1

#### Residuar Range Organics

DATA SUMIWARY TABLE

| Sample ID<br>Field ID<br>Matrix       |             | 821760-08<br>99NEC12SS906<br>SO | 821760-09<br>99NEC30SS901<br>SO | 821760-10<br>99NEC30SS902<br>SO | 821760-11<br>99NEC30SD903<br>SE |  |
|---------------------------------------|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Dil Factor<br>Date Collected          | 1           | 1<br>8/1/99                     | 1<br>8/1/99                     | 1<br>8/1/99                     | 1<br>8/1/99                     |  |
| Units                                 | MG/KG       | MG/KG                           | MG/KG                           | MG/KG                           | MG/KG                           |  |
| Analyte                               | RESULT Q RC | RESULT Q RC                     | RESULT Q RC                     | RESULT Q RC                     | RESULT Q RC                     |  |
| hydrocarbons quantitated as motor oil | 290         | 390                             | 59                              | 2300                            | 3200                            |  |

.

#### Semivoratile Organics - TCLP

#### DATA SUMMARY TABLE

|                       | Sample ID<br>Field ID   | 99NEC  |             |    |
|-----------------------|-------------------------|--------|-------------|----|
|                       | Matrix<br>Dil Factor    |        | SE<br>1     |    |
|                       | Date Collected<br>Units | М      | 1/99<br>G/L |    |
| Analyte               |                         | RESULT | Q           | RC |
| cresol                |                         | 0.026  | J           | m  |
| 1,4-dichlorobenzene   |                         | 0.033  | U           |    |
| 2,4-dinitrotoluene    |                         | 0.033  | U           |    |
| hexachlorobenzene     |                         | 0.033  | U           |    |
| hexachlorobutadiene   |                         | 0.033  | U           |    |
| hexachloroethane      |                         | 0.033  | U           |    |
| nitrobenzene          |                         | 0.033  | U           |    |
| pentachlorophenol     |                         | 0.17   | U           |    |
| pyridine              |                         | 0.17   | U           |    |
| 2,4,5-trichlorophenol |                         | 0.17   | U           |    |
| 2,4,6-trichlorophenol |                         | 0.033  | U           |    |

.

.

.

#### TCLP wetals

|          | Sample ID<br>Field ID   | 99NEC2 | 21SD         |    |
|----------|-------------------------|--------|--------------|----|
|          | Matrix<br>Dil Factor    |        | SE<br>1      |    |
|          | Date Collected<br>Units |        | '1/99<br>G/L |    |
| Analyte  |                         | RESULT | Q            | RC |
| arsenic  |                         | 0.1    | U            |    |
| barium   |                         | 0.83   |              |    |
| cadmium  |                         | 0 005  | U            |    |
| chromium |                         | 0.01   | U            |    |
| lead     |                         | 0.03   | U            |    |
| mercury  |                         | 0.0002 | U            |    |
| selenium |                         | 0.1    | U            |    |
| silver   |                         | 0.01   | U            |    |

.

-----

Total metals

#### DATA SUMMARY TABLE

|               |        |       |     | 1      |       |     | 1      |        |     |
|---------------|--------|-------|-----|--------|-------|-----|--------|--------|-----|
| Sample I      |        | 760-0 | 9   | 8217   | 60-10 | כ   | 8217   | 760-11 |     |
| Field         |        |       | 901 | 99NEC  |       | 902 | 99NEC  |        | 903 |
| Matri         |        | SO    |     |        | SO    |     |        | SE     |     |
| Dil Facto     |        | 1     |     |        | 1     |     |        | 1      |     |
| Date Collecte |        | /1/99 |     |        | 1/99  |     |        | 1/99   |     |
| Unit          | s M    | G/KG  |     | MC     | G/KG  |     | MC     | G/KG   |     |
| Analyte       | RESULT | Q     | RC  | RESULT | Q     | RC  | RESULT | Q      | RC  |
| antimony      | 2.9    | U     |     | 14     | U     |     | 13     | U      |     |
| arsenic       | 3.6    |       |     | 1.4    | U     |     | 1.3    | U      |     |
| barium        | 65     |       |     | 46     |       |     | 49     |        |     |
| beryllium     | 0.79   |       |     | 1.4    | U     |     | 1.3    | υ      |     |
| cadmium       | 0.31   |       |     | 1.4    | U     |     | 1.3    | U      |     |
| calcium       | 3200   |       |     | 2200   |       |     | 1700   |        |     |
| chromium      | 49     |       |     | 5.2    |       |     | 6.9    |        |     |
| cobalt        | 8.6    |       |     | 2.7    | U     |     | 2.7    | U      |     |
| copper        | 31     |       |     | 4.3    | 0     |     | 4.4    | 0      |     |
|               |        |       |     |        |       |     |        |        |     |
| iron          | 21000  |       |     | 8800   |       |     | 7900   |        |     |
| lead          | 25     |       |     | 4.8    |       |     | 4      |        |     |
| magnesium     | 6700   |       |     | 1100   |       |     | 1100   |        |     |
| manganese     | 290    |       |     | 22     |       |     | 43     |        |     |
| mercury       | 0.11   | U     |     | 0.55   | U     |     | 0.52   | υ      |     |
| nickel        | 24     |       |     | 3.8    |       |     | 4.3    |        |     |
| potassium     | 2100   |       |     | 470    |       |     | 270    |        |     |
| selenium      | 0.3    | U     |     | 1.4    | U     |     | 1.3    | U      |     |
| silver        | 1.1    | U     |     | 2.7    | U     |     | 2.7    | U      |     |
| thallium      | 0.6    | U     |     | 1.4    | U     |     | 1.3    | U      |     |
| vanadium      | 28     | -     |     | 8.3    | -     |     | 10     | -      |     |
| zinc          | 77     |       |     | 12     |       |     | 15     |        |     |
|               |        |       |     | '2     |       |     | 15     |        |     |

.

Ŧ

Volatile Jrganics - TCLP

,

|                      |                       | 6/1/   | 60-12 | 2  |
|----------------------|-----------------------|--------|-------|----|
|                      | Sample ID<br>Field ID | 99NEC2 |       |    |
|                      | Matrix                |        | SE    |    |
|                      | Dil Factor            |        | 1     |    |
|                      | Date Collected        |        | 1/99  |    |
|                      | Units                 | M      | G/L   |    |
| Analyte              |                       | RESULT | Q     | RC |
| inyl chloride        |                       | 0.01   | U     |    |
| I,1-dichloroethene   |                       | 0.01   | U     |    |
| 1,2-dichloroethane   |                       | 0.01   | U     |    |
| 2-butanone           |                       | 0.1    | U     |    |
| chloroform           |                       | 0.01   | U     |    |
| carbon tetrachloride |                       | 0.01   | U     |    |
| penzene              |                       | 0.01   | U     |    |
| richloroethene       |                       | 0.01   | υ     |    |
| etrachloroethylene   |                       | 0.01   | U     |    |
|                      |                       | 0.01   | 0     |    |

-

.

-

#### Total metals

#### DATA SUMMARY TABLE

| Sample ID |                        | 821765-02            | 821765-03    | 821765-04    | 821765-05    | 821765-06    |
|-----------|------------------------|----------------------|--------------|--------------|--------------|--------------|
| Field ID  |                        | 99NEC03MI902         | 99NEC04MI901 | 99NEC04MI902 | 99NEC06MI901 | 99NEC11MI901 |
| Matrix    |                        | Paint                | Paint        | Paint        | Paint        | Paint        |
|           | Dil Factor 10          |                      | 10           | 10           | 50           | 10           |
|           | Date Collected 7/31/99 |                      | 7/31/99      | 7/31/99      | 8/1/99       | 8/1/99       |
|           | Units MG/KG            |                      | MG/KG        | MG/KG        | MG/KG        | MG/KG        |
| Analyte   | RESULT Q RC            | MG/KG<br>RESULT Q RC | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  |
| lead      | 16 U                   | 31 U                 | 1100         | 2100         | 42000        | 1400         |

٠

#### Total metals

#### DATA SUMIWARY TABLE

| Sample ID      | 99NEC11MI902 | 821765-08    | 821765-09    | 821765-10          | 821765-11          | 821765-12                                    |
|----------------|--------------|--------------|--------------|--------------------|--------------------|----------------------------------------------|
| Field ID       |              | 99NEC11MI903 | 99NEC13MI901 | 99NEC13MI902       | 99NEC13MI903       | 99NEC13MI904                                 |
| Matrix         |              | Paint        | Paint        | Paint              | Paint              | Paint                                        |
| Dil Factor     | 10           | 10           | 20           | 250                | 300                | 250                                          |
| Date Collected |              | 8/1/99       | 7/31/99      | 8/1/99             | 8/1/99             | 8/1/99                                       |
| Units          |              | MG/KG        | MG/KG        | MG/KG              | MG/KG              | MG/KG                                        |
| Analyte        | RESULT Q RC  | RESULT Q RC  | RESULT Q RC  | <b>RESULT Q RC</b> | <b>RESULT Q RC</b> | RESULT         Q         RC           100000 |
| lead           | 920          | 1200         | 99           | 100000             | 110000             |                                              |

4

#### Total Inetals

#### DATA SUMMARY TABLE

| Sample ID      | 99NEC14MI901 | 821765-14    | 821765-15    | 821765-16    | 821765-17    | 821765-18    |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field ID       |              | 99NEC16MI901 | 99NEC18MI901 | 99NEC19MI901 | 99NEC19MI902 | 99NEC12MI901 |
| Matrix         |              | Paint        | Paint        | Paint        | Paint        | Paint        |
| Dil Factor     | 200          | 250          | 20           | 10           | 250          | 200          |
| Date Collected |              | 8/1/99       | 8/1/99       | 7/31/99      | 7/31/99      | 8/1/99       |
| Units          | MG/KG        | MG/KG        | MG/KG        | MG/KG        | MG/KG        | MG/KG        |
| Analyte        | Result q RC  | Result q RC  | Result q RC  | Result q RC  | Result q RC  | RESULT Q RC  |
| lead           | 49000        | 140000       | 350          | 4100         | 93000        | 64000        |

.....

.

.

#### Total Metals

#### DATA SUMMARY TABLE

| Sample ID<br>Field ID | 99NEC22MI901 | 821765-20<br>99NEC22MI902 | 821765-21<br>99NEC22MI903 | 821765-22<br>99NEC22MI904 |
|-----------------------|--------------|---------------------------|---------------------------|---------------------------|
| Matrix                | Paint        | Paint                     | Paint                     | Paint                     |
| Dil Factor            | 250          | 250                       | 300                       | 300                       |
| Date Collected        |              | 7/31/99                   | 7/31/99                   | 7/31/99                   |
| Units                 | MG/KG        | MG/KG                     | MG/KG                     | MG/KG                     |
| Analyte               | RESULT Q RC  | RESULT Q RC               | RESULT Q RC               | RESULT Q RC               |
| lead                  | 100000       | 93000                     | 110000                    | 83000                     |

.

•

#### Polych....nated Biphenyls

#### DATA SUMIMARY TABLE

|                | Sample ID<br>Field ID<br>Matrix | 99NEC  | 774-01<br>13BD<br>g. Mal | 901 | 99NEC  | 774-02<br>17BD<br>g. Mat | 901 | 99NEC  | 774-03<br>18BD9<br>g. Mat | 901 |
|----------------|---------------------------------|--------|--------------------------|-----|--------|--------------------------|-----|--------|---------------------------|-----|
|                | Dil Factor<br>Date Collected    |        | 1<br>/2/99               |     |        | 1<br>/2/99               |     |        | 1<br>/2/99                |     |
|                | Units                           | М      | G/KG                     |     | M      | G/KG                     |     |        | G/KG                      |     |
| Analyte        |                                 | RESULT | Q                        | RC  | RESULT | Q                        | RC  | RESULT | Q                         | RC  |
| aroclor 1016   |                                 | 0.033  | UJ                       | е   | 0.033  | UJ                       | е   | 0.033  | UJ                        | е   |
| aroclor 1221   |                                 | 0.033  | UJ                       | е   | 0.033  | UJ                       | е   | 0.033  | UJ                        | е   |
| aroclor 1232   |                                 | 0.033  | UJ                       | е   | 0.033  | UJ                       | е   | 0.033  | UJ                        | е   |
| aroclor 1242   |                                 | 0.033  | UJ                       | е   | 0.033  | UJ                       | е   | 0.033  | UJ                        | е   |
| aroclor 1248   |                                 | 0.033  | UJ                       | е   | 0.11   | J                        | е   | 0.16   | J                         | е   |
| aroclor 1254   |                                 | 0.033  | UJ                       | е   | 0.033  | UJ                       | е   | 0.033  | UJ                        | е   |
| aroclor 1260   |                                 | 0.28   | J                        | е   | 2.6    | J                        | е   | 1.6    | J                         | е   |
| total aroclors |                                 | 0.28   | J                        | е   | 2.7    | J                        | е   | 1.8    | J                         | е   |

.

### Polychiorinated Biphenyls - TCLP

,

#### DATA SUMMARY TABLE

|                | Sample ID<br>Field ID<br>Matrix       | 99NEC  | 774-01<br>13BD:<br>g. Mat | 901 | 99NEC  | 774-02<br>17BD<br>g. Mai | 901 | 99NEC  | 774-03<br>18BD<br>g. Mai | 901 |
|----------------|---------------------------------------|--------|---------------------------|-----|--------|--------------------------|-----|--------|--------------------------|-----|
|                | Dil Factor<br>Date Collected<br>Units |        | 1<br>/2/99<br>IG/L        |     |        | 1<br>/2/99<br>IG/L       |     |        | 1<br>/2/99<br>IG/L       |     |
| Analyte        | Units                                 | RESULT | Q                         | RC  | RESULT |                          | RC  | RESULT |                          | RC  |
| aroclor 1016   |                                       | 3.3    | UJ                        | е   | 3.3    | UJ                       | е   | 3.3    | UJ                       | е   |
| aroclor 1221   |                                       | 6.7    | UJ                        | е   | 6.7    | UJ                       | е   | 6.7    | UJ                       | е   |
| aroclor 1232   |                                       | 3.3    | UJ                        | е   | 3.3    | UJ                       | е   | 3.3    | UJ                       | е   |
| aroclor 1242   |                                       | 3.3    | UJ                        | е   | 3.3    | UJ                       | е   | 3.3    | UJ                       | е   |
| aroclor 1248   |                                       | 3.3    | UJ                        | е   | 3.3    | UJ                       | е   | 3.3    | UJ                       | е   |
| aroclor 1254   |                                       | 3.3    | UJ                        | е   | 3.3    | UJ                       | е   | 3.3    | UJ                       | е   |
| aroclor 1260   |                                       | 3.3    | UJ                        | е   | 1.5    | J                        | e,m | 3.3    | UJ                       | е   |
| total aroclors |                                       | 3.3    | UJ                        | е   | 1.5    | J                        | e,m | 3.3    | UJ                       | е   |

-

.

4

\_\_\_\_

÷

#### Polychiorinated Biphenyls

#### DATA SUMMARY TABLE

| Sample ID<br>Field ID<br>Matrix<br>Dil Factor<br>Date Collected<br>Units | slsuq<br>Ti<br>8 | 5279-0<br>02a-D<br>ssue<br>5<br>/2/99<br>3/KG |    | 8/     |    |    | 8/     |    |    | Ti:    | 279-0<br>01a-B<br>ssue<br>5<br>/2/99<br>3/KG |    | т<br>8 | 5279-0<br>101a-E<br>issue<br>1<br>1/1/99<br>G/KG |    | slust<br>T | 5279-0<br>01a-D<br>issue<br>5<br>/1/99<br>G/KG |    |
|--------------------------------------------------------------------------|------------------|-----------------------------------------------|----|--------|----|----|--------|----|----|--------|----------------------------------------------|----|--------|--------------------------------------------------|----|------------|------------------------------------------------|----|
| Analyte                                                                  | RESULT           | Q                                             | RC | RESULT | Q  | RC | RESULT | Q  | RC | RESULT | Q                                            | RC | RESULT | Q                                                | RC | RESULT     | Q                                              | RC |
| aroclor 1016                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1221                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1232                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1242                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1248                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1254                                                             | 50               | UJ                                            | е  | 50     | UJ | е  | 50     | UJ | е  | 50     | UJ                                           | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |
| aroclor 1260                                                             | 160              | J                                             | е  | 50     | UJ | е  | 50     | UJ | е  | 100    | J                                            | е  | 20     | UJ                                               | е  | 50         | UJ                                             | е  |

,

.

,

e

#### Polyci....rinated Biphenyls

#### DATA SUMIMARY TABLE

|              | Sample ID<br>Field ID   |        |      |    | K9905                  |                 |    |  |  |  |
|--------------|-------------------------|--------|------|----|------------------------|-----------------|----|--|--|--|
|              | Matrix                  | •      | ssue | v  | slsuq01a-9SB<br>Tissue |                 |    |  |  |  |
| -            | Dil Factor              | 1      |      |    | 1                      |                 |    |  |  |  |
| L            | Date Collected<br>Units |        |      |    |                        | 8/1/99<br>UG/KG |    |  |  |  |
| Analyte      |                         | RESULT | Q    | RC | RESULT                 | Q               | RC |  |  |  |
| aroclor 1016 | _                       | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1221 |                         | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1232 |                         | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1242 |                         | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1248 |                         | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1254 |                         | 50     | UJ   | е  | 50                     | UJ              | е  |  |  |  |
| aroclor 1260 |                         | 140    | J    | е  | 50                     | UJ              | е  |  |  |  |

.

\_\_\_\_\_

•

Appendix D

# **Data Quality Summary**

by Analysis Type

Prepared by ETHIX 1/18/00

Appendix D Northeast Cape .

,

### **BTEX/Gas**

|                                    |                      | Data<br>Points | % of Data | % of Qualified<br>Data | Bias<br>(low/none/high) |
|------------------------------------|----------------------|----------------|-----------|------------------------|-------------------------|
| TOTAL DATA POINTS:                 |                      | 50             | -         | -                      | -                       |
| TOTAL QUALIFIED DATA POIN          | rs:                  | 5              | 10.0%     | -                      | -                       |
| TOTAL REJECTED DATA POIN           | rs:                  | 0              | 0.0%      |                        | -                       |
| Qualified/Rejected as a result of: |                      |                |           |                        |                         |
| b - Surrogate spike recovery ou    | tside control limits | 5              | 10.0%     | 100.0%                 | L                       |

**Diesel/Residual Range Organics** 

|                              | Data<br>Points | % of Data | % of Qualified<br>Data | Bias<br>(low/none/high) |
|------------------------------|----------------|-----------|------------------------|-------------------------|
| TOTAL DATA POINTS:           | 22             | -         | -                      | -                       |
| TOTAL QUALIFIED DATA POINTS: | 0              | 0.0%      | -                      | -                       |
| TOTAL REJECTED DATA POINTS:  | 0              | 0.0%      | -                      | -                       |
|                              |                |           |                        |                         |

Qualified/Rejected as a result of:

No Qualified Data

### Toxicity Characteristic Leaching Procedure (TCLP)

|                                               | Data<br>Points | % of Data | % of Qualified<br>Data | Bias<br>(low/none/high) |
|-----------------------------------------------|----------------|-----------|------------------------|-------------------------|
| TOTAL DATA POINTS:                            | 52             | •         | -                      | -                       |
| TOTAL QUALIFIED DATA POINTS:                  | 25             | 48.1%     | -                      | -                       |
| TOTAL REJECTED DATA POINTS:                   | 0              | 0.0%      | _                      | _                       |
| Qualified/Rejected as a result of:            |                |           |                        |                         |
| e - Holding time exceeded                     | 22             | 42.3%     | 88.0%                  | L                       |
| e,m - Multiple Reasons                        | 2              | 3.8%      | 8.0%                   | L                       |
| m - Numerical value is between the MDL and RL | 1              | 1.9%      | 4.0%                   | N                       |

. .

### **Polychlorinated Biphenyls**

|                                    | Data<br>Points | % of Data | % of Qualified<br>Data | Bias<br>(low/none/high) |  |
|------------------------------------|----------------|-----------|------------------------|-------------------------|--|
| TOTAL DATA POINTS:                 | 88             | -         | -                      | -                       |  |
| TOTAL QUALIFIED DATA POINTS:       | 80             | 90.9%     | -                      | -                       |  |
| TOTAL REJECTED DATA POINTS:        | 0              | 0.0%      | -                      | -                       |  |
| Qualified/Rejected as a result of: |                |           |                        |                         |  |
| e - Holding time exceeded          | 80             | 90.9%     | 100.0%                 | L                       |  |

### **Total Metals**

| Data<br>Points | % of Data         | % of Qualified<br>Data | Bias<br>(low/none/high)                                                                 |
|----------------|-------------------|------------------------|-----------------------------------------------------------------------------------------|
| 85             | -                 | -                      |                                                                                         |
| 0              | 0.0%              | -                      |                                                                                         |
| 0              | 0.0%              | -                      |                                                                                         |
|                | Points<br>85<br>0 | Points 0 0.0%          | Points         Data           85         -         -           0         0.0%         - |

Qualified/Rejected as a result of:

No Qualified Data

# **REVIEWPROJECT:** Northeast Cape**DOCUMENT:** Draft Phase II RI AddendumCOMMENTSLOCATION: St. Lawrence Island, Alaska

|                                       |             |                                | )           |                       |             |              |
|---------------------------------------|-------------|--------------------------------|-------------|-----------------------|-------------|--------------|
| <b>U.S. ARMY CORPS DATE:</b> 04/06/00 |             | <b>PS DATE:</b> 04/06/00       | Action take | en on comment by:     |             |              |
| OF ENGINEERS                          |             | <b>REVIEWER:</b> Jeff Brownlee |             |                       |             |              |
| CEPOA-EN-EE-TE                        |             | (ADEC)                         |             |                       |             |              |
|                                       |             | <b>PHONE:</b> (907) 269-3053   |             |                       |             |              |
| Item                                  | Drawing     | COMMENTS                       |             | REVI                  | MW RESPONSE | USAED        |
| No.                                   | Sht. No.,   |                                |             | CONFERENCE            |             | RESPONSE     |
|                                       | Spec. Para. |                                |             | A - comment accepted  |             | ACCEPTANCE   |
|                                       |             |                                |             | W - comment           |             | (A-AGREE)    |
|                                       |             |                                |             | withdrawn             |             | (D-DISAGREE) |
|                                       |             |                                |             | (if neither, explain) |             | ` ´ ´        |

| 1 | General<br>Doc. Title                      | As the initial Phase II RI took place in 1998, perhaps the title for this report should include the term "Addendum".                                                                                                                                                                                                                                                                                          | А     | The final report will be retitled as follows:<br>Final, Phase II Remedial Investigation Report<br>Addendum, 1999 Fieldwork, Northeast Cape,<br>Alaska                                                                                                                                                                                                                                                                                                       |  |
|---|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 | General                                    | Throughout section 2 where there has been sampling performed please point the reader to the location where the results can be found. For example the last sentence of sections 2.1.2 and 2.1.3 describe the analyses sampled for, but give no location where the results can be found.                                                                                                                        | Noted | The report is organized in a traditional RI report format where Section 2 describes the work performed and Section 3 presents the findings of the investigation. The last sentence of the second paragraph in Section 2.1 tells the reader that analytical data are presented in Section 3 and Appendix B.                                                                                                                                                  |  |
| 3 | General                                    | Please include a results table where applicable in the figures (2-2, 2-3, 2-7).                                                                                                                                                                                                                                                                                                                               | А     | For clarity, Montgomery Watson proposes to<br>move all the figures from Sections 2 to Section<br>3, and add analytical results to the figures<br>(including previous and new results).                                                                                                                                                                                                                                                                      |  |
| 4 | Page 1-16,<br>17                           | These pages were the same in my copy, so was missing the cleanup criteria for the chemicals in between Chromium and Xylene.                                                                                                                                                                                                                                                                                   | А     | The table will be corrected.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5 | Page 2-1,<br>1rst ¶                        | The third bullet mentions one of the study uses to be the identification of criteria for alternative cleanup levels. This topic wasn't brought up again in the text. Total Organic Carbon was sampled for a few times, but a discussion of hydraulic conductivity and aquifer gradient was not included. Please clarify the possible use of a method 3 or 4 closure in relation to the presented information. | A     | The topic "alternative cleanup levels" is<br>discussed again on page 4-5, the last paragraph<br>in Section 4.1. TOC data was gathered to<br>assess background levels only and discussed on<br>page 3-8, the last paragraph of Section 3.6. A<br>discussion regarding possible use of Methods 3<br>and 4 will be added to Section 4 (Conclusions<br>and Recommendations). Also, alternative<br>cleanup levels will be addressed in the<br>feasibility study. |  |
| 6 | Page 2-9,<br>Section<br>$2.1.6 - 3^{rd}$ ¶ | As mentioned in the conclusions, the one background<br>sample collected to represent the gravel pads is not enough<br>of a sample set to be statistically valid. Please note in this                                                                                                                                                                                                                          | Noted | As noted in the response to Comment 2,<br>Section 2 only describes the work that was<br>performed – not the findings. A discussion of<br>the background sampling results is presented in                                                                                                                                                                                                                                                                    |  |

# **REVIEWPROJECT:** Northeast Cape**DOCUMENT:** Draft Phase II RI AddendumCOMMENTSLOCATION: St. Lawrence Island, Alaska

|                                |             |                                | , ,              |                       |             |               |
|--------------------------------|-------------|--------------------------------|------------------|-----------------------|-------------|---------------|
| U.S. ARMY CORPS DATE: 04/06/00 |             | Action take                    | n on comment by: |                       |             |               |
| OF ENGINEERS                   |             | <b>REVIEWER:</b> Jeff Brownlee |                  |                       |             |               |
| CEPOA-EN-EE-TE                 |             | C (ADEC)                       |                  |                       |             |               |
|                                |             | <b>PHONE:</b> (907) 269-3053   |                  |                       |             |               |
| Item                           | Drawing     | COMMENTS                       |                  | REVI                  | MW RESPONSE | USAED         |
| No.                            | Sht. No.,   |                                |                  | CONFERENCE            |             | RESPONSE      |
|                                | Spec. Para. |                                |                  | A - comment accepted  |             | ACCEPTANCE    |
|                                | _           |                                |                  | W - comment           |             | (A-AGREE)     |
|                                |             |                                |                  | withdrawn             |             | (D-DISAGREE)  |
|                                |             |                                |                  | (if neither, explain) |             | 、 ··· · · · · |

|    |                                       | section of text also.                                                                                                                                                                                                                                        |       | Section 3.6.                                                                                                                                                                                                                              |
|----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Page 2-9,<br>Section<br>2.1.7, 1rst ¶ | Perhaps we should stop referring to the 29,000 buried drums in the reports. If Eugene Toolie was the original reference for that figure there must have been a transcription error, as he stated 25-30 drums at the last RAB meeting on March 26, 2000.      | А     | Eugene Toolie stated at the RAB meeting that<br>he remembered 10 to 20 drums (contents<br>unknown) being buried there and numerous 5-<br>gallon buckets of 90-weight lube oil. The text<br>will be revised with this updated information. |
| 8  | Section 2.1.8                         | Please explain what STB and DS-2 are and what they were/may have been used for.                                                                                                                                                                              | А     | Text will be added in Section 2.1.8 discussing<br>what these substances are and may have been<br>used for.                                                                                                                                |
| 9  | Section 2.9                           | Please explain what criteria were used to evaluate the utilidors as potential contaminant migration pathways.                                                                                                                                                | А     | Text will be added in Section 2.1.9 that<br>explains the criteria used to evaluate the<br>utilidor pathways.                                                                                                                              |
| 10 | Figure 2-8                            | Please indicate where the drums and buried were found on the figure.                                                                                                                                                                                         | А     | The figure will be revised to indicate where the drums were found.                                                                                                                                                                        |
| 11 | Section 2.2,<br>Page 2-19             | Please include the Final Work Plan 1998-1999 Phase II RI,<br>NE Cape, St. L. Is. as a referenced document for sample<br>protocols.                                                                                                                           | А     | The final work plan will be added as a referenced document.                                                                                                                                                                               |
| 12 | Table 3-2                             | Please change the Site-Specific cleanup levels for PCBs to 10 mg/kg.                                                                                                                                                                                         | А     | The table will be revised.                                                                                                                                                                                                                |
| 13 | Section 3.4,<br>last ¶                | Please note that for the disposal of PCBs that the landfill operator or landowner must agree to the acceptance of the PCB waste.                                                                                                                             | А     | Text will be added to note that the landfill operator must approve the acceptance of PCB waste.                                                                                                                                           |
| 14 | Table 4-1                             | The table indicates that the data gap has been resolved,<br>however further characterization and confirmation<br>sampling will be necessary during the cleanup of this area.<br>PCB, nickel and chromium were above cleanup criteria in<br>sample SW/SD 103. | Noted | The sampling performed in 1999 was only<br>intended to address a data gap concerning<br>certain petroleum hydrocarbon constituents.<br>Further sampling is being planned.                                                                 |

### MONTGOMERY WATSON RESPONSE TO COMMENTS DRAFT PHASE II RI REPORT ADDENDUM 1999 FIELDWORK NORTHEAST CAPE, ALASKA

| Item | Review       | Montgomery Watson Response |
|------|--------------|----------------------------|
| No.  | Conference   |                            |
|      | A – comment  |                            |
|      | accepted     |                            |
|      | W – comment  |                            |
|      | withdrawn    |                            |
|      | (if neither, |                            |
|      | explain)     |                            |

| Pame | la Miller's Co | omments (3/31/00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Noted          | Posting of fish advisory signs is being considered by USACE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    | Noted          | Additional work to resolve remaining data gaps is being planned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3    | Noted          | TRPH, DRO, and RRO have been detected at relatively high concentrations in background<br>samples collected in 1998 and 1999. Therefore, it's not an unreasonable assumption that for<br>certain sites and sample locations, the petroleum hydrocarbon constituents detected are<br>probably attributable to naturally occurring organics. In addition, inspections of the<br>chromatograms have indicated the presence of natural organics in many samples. It's noted that<br>background and primary samples are not always comparable due to the reasons given (i.e.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4    | Noted          | particle size distribution, percent organic material, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                | All sampling methods were described in detail in the Work Plan (Montgomery Watson, July 1999) as referenced in Section 2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5    | Noted          | The purpose for the composite sampling of building materials was to assess what, if any, affect that any PCBs contained in paint might have in regards to building debris disposal options, not to assess PCB "contamination" in buildings per se. As noted in Section 2.1.4, PCBs have been found as a paint constituent at other DOD facilities built in the same era as NEC. To our knowledge, it has not been found in concentrations that have affected disposal options for similar demolition projects. Therefore, based on the minimal amount of PCBs found in the NEC samples and at other, similar DOD facilities in Alaska, the extent of building sampling appears adequate.                                                                                                                                                                                                                                                                                                                                                                                       |
| 6    | А              | The background samples were selected from areas where there were no expectations or indications of contamination caused by facility activities. Additional text will be added in Section 2.1.6 to provide justification for these sample locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7    | Noted          | As noted in Section 2.1.7, a geophysical investigation had previously been conducted at this site. Only a small anomaly was found in this area, suggesting a limited amount of buried debris. The metal detector used was adequate to locate appropriate test pits locations for the hand digging planned. A full characterization was not the intent of this investigation; the intent is described in Section 2.1.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8    | Noted          | As noted in Section 2.1.8, several containers of DS2 and STB were removed in 1998. There was evidence that some of the DS2 had leaked as indicated by a stain on the wood floor near the containers. The containers holding the STB had broken open and some if this material was found on the floor. As much of the spilled material as possible was scooped up and transported off-site in 1998 with the containers of STB. The neutralization performed in 1999 was done as a precaution in the event that some residuals of the chemicals remained on the floor. DS2 is a light amber solution consisting of diethylenetriamine (70%), sodium hydroxide (2%) and ethylene glycol monomethyl ether (28%). It is an alkali and is classified as a corrosive due to its high pH. A sodium bisulfate solution was used to neutralize any residual (i.e., lower pH). STB is a white powder consisting of a mixture of calcium oxychloride and calcium oxide. It is classified as an oxidizer. Sodium bicarbonate was used to neutralize any residual (i.e., reduce reactivity). |
| 9    | Noted          | We don't understand the assertion of inconsistencies. Key findings, conclusions, and recommendations of the ENRI and USACE reports were summarized in Sections 2.1.10, 3.10. and 4.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### MONTGOMERY WATSON RESPONSE TO COMMENTS DRAFT PHASE II RI REPORT ADDENDUM 1999 FIELDWORK NORTHEAST CAPE, ALASKA

| Item<br>No. | Review<br>Conference<br>A – comment<br>accepted<br>W – comment<br>withdrawn<br>(if neither,<br>explain) | Montgomery Watson Response                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10          | N 1                                                                                                     | The standard structure of the structure of                                                                                                                         |
| 10          | Noted                                                                                                   | Further investigations are being planned.                                                                                                                          |
| 11          | Noted                                                                                                   | The objective for this sampling was described in Section 2.1.1. The objective was not to conduct a complete characterization of this site.                         |
| 12          | Noted                                                                                                   | The chromium reported is total Cr. Because this is a background sample, the Cr is not                                                                              |
|             |                                                                                                         | considered to be contamination, but instead, naturally occurring.                                                                                                  |
| 13          | Noted                                                                                                   | Only one sludge sample could be collected due to confined space restrictions. The sample                                                                           |
|             |                                                                                                         | result indicated that the sludge must be handled and disposed of as a regulated waste. Removal and disposal of the waste will by addressed by Nugget Construction. |
| 14          | Noted                                                                                                   | Removal and disposal of the waste will by addressed by Nugget Construction.                                                                                        |
| 14          | Noted                                                                                                   | Please refer to explanation of procedure in Section 3.2.6 of the Work Plan. TU values are                                                                          |
| 15          | Noted                                                                                                   | relative; therefore, comparison of site TU values to TU values from published literature is not                                                                    |
|             |                                                                                                         | valid. This method is based on comparing TU values of samples from contaminated areas                                                                              |
|             |                                                                                                         | against TU values of samples from uncontaminated, reference (similar substrates) areas.                                                                            |
| 16          | А                                                                                                       | The building composite samples were analyzed for both total PCBs and TCLP PCBs. The data                                                                           |
|             |                                                                                                         | deficiencies noted pertained only to missed holding times for TCLP PCB analysis (the method                                                                        |
|             |                                                                                                         | holding time for TCLP extractions is 21 days; these samples were not extracted until the 24th                                                                      |
|             |                                                                                                         | day). The data was considered to be useable because there was only a slight exceedance of the                                                                      |
|             |                                                                                                         | method holding time (3 days) and PCBs are inherently stable, especially when contained in                                                                          |
|             |                                                                                                         | paint that is over 30 years old. An explanation will be added in Section 3.4.                                                                                      |
| 17          | Noted                                                                                                   | An independent USACE contractor (Ethix) made the typo in the footer.                                                                                               |

| Sivuq | aq, Inc. & Sav | yoonga Native Corp.'s Comments - Provided by Jerry Reichlin (3/31/00)                           |
|-------|----------------|-------------------------------------------------------------------------------------------------|
| 1     | А              | The text will be updated with the most current status of the White Alice Site.                  |
| 2     | А              | Site 10, as it has been defined, includes only the drum burial area, not the drainage area      |
|       |                | downgradient. The text in this section will be amended to add that the surface water samples    |
|       |                | were collected downgradient from this site, not within this site. The downgradient surface      |
|       |                | water area receives runoff from several sites, and the PCBs and lead are believed to originate  |
|       |                | from a source area other than Site 10 (probably from the Power Plant at Site 13).               |
| 3     | Noted          | Site 30, where Cr and As were found at concentrations that exceed ADEC cleanup levels,          |
|       |                | consists of background samples. These samples were collected from areas that are not believed   |
|       |                | to been contaminated. Therefore, the sample results represent naturally occurring metals and    |
|       |                | organics (e.g., DRO, RRO, and TRPH) - not contamination. It is very common, in fact             |
|       |                | expected, to find naturally occurring compounds like these at all sites. Furthermore, it is not |
|       |                | uncommon that the background concentrations exceed cleanup levels for certain analytes, as      |
|       |                | occurred here at NEC.                                                                           |
| 4     | Noted          | Further sampling is being planned.                                                              |
| 5     | Noted          | Drum removal and excavation of contaminated soil is being considered for this site.             |
| 6     | Noted          | Further sampling is being planned.                                                              |
| 7     | А              | The building composite samples were analyzed for both total PCBs and TCLP PCBs. The data        |
|       |                | deficiencies noted pertained only to missed holding times for TCLP PCB analysis (the method     |
|       |                | holding time for TCLP extractions is 21 days; these samples were not extracted by the           |

### MONTGOMERY WATSON RESPONSE TO COMMENTS DRAFT PHASE II RI REPORT ADDENDUM 1999 FIELDWORK NORTHEAST CAPE, ALASKA

| Item<br>No. | Review<br>Conference<br>A – comment<br>accepted<br>W – comment<br>withdrawn<br>(if neither, | Montgomery Watson Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | explain)                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                             | laboratory until the 24th day). The data was considered to be useable because there was only a slight exceedance of the method holding time (3 days) and PCBs are inherently stable, especially when contained in paint that is over 30 years old. An explanation will be added in Section 3.4.                                                                                                                                                                                                                                                                                                                                                                                          |
| 8           | Noted                                                                                       | The purpose for the composite sampling of building materials was to assess what, if any, affect that any PCBs contained in paint might have in regards to building debris disposal options, not to assess PCB "contamination" in buildings per se. As noted in Section 2.1.4, PCBs have been found as a paint constituent at other DOD facilities built in the same era as NEC. To our knowledge, it has not been found in concentrations that have affected disposal options for similar demolition projects. Therefore, based on the minimal amount of PCBs found in the NEC samples and at other, similar DOD facilities in Alaska, the extent of building sampling appears adequate. |
| 9           | Noted                                                                                       | There were no septic leach fields at this site. As noted in Section 2.1.3, effluent from the septic settling tanks was discharged through an 8-inch insulated cast iron pipe to a wetland area approximately 450 feet to the east. Soil, sediment, surface water, and groundwater samples were collected near the discharge in 1994; the findings were reported and discussed in the Final Phase II RI Report (Montgomery Watson, August 1999).                                                                                                                                                                                                                                          |
| 10          | Noted                                                                                       | Further investigations and studies are being planned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |